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Abstract The properties of the number of iterations in random sequential adsorption pro-
tocol needed to generate finite saturated random packing of spherically symmetric shapes
were studied. Numerical results obtained for one, two, and three dimensional packings were
supported by analytical calculations valid for any dimension d. It has been shown that the
number of iterations needed to generate finite saturated packing is subject to Pareto distrib-
ution with exponent −1 − 1/d and the median of this distribution scales with packing size
according to the power-law characterized by exponent d. Obtained results can be used in
designing effective random sequential adsorption simulations.

Keywords Random sequential adsorption · Saturated random packings · Spheres packings ·
Multidimensional packings

1 Introduction

Random sequential adsorption (RSA) is one of numerical protocols that allow to generate
random packing of any objects [1,2]. It is based on the iteration of two simple steps:

– a virtual particle is created. Its position and orientation within a packing is selected ran-
domly.

– the virtual particle is tested for overlaps with any of the other particles in the packing. If no
overlap is found, it is added to the packing and holds its position and orientation until the end
of simulations. Otherwise, the virtual particle is removed from the packing and abandoned.

A random packing is saturated when there is no possibility to place another particle in it. The
name of RSA is related to irreversible adsorption processes where particles are randomly
placed on a surface or interface [3–5] – one iteration of RSA algorithm corresponds to one
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adsorption attempt of a single particle. However, RSA applications are much wider including
soft matter [6], telecommunication [7], information theory [8] and mathematics [9].

The main problem of RSA is its efficiency when packing is almost saturated. For such
packings the probability of placing another particle is very small. Therefore, a large number
of iterations is needed to add a particle and packing’s growth becomes very slow. According to
Feder’s law, density of particles in an infinite packing changes with the number of adsorption
attempts according to the following relation [10–13]:

ρ(t) = ρ − At−1/d . (1)

Here, ρ is the density of particles in a saturated packing, ρ(t) is the density of particles in
a packing after time t , A is a positive constant and d equals to packing dimension in case
of spherically symmetric shapes (line segments in one dimension, disks in two dimensions,
spheres in three dimensions, etc.).

The time t equals to the number of attempts of adding a particle per unit length for one
dimensional packings, area for two dimensional packings, volume for three dimensional
packings, etc.

The relation (1) was tested numerically to be valid for large enough, but finite packings [1,
14–16]. It is commonly used to estimate the number of particles at jamming, however it does
not give any hints related to the number of RSA iterations needed to saturate a packing.

Recently, Zhang et al. have improved RSA algorithm, and showed that it is possible to
generate saturated random packings of spherically symmetric particles in a reasonable sim-
ulation time [17]. The algorithm is based on tracking the area where placing subsequent
particles is possible. The idea comes from earlier works concerning RSA on discrete lat-
tices [18] and deposition of oriented squares on a continuous surface [19]. When particle is
added to the packing this available area decreases. When it vanishes completely the packing
is saturated. Because a single sampling of a particle centre from the available area of size
s is equivalent to S/s samplings from the whole packing, this method makes it possible to
determine number of RSA iterations in original protocol needed to saturate finite packing.

The aim of this paper is to analyse properties of this number as a random variable. In
particular, it is interesting to investigate how it depends on packing size, since a recent study
suggests that its median scales according to the power-law with an exponent equal to packing
dimension [20].

2 Details of Numerical Simulations

Saturated random packing were generated using method described in detail in [17]. Line
segments, disks and spheres, were packed onto a large line segment, square, and cube, respec-
tively. In all these cases, periodic boundary conditions were used. The size (length, area or
volume depending on a packing dimension) of packings varied from 104 to 4×107 and a sin-
gle shape had a unit volume. For each particular set-up at least 100 of independent packings
were created. For each of the saturated packings, the value of t was recorded at the moment
when the last particle was added.

3 Results and Discussion

3.1 Distribution of Simulation Time

Example of distributions of time needed to get saturated packings of line segments, disks,
and spheres obtained from RSA simulations are shown in Fig. 1. To study the time after
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Fig. 1 Histograms of RSA
iterations per unit area needed to
saturate d-dimensional packings.
Dots represent numerical data
obtained from numerically
generated 104 packings of size
S = 106 for d = 1 and d = 2,
and S = 105 for d = 3. Lines
correspond to power fits:
2.23 × 1015 · t−2,
2.41 × 1021 · t−1.5 and
1.06 × 1024 · t−1.333 for d = 1,
2, and 3, respectively
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which simulation ends lets focus on the probability of placing a particle in the packing, as the
inverse of this probability is proportional to the expected number of iterations needed to find
a large enough place for that particle. This probability has already been studied by Pomeau
[10] and Swendsen [11]. For sufficiently long times, in a non-saturated packing, there are
separate regions where subsequent particles can be placed (see Fig. 2). Swendsen assumed that
independently of packing dimension, the linear size of such regions is uniformly distributed
[11], which has been recently confirmed in numerical experiments for two dimensional
random packings [20]. This assumption leads to the following distribution of regions sizes:

ps(x) = x− d−1
d

d s0
1
d

, (2)

where s is a random variable denoting the volume of a region, s0 is the volume of the largest
region, and

ps(x) ≡ lim
dx→0

Prob(x < s < x + dx)

dx
. (3)

To saturate a packing all such regions should be filled. Probability of placing a centre of a
particle inside a region is proportional to its area. Because these regions are well separated,
placing a subsequent disk in one region does not affect the probability of filling any other
region. This means that, statistically, smaller regions will be filled later than larger ones; thus,
the last region to be filled should be the smallest one. Therefore, the distribution of iterations
needed to generate saturated packing is directly related to the distribution of the sizes of the
smallest region. The cumulative distribution function of region area size is

Fs(x) ≡ Prob(s < x) =
∫ x

0
ps(t)dt =

(
x

s0

) 1
d

. (4)

The probability that a random variable smin, being the minimum of n independent random
variables s is smaller than a given value x is:

Prob(smin < x) = 1 − Prob(s > x) · Prob(s > x) · · · · · Prob(s > x)︸ ︷︷ ︸
n times

= 1 − [1 − Prob(s < x)]n . (5)
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Fig. 2 Fragment of a non-saturated two-dimensional packing of disks with regions (the triangle-like areas)
where centres of subsequent disks can be placed. On the right the magnification of one such region. The
diameter of circles is twice as large as the diameter of disks

Thus, the cumulative distribution function of the smin, is equal to:

Fsmin (x) = 1 − [1 − Fs(x)]
n = 1 −

[
1 −

(
x

s0

) 1
d
]n

, (6)

and the probability distribution function of smin is

psmin (x) = n

ds0
1
d

x
1
d −1

[
1 −

(
x

s0

) 1
d
]n−1

. (7)

Note that asymptotically for x � s0, the expression in square brackets is practically equal
to 1, thus, psmin (x) ∼ x1/d−1. As noted previously, the number of iterations tmax needed to
create saturated packing is inversely proportional to smin: tmax ∼ 1/smin. Thus, taking into
account the above relation, asymptotically

ptmax(x) ∼ x−1− 1
d , (8)

which is in a quite good agreement with numerical experiments (see Fig. 1).

3.2 Median of Simulation Time

To explain recently observed scaling of the median of tmax with packing size [20], it is
necessary to move back to Eq. (6) and solve the equation Fsmin (x) = 1/2, which gives the
median of smin.

M[smin] = s0

[
1 −

(
1

2

) 1
n
]d

. (9)

Again, as tmax ∼ 1/smin, which is monotonic, then M[tmax] ∼ 1/M[smin], thus

M[tmax] ∼
[

1 −
(

1

2

) 1
n
]−d

. (10)

Number of regions n that have to be filled scales linearly with packing size S. Moreover,
the expression in square brackets may be expanded in the series [1 − (1/2)1/n] = ln 2/n −
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Fig. 3 The dependence of the
median of time needed to obtain
saturated packing on packing size
for segments (d = 1), disks
(d = 2), and spheres (d = 3).
Dots represent data obtained
from numerical analysis of 102

packings of size
S ∈ [104, 4 × 108]. Lines
corresponds to fits: 0.474587 · S,
0.214991 · S2 and 0.0320608 · S3
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ax

1/2(ln 2/n)2 + o(1/n2). Thus, asymptotically for large S (and small 1/n):

M[tmax] ∼
[

ln 2

S

]−d

∼ Sd . (11)

Numerical confirmation of this result is shown in Fig. 3. It is rather obvious that generating
larger packings needs more computational time. But, the plot also shows that RSA in higher
dimensions may be extremely time consuming as the time needed to generate a packing of the
same size grows with dimension, as well as it scales with packing size with higher exponent.
Moreover, packing fraction decreases with the growth of packing dimension [14,17], which
additionally spoils statistics in numerical simulations. Additionally, it is worth noting that
Feder’s law (1) seems to be valid also for fractional packing’s dimensions [15,16]. As its
derivation bases on the same assumption as made here, namely (2), presented results should
be valid also for fractional d’s. At last, the relation (1) works also for anisotropic shapes
[21,22], with parameter d denoting a number of degrees of freedom of adsorbed particle
instead of packing dimension [16]. Therefore, the question arises if relations (8) and (11)
are valid for anisotropic particles. But to answer it, the algorithm that generates saturated
random packing in reasonable computational time is needed.

4 Conclusions

The number of RSA iterations needed to generate finite saturated random packing of spheri-
cally symmetric objects seems to subject to Pareto distribution with an exponent −(1 + 1/d)

whered is packing dimension. The median of this distribution scales with packing size accord-
ing to the power-law characterized by exponent d. Obtained results can be used to optimize
and control time complexity of RSA simulations. In particular, together with results described
in [20], they allow to design an RSA simulation that gives possibly the most accurate results
within existing time limits.
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