
J Supercomput (2017) 73:4390–4406
DOI 10.1007/s11227-017-2023-9

Modelling parallel overhead from simple run-time
records

Siegfried Höfinger1,2 · Ernst Haunschmid1

Published online: 31 March 2017
© The Author(s) 2017. This article is an open access publication

Abstract A number of scientific applications run on current HPC systems would
benefit from an approximate assessment of parallel overhead. In many instances a
quick and simple method to obtain a general overview on the subject is regarded
useful auxiliary information by the routine HPC user. Here we present such a method
using just execution times for increasing numbers of parallel processing cores.We start
out with several common scientific applications andmeasure the fraction of time spent
in MPI communication. Forming the ratio of MPI time to overall execution time we
obtain a smooth curve that can be parameterized byonly two constants.We then use this
two-parameter expression and extend Amdahl’s theoremwith a new term representing
parallel overhead in general. Fitting the original data set with this extended Amdahl
expression yields an estimate for the parallel overhead closely matching the MPI time
determined previously.
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1 Introduction

In times of ever increasing computing power the number of critical components affect-
ing scalability and efficiency of a particular application is also growing rapidly. Of
particular importance are the increasing dynamic nature of high-performance com-
puting (HPC) systems [1], the necessity for a scalable yet robust implementation of
the target problem using modern parallelization paradigms [2], the achievement of
cache-optimal performance at the single node level [3] and a straightforward way to
accurately monitor and analyse the extent to which individual system/software com-
ponents do condition the overall system. It is important to raise awareness for these
critical issues also at the non-specialist user level, where a great number of people
nowadays is making routine use of HPC resources in order to gain new insights and
drive forward exciting activities.

Assessment of parallel performance and overhead has been extensively studied
in the past [4–12]. Starting with the logP model [4,5], four parameters, i.e. latency,
overhead, gap (reciprocal communication bandwidth) and number of processors, could
be accounted for and a given algorithmbe analysed, respectively.Akeydesign goalwas
to find a balance between overly simplistic and overly specific models. Application
to MPI [6] and several extensions respecting large messages [6,7] and contention
effects [8] have been described. A more abstract framework with tuneable complexity
but still practical timing requirements has been provided with PERC [9]. More recent
trends in hybrid MPI/OpenMP programming were taken care of by a combination
of application signature with system profiles [10]. Along similar lines application-
centric performance modelling [11,13] was described based on characteristics of the
application and the target computing platform with the objective of successful large-
scale extrapolation. Similar predictions could also be made with the help of run-time
functions within the SUIF infrastructure [12].

Recently, the cost of computation has become cheap in relation to communi-
cation [14]; thus, in order to make an algorithm scalable, the overhead due to
communication must be reduced to a minimum [15]. While several powerful tools
for quantifying communication overhead have been developed in the past [16–20],
their routine use by the general HPC practitioner must still be considered far from
standard practice. Consequently, it would be nice to have available a quick and simple
method to estimate the extent of communication overhead without the need for addi-
tional interferencewith the software/system layer (e.g. without recompiling, switching
on profiling flags, linking to additional libraries). Ideally, such a method should be
easy to adopt by any HPC user interested in the subject. In the following we aim to
outline the basics and practical details of exactly such an approach.

2 Basic model

We begin our investigation with the selection of a set of scientific applications fre-
quently used on HPC platforms. They are,

– HPL [21],
– GROMACS [22],
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4392 S. Höfinger, E. Haunschmid

– AMBER [23],
– VASP [24],
– QUANTUM ESPRESSO [25],
– LAMMPS [26]
– and an in-house developed quantum chemistry code [27,28].

Realistic problems are defined and computed in parallel on increasing numbers of cores
using MPI [2] as the communication protocol. Only strong scaling is considered, i.e.
constant problem size computed in shorter times with increasing numbers of process-
ing elements (cores). Times to solution, tn , are recorded as a function of numbers of
involved cores, n, and results are summarized in Tables 1, 2, 3, 4, 5, 6 and 7 (columns
1, 2). In addition, the time spent in MPI calls, τMPI

n , is also recorded and included
in Tables 1, 2, 3, 4, 5, 6 and 7 (column 3). Two different tools are used to measure
MPI times, in particular mpiP [17] and allinea/MAP [18]. The time records obtained
from both tools are largely identical as demonstrated by the example of AMBER (see
Table 3). τMPI

n assessment based onmpiP analysis (Tables 1, 2, 3, 4) yields individual
MPI timings on a per-task basis; hence, averages need to be formed for the n different
tasks of a particular sample run. Because individual MPI times do vary considerably,
it was also of interest to compute the variance of τMPI

n and its corresponding standard
deviation, ±�τMPI

n (see Tables 1, 2, 3, 4, column 4). Given the diversity of the appli-

Table 1 HPL: Exe-Times, tn ,
and MPI-Overhead, τMPI

n n tn τMPI
n ±�τMPI

n
τMPI
n
tn

(s) (s) (s)

∗1 1092139.0 0.0 0.0 0.000

4 243000.0 14550.0 2215.3 0.060

8 115000.0 5293.8 1557.3 0.046

16 75300.0 6988.1 2260.3 0.093

32 35200.0 4111.6 1184.4 0.117

48 27500.0 6202.5 1735.2 0.226

64 19300.0 3571.2 928.4 0.185

96 13725.0 3525.9 2313.6 0.257

128 11300.0 3400.8 668.8 0.301

160 9210.0 2963.2 434.2 0.322

192 6970.0 1749.6 360.2 0.251

256 5670.0 1738.2 309.8 0.307

320 4680.0 1455.4 294.4 0.311

384 3920.0 1204.7 231.6 0.307

640 2900.0 1213.8 185.0 0.419

768 2450.0 995.3 170.0 0.406

896 2390.0 1112.4 172.0 0.465

1024 2090.0 960.0 145.2 0.459

1296 1670.0 707.5 140.3 0.424

1520 1870.3 1084.4 122.5 0.580mpiP evaluation; ∗ preliminary
estimate
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Table 2 GROMACS:
Exe-Times, tn , and
MPI-Overhead, τMPI

n

n tn τMPI
n ±�τMPI

n
τMPI
n
tn

(s) (s) (s)

1 5317.0 0.0 0.0 0.000

2 2690.0 39.5 15.3 0.015

4 1380.0 50.7 19.1 0.037

8 730.0 43.5 10.4 0.060

16 388.0 35.6 1.4 0.092

32 251.0 68.0 55.3 0.271

48 146.0 26.6 17.6 0.182

64 134.0 42.9 28.3 0.320

80 105.0 30.4 15.9 0.290

96 121.0 52.9 12.1 0.437

112 99.1 44.6 16.5 0.451

128 78.7 30.8 14.3 0.391

160 66.6 27.3 8.3 0.410

192 98.4 61.3 6.0 0.623

224 54.0 25.4 8.3 0.470

256 53.7 27.9 7.5 0.519

288 116.0 76.0 10.5 0.655

320 63.1 40.2 5.1 0.638

336 45.6 23.8 3.5 0.522

384 47.0 27.6 3.3 0.588

416 99.4 80.6 4.1 0.811

448 44.6 27.0 5.1 0.606

512 88.1 73.5 3.5 0.834

592 43.7 29.7 1.7 0.679

688 42.0 29.4 1.7 0.699
mpiP evaluation

cations and their markedly different characteristics in terms of parallel scalability, it is
not obvious to identify common trends in the introduced parallel overhead. However,
what appears to be a rather general signature of all applications is the rather smooth
development of the quotient between parallel overhead and total run-time, τMPI

n /tn ,
which is graphically illustrated in Fig. 1 (also see final column in Tables 1, 2, 3, 4,
5, 6, 7). All data sets can be approximated by the following simple expression in two
adjustable parameters, b and c,

τMPI
n

tn
= b

c + 1
− b

c + n
(1)

and resulting fits are also included in Fig. 1 (solid curves).While primarily an empirical
relation, Eq. (1) should still satisfy the limit value conditions, τ1 = 0 and τ∞

t∞ < 1.
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Table 3 AMBER: Exe-Times, tn , and MPI-Overhead, τMPI
n

n tn τMPI
n ±�τMPI

n
τMPI
n
tn

(s) (s) (s)

1 4602.0 [4623.0] 0.0 [ 0.0] 0.0 [0.0] 0.000 [0.000]

2 2350.0 [2362.3] 40.6 [ 33.1] 9.0 [–] 0.017 [0.014]

4 1230.0 [1245.5] 51.8 [ 59.8] 23.3 [–] 0.042 [0.048]

8 633.1 [ 634.4] 35.5 [ 34.3] 17.7 [–] 0.056 [0.054]

12 484.1 [ 410.9] 46.4 [ 41.5] 16.6 [–] 0.096 [0.101]

16 383.0 [ 378.3] 51.1 [ 43.5] 9.0 [–] 0.133 [0.115]

24 296.0 [ 244.6] 69.9 [ 50.1] 31.4 [–] 0.236 [0.205]

32 280.0 [ 281.2] 101.6 [100.4] 28.9 [–] 0.363 [0.357]

40 207.0 [ 183.5] 66.1 [ 59.3] 22.8 [–] 0.319 [0.323]

48 233.0 [ 202.9] 104.7 [ 79.5] 30.8 [–] 0.449 [0.392]

64 200.0 [ 168.0] 99.0 [ 71.6] 28.0 [–] 0.495 [0.426]

80 167.0 [ 149.1] 84.2 [ 69.0] 21.6 [–] 0.504 [0.463]

96 139.0 [ 136.7] 69.9 [ 67.1] 23.9 [–] 0.503 [0.491]

112 142.0 [ 123.4] 79.4 [ 62.9] 21.8 [–] 0.559 [0.510]

128 125.0 [ 116.4] 70.5 [ 62.2] 20.7 [–] 0.564 [0.534]

160 116.0 [ 103.7] 69.4 [ 58.2] 17.3 [–] 0.598 [0.561]

192 113.0 [ 94.9] 72.4 [ 55.6] 17.1 [–] 0.641 [0.586]

224 112.0 [ 91.4] 75.6 [ 55.9] 16.5 [–] 0.675 [0.612]

256 127.0 [ 92.1] 90.9 [ 59.6] 14.1 [–] 0.716 [0.647]

288 132.0 [ 90.6] 98.2 [ 60.7] 12.8 [–] 0.744 [0.670]

320 128.0 [ 96.5] 95.2 [ 66.9] 10.5 [–] 0.744 [0.693]

352 146.0 [ 111.3] 112.7 [ 82.8] 7.9 [–] 0.772 [0.744]

416 131.0 [ 117.0] 101.9 [ 89.6] 7.1 [–] 0.778 [0.766]

512 124.0 [ 102.1] 99.3 [ 79.7] 6.8 [–] 0.801 [0.781]

mpiP measurement and allinea/MAP evaluation in [ ] for comparison

Table 4 InHouseDev:
Exe-Times, tn , and
MPI-Overhead, τMPI

n

n tn τMPI
n ±�τMPI

n
τMPI
n
tn

(s) (s) (s)

1 2124.0 0.0 0.0 0.000

2 1290.0 172.0 0.0 0.133

4 554.0 181.7 5.8 0.328

8 356.0 196.6 8.2 0.552

16 287.0 212.9 6.3 0.742

32 239.0 203.2 3.7 0.850

64 220.0 201.9 2.7 0.918

128 215.0 206.1 1.6 0.959
mpiP evaluation
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Table 5 VASP: Exe-Times, tn ,
and MPI-Overhead, τMPI

n n tn τMPI
n

τMPI
n
tn

(s) (s)

1 5375.4 0.0 0.000

2 2664.9 48.0 0.018

4 1424.9 42.8 0.030

8 889.8 42.7 0.048

16 452.9 30.8 0.068

32 261.1 46.2 0.177

48 208.0 52.4 0.252

64 159.7 48.7 0.305

80 145.0 51.5 0.355

96 126.3 44.7 0.354

112 164.0 88.1 0.537

128 107.4 47.3 0.440

160 111.1 55.4 0.499

192 109.3 60.1 0.550

224 103.4 60.6 0.586

256 104.8 66.5 0.635

512 82.3 59.2 0.719

768 86.3 69.6 0.806

1024 79.2 65.0 0.821
allinea/MAP evaluation

2.1 Generalization

So far we have been very imprecise in the use of the term “parallel overhead” and
frequently replaced it with “communication overhead” or τMPI

n , etc. In general, we
consider every incremental time fragment emerging within a parallel algorithm par-
allel overhead if it is in excess of the serial algorithm required to solve exactly the
same type of problem. Typically this will include [15],

– time to interchange data
– time to synchronize individual parallel tasks
– extra computing time due to code sections arising only in the parallel algorithm
– computing time penalties due to load balancing issues
– computing time penalties due to inhomogeneous conditions between individual
components of the parallel machine [1]

Measuring parallel overhead is not a trivial matter [29–31]. A conventional view is
that to a large extent it is all covered by communication overhead. In fact, if we review
the above list we see that task-level recording of individual MPI times (as done here)
will either explicitly or implicitly include almost all of the incurred parallel overhead.
Moreover, since our primary interest is in providing an approximate estimate, we shall
consider τMPI

n to be a sufficiently accurate measure of the total parallel overhead and
adopt the notation τn for the latter throughout the remainder of this article. Estimating
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Table 6 QUANTUM
ESPRESSO: Exe-Times, tn , and
MPI-Overhead, τMPI

n

n tn τMPI
n

τMPI
n
tn

(s) (s)

1 5531.3 0.0 0.000

2 3085.6 216.0 0.070

4 1784.2 269.4 0.151

8 1281.7 362.7 0.283

16 793.6 388.9 0.490

32 356.3 170.0 0.477

48 294.3 165.4 0.562

64 229.2 132.7 0.579

80 203.7 123.0 0.604

96 194.5 125.1 0.643

112 186.3 126.7 0.680

128 156.7 100.8 0.643

160 155.9 110.2 0.707

192 157.1 119.1 0.758

224 153.5 120.0 0.782

256 166.8 136.4 0.818

288 151.6 123.5 0.815

320 155.8 129.5 0.831

352 154.3 129.8 0.841

416 164.8 142.2 0.863

512 161.6 141.1 0.873

768 185.8 168.5 0.907

1024 228.3 212.3 0.930
allinea/MAP evaluation

τn will now help to (i) raise awareness that a particular application may be signifi-
cantly affected by parallel overhead, (ii) facilitate a posteriori assessment of various
applications reporting times to solution, tn , as a function of numbers of cores, n, (iii)
identify optimal run-time conditions on a given parallel architecture.

2.2 Solving for τn

In the following we shall build on the model established in Eq. (1) and try to isolate a
closed form for the parallel overhead, τn , thereof. Starting with

τn = tn

(
b

c + 1
− b

c + n

)
(2)

we can formally decompose the time to solution,

tn = tAmdahl
n + τn (3)
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Table 7 LAMMPS: Exe-Times,
tn , and MPI-Overhead, τMPI

n n tn τMPI
n

τMPI
n
tn

(s) (s)

1 4501.0 0.0 0.000

2 2432.6 73.0 0.030

4 1298.9 85.7 0.066

8 702.7 97.0 0.138

16 409.7 100.8 0.246

32 290.9 128.9 0.443

48 261.8 147.9 0.565

64 246.4 157.4 0.639

80 332.9 257.0 0.772

96 294.9 226.8 0.769

112 319.0 260.3 0.816

128 300.8 247.9 0.824

160 356.2 309.2 0.868

192 360.8 319.3 0.885

224 335.5 295.2 0.880

256 308.5 276.1 0.895

288 318.7 288.1 0.904

320 330.9 303.8 0.918

352 389.0 362.9 0.933

416 362.8 338.5 0.933

512 355.6 333.6 0.938

768 396.9 378.2 0.953

1024 423.5 402.3 0.950
allinea/MAP evaluation

into an ideal time to solution, tAmdahl
n , and an associated parallel overhead, τn . As

already implied by the superscript, the initial term is given from the classic Amdahl
relation [32–35],

tAmdahl
n = fs t1 + (1 − fs)t1

n
(4)

where t1 denotes the single core execution time, and fs its serial fraction that cannot
be run in parallel. It follows from Eqs. (2) and (3) that we can isolate an expression
for the parallel overhead, in particular,

τn = tAmdahl
n b(n − 1)

(1 + c − b)n + (b + c + c2)
(5)

and thus again using Eq. (3) describe the total time to solution,
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Fig. 1 Ratio of parallel
overhead, i.e. the time spent in
MPI communication, τMPI

n , to
total execution time, tn , for a
selected set of scientific
applications frequently used on
HPC platforms (also see
Tables 1, 2, 3, 4, 5, 6, 7). Error
bars indicate the resulting
uncertainty if we consider
standard deviations to the
average values of τMPI

n
following mpiP analysis [17].
allinea/MAP evaluations [18]
deliver mean values for τMPI

n
by default. Individual data sets
can be nicely fit by a
two-parameter model as detailed
in Eq. (1) (solid curves)

tn = tAmdahl
n

[
1 + b(n − 1)

(1 + c − b)n + (b + c + c2)

]
(6)

as a multiplicative extension to the original proposal of Amdahl [32–35].

3 Results

3.1 HPC systems used

All test applications examined here—except the in-house developed code—were run
on the Vienna Scientific Cluster, version 3 (VSC-3) [36]. VSC-3 consists of 2020
compute nodes, all of them equipped with dual socket 8 core Intel Xeon CPUs (E5-
2650v2, 2.6GHz, Ivy Bridge) and interconnected by a dual-rail Infiniband QDR-80
network. Standard node memory is 64 GB; optionally available are nodes with 128
or 256GB. The system features a rather unconventional cooling infrastructure, i.e.
Liquid Immersion Cooling [37], where hardware components are fully immersed in
mineral oil.

The in-house developed code was run on VSC-2, another HPC installation consist-
ing of 1314 compute nodes with 2 CPUs of type AMD Opteron 6132 HE (2.2GHz,
8 core) and again interconnected via an Infiniband QDR fabric. Standard nodes on
VSC-2 provide 32 GB RAM.

3.2 Parallel overhead determined from run-time records

The simplest type of performance analysis for a particular application is to record
execution times for increasing numbers of cores operating in parallel. This is also the
most relevant type of analysis because it is based on exactly that type of executable that
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Fig. 2 Recorded times to solution, tn , (brown triangles, also see Table 1, columns 1–2) as a function of
numbers of cores, n, operating in parallel for application HPL [21]. Very large initial times corresponding to
very small core counts have been truncated for better graphical comparison. Best fitting the data by Eq. (6)
yields parameters b and c (implicitly also fs )where the original data are reasonablywell approximated (solid
line in cyan). In addition, an estimate can be provided for the parallel overhead using Eq. (5) (solid orange
line). The estimate matches the mpiP-derived [17] mean parallel overhead rather well (compare orange
line to the brown triangles with error bars, respectively, Table 1, columns 3–4). Significant deviation from
Amdahl’s Law is seen already for small core counts (compare cyan to grey line) (Color figure online)

will be used later on in the production stage. Thus, no alterations to the binary have
to be made for the purpose of analysing the code, for example introduction of internal
timers, instrumentation due to profiling/debugging, inclusion of event counters, library
wrappers; and all observed execution times do directly reflect themost natural run-time
behaviour of the application taken into account.

Applying Eq. (6) to exactly such a simple record of just execution times, tn , for
varying numbers of cores, n, should result in the derivation of parameters, b and c,
which in turn can be plugged into Eq. (5) to yield approximate estimates for the corre-
sponding parallel overhead, τn . The latter is of fundamental interest, for both additional
development and practical deployment at optimal run-time conditions. An example
of such an approach is given in Fig. 2. The application considered was HPL [21], and
the underlying data are collected in columns 1–2 of Table 1. Experimental run-times
(brown triangles) are reproduced fairly well from a fit using Eq. (6). The obtained
curve is shown as the cyan line in Fig. 2. Parameters b and c obtained from the fit
are then applied in Eq. (5) to determine an estimate for the parallel overhead, and the
corresponding graph is shown as the orange line in Fig. 2. Since in this particular case
we have available experimentally derived values for τn (Table 1, columns 3–4), a direct
comparison can be made between calculated and measured results (compare brown
triangles with error bars to the orange curve in Fig. 2). Apart from an initial region of
general uncertainty (see dimension of the error bars at small numbers of cores), the
agreement between predicted and experimental values is rather good. A consequence
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Fig. 3 Recorded times to solution, tn , (blue triangles, also see Table 2, columns 1–2) as a function of
numbers of cores, n, operating in parallel for application GROMACS [22]. Very large initial times corre-
sponding to very small core counts have been truncated for better graphical comparison. Best fitting the
data by Eq. (6) yields parameters b and c (implicitly also fs ) where the original data are reasonably well
approximated (solid line in cyan). In addition, an estimate can be provided for the parallel overhead using
Eq. (5) (solid orange line). The estimate matches the mpiP-derived [17] mean parallel overhead rather well
(compare orange line to the blue triangles with error bars, respectively, Table 2, columns 3–4). Significant
deviation from Amdahl’s Law is seen already for small core counts (compare cyan to grey line) (Color
figure online)

of all of this is a significant deviation from Amdahl’s Law [32–35] starting already at
modest numbers of cores (compare grey line with cyan curve in Fig. 2).

Additional tests were carried out for the rest of the applications, and corresponding
results are graphically summarized in Figs. 3, 4, 5, 6, 7, and 8. It should be noted that
the scale on both axes had to be changed considerably between different applications
in order to emphasize their specific characteristics in terms of scaling and overhead
times. From this it also becomes clear that the approach is rather general and can be
applied to a wide range of diverse applications in identical fashion. As can be seen
from Figs. 3, 4, 5, 6, 7, and 8, general results remain the same for all applications
considered. However, remarkable specific differences arise upon closer examination.
For example, GROMACS [22] exhibits a strange pattern of zig-zag-like execution
times that is closely paralleled by the overhead times (see Fig. 3). This may indicate
restricted ability to split the problem into parallel tasks of arbitrary size. Obviously,
fitting such a data set can only deliver a best compromise for τn . In contrast, the general
evolution of sample AMBER [23] appears to be smooth (Fig. 4). Similar to all the
other examples, it is interesting to see how quickly τn is becoming the dominant factor
and how steadily standard deviations to τn do decrease with increasing numbers of
cores.

The immediate impression of the in-house developed code [27,28] is that here we
certainly face the least optimized application (Fig. 5). However, it is still interesting to
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Fig. 4 Recorded times to solution, tn , (green dots, also see Table 3, columns 1–2) as a function of numbers
of cores, n, operating in parallel for application AMBER [23]. Very large initial times corresponding to
very small core counts have been truncated for better graphical comparison. Best fitting the data by Eq. (6)
yields parameters b and c (implicitly also fs ) where the original data are reasonably well approximated
(solid line in cyan). In addition, an estimate can be provided for the parallel overhead using Eq. (5) (solid
orange line). The estimate matches the mpiP-derived [17] mean parallel overhead rather well (compare
orange line to the green dots with error bars, respectively, Table 3, columns 3–4). Significant deviation
from Amdahl’s Law is seen already for small core counts (compare cyan to grey line) (Color figure online)

Fig. 5 Recorded times to solution, tn , (red squares, also see Table 4, columns 1–2) as a function of
numbers of cores, n, operating in parallel for an application developed in-house [27,28]. Very large initial
times corresponding to very small core counts have been truncated for better graphical comparison. Best
fitting the data by Eq. (6) yields parameters b and c (implicitly also fs ) where the original data are reasonably
well approximated (solid line in cyan). In addition, an estimate can be provided for the parallel overhead
using Eq. (5) (solid orange line). The estimate matches thempiP-derived [17] mean parallel overhead fairly
well for larger core counts (compare orange line to the red squares with error bars, respectively, Table 4,
columns 3–4). Significant deviation from Amdahl’s Law is seen already for small core counts (compare
cyan to grey line) (Color figure online)
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Fig. 6 Recorded times to solution, tn , (bright green pentagons, also see Table 5, columns 1–2) as a function
of numbers of cores, n, operating in parallel for applicationVASP [24].Very large initial times corresponding
to very small core counts have been truncated for better graphical comparison. Best fitting the data by Eq.
(6) yields parameters b and c (implicitly also fs ) where the original data are reasonably well approximated
(solid line in cyan). In addition, an estimate can be provided for the parallel overhead using Eq. (5) (solid
orange line). The estimate matches the allinea/MAP-derived [18] parallel overhead fairly well (compare
orange line to the open pentagons in bright green, respectively, Table 5, column 3). Significant deviation
from Amdahl’s Law is seen already for small core counts (compare cyan to grey line) (Color figure online)

observe that the proposed method for predicting parallel overhead remains applicable
even in such cases. Here a saturation domain is reached quickly because of a strongly
rising parallel overhead. Standard deviations of τn are remarkably small. Owing to the
implemented communication model of primary/secondary tasks, standard deviations
will start tomake sense only for runs involvingmore than two tasks (see Table 4, fourth
column). Moreover, averages and related properties will comprise only the group of
secondary tasks of dimension n − 1.

Smooth trends are seen in sample VASP [24] with again τn quickly becoming the
determining factor (Fig. 6). In contrast, a rather pronounced inversion in tn evolu-
tion is observed in both of the final two samples, QUANTUM ESPRESSO [25] and
LAMMPS [26] (Figs. 7, 8). Interestingly, fitted curves do still lead to reasonably
good approximations of τn demonstrating the versatility and broad applicability of the
approach.

3.3 Fitting with GNUPLOT

Care must be taken when fitting the data set and the following remarks may prove
useful when reproducing our results. All our fits have been obtained with the help of
package GNUPLOT [38]. Two cases may be distinguished depending on whether or
not the serial fraction, fs , is known in detail. In the majority of cases fs in not known
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Fig. 7 Recorded times to solution, tn , (golden diamonds, also see Table 6, columns 1–2) as a function of
numbers of cores, n, operating in parallel for application QUANTUM ESPRESSO [25]. Very large initial
times corresponding to very small core counts have been truncated for better graphical comparison. Best
fitting the data by Eq. (6) yields parameters b and c (implicitly also fs ) where the original data are reasonably
well approximated (solid line in cyan). In addition, an estimate can be provided for the parallel overhead
using Eq. (5) (solid orange line). The estimate matches the allinea/MAP-derived [18] parallel overhead
fairly well (compare orange line to the open diamonds in gold, respectively, Table 6, column 3). Significant
deviation from Amdahl’s Law is seen already for small core counts (compare cyan to grey line) (Color
figure online)

and cannot be determined accurately in a quick and straightforward way. However,
treating it as another entirely free parameter is also discouraged because it may rapidly
turn into a negatively signed number due to over-fitting. Aworking procedure includes
the following steps,

– define an explicit value for fs (either known or guessed)
– fit the data using Eq. (6) and derive parameters b and c
– graphically check the quality of the fit and aim at asymptotic standard errors in
the range of 10–30%

– make sure that c > b and try to have b + �b ≈ c, where �b is the reported
asymptotic standard error

– incrementally decrease fs and repeat the above steps until an optimal fit is obtained

In so doing, the formerly unknown value of fs can be obtained as a by-product. It
should be pointed out that occasionally dropping a couple of very large initial data
points for small values of n was necessary to obtain a reasonable approximation in
the limit of large n. Graphical control was the most important guiding principle all
throughout the fitting process.
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Fig. 8 Recorded times to solution, tn , (3/4 filled discs in bright blue, also see Table 7, columns 1–2) as a
function of numbers of cores, n, operating in parallel for application LAMMPS [26]. Very large initial times
corresponding to very small core counts have been truncated for better graphical comparison. Best fitting
the data by Eq. (6) yields parameters b and c (implicitly also fs ) where the original data are reasonably well
approximated (solid line in cyan). In addition, an estimate can be provided for the parallel overhead using
Eq. (5) (solid orange line). The estimate matches the allinea/MAP-derived [18] parallel overhead fairly
well (compare orange line to the 1/4 filled discs in bright blue, respectively, Table 7, column 3). Significant
deviation from Amdahl’s Law is seen already for small core counts (compare cyan to grey line) (Color
figure online)

4 Conclusion

A simple procedure is presented that allows an approximate estimation of parallel
overhead solely based on run-time records. The method exhibits a broad range of
applicability including well-optimized applications as well as less advanced imple-
mentations where code optimization is still in progress (compare for example Fig. 2
with Fig. 5). Asymptotic limits show a rather smooth trend and thus facilitate reason-
able approximations in the limit of large n. Specifics of a particular HPC installation do
not seem to play a significant role since two entirely different systems were employed
here and led to similar conclusions.
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