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Abstract Let L be a second order elliptic operator with smooth coefficients satisfying
L1 = 0 defined in a domain � that is Greenian for L. Under fairly general hypotheses on
the function ϕ, we solve the following problem:

⎧
⎨

⎩

Lu + ϕ(·, u) = 0, in the sense of distributions in �;
u > 0, in � ;
u = 0, on ∂�.

Keywords Nonlinear elliptic problems · Regular domain · Greenian domain · Green
function
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1 Introduction

Let L be a second order elliptic operator with smooth coefficients satisfying L1 = 0 defined
in a domain � that is Greenian for L.1 In particular, boundedness of � is not assumed here.

1See the definition in Section 2.
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We study existence, uniqueness and regularity of solutions to the following problem
⎧
⎨

⎩

Lu + ϕ(·, u) = 0, in the sense of distributions in �;
u > h, in �;
u = h, on ∂�

(1.1)

with h being an L-harmonic function. L is applied to u in the sense of distributions, u = h

on ∂� means that lim
x→∂�

(u − h)(x) = 0 and ϕ : �×]0, ∞[→ [0, ∞[ is measurable and

satisfies some appropriate hypotheses detailed below. A particular case is obtained when
h = 0 i.e.

⎧
⎨

⎩

Lu + ϕ(·, u) = 0, in the sense of distributions in �;
u > 0, in �;
u = 0, on ∂�.

(1.2)

Both problems have attracted a lot of attention for L = � the Laplace operator in R
d , in

particular the second one. Much less has been done for a general L.
Boundary value problems such as

{
�u + ϕ(·, u) = 0, in the sense of distributions in �;
u = 0, on ∂�.

(1.3)

with various ϕ arise in a large number of mathematical models in physics, mechanics,
chemistry and astronomy. In particular, they describe population dynamics, chemical reac-
tions and morphogenesis. Therefore, positive solutions are often of main interest. Moreover,
solutions to Eq. 1.3 can be interpreted as stationary solutions to the associated parabolic
problem. When ϕ(x, u) = g(x)uγ , Eq. 1.3 is known as the generalized Emden-Fowler
equation [23] and has been extensively studied since the beginning of the 20th century. For
a good overview we refer to [14] and [5].

Let G� be the Green function for L in �. In this paper the function ϕ is required to
satisfy the following hypotheses:

• (H1) ϕ is continuous and nonincreasing with respect to the second variable.
• (H2) ∀c > 0, ϕ(·, c) ∈ Kloc

d (�) (see Eq. 2.1).
• (H3) for every c > 0, the Green potential G�(ϕ(·, c)) of ϕ(·, c) is finite at least on one

point.
• (H4) GD(ϕ(·, c))(x) > 0 for every c > 0, x ∈ D where D is a regular bounded domain

contained with its closure in �.

Notice that this allows the existence of a singularity at 0 of the type lim
s→0+ ϕ(x, s) = ∞ as

well as some growth of ϕ(·, c) at the boundary of �.
The idea of taking such ϕ comes from [7, 18], where problems (1.1), (1.2) were studied

for L = �. Our aim here is to generalize the results of both papers. We do it in many ways,
not only taking an arbitrary elliptic operator but also by weakening hypotheses on ϕ and �.
The following main theorem says something new also in the case of L = �.

Theorem 1 L is a second order elliptic operator with smooth coefficients satisfying L1 = 0
defined in the domain �. We assume that � is a Greenian for L. Suppose ϕ : �×]0, ∞[→
[0, ∞[ satisfies (H1) - (H4) and for every c > 0,

lim
x→∂�

G�(ϕ(·, c))(x) = 0. (1.4)
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Then there is a unique continuous solution to Eq. 1.1. If additionally

lim
x→∞ G�(ϕ(·, c))(x) = 0 for every c > 0,

then lim
x→∞(u − h)(x) = 0. With further assumptions on regularity of ϕ, we get more

regularity of u (see Theorem 19).

Notice that if h has a well defined boundary value then so does u. In particular, in a
Dirichlet domain � i.e. a bounded domain � satisfying an exterior sphere condition, for h

just continuous on ∂�, we obtain solution u ∈ C(�̄) under very mild assumptions both on
regularity and growth of ϕ. Dirichlet domains are called here regular.2

To have a feeling of H3, it is worth mentioning that Theorem 1 gives solution to the
following problem for a uniformly elliptic operator L in a bounded domain � with C1,1

boundary, {
Lu + g(x)

d(x)b
u−a = 0, in the sense of distributions in �;

u = 0, on ∂�,
(1.5)

0 ≤ b < 2, g ∈ L∞(�) positive, a > 0, d(x) = dist(x, ∂�). H1 and H2 are clearly
satisfied. To check H3 notice that G� ≤ CG, where G is the Green function for � in �

[16] and to use the estimates for G proved in [26]. Then for a fixed x, there exist a constant
M > 0 such that for every y outside a compact neighbourhood of x

G�(x, y)
g(y)

d(y)b
≤ Md(y)−b+1,

which is integrable. Problem (1.5) for L = � has been recently considered by Dı́az,
Hernández and Rakotoson in [5] in bounded domains without restrictions on the boundary.
So we get here a partial generalization of their results to uniformly elliptic operators.

As far as we know, there is no result about existence of solutions to Eq. 1.1 for elliptic
operators in unbounded �. There are some papers concerning (1.1) but the domain is always
bounded and there are much stronger regularity assumptions on ϕ and ∂� [3, 14, 20, 22]
although monotonicity of ϕ with respect to the second variable is not always required [14,
22]. The strength of our approach relies on a very mild regularity of ϕ as well as practically
no assumptions on the domain except of being Greenian which is perfectly natural provided
solution to Eq. 1.1, if it exists, is of the form

u = h + G�(ϕ(·, u)).

However, we need to keep monotonicity with respect to the second variable which fits
very well into the potential theoretical approach developed in [7] for the problem

�u + p(x)ψ(u) = 0 (1.6)

with p ∈ L∞
loc(�) positive, ψ :]0, ∞[→]0,∞[ continuous, nonincreasing. The method of

El Mabrouk works perfectly here. In fact, a possible generalization of Eq. 1.6 to elliptic
operators and p being in the Kato class is mentioned in [7]. Combining ideas both of [7]
and [18], we do it here with weaker hypotheses on ϕ than in [7, 18].

Problems (1.1) and (1.2) for L = � have been recently considered under variety of
hypotheses on ϕ. Monotonicity with respect to the second variable is crucial in [4, 6, 8, 12,

2See the definition of regular domain in Section 2.
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17, 24] but it is not longer required in very recent papers [9, 11, 13, 17, 21, 25]. However,
there are always more regularity assumptions on ϕ than in this work like Hölder continuity
or the product form ϕ(x, s) = p(x)ψ(s). Also, the problem is usually considered either in
a bounded regular domain or in � = R

d . The approach via potential theory initiated in [7]
and used here allows us to go beyond these restrictions.

Theorem 1 is a result of a few steps. First, we prove that for every regular bounded
domain D such that D̄ ⊂ � and for every f ∈ C+(∂D) the problem:

⎧
⎨

⎩

Lu + ϕ(·, u) = 0, in the sense of distributions in D;
u > 0, in D;
u = f, on ∂D,

(1.7)

has a unique solution u ∈ C+(D̄). Moreover,

u(x) = HDf (x) +
∫

D

GD(x, y)ϕ(y, u(y)) dy, ∀x ∈ D,

where HDf is the solution of the classical Dirichlet problem for L with boundary values f .
If for every c > 0, ϕ(·, c) ∈ L∞

loc(D) , then u ∈ C+(D̄) ∩ C1(D). Further, if ϕ ∈
Cα

loc(D×]0, ∞[) , then u ∈ C2,α
loc (D) ∩ C(D̄). After that, in a Greenian domain, we establish

one-to-one correspondence between nonnegative continuous solutions u of the equation

Lu + ϕ(·, u) = 0 in the sense of distributions in �, (1.8)

and nonnegative L-harmonic functions h:

u(x) = h(x) +
∫

�

G�(x, y)ϕ(y, u(y)) dy. (1.9)

It turns out that the solution preserves the same regularity as in regular bounded domains
under the same hypotheses.

The remainder of this paper is organized as follows. In Section 2, we introduce the some
notations and tools needed for the sequel. Next in Section 3, we solve the problem (1.7)
in a regular domain and we investigate the regularity of the solution. Then, in Section 4,
we establish a 1-to-1 correspondence between nonnegative L-harmonic functions and non-
negative continuous solutions of Eq. 1.8 in Greenian domain and we also address their
regularity. In Section 5, we focus on boundary conditions and we prove Theorem 1. Finally
in Appendix, we recall, for readers convenience, some basic tools of the potential theory
used here.

The author is grateful to her advisors Ewa Damek and Mohamed Sifi for their work,
constant encouragement and precious feedback. Besides, she’d like to thank Mohamed
Selmi and Pawel Glowacki for their helpful suggestions. She also expresses her gratitude
to Alano Ancona and Wolfhard Hansen who kindly responded to Ewa Damek’s enquiries
about potential theory.

2 Preliminaries

For every open set � of Rd with (d ≥ 3) let B(�)(resp. C(�)) be the set of all real valued
Borel measurable (resp. continuous) functions on �. We are also going to consider C1(�)

- the space of continuously differentiable functions on �, C∞
c (�) - the space of infinitely

differentiable functions on � with compact support, C2,α(�) - the space of functions with
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the second derivative being α-Hölder continuous. Finally, for every set F of numerical
functions, we denote by F+ the set of all functions in F which are nonnegative.

A bounded set D satisfying D ⊂ � is called regular (for L) if each function f ∈ C(∂D)

admits a continuous extension HDf on D such that HDf is L-harmonic in D, in other
words, the function h = HDf is the unique solution to the classical Dirichlet problem i.e.

{
Lh = 0, in D;
h = f, on ∂D.

An open subset � of Rd is called Greenian set if � possesses a Green function (for L)
which will be denoted by G� i.e. for every y ∈ � G�(·, y) is a potential on � and we have
L(G�(·, y)) = −εy, in the sense of distributions, where εy denotes the Dirac measure at
the point y.

In this paper, by a solution to a partial differential equation we shall mean a continuous
solution in the sense of distributions. In particular, a solution to Eq. 1.8 in an open set
D ⊂ � will be a function u ∈ C+(D) such that ϕ(·, u) is locally integrable on D and for all
ψ ∈ C∞

c (D) we have
∫

D

uL∗(ψ) +
∫

D

ϕ(·, u)ψ = 0.

A lower semi-continuous function is said to be L-superharmonic on a open set � if Ls ≤ 0
in the sense of distributions. Every function v such that −v is L-superharmonic on � will
be called L-subharmonic on �.

Now we are going to recall basic properties of potentials of functions belonging to the
Kato class.

Definition 2 (see e.g. [18]) A Borel measurable function ψ on � belongs to the Kato class
Kd(�) if ψ satisfies

lim
α→0

sup
x∈�

∫

�∩(|x−y|≤α)

|ψ(y)|
|x − y|d−2

dy = 0. (2.1)

Proposition 3 (see e.g. [18]) Let ψ ∈ Kd(�). Then for each M > 0, we have
∫

�∩(|y|≤M)

|ψ(y)| dy < ∞.

In particular, if � is a bounded domain, then ψ ∈ L1(�).

The following proposition was proved in [18] for the Green function corresponding to
the Laplace operator in R

d . But due to the estimate (2) the proof is the same.

Proposition 4 [see [18] and [16]]
Let D be a bounded regular domain in R

d (d ≥ 3) and ψ ∈ Kd(D), then

sup
x∈D

∫

D

|ψ(y)|
|x − y|d−2

dy < ∞,

and

GDψ ∈ C0(D).

Definition 5 A Borel measurable function ψ on � belongs to Kloc
d (�) if for every bounded

subset D in �, ψ ∈ Kd(D).
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Proposition 6 Let p ∈ L∞
loc(�) then p ∈ Kloc

d (�).

Proof Let D a bounded domain satisfying D̄ ⊂ � then there exists a constant ad depending
only on the dimension d such that

0 ≤
∫

D∩B(x,α)

|p(y)|
|x − y|d−2

dy ≤ ad sup
y∈D

|p(y)|α
2

2
,

for every x ∈ D and α > 0. We can deduce the result.

Proposition 7 Let � be a Greenian domain, φ ∈ Kloc
d (�) and there exists x0 ∈ � such

that G�φ(x0) is finite. Then G�φ ∈ C(�).

Proof Let x ∈ � and D be a bounded regular domain such that x0 ∈ D and D̄ ⊂ �.
∫

�

G�(x, y)φ(y) dy =
∫

�∩Dc

G�(x, y)φ(y) dy +
∫

D

G�(x, y)φ(y) dy.

G�(·, y) is L-harmonic in D for every y ∈ � ∩ Dc, so using Harnack inequality (see
Theorem 28) we can deduce that the first part is finite continuous in D.

Also
∫

D

G�(x, y)φ(y) dy =
∫

D

(G�(x, y) − GD(x, y))φ(y) + GD(x, y)φ(y) dy.

Or x �→ ∫

D
GD(x, y)φ(y) dy is continuous on D by Proposition 4 and G�(·, y) −

GD(·, y) is L-harmonic in D. We can deduce by Harnack inequality that G�φ is continuous
in �.

3 Solution of Eq. 1.7 in a Regular Domain

In this section, we solve the problem (1.7) in an arbitrary regular bounded set D and a given
f ∈ C+(∂D) :

Theorem 8 (Solution of Eq. 1.7 in a regular domain) Let D be a bounded regular domain
such that D ⊂ � and let L be a second order elliptic operator with smooth coefficients
satisfying L1 ≤ 0. Suppose that f ∈ C+(∂D) non identically zero and ϕ : �×]0, ∞[→
[0, ∞[ is a measurable function satisfying H1 − H2 . Then there exists a unique solution
u ∈ C(D) of problem (1.7). Furthermore, we have:

u(x) = HDf (x) +
∫

D

GD(x, y)ϕ(y, u(y)) dy, for every x ∈ D .

If in addition, ϕ satisfies (H4), then the statement remains true for f being the zero function.

Before dealing with the proof, we start with a lemma that allows us to compare solutions
to Eq. 1.1. For L = � this result is stated and proved in [7]. The proof goes along the same
lines - only properties of L-superharmonic functions in the sense of abstract potential theory
are used.

Lemma 9 (Comparison with values on the boundary) Let � be a domain, u, v ∈ C+(�)

such that u, v > 0, Lu, Lv ∈ L1
loc(�) and ϕ : �×]0, ∞[→ [0,∞[ a decreasing function
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with respect to the second variable. If :
⎧
⎨

⎩

Lu + ϕ(·, u) ≤ Lv + ϕ(·, v) in the sense of distributions,
lim inf
x→y
y∈∂�

(u − v)(x) ≥ 0.

Then:
u − v ≥ 0 in �.3

Proof Let V = {x ∈ �, u(x) < v(x)}. V is open in � because u, v are continuous. Let
suppose that V is nonempty. On V we have :

Lu − Lv ≤ ϕ(·, v) − ϕ(·, u) ≤ 0.

Furthermore,

if z ∈ ∂V ∩ ∂� then lim inf
x→z

(u − v)(x) ≥ 0,

if z ∈ ∂V ∩ � then z ∈ V c ∩ � and so u(z) ≥ v(z).

Therefore we can conclude:
{

L(u − v)≤0, in the sense of distributions, in V ,
lim inf
x→z

(u − v)(x) ≥ 0 on ∂V .

Hence by Lemma 42
u − v ≥ 0 in V ,

and so V is empty.

Now we are ready to prove the main theorem of this section.

Proof First, we suppose that: inf
x∈∂D

f (x) = α > 0.

Let
β = sup

x∈D

HDf (x) + sup
x∈D

GD(ϕ(·, α))(x) < ∞, 4

and
C = {u ∈ C(D), α ≤ u ≤ β}.

In C we consider the topology of uniform convergence, C is nonempty bounded closed
convex set. Also for every u ∈ C and every x ∈ D

α ≤ HDf (x) + GD(ϕ(·, u))(x) ≤ HDf (x) + GD(ϕ(·, α))(x) ≤ β.

We consider
T :C → C

u �→ HDf + GD(ϕ(·, u)).

T is well defined. Indeed, HDf is a continuous function on D, ϕ(·, α) ∈ Kd(D) hence
for every u ∈ C, ϕ(·, u) ∈ Kd(D). Consequently GD(ϕ(·, u)) ∈ C0(D). Additionally,
T (C) is contained in C.

3If � is unbounded, then writing x → ∂� we include also the case |x| → +∞.

4In the first case we need α > 0 in order that ϕ(·, α) be well defined.
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Using the Schauder theorem we will prove that T has a fixed point in C. We start with
equicontinuity of the set T (C). Let ε > 0. First, observe that HDf is uniformly continuous
in D. Therefore, only equicontinuity of {GD(ϕ(·, u)), u ∈ C} remains to be proved.

If x ∈ ∂D, then GD(ϕ(·, u))(x) = 0 for every u ∈ C. In addition, GD(ϕ(·, α)) ∈ C0(D),
hence there exists a neighbourhood Vx of x such that for every y ∈ Vx ∩ D and u ∈ C

|GD(ϕ(·, u))(y) − GD(ϕ(·, u))(x)| ≤ GD(ϕ(·, α))(y) ≤ ε.

Now we consider points x in D. Let γ > 0 be such that

sup
x∈D

∫

D∩(|x−y|≤2γ )

ϕ(y, α)

|x − y|d−2
dy ≤ ε.

Let � = {(x, x) : x ∈ D}. The map (x, y) �→ GD(x, y) is uniformly continuous on
every compact set ⊂ {D×D\�} (see Proposition 35), hence it exists ν such that if for every
x, x ′ ∈ B(x, γ /2) such that |x − x′| ≤ ν and y ∈ D ∩ B(x, γ )c,

|GD(x, y) − GD(x′, y)| < ε,

which implies for every u ∈ C we have

|T u(x) − T u(x′)| ≤ |HDf (x) − HDf (x′)|
+

∫

D∩B(x,γ )c
|GD(x, y) − GD(x′, y)|ϕ(y, u(y)) dy

+ |
∫

B(x,γ )

(GD(x, y) − GD(x′, y))ϕ(y, u(y)) dy|

≤ |HDf (x) − HDf (x′)| + ε

∫

D

ϕ(y.α) dy

+ |
∫

B(x,γ )

(GD(x, y) − GD(x′, y))ϕ(y, u(y)) dy|

In addition: |
∫

B(x,γ )

ϕ(y, u(y))(GD(x, y) − GD(x′, y)) dy|

≤
∫

B(x,γ )

ϕ(y, u(y))(GD(x, y) + GD(x′, y)) dy

≤ k(

∫

B(x,γ )

ϕ(y, u(y))

|x − y|d−2
dy +

∫

B(x′,2γ )

ϕ(y, u(y))

|x′ − y|d−2
dy)

≤ 2k sup
x∈D

∫

B(x,2γ )

ϕ(y, α)

|x − y|d−2
dy

≤ 2kε.

Therefore, given ε, we can choose ν sufficiently small such that for all u ∈ C

|T u(x) − T u(x′)| ≤ ε.

Secondly, T is continuous. Indeed, Let un tend to u ∈ C. Then

|T un(x) − T u(x)| ≤
∫

D

GD(x, y)|ϕ(y, un(y)) − ϕ(y, u(y))| dy,

the function inside the integral tends to zero and it is dominated by

2k
ϕ(y, α)

|x − y|d−2
dy ∈ L1(D).
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By the dominated convergence theorem, we can conclude the pointwise convergence, by
equicontinuity we can deduce the uniform convergence.

Now in view of the Schauder theorem, there is a fixed point u ∈ C(D) of T i.e.

u = HDf + GD(ϕ(·, u)).

Moreover, GD(ϕ(·, u)) ∈ C0(D) and 0 ≤ ϕ(·, u) ≤ ϕ(·, α) ∈ L1(D) then by Lemma 38

L(GD(ϕ(·, u))) = −ϕ(·, u) in the sense of distributions.

Secondly, let f be a nontrivial nonnegative continuous function on ∂D such that
inf

x∈∂D
f (x) = 0

Let

fk = f + 1

k
≥ 1

k
, k ∈ N

∗

and let uk be the solution to Eq. 1.7 with the boundary value fk .
Then

uk = HDfk + GD(ϕ(·, uk)). (3.1)

In addition,
{

L(uk) + ϕ(·, uk) = L(uk+1) + ϕ(·, uk+1)=0, in D;
uk+1 = fk+1 ≤ fk = uk, on ∂D,

with

0 ≤ −L(uk) = ϕ(y, uk(y)) ≤ ϕ(y,
1

k
) ∈ L1(D).

So by Lemma 9 we get
0 ≤ uk+1 ≤ uk in D. (3.2)

We denote:
u(x) = lim

k→+∞ uk(x), for x ∈ D.

Now we turn to prove that u is continuous in D. On one hand, (un) is a decreasing
sequence of continuous function, so the limit u is upper semi-continuous. On the other hand,
(un − HDfn) is an increasing sequence of continuous functions, so the limit u − HDf is
lower semi-continuous. Since HDf is continuous, we can conclude that u is continuous too.
Moreover,

HDf ≤ HDfn ≤ un,

then
HDf ≤ u,

however if f is nontrivial nonnegative then

HDf > 0, in D,

which implies that
u > 0, in D.

Following this lim
n→+∞ ϕ(·, un) = ϕ(·, u) < ∞, then by monotone convergence theorem

u = HDf + GD(ϕ(·, u)). (3.3)

Further, for every compact set K in D, there exists η > 0 such that u(x) > η for x ∈ K .
Therefore, ϕ(·, u) ≤ ϕ(·, η) ∈ L1(K). Also, GD(ϕ(·, u)) = u − HDf is continuous, by
Corollary 39 we may conclude

L(GD(ϕ(·, u)))= − ϕ(·, u), in the sense of distributions in D.
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Now we turn our attention to the boundary conditions. Since HDf ≤ u in D then

f (y) = lim inf
x→y
y∈∂D

f (x) ≤ lim inf
x→y
y∈∂D

u(x).

On the other hand

lim sup
x→y
y∈∂D

u(x) ≤ lim sup
x→y
y∈∂D

un(x) = f (y) + 1

n
.

Hence
lim
x→y
y∈∂D

u(x) = f (y).

Third, we suppose that f ≡ 0 on ∂D then HDf ≡ 0 too as so it is not evident that
u = lim

n→+∞ un > 0 in D. For this particular case we need H4. First, by Eqs. 3.1 and 3.2

0 ≤ un(x) − HDfn(x) ≤ u(x) − HDf (x) ≤ u(x), x ∈ D, n ∈ N
∗.

Let’s suppose that there exists x0 ∈ D such that u(x0) = 0 then un(x0)−HDfn(x0) = 0.
In addition {

L(un − HDfn)= − ϕ(·, un) ≤ 0, in D;
(un − HDfn)(x0) = 0,

But, a nonconstant L-superharmonic function cannot take a negative minimum inside D,
so un − HDfn = 0 which implies that

GD(ϕ(·, HDfn))(x0) = 0,

however HDfn ≤ 1
n

hence

GD(ϕ(·, 1

n
))(x0) = 0.

This is a contradiction with H4 and hence u > 0 in D.
Uniqueness of the solution follows immediately from Lemma 9.

Remark 10 Notice that in view of Proposition 4, H3 is always satisfied in D. However, H4
is needed in order that ϕ can take zero on �×]0, +∞[. The above theorem generalizes both
Lemma 4.3 in [7] and Corollary 2 in [18].

A careful observation of the proof of the above theorem allows us to conclude the fol-
lowing upper bound for the solution which depends only on the boundary value and the size
of the potential, not on the domain itself i.e. as far as D ⊂ D0 the bound depends only on
f, ϕ and GD0 .

Corollary 11 Under the same hypothesis as in the Theorem 8 the unique solution u ∈ C(D)

of problem (1.7) satisfies

||u||∞ ≤ inf
k

(
||f + 1

k
||∞ + ||GD(ϕ(·, 1

k
)||∞

)
. (3.4)

Proof By Theorem 8 the solution u is the limit of a decreasing sequence (uk) and uk =
HDfk + GD(ϕ(·, uk)). Clearly,

||uk||∞ ≤ ||fk||∞ + ||GD(ϕ(·, 1

k
)||∞.
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Hence (3.4) follows.

With further hypotheses on ϕ we may conclude more regularity of u.

Theorem 12 Suppose that the assumptions of Theorem 8 are satisfied and additionally
that for every c > 0, ϕ(·, c) ∈ L∞

loc(D), then the unique solution u of problem (1.7)

belongs to C+(D) ∩ C1(D). Furthermore, if ϕ ∈ Cα
loc(D×]0, ∞[) then u ∈ C2,α

loc (D)

∩C(D̄).

Remark 13 Regularity of solutions is not mentioned in [7] and in [18] it is proved only for
the case where the boundary value is a constant function.

Proof Let x0 ∈ D and r > 0 be such that B(x0, r) ⊂ D. Let f0 = u/∂B(x0,r) be continuous
and strictly positive. We denote B = B(x0, r). By uniqueness, u is also given by:

u = HBf0 + GB(ϕ(·, u)), in B,

HBf0 being smooth. Since L is uniformly elliptic on B, there is η > 0 such that for y ∈ B5

| ∂

∂xi

GB(x0, y)| ≤ η

|x0 − y|d−1
.

Moreover, ϕ(·, u) is bounded in B. Therefore,

∂GB(ϕ(·, u))

∂xi

(x0) =
∫

D

∂GB(x0, y)

∂xi

ϕ(y, u(y)) dy

and we may deduce that u is differentiable on x0 and then in all D.
Now, if ϕ ∈ Cα

loc(D×]0, ∞[) then we first deduce that u ∈ C1(D) and then we take
D1 to be a regular bounded domain with C1,1 boundary such that D̄1 ⊂ D. We denote
uL the solution of problem (1.7) so, ϕ(·, uL) ∈ Cα(D1) bounded in D1. Then by what
has been said above, ϕ(·, uL) ∈ Cα(D1) and uL|∂D1 ∈ C(∂D1). We denote ψ = uL/∂D1

which is continuous on ∂D1. Hence by [[10] p. 101] we deduce that uL ∈ C2,α
loc (D)

∩C(D̄).

4 Solution in a Greenian Domain without Boundary Condition

In this section, we establish one-to-one correspondence between nonnegative L-harmonic
functions and nonnegative continuous solutions of the Eq. 1.8 in an arbitrary Greenian
domain:

Theorem 14 Let � be a Greenian domain, L a second order elliptic operator with smooth
coefficients satisfying L1 = 0 and let ϕ : �×]0, ∞[�→ [0, ∞[ be a measurable function

5See [19] for more details.
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satisfying H1-H4. Then there is a one-to-one correspondence between nonnegative contin-
uous solutions of Eq. 1.8 and nonnegative L-harmonic functions in � Furthermore:

u − G�(ϕ(·, u)) = h,

u is a minimal solution satisfying u > h and h is a maximalL-harmonic function dominated
by u .

Before we prove the main result, we need two lemmas analogous to Lemmas 5.1 and 5.2
in [7].

Lemma 15 Let ϕ : �×]0, ∞[→ [0, ∞[ a measurable function satisfying H1-H2, ui ∈
C+(�), ui > 0, hi ∈ C+(�) such that

hi = ui − G�(ϕ(·, ui)), 1 ≤ i ≤ 2.

If h1 − h2 is L-superharmonic positive function in � then:

u1 − u2 ≥ 0.

Proof We are going to apply Proposition 44. Let

K = {x ∈ �, (u1 − u2)(x) ≥ 0}.
By assumption, K is closed and non empty. Let

v = ϕ(·, u1) − ϕ(·, u2).

Then
h1 − h2 + G�(v+) = u1 − u2 + G�(v−),

with t+ = max(t, 0) and t− = max(−t, 0). It is clear that v+ ∈ L1
loc(�), because

0 ≤ v+ ≤ ϕ(·, u1) + ϕ(·, u2) ∈ L1
loc(�).

Also G�(v+) ∈ L1
loc(�), because

0 ≤ G�(v+) ≤ G�(ϕ(·, u1)) + G�(ϕ(·, u2)),

the latter being continuous. So by Proposition 45

L(G�(v+))= − v+, in the sense of distributions in �.

Therefore, h1 − h2 + G�(v+) is a L-superharmonic positive function in � so it’s lower
semi-continuous on � − K . In addition, G�(v−) is a potential L-harmonic in � \ K ,
because v− is supported in K and

L(G�(v−))= − v−, in the sense of distributions in �.

Furthermore, it’s clear that G�(v−) is lower semi-continuous. Also, G�(v−) = G�(
v−|v|

2 )

is upper semi-continuous because G�(v) is continuous and G�(−|v|) is upper semi-
continuous.

Finally,
h1 − h2 + G�(v+) ≥ G�(v−),

on the boundary of K .
We can conclude by Proposition 44

h1 − h2 + G�(v+) ≥ G�(v−),

holds everywhere which implies that u1 − u2 ≥ 0 in �.
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Lemma 16 Let (H1) − (H2) be satisfied and (un) be an increasing sequence of positive
continuous solutions of Eq. 1.8 in �. Then, u = sup un is either identically +∞ or it is a
continuous solution in �.

Proof Suppose that lim
n→+∞ un = u is not identically +∞ in �. Then there exists x0 such

that lim
n→+∞ un(x0) = u(x0) < ∞. Let D, D′ be regular bounded domains of �, such that

x0 ∈ D′ and D′ ⊂ D. By Theorem 8

un(x) = HDun(x) +
∫

D

GD(x, y)ϕ(·, un(y)) dy, in D.

Hence,
HDun(x0) ≤ u(x0)

so by Harnack inequality there exists c > 0 such that for every n ∈ N and x ∈ D′

HDun(x) ≤ cu(x0),

then HDu is a positive L-harmonic function in D′. Also

0 < HDu ≤ u, in D′.
Consequently, by the monotone convergence theorem, we get:

u(x) = HDu(x) +
∫

D

GD(x, y)ϕ(·, u(y)) dy in D,

which is finite at least on one point x0. Also, one one hand, u is a limit of an increas-
ing sequence of continuous functions so it’s lower semi-continuous and on the other hand,
u − HDu is the limit of un − HDun = GD(ϕ(·, un)) which is a decreasing sequence of
continuous functions then u−HDu is upper-semi-continuous. Since HDu is continuous we
can conclude the continuity of u as well as GD(ϕ(·, u)).

In addition, u1 is a continuous, positive function on D̄ which compact, so α = inf
D

u1 > 0.

Therefore:
ϕ(·, u) ≤ ϕ(·, u1) ≤ ϕ(·, α) ∈ L1(D).

Whence, by Proposition Eq 38:

L(GD(ϕ(·, u))) = −ϕ(·, u), in the sense of distributions in D.

Now we are ready to prove Theorem 14:

Proof Let u be a nonnegative continuous solution of Eq. 1.8.
Let (Dn) be a sequence of bounded regular domains exhausting � i.e.

−
Dn ⊂ Dn+1 and ∪ Dn = �.

Since by Theorem 8, u ∈ C+(∂Dn), we have:

u = HDn(u) + GDn(ϕ(·, u)) in Dn.

On one hand, (HDn(u)) is nonincreasing. Indeed,
{

L(HDn(u) − HDn+1(u)) = 0, in Dn;
HDn(u) − HDn+1(u) = u − HDn+1u ≥ 0, on ∂Dn,
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which implies by the maximal principle HDn(u) ≥ HDn+1(u) ≥ 0, lim
n→∞ HDn(u)(x) = h(x)

exists for every x ∈ � and Lh = 0.
On the other hand, by the monotone convergence theorem we have, (GDn(ϕ(·, u))) ↗

G�(ϕ(·, u)).

Hence we may conclude that

u = h(x) + G�(ϕ(·, u)).

Now we turn our attention to prove that h is the maximal L-harmonic solution dominated
by u: suppose that there is another L-harmonic nonnegative function h1 such that:

0 < h1 ≤ u in �.

Or h1 ≤ HDn(u) in Dn because:
{

L(h1 − HDn(u)) = 0, in Dn;
h1 − HDn(u) = h1 − u ≤ 0, on ∂Dn.

When n tends to +∞, we get:
h1 ≤ h.

Let h be a nonnegative L-harmonic function in �.
By Theorem 8, we know that there is a unique continuous solution un of:

{
Lu + ϕ(·, u) = 0, in Dn;
u = h, on ∂Dn,

and
un = h + GDn(ϕ(·, un)) in Dn.

In addition the sequence (un) is not decreasing. In fact, by Lemma 9:
{

Lun + ϕ(·, un) = Lun+1 + ϕ(·, un+1) = 0, in Dn;
un − un+1 = h − un+1 ≤ 0, on ∂Dn,

and so un ≤ un+1 in Dn.
So by Lemma 16 supn un = u can be +∞ almost everywhere or a solution of the

equation. Therefore we have to prove that u is finite in �.
First case: Suppose inf

�
h = ε > 0:

Then we have:
0 < ε ≤ h ≤ un.

So: ϕ(·, un) ≤ ϕ(·, ε) which implies:

0 < un ≤ h + GDn(ϕ(·, ε)).
Using (H3) and tending n to +∞ we get:

0 ≤ u ≤ h + G�(ϕ(·, ε)).
We can conclude that u is finite which implies that u is a continuous solution satisfying:

u = h + G�(ϕ(·, u)).

Second case: Let h be just a nonnegative L-harmonic function:
Then we take

hk = h + 1

k
, k ∈ N

∗.
Using L1 = 0, hk is L-harmonic too so by the first step we get a continuous solution uk

such that :
uk = hk + G�(ϕ(·, uk)) in �.
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Or hk ≥ hk+1 so by Lemma 15 uk is a nonincreasing sequence in �. We denote u = lim uk .
As before, by upper and lower semi-continuity, we deduce that u is continuous in �. Now,
we turn to prove that:

u > 0, in �. (4.1)

Notice here if h is a nonnegative nontrivial L-harmonic function in � then h > 0 and so
u > 0 in �. Otherwise, h ≡ 0, then we suppose that there exists x0 ∈ � such that u(x0) = 0.
Though

0 ≤ un − hn ≤ u − h = u, in �.

Hence {
L(un − hn) = −ϕ(·, un) ≤ 0 in �;
(un − hn)(x0) = 0,

However, any L-superharmonic function nonconstant cannot attain its negative minimum
inside �, so un = hn = 1

n
which implies that GDnϕ(·, 1

n
)(x0) = 0. This is a contradiction

with H4 and hence (4.1) holds. Following this, lim
n→+∞ ϕ(·, un) = ϕ(·, u) < ∞ so by the

monotone convergence theorem, we get:

u = h + G�(ϕ(·, u)) in �.

Further, for every compact set K in �, there exists α > 0 such that u(x) > α for x ∈
K . Therefore, ϕ(·, u) ≤ ϕ(·, α) ∈ L1(K). Also, G�(ϕ(·, u)) = u − h is continuous, by
Corollary 39 we may conclude

L(G�(ϕ(·, u)))= − ϕ(·, u), in �, in the sense of distributions.

Finally, u is the minimal solution satisfying u > h: Let v be a continuous function on �

satisfying: {
Lv + ϕ(·, v) = 0, in �

h < v, in �.

By the first part of the proof we have

v = lim
n→∞ HDn(v) + G�(ϕ(·, v)).

And hv = lim
n→∞ HDn(v) satisfies hv ≥ h. So by Lemma 15 we get v ≥ u. This shows

minimality of u.

Remark 17 Theorem 14 generalizes Theorem 2.1 in [7].

The above proof suggests also the following corollary about bounded solutions.

Corollary 18 Let h be a nonnegative bounded L-harmonic function in �. Suppose that the
assumptions of Theorem 14, and in addition that there is c > 0 such that G�(ϕ(·, c)) ∈
L∞(�). Then the continuous solution of Eq. 1.8 in � given by u = h + G�(ϕ(·, u)) is
bounded in �. Following this, there is one-to-one correspondence between L-harmonic
nonnegative bounded functions and nonnegative bounded continuous solutions of Eq. 1.8.

Proof By the proof of Theorem 14, u is the limit of a decreasing sequence of solution of
Eq. 1.8 given by un = h + 1

n
+ G�(ϕ(·, un)). Let uc be the solution of Eq. 1.8 given by

uc = h + c + G�(ϕ(·, uc)). Then by Lemma 15 uc ≥ un for n big enough. So, 0 < u ≤
un ≤ uc ≤ h + c + G�(ϕ(·, c)). Moreover, by assumption h and G�(ϕ(·, c)) are bounded
in �. Hence we may conclude that u is bounded too.
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We obtain also a statement about regularity of solutions in a Greenian domain analogous
to that for a bounded regular domain.

Theorem 19 Suppose the same hypotheses as in Theorem 14, and assume in addition that
ϕ(·, c) ∈ L∞

loc(�), for every c > 0. Then for every continuous solution of Eq. 1.8 in � we

have u ∈ C1(�). Furthermore, if we suppose that ϕ ∈ Cα
loc(�×]0, ∞[) then u ∈ C2,α

loc (�).

Proof Let u be a continuous solution of Eq. 1.8 in �. Let D a bounded regular domain such
that D̄ ⊂ �. We denote f = u∂D . By Theorem 8

u = HDf + GD(ϕ(·, u)).

By Theorem 12, u ∈ C1(�). Now, if ϕ ∈ Cα
loc(�×]0, ∞[) then ϕ(·, u) ∈ Cα(D) and by

Theorem 12, u ∈ C2,α
loc (�) ∩ C(�̄).

5 Boundary Condition

In this section, for a given a nonnegative L-harmonic function h in a Greenian domain �,
we give a sufficient and necessary conditions in order that the corresponding solution of
the Eq. 1.8 takes the same values of h at the boundary, see Theorem 24 where ϕ(x, t) =
p(x)ψ(t). However, the same conditions become just sufficient for non-product ϕ:

Theorem 20 Suppose that for every c > 0, G�(ϕ(·, c)) vanishes at ∂� and that the
assumptions of Theorem 14 are satisfied. Then for for every nonnegative L-harmonic
function h there exists a unique nonnegative continuous solution of the problem (1.1).

Proof Let h be a L-harmonic positive function, by Theorem 14, there exists a positive
continuous solution u such that

u = h + G�(ϕ(·, u)).

Thanks to (H4), u > h because u − h = G�(ϕ(·, u)) > 0.
Furthermore, we denote hk = h + 1

k
which L-harmonic then there exists uk a positive

continuous solution of Eq. 1.8 such that uk = hk + G�(ϕ(·, uk)). Hence 0 < uk − hk =
G�(ϕ(·, uk)) ≤ G�(ϕ(·, 1

k
)) which vanishes at ∂�. In addition, by Lemma 15

0 < u − h < uk − h = uk − hk + 1

k
.

Then 0 ≤ lim sup
x→∂�

(u − h)(x) ≤ 1
k

. By tending k to ∞ we obtain u − h = 0 on ∂�.

Moreover, by using Lemma 15, we conclude the uniqueness of solution.

Remark 21 The theorem remains true if we replace ∂� by ∂�∪{∞} provided that for every
c > 0, G�(ϕ(·, c)) ∈ C0(�). Unfortunately we cannot prove the converse statement. We
have only the following theorem.

Theorem 22 Let �, ϕ as in Theorem 14. We suppose that there exists a positive continuous
solution of problem (1.2). Then for all c ≥ sup

x∈�

u(x), G�(ϕ(·, c)) vanishes at the boundary.
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Proof u is continuous vanishes at ∂� so it is clear that it is bounded in �. We denote
M = sup

x∈�

u(x). Then

0 ≤ G�(ϕ(·, c)) ≤ G�(ϕ(·, M)) ≤ G�(ϕ(·, u)) ∈ C0(�).

Remark 23 As we have seen until now G�(ϕ(·, c)) vanishing at the boundary for every
c > 0 is just a sufficient condition for the existence of solution. However, in the special case
when ϕ(x, y) = p(x)ψ(y), p ∈ Kloc

d (�) positive and ψ is a positive continuous decreasing
function (as in [7]) one can easily formulate a necessary and sufficient condition for the
solution of Eq. 1.1. The following theorem generalizes Theorem 6.1 in [7].

Theorem 24 Under the same hypotheses as in Theorem 14, with ϕ(x, t) = p(x)ψ(t) the
problem (1.2) has a solution if and only if G�(p) vanishes at the boundary.

Proof By Theorem 20, we know that if G�(p) vanishes at the boundary the problem (1.2)
has a solution. For the converse implication let u be the solution of Eq. 1.2 then u is bounded.
We denote M = sup

x∈�

u(x). Then

0 ≤ G�(p)(x) ≤
∫

�

G�(x, y)p(y)
ψ(u)(y)

ψ(M)
dy = u(x)

ψ(M)
∈ C0(�).
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Appendix

Let � be a domain in R
d , d ≥ 3 and let L be a second order elliptic operator with smooth

coefficients defined in � i.e.

L =
∑

1≤i,j≤d

ai,j (x)∂i∂j +
∑

1≤i≤d

bi(x)∂i + c(x),

with ai,j (x) = aj,i(x), 1 ≤ i, j ≤ d and for every x ∈ � the quadratic form
∑

i,j

ai,j (x)ξiξj

is strictly positive definite i.e
∑

i,j

ai,j (x)ξiξj > 0 for every x ∈ � and ξ ∈ R
d\{0}.

Remark 25 Notice that L is locally uniformly elliptic in �.

Throughout all this section, we suppose that L1 ≤ 0 in � and there exists s ∈ C∞(�)

such that s > 0 and Ls < 0 in �. Such function can always exist if � is bounded and
L1 ≤ 0.

http://creativecommons.org/licenses/by/4.0/
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We consider at first D a bounded domain contained with its closure in � with
smooth boundary (C1,α boundary is enough) where we represent basic notions of potential
theory and most important properties of the corresponding Green function GD . After-
wards, we justify the existence of Green function in � denoted G� and we discuss her
properties.

In a Regular Bounded Domain

The operator L satisfies the following properties in D provided that L1 ≤ 0 in D and D is
a bounded domain with smooth boundary contained with its closure in �:

Basic Properties

Theorem 26 ( Strong maximum and minimum principle). (see [10] p.34 or [1] p.37) Let
u ∈ C2(D) ∩ C(D) such that Lu ≥ 0(≤ 0) in D. then u cannot achieve a nonnegative
maximum ( nonpositive minimum ) in the interior of D unless it is constant.

Proposition 27 ( Weak maximum principle ) [see [10] p.31] Let u ∈ C2(D) ∩ C(D̄) such
that Lu ≤ 0 in D and u/∂D ≥ 0 then

u ≥ 0.

Theorem 28 (Harnack inequality. ( see [2] p.299 or [10] p.40)) For every compact set K

contained inD, there exists a constant αK > 0 such that such for every positiveL-harmonic
function h in D and every multiindex I

sup
y∈K

|∂I h(y)| ≤ α inf
y∈K

h(y)

Theorem 29 (Ameliorate version of Dirichlet problem). (see [19] p.75 or [10] p.101) Let
f ∈ Cα(D) and ψ ∈ C(∂D) then there exist a unique solution u ∈ C2,α(D) ∩ C(D) of

{
Lu = −f, in the sense of distributions in D;
u = ψ, in ∂D.

Remark 30 For f ∈ C(D̄), we can use a standard approximation of f which is explained
e.g. in [2].

Definition 31 For ψ = 0 and f ∈ C(D) there exists a unique solution of
{

Lu = −f, in the sense of distributions in D;
u = 0, in ∂D.

denoted GDf . Then we can define the Green operator by:

GD : C(D) → C(D)

f �→ GDf

Theorem 32 (Existence of Green function). (See [2] p.295 or [19] p.20) There exists a
function GD(x, y) called a Green function C∞ outside the diagonal such that for every
f ∈ C(D)

GDf (x) =
∫

D

GD(x, y)f (y) dy.
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Furthermore, for every y ∈ D:

• L(GD(·, y)) = −εy , in the sense of distributions in D.
• lim

x→∂D
GD(·, y) = 0.

Now using the weak maximum principle, we can easily prove that for ψ ∈ C∞
c (D)

GD(Lψ) = −ψ, in the sense of distributions in D,

In other words, GD commute with L.

The Adjoint Operator

We denote L∗ the adjoint operator of L.

Proposition 33 Let x ∈ D then

L∗(GD(x, ·)) = −εx, in the sense if distributions in D.

Proof Let ψ ∈ C∞
c (D) then

∫

D

L∗(GD(x, y))ψ(y) dy =
∫

D

GD(x, y)Lψ(y) dy

= GD(Lψ)(x) = −ψ(x)

Now, we denote

s∗(y) =
∫

D

GD(x, y) dx for y ∈ D.

It is clear that
L∗s∗= − 1D, in the sense of distributions.

where 1 is the characteristic function of D. So s∗ is a smooth function satisfying s∗ > 0
and L∗s∗ < 0.

Such s∗ can be constructed in any bounded regular domain which allows us to conjugate
L∗ and to obtain the corresponding preceding properties i.e. we define a new operator L∗

1 by

L∗
1u = 1

s∗ L∗(s∗u).

We have L∗
11 < 0, so all the preceding properties are true for L∗

1. Following this we can
also obtain for L∗ the weak maximum principle, solvability of the Dirichlet problem and
the Green function G∗

D in D.
Preceding as in [2] we prove that:

Proposition 34
G∗

D(x, y) = GD(y, x). (1)

Properties of the Green Function in Bounded Regular Domain

Proposition 35 GD is uniformly continuous in every compact set contained in D × D\�,
where � = {(x, y) ∈ D × D, x = y}.
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Proof It is enough to prove that if (xn, yn) → (x, y) ∈ D × ∂D then GD(xn, yn) →
GD(x, y). We have

|GD(xn, yn) − GD(x, y)|
≤ |GD(xn, yn) − GD(x, yn)| + |GD(x, yn) − GD(x, y)|

We choose γ enough small such that B(x, γ ) ⊂ D and xn ∈ B(x,
γ
2 ) for every

n ≥ n0. By Harnack inequality applied to the family GD(·, yn) of L-harmonic functions,
we get

|GD(xn, yn) − GD(x, yn)| ≤ sup
t∈B(x,

γ
2 )

|∇GD(t, yn)||xn − x|

≤ CxGD(x, yn)|xn − x|
Also

lim
n→+∞ GD(x, yn) = GD(x, y), for every t ∈ D,

and so we can deduce the result.

In what follows we recall some estimations of the Green function in D which
facilitate the generalisation from the case of Laplace operator to the general elliptic
operator.

Proposition 36 • There is C > 0 such that

0 ≤ GD(x, y) ≤ C

|x − y|d−2
, for every x, y ∈ D, (2)

(see [16]).
• Let x ∈ D and D1 a compact set in D then there is C > 0 such that

0 ≤ |∂xi
GD(x, y)| ≤ C

|x − y|d−1
, for every y ∈ D1. (3)

(see [19]).

Using (2) we obtain

Proposition 37 Let f ∈ L∞(D) then

GDf ∈ C0(D).

Proposition 38 Let f ∈ L1(D). Then GDf ∈ L1(D) and :

L(GDf ) = −f, in D in the sense of distributions.

Proof First, we’ll prove that GD|f | ∈ L1(D). Indeed, G∗
D(1D) is a continuous function on

D̄ so ∫

D

|f (y)|G∗
D(1D)(y) dy < ∞.

By the Fubini theorem we get
∫

D

GD|f (x)| dx < ∞.
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Secondly, let ψ ∈ C∞
c (D̄). As before,

∫

D

G∗
D(|L∗ψ |)(y)|f (y)| dy < ∞

and in addition, G∗
D(L∗(ψ)) = −ψ . Again writing the Fubini theorem, we obtain:

∫

D

L(GDf )(x)ψ(x) dx = −
∫

D

f (y)ψ(y) dy.

Corollary 39 By the same proof we obtain

L(GD(f ))= − f, in the sense of distributions, in D (4)

for f ∈ L1
loc(D) and GD(|f |) ∈ L1

loc(D).

In a Greenian Domain �

We consider (Dn) an increasing sequence of regular bounded domains exhausting � i.e.

Dn ⊂ Dn+1 and ∪ Dn = �.

Existence of the Green Function in �

Using weak maximum principle we may easily justify:

Proposition 40 • (GDn) is an increasing sequence.• GDn(−Ls) ≤ s for every n ∈ N.

Proposition 41 Let f ∈ C+
c (�). Then (GDnf ) is convergent.

Proof It is clear that (GDnf ) is increasing, so it is enough to prove that (GDnf ) is bounded.
We denote kf the support of f . The function x �→ −Ls(x) is continuous on kf so it is
bounded on kf i.e. there exists a constant ck > 0 such that for every x ∈ kf ck ≤ −Ls(x),
and then

0 ≤ GDnf ≤ sup
x∈�

f (x) GDn(
−Ls

ck

)

≤ sup
x∈�

f (x)
s

ck

It follows by Riez theorem that there exists a function G� such that lim
n→+∞ GDn(x, y) =

G�(x, y). It follows that G∗
�(x, y) = G�(y, x) where G∗

� is the Green function
corresponding to L∗ in �. We can check easily by monotone convergence theorem that

• G�(Lψ) = −ψ, in the sense of distributions in � for every ψ ∈ C∞
c (�).

• L(G�(·, y)) = −εy in the sense of distributions in � for every y ∈ �.
• L∗(G�(x, ·)) = −εx in the sense of distributions in � for every x ∈ �.
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Properties in a Greenian Domain �

In a Greenian domain �, we can obtain a generalized version of the maximum principle as
follows:

Proposition 42 Let f ∈ L1
loc(�), Lf ∈ L1

loc(�), Lf ≤ 0 as a distributions and
lim inf
z→∂�

f (z) ≥ 0. Then

f ≥ 0 in �.

Proof Let D be a bounded regular domain. By Corollary 39

L(GD(−Lf ) − f ) = 0.

Therefore, there is a L-harmonic function h such that

f = GD(−Lf ) − h

which implies that f is lower semi-continuous and satisfies the super mean value property.
The result follows by the minimum principle for so called L-superharmonic functions in the
sense of the classical potential theory (see [14] p.427-8).

Now we focus on properties of the Green function G�. First we recall the definition of
potential in �.

Definition 43 We say that a function p is a potential if p is L-superharmonic positive and if
{

0 ≤ h ≤ p, in �,
Lh = 0

then h = 0. We denote p ∈ P(�).

As examples, we can mention that GDn and G� are potentials.

Proposition 44 Let K be a closed set in �, f L-superharmonic positive in � − K , f

lower semi-continuous on � − k, p a potential in �, f ≥ p on ∂K , p ∈ C(� − K), p is
L-harmonic in � − K then f ≥ p on � − K . See [14] p.429.

Proposition 45 Let f ∈ L1
loc(�) and G�(|f |) ∈ L1

loc(�). Then:

L(G�f )= − f, in the sense of distributions.

Proof L(GDnf )= − f, in the sense of distributions on Dn and for ψ ∈ C∞
c we have

|(GDn(f ) − G�(f ))L∗ψ | ≤ 2G�(|f |)|L∗ψ |,
which is integrable. Moreover, lim

n→+∞ GDn(|f |) = G�(|f |). Hence by the dominated

convergence theorem we may conclude:

lim
n→+∞ L(GDn(f ))=L(G�(f )), in the sense of distributions in �.

So:
L(G�f )= − f, in the sense of distributions in � .
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Proposition 46 Let f ∈ L∞
loc(�), and G�(|f |) ∈ L1

loc(�) then G�f is continuous in �.

Proof By the previous proposition, L(G�f )= − f, in the sense of distributions
in �. Hence for any bounded regular domain D such that D̄ ⊂ �, L(G�f −
GDf )=0, in the sense of distributions in D.

So G�f −GDf is L-harmonic in D and GDf is continuous which allows us to conclude.
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