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Abstract We assess the applicability and efficiency of time-adaptive high-order
splitting methods applied for the numerical solution of (systems of) nonlinear
parabolic problems under periodic boundary conditions. We discuss in particular
several applications generating intricate patterns and displaying nonsmooth solution
dynamics. First, we give a general error analysis for splitting methods for parabolic
problems under periodic boundary conditions and derive the necessary smoothness
requirements on the exact solution in particular for the Gray–Scott equation and the
Van der Pol equation. Numerical examples demonstrate the convergence of the meth-
ods and serve to compare the efficiency of different time-adaptive splitting schemes
and of splitting into either two or three operators, based on appropriately constructed
a posteriori local error estimators.

Keywords Nonlinear evolution equations · Splitting methods · Adaptive time
integration · Local error · Convergence

Mathematics Subject Classification (2010) 65J10 · 65L05 · 65M12 · 65M15

� Winfried Auzinger
w.auzinger@tuwien.ac.at

Othmar Koch
othmar@othmar-koch.org

Michael Quell
michael.quell@yahoo.de

1 Institut für Analysis und Scientific Computing, Technische Universität Wien, Wiedner
Hauptstraße 8-10/E101, 1040 Wien, Austria

2 Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191762844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-016-0206-8&domain=pdf
mailto:w.auzinger@tuwien.ac.at
mailto:othmar@othmar-koch.org
mailto:michael.quell@yahoo.de


262 Numer Algor (2017) 75:261–283

1 Introduction

We are interested in computational methods for nonlinear evolution equations of the
type

∂tu(t) = Au(t) + B(u(t)), t > t0, (1.1)

on a Banach space B, which in our examples equals L2 on the d-dimensional torus.
Here, A : D ⊆ B → B is an (unbounded) differential operator and B a generally an
unbounded nonlinear operator whose domain has nonempty intersection with D.

To enable an efficient numerical solution of (1.1) for large-scale applica-
tions, adaptive high-order time-discretizations are central. In some applications, the
promised speed-up will be critical for the feasibility of a simulation. In many real-
istic models, the stiffness of the operators A and B is different, which suggests to
use splitting methods which separately propagate the two vector fields. If A is a lin-
ear differential operator, effective schemes are known which solve the subproblem
efficiently after appropriate space discretization. For the problems discussed in this
paper, a Fourier pseudospectral space discretization is the most natural choice as this
allows to propagate the linear part by exponentiation of a diagonal matrix.

Parabolic equations often induce high computational demand due to challeng-
ing solution dynamics, which suggests to employ adaptive time-stepping in order to
accommodate for local variations in the numerical error. However, this is not the only
reason for using adaptivity. Typically, the optimal step-size is not known a priori, and
an adaptive procedure determines the appropriate value within a few steps, see for
example Section 3.3. Moreover, adaptive time-stepping increases the reliability of a
computation, see for instance [1].

At the (time-)semi-discrete level, s-stage exponential splitting methods for the
integration of (1.1) use multiplicative combinations of the partial flows φA(t, u) and
φB(t, u). For a single-step (0, u0) �→ (h, u1) with time-step t = h, this reads

u1 := S(h, u0) = φB(bsh, ·) ◦ φA(ash, ·) ◦ . . . ◦ φB(b1h, ·) ◦ φA(a1h, u0), (1.2)

where the coefficients aj , bj , j = 1 . . . s are determined according to the require-
ment that a prescribed order of consistency is obtained [2].

Compared to highly implicit methods as for instance implicit Runge–Kutta
methods or their exponential counterparts (see [3]), splitting methods are easy to
implement and efficient in combination with suitable spatial discretization and appro-
priate implementations or approximations of the subflows φA and φB . This is an
important asset of our approach; however, we will demonstrate in addition that adap-
tive choice of the time-steps leads to a more efficient solution for problems where the
variation in the solution is large. For related work on adaptivity using a pair of lower
order methods, we refer to [4].

A rigorous error analysis of splitting methods for Schrödinger equations has first
been given for the second-order Strang splitting scheme in [5], which has later been
extended to higher-order splittings in [6]. The more involved arguments for the non-
linear case have been devised in [7] for the Schrödinger–Poisson and cubic nonlinear
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Schrödinger equation for second-order splitting; higher-order methods are analyzed
in [8].

The error analysis relies on an error representation which was first proven in [8]:
the local error of a splitting method of order p applied to a nonlinear evolution
equation has an error expansion with leading term

L(h, u) ∼
p∑

k=1

∑

μ∈Nk

|μ|≤p−k

1
μ!h

k+|μ|Ckμ

k∏

�=1

adμ�

DA
(DB)ehDAu, (1.3)

where Ckμ are computable constants and DA, DB represent the Lie derivatives of
the two vector fields, respectively. adμ�

DA
(DB) denotes the μ�-fold commutator. In

our subsequent analysis, we will make use of this error representation, where the
main task will be to compute and estimate the commutators of the vector fields in
an appropriate functional analytic setting in the space of periodic functions. To this
end, we will resort to a Sobolev theory on the torus, which we review in detail in
Appendix A, to which we refer for notations used in the subsequent error analysis.

Detailed understanding and analysis of splitting methods for parabolic problems in
particular for the nonlinear case is missing to date. Partial results have been obtained
by other authors; recent work for linear problems can be found in [9] and [10]. In
particular, in [9], a number of higher-order methods with complex coefficients are
constructed. In these papers, splitting methods are analyzed in the context of semi-
group theory. However, the authors do not exploit the special structure of the local
error (as specified in [11] in terms of iterated commutators). Therefore, the results
in [10] rely on unnaturally restrictive regularity assumptions, and the same is true for
the convergence results given in [9].

Section 2 introduces a number of local a posteriori error estimators whose
performance will subsequently be assessed.

In Section 3, our theoretical framework is applied to analyze the convergence of
splitting methods for the Gray–Scott equation, where the regularity requirements on
the exact solution are worked out which ensure boundedness of the commutators
appearing in the error expansion.

In Section 4, we investigate the Van der Pol system, which has a stiff limit cycle.
Adaptive time-stepping is shown to give rise to guaranteed accuracy, and in some
cases significantly reduced computation times compared to fixed time-steps.

In Section 5, we demonstrate that splitting into three operators can be beneficial
computationally if the structure of the vector field enables exact integration of the
subproblems, by resorting to computations for the Gray–Scott equations.

The functional analytic framework for the error analysis of splitting methods
applied to parabolic problems under periodic boundary conditions is briefly recapit-
ulated in Appendix A, which states the underlying results for the space of periodic
functions on the torus. Sobolev embeddings which are used in our error estimates are
stated in Appendix B with a brief indication of the proofs.
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2 A posteriori local error estimators

In this section, we briefly describe three classes of computable a posteriori local error
estimators which serve as our basis for adaptive time-stepping and which have differ-
ent advantages depending on the context in which they are applied. Embedded pairs
of splitting formulae have been introduced in [12] and are based on reusing a number
of evaluations from the basic integrator. For methods of odd order, an asymptotically
correct error estimator can be computed at the same cost as for the basic method by
employing the adjoint method, see [14], and finally the Milne device relies on the
explicit knowledge of the leading error terms of methods of equal order. A collection
of splitting coefficients covering also these three types of error estimators has been
compiled at the webpage

http://www.asc.tuwien.ac.at/∼winfried/splitting/

which we subsequently refer to as [15].

2.1 Embedded pairs

In [12], pairs of splitting schemes of orders p and p + 1 are specified. The idea is
to select a controller S̄ of order p + 1 and to construct an integrator S of order p

for which a maximal number of compositions coincide with those of the controller.
To construct pairs offering an optimal balance between cost and accuracy, we fix a
“good” controller of order p+1 and wish to adjoin to it a “good” integrator of order p.
Since the number of compositions s̄ in the controller will be higher than the number
of compositions s in the integrator, we can select an optimal embedded integrator
S from a set of candidates obtained by flexible embedding, where the number of
coinciding coefficients is not a priori fixed. The idea is expanded in detail in [14],
where optimized methods are determined.

2.2 Adjoint pairs and palindromic formulae

For a scheme S of odd order p, the leading local error terms of S and its adjoint S∗
are identical up to the factor −1, see [2]. Therefore, the averaged additive scheme

S̄(h, u) = 1
2

(
S(h, u) + S∗(h, u)

)
(2.1)

is a method of order p + 1, and

P(h, u) := S(h, u) − S̄(h, u) = 1
2

(
S(h, u) − S∗(h, u)

)

provides an asymptotically correct local error estimate for S(h, u). In this case, the
additional effort for computing the local error estimate is identical with the effort
for the integrator S but not higher as is the case for embedded pairs. This princi-
ple is limited to methods of odd order. In particular, in [14], so-called palindromic
schemes were constructed which turn out to have small error constants as compared
to competing schemes. Therefore, we include palindromic pairs in our investigations.

http://www.asc.tuwien.ac.at/~winfried/splitting/
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2.3 The Milne device

In the context of multi-step methods for ODEs, the so-called Milne device is a well-
established technique for constructing pairs of schemes. In our context, one may aim
for finding a pair (S, S̃) of schemes of equal order p such that their local errors L, L̃
are related according to

L(h, u) = C(u)hp+1 + O(hp+2), (2.2a)

L̃(h, u) = γ C(u)hp+1 + O(hp+2), (2.2b)

with γ 
= 1. Then, the additive scheme

S̄(h, u) = − γ
1−γ

S(h, u) + 1
1−γ

S̃(h, u)

is a method of order p + 1, and

P(h, u) := S(h, u) − S̄(h, u) = 1
1−γ

(
S(h, u) − S̃(h, u)

)

provides an asymptotically correct local error estimate for S(h, u).

2.4 Step-size selection

Based on a local error estimator, the step-size is adapted such that a prescribed local
error tolerance tol is expected to be satisfied in the subsequent step. If hold denotes
the current step-size, the next step-size hnew is predicted as (see [16, 17])

hnew = h · min
{
αmax,max

{
αmin,

(
α

tol

P(hold)

) 1
p+1
}}

, (2.3)

where we choose α = 0.9, αmin = 0.25, αmax = 4.0. This simple strategy incorpo-
rates safety factors to avoid an oscillating and unstable behavior. The chosen values
of αmin and αmax are commensurable with the recommendations in [2]. The safety
factors have not proven critical in our examples; the local changes in the step-sizes
are usually smaller from step to step, see for example Fig. 8. Only if at the begin-
ning of time propagation the initial step-size is unsuitable as in Fig. 6, where still no
instabilities arise in the step-size control, however.

3 The Gray–Scott equation

As a concrete example, we first study the Gray-Scott system (see [18]) modeling a
two-component reaction-diffusion process,

∂tu(x, y, t) = cuΔu(x, y, t)− u(x, y, t)v2(x, y, t)+α(1−u(x, y, t)),

(3.1a)

∂tv(x, y, t) = cv Δv(x, y, t) + u(x, y, t)v2(x, y, t) − βv(x, y, t). (3.1b)

This system is of the type (1.1), with unknown (u(x, y, t), v(x, y, t)), the vector of
concentrations of the two chemical species involved. In many situations, this model is
closed naturally by periodic boundary conditions. This system is studied as a model
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Fig. 1 Solution component v at t = 0 (left), t = 2000 (middle), and t = 4000 (right) for (3)

for pattern formation with a rich dynamical behavior. For (x, y) ∈ [−4π, 4π ]2, we
prescribe the initial condition

u(x, y, 0) = 0.5+ exp(−1− (x2 + y2)), v(x, y, 0) = 0.1+ exp(−1− (x2 + y2)).

(3.2)
A visualization of the solution component v at t = 0, 2000 and 4000 is shown in
Fig. 1.

The problem can also naturally be stated in three spatial dimensions and solved by
our methods. In Fig. 2, we show the component v computed by a complex embedded
4/3 splitting pair from [12] with an underlying spatial discretization with 5123 basis

Fig. 2 Solution component v for (3) in 3D at times t = 2500, 3000, 4000, 5000
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functions and a tolerance of 10−5. The solution is plotted at times t = 2500, t =
3000, t = 4000, and t = 5000. In the following, we will only investigate the 2D
case, as this does not influence the assessment of the time integrators, but reduces
computation time.

3.1 Convergence analysis

For the theoretical analysis of the convergence of splitting methods, we use the error
representation (1.3). Since the flow induced by the cubic nonlinearity is not uncondi-
tionally stable, we have to resort to the three-stage argument first given in [7] for the
cubic Schrödinger equation, see also [8]:

– First, show stability in the H 2-norm.
– The local error in H 2 is O(hp−1), where the constant depends on the H 2p−2-

norm of u.
– Stability together with consistency in H 2 implies convergence of order p − 2 in

H 2.
– Convergence implies boundedness of the numerical solution in H 2.
– Analyze stability in H 1. It turns out that the constant depends on the H 2-

norms of both the exact and the numerical solution. The latter has already been
demonstrated to be bounded.

– The local error in H 1 is O(hp), where the constant depends on the H 2p−1-norm
of u.

– Since ‖un‖H 2 is bounded, stability and consistency imply convergence order p−1
in H 1.

– Analyze stability in L2. It turns out that the constant depends on the H 2-
norms of both the exact and the numerical solution. The latter has already been
demonstrated to be bounded.

– The local error in L2 is O(hp+1), where the constant depends on the H 2p-norm
of u.

– We conclude convergence of order p in L2.

Along this line, we can prove the following theorem, since for the present situa-
tion of a parabolic problem under periodic boundary conditions, the same Sobolev
embeddings hold as on the full space R3, see Appendix A, so in particular the sec-
ond order differential operators and the cubic terms and their commutators admit the
same bounds. Thus, the following proof strategy can be followed in the same manner,
taking into account the commutator bounds given later:

Theorem 1 Suppose that the Gray–Scott (3) possesses a uniquely determined suf-
ficiently regular solution u on the time interval [0, T ]. Then, for any exponential
operator splitting method (1.2) of (nonstiff) order p ≥ 2, the following error
estimates are valid.

1. Provided that ‖u(t)‖H 2p ≤ M2p for 0 ≤ t ≤ T , the bound

∥∥un − u(tn)
∥∥

L2 ≤ Chp , 0 ≤ n ≤ N , tN ≤ T , (3.3)
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holds true with constant C depending on M2p.
2. Provided that ‖u(t)‖H 2p−1 ≤ M2p−1 for 0 ≤ t ≤ T , the bound

∥∥un − u(tn)
∥∥

H 1 ≤ Chp−1 , 0 ≤ n ≤ N , tN ≤ T , (3.4)

holds true with constant C depending on M2p−1.
3. Provided that ‖u(t)‖H 2p−2 ≤ M2p−2 for 0 ≤ t ≤ T , the bound

∥∥un − u(tn)
∥∥

H 2 ≤ Chp−2 , 0 ≤ n ≤ N , tN ≤ T , (3.5)

holds true with constant C depending on M2p−2.

Proof We work out the analysis in detail for the case p = 2; the general case
is proven analogously. For the analysis, we write the Gray–Scott system in the
partitioned form

∂tU(x, y, t) = AU(x, y, t) + B(U(x, y, t)),

U(x, y, 0) = U0(x, y), (x, y) ∈ [−π, π ]2, (3.6)

where

U(x, y, t) =
(

u(x, y, t)

v(x, y, t)

)
,

AU(x, y, t) =
(

c1Δ − α 0
0 c2Δ − β

)
U(x, y, t) +

(
α

0

)
,

B(U(x, y, t)) =
(−u(x, y, t)v2(x, y, t)

u(x, y, t)v2(x, y, t)

)
.

Stability is shown in the same manner as for the cubic Schrödinger equation [8],
see the outline above. To bound the local error, we compute the commutators of the
vector fields. This yields

[A, B](U) = AB(U) − B ′(U)AU

=
(

c1Δ − α 0
0 c2Δ − β

)(−uv2

uv2

)
+

+
(

v2 2uv

−v2 −2uv

)(
(c1Δ − α)u

(c2Δ − β)v

)

=
( −c1Δ(uv2) + v2c1Δu + 2uv(c2Δv − βv)

(c2Δ − β)uv2 − v2(c1Δ − α)u − 2uv(c2Δ − β)v

)

=
(

2(c2 − c1)uvΔv − 4c1v∇u · ∇v − 2c1u∇v · ∇v + 2c1βuv2

(c2 − c1)v
2Δu + 4c2v∇u · ∇v + 2c2u∇v · ∇v + (α + β)uv2

)
.

This can be estimated in Sobolev norms by resorting to the embeddings in
Appendix B:

‖[A, B](U)‖Hm ≤ C(‖U‖Hm+2), m = 0, 1, . . . . (3.7)
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For the second commutator, we compute

B ′(U)W =
(−v2 −2uv

v2 2uv

)(
w1
w2

)

=
(−v2w1 − 2uvw2

v2w1 + 2uvw2

)

B ′′(U)(W, Z) =
(
0 −2uw2
0 2uw1

)(
z1
z2

)

=
(−2uw2z1

2uw1z2

)
,

A2U =
(

(c1Δ − α)2u

(c2Δ − β)2v

)
+
(

α(c1Δ − α + 1)
0

)

and hence

[A, [A, B]](U) = A2B(U) − 2AB ′(U)AU + B ′′(U)(AU, AU) + B ′(U)A2U

contains terms of the form uvΔ2u and uvΔ2v which do not cancel. Consequently,

‖[A, [A, B]](U)‖Hm ≤ C(‖U‖Hm+4), m = 0, 1, . . . . (3.8)

Inductively, the result for higher commutators appearing in estimates for higher-order
splitting methods follows.

3.2 Numerical results

In this section, we will demonstrate the accuracy of several splitting schemes
for the Gray–Scott equation (3) by computing the convergence orders with an
underlying Fourier pseudospectral space discretization at 512 × 512 points. The
nonlinear terms in the equation are propagated using an explicit fourth-order Runge-
Kutta method. For these experiments, the parameters in (3) were chosen as α =
0.038, β = 0.114, c1 = 0.04, and c2 = 0.005. We will investigate the
pair [15, Milne 2/2 c (i)], and the optimized palindromic fourth-order method
[15, Emb 4/3 A c]. The error estimators are based on the Milne device (Section 2.3),
and the embedding idea (Section 2.1), respectively. Figure 3 gives the error of the
method [15, Milne 2/2 c (i)] and the error of the associated error estimator as
well as the global error of the time integration. The empirical convergence order can
be observed by comparing the computed data points with the solid line representing
the theoretical order extrapolated from the most accurate approximation. Figure 4
gives the same data for the integrator from [15, Emb 4/3 A c] and associated error
estimator. Errors are calculated with respect to a reference solution computed by
[15, Emb 4/3 A c] with time-step h = 7.81 · 10−3. The empirical orders illustrate
the theoretical result in Theorem 1.

The time-steps generated in the course of an adaptive procedure are given
in Fig. 5. The left plot shows the time-steps to satisfy a tolerance of 10−5

for the [15, Milne 2/2 c (i)] method, and likewise on the right for the
[15, Emb 4/3 A c] pair.
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Fig. 3 Empirical convergence orders of the local and the global errors and deviation of the local error
estimator for the [15, Milne 2/2 c (i)] splitting applied to the Gray–Scott (3)

3.3 Comparisons

After verifying the reliability of the investigated solution methods, we will assess the
efficiency of the adaptive time integration methods by giving a comparison to the
situation where the same accuracy is achieved with constant time-steps. Moreover,
we will compare the efficiency of adaptive time integration based on the second-
order method in conjunction with the Milne device as compared to the fourth-
order embedded splitting pair [15, Emb 4(3) A c] and the palindromic scheme
[15, PP 3/4 A c]. By construction, the latter also provides an asymptotically cor-
rect error estimator, which by its special structure is cheap to evaluate. Runtime was
measured on a PC with Intel Core i7-2600 3, 4GHz Quad-Core processor with 16
GB RAM: Table 1 shows the number of steps required in the adaptive integration,
the number of equidistant steps with the smallest necessary adaptive time-step, and
the computing time for both scenarios. The tolerances were chosen as 10−5 (top) and
10−8 (bottom), respectively. We observe that indeed the adaptive methods require
fewer steps, but the overall computational cost is higher due to the effort for the

Fig. 4 Empirical convergence orders of the local and the global errors for the [15, Emb 4/3 A c] splitting
and deviation of the local error estimator applied to the Gray–Scott (3)
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Fig. 5 Time-steps for (3) for [15, Milne 2/2 c (i)] (top), [15, Emb 4/3 A c] (bottom), tolerance 10−5

evaluation of the error estimator in each step. This suggests an adaptive strategy
which does not estimate the error in each step, but only after a certain number of
steps with a fixed time-step. This is also supported by the fact that a measurement
of the computation time for the [15, Milne 2/2 c (i)] method on 1000 equidis-
tant steps yielded 75.45 s, in conjunction with the error estimator the computation
time amounted to 123.43 s. The same experiment for the [15, Emb 4/3 A c] method
yielded 162.18 and 238.36 s, respectively. For [15, PP 3/4 A c], the run times were
110.75 and 193.68 s, respectively. This implies that an update of the time-steps every
two or three steps should provide a more efficient strategy, but possibly at the cost of
reduced numerical stability, since this example shows rather smooth solution dynam-
ics. Indeed, the step-size is adjusted rapidly by exploiting the maximally permitted
increase by a factor of 4 from a too small initial guess to the appropriate value,
which is assumed throughout the rest of the computation, see Fig. 6, which gives
the quotient of two consecutive step-sizes over the integration interval. This behav-
ior demonstrates one major advantage of adaptivity, that an unsuitable initial guess
of the step-size is automatically adjusted to an optimal value.
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Table 1 Comparison of the efficiency of [15, Milne 2/2 c (i)], [15, Emb 4/3 A c], and
[15, PP 3/4 A c] for (3)

Method # Steps adaptive # Steps equidist Time adaptive Time equidist

Milne 2/2 c (i), tol= 10−5 406 486 57.04 28.21

Emb 4/3 A c, tol= 10−5 67 79 17.72 11.46

PP 3/4 A c, tol= 10−5 116 135 23.02 12.99

Milne 2/2 c (i), tol= 10−8 4691 5625 878.72 503.93

Emb 4/3 A c, tol= 10−8 516 612 174.30 128.19

PP 3/4 A c, tol= 10−8 929 1107 195.87 106.79

The tolerances were 10−5 (top) and 10−8 (bottom), respectively

4 The Van der Pol equation

The Van der Pol equation is an ordinary differential equation with limit cycle behav-
ior. It is used as a test of time integration schemes for stiff differential equations. It
shares characteristics with simple models for cardiac behavior. The Van der Pol equa-
tion is usually considered as an ordinary differential equation, but by adding diffusion
terms, one can consider an extension from a set of ordinary differential equations to
a pair of coupled partial differential equations with spatial dependence.

It is given by

∂tu(x, t) = DuΔu(x, t) + v(x, t), (4.1a)

∂tv(x, t) = Dv Δv(x, t) + 1

ε

[
(1 − u2(x, t))v(x, t) − u(x, t)

]
. (4.1b)

It is split into

∂tu(x, t) = DuΔu(x, t) + v(x, t), (4.2a)

∂tv(x, t) = Dv Δv(x, t) + 1

ε
(v(x, t) − u(x, t)), (4.2b)

Fig. 6 Ratio of two consecutive time-step sizes for the solution of (3) by [15, Emb 4/3 A c]
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Fig. 7 Numerical solution for (4.1a) with Du = Dv = 1 and ε = 10−3, 256 grid points, with initial
condition u(x, 0) = exp(−x2) and v(x, 0) = 0.2 exp(−(x + 2)2) and x ∈ [−π, π] (left: u; right: v)

and

∂tv(x, t) = −1

ε
u2(x, t)v(x, t). (4.3a)

The convergence result for an order p splitting applied to this system can read-
ily be seen to be the same as Theorem 1. However, the constants in the estimates
(3.3)–(3.5) depend on the small parameter ε, C = C(M2p, ε−p) in (3.3), C =
C(M2p−1, ε

1−p) in (3.4), and C = C(M2p−2, ε
2−p) in (3.5). We must stress that the

involved estimates of the exact solution will also be negatively influenced when ε is
small. The analysis of the exact solution is not a topic of the present paper, however.

For our comparisons, we solve the problem in one spatial dimension, with x ∈
[−π, π ], and choose ε = 10−3. The evolution of the solution components with t

(on the vertical axis) is illustrated in Fig. 7. Results showing the effectiveness of
adaptive time-stepping for (4.1a) are shown in Table 2. For this problem, the lower-
order method is more efficient. Adaptive step selection yields a speed-up by about a
factor 5. Indeed, if we consider the ratio of two consecutive step-sizes, we see some

Table 2 Comparison of the efficiency of [15, PP 5/6 A c] and [15, PP 3/4 A c] for (4.1a) with Du =
Dv = 1 and ε = 10−3, 256 grid points

Method # Steps adaptive # Steps equidist Time adaptive Time equidist

PP 5/6 A c, tol= 10−3 11886 127118 6.41e + 03 3.14e + 04

PP 3/4 A c, tol= 10−3 20989 217760 4.32e + 03 2.09e + 04

PP 5/6 A c, tol= 10−5 124559 1269018 6.20e + 04 3.13e + 05

PP 3/4 A c, tol= 10−5 214338 2176945 3.81e + 04 2.09e + 05

The final time was 10.0, with initial condition u(x, 0) = exp(−x2) and v(x, 0) = 0.2 exp(−(x + 2)2),
and x ∈ [−π, π]



274 Numer Algor (2017) 75:261–283

Fig. 8 Ratio of two consecutive time-step sizes for the solution of (4.1a) by [15, PP 5/6 A c]

variation in the region of the steep layers in Fig. 8, which is obviously sufficiently
large to warrant adaptive time-stepping.

The time-steps generated in the course of an adaptive procedure are given in Fig. 9.
The left plot shows the time-steps to satisfy a tolerance of 10−5 for the PP 3/4 A c
method, and likewise on the right for the [15, PP 5/6 A c] pair.

Fig. 9 Time-steps for (4.1a) for [15, PP 3/4 A c] (top), [15, PP 5/6 A c] (bottom), tolerance 10−5



Numer Algor (2017) 75:261–283 275

Fig. 10 Empirical convergence orders of the local and the global errors for the [15, PP 3/4 A 3 c]
splitting applied to the Gray–Scott (3)

5 Splitting into three operators (“ABC-splitting”)

Finally, we consider a splitting of the Gray–Scott (3) into three parts,

(
c1Δ − α 0

0 c2Δ − β

)
U(x, y, t) +

(
α

0

)

︸ ︷︷ ︸
=A

+
(

0
u(x, y, t)v2(x, y, t)

)

︸ ︷︷ ︸
=B

−
(

u(x, y, t)v2(x, y, t)

0

)

︸ ︷︷ ︸
=C

.

This has the computational advantage that the flows of the operators B and C can
be computed analytically when the other component is frozen. Below, we verify the
convergence orders for this case for the optimal palindromic splitting PP 3/4 A 3 c.

Remark A formal error analysis for ABC-splitting has not yet been given in
the nonlinear case; the linear case has been treated in [13]. However, inspection
of the commutators that would critically influence the error shows that a conver-
gence result analogous to Theorem 1 will hold, since commutators of B and C

vanish.

5.1 Numerical results

The numerical results below were computed by the method [15, PP 3/4 A 3 c].
This is the method of order 3 with the smallest leading error coefficients (see [14])
we could determine and offers the advantage of the cheap error estimator from
Section 2.2, see Fig. 10.
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Fig. 11 Time-steps and local error for (3) for [15, PP 3/4 A 3 c]

The time-steps generated in the course of an adaptive procedure according to
Section 2.4 are given in Fig. 11. The plot shows the step-sizes to satisfy a tolerance
of 10−5 for the PP 3/4 A 3 c method.

5.2 Comparisons

In order to compare the efficiency of the ABC-splitting approach with the two-
operator splitting discussed in Section 3, in Table 3, we give the number of steps
required for tolerances 10−5 and 10−8 and the resulting computation times. It is
observed that the ABC-splitting [15, PP 3/4 A 3 c] requires slightly fewer steps
than [15, PP 3/4 A c], but the computation time is higher. The reason is that each
individual step is computationally more demanding in the ABC-splitting due to the
larger number of required FFT transforms associated with the larger number of com-
positions. These result from the fact that the number of order conditions is larger in
the ABC case and therefore, more free parameters are necessary to construct high-
order methods. Indeed, 1000 steps with [15, PP 3/4 A c] required 110.75 s, for
[15, PP 3/4 A 3 c] the timing was 199.95. However, we stress again that a major
advantage of the ABC-splitting approach for this example lies in the fact that the
computations of the nonlinear flows can resort to analytical solutions instead of
numerical approximations as in Section 3.

Table 3 Efficiency of the [15, PP 3/4 A 3 c] splitting for (3)

Method # Steps adaptive # Steps equidist Time adaptive Time equidist

PP 3/4 A 3 c, tol= 10−5 65 67 26.74 13.23

PP 3/4 A 3 c, tol= 10−8 555 645 244.41 138.38

The tolerances were 10−5 (top) and 10−8 (bottom), respectively
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6 Conclusions and outlook

We have investigated high-order adaptive time-splitting methods for the solution of
nonlinear evolution equations of parabolic type under periodic boundary conditions.
The theoretical error analysis for the Gray–Scott equations and the Van der Pol equa-
tion shows the classical convergence orders under regularity assumptions on the exact
solution implied by the Sobolev inequality for functions on the torus. The theory is
illustrated by numerical computations showing the established convergence orders.

Moreover, adaptive time-stepping strategies have been demonstrated to improve
both efficiency and reliability, where high-order methods generally yield a compu-
tational advantage for the approximation of regular solutions. Local error estimators
based on embedded formulae of splitting coefficients are more efficient than estima-
tors employing the adjoint method, but the former need to be constructed especially
by a computationally demanding optimization procedure, while the latter principle
can be applied invariantly for methods of odd order.

Indeed, it has been observed that for problems with rapidly varying solutions, an
adaptive strategy yields an advantage as compared to uniformly using the smallest
time-step required locally. Secondly, a good guess of the time-step size is not com-
monly available even when the solution is smooth, so adaptive adjustment saves from
repeating runs until the optimal step-size is found.

Splitting into three operators promises a computational advantage for the calcula-
tion of the individual compositions, but the complexity of high-order integrators of
this class implies a significant surplus of necessary compositions which negatively
affects the performance.
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Appendix A: Periodic functions and their Fourier transforms

In the following, we recapitulate material from [19] for the convenience of the reader.
Consider

Q = [−a, a]d associated with the d -dimensional torus in C
d ,

Cn = {u : Q → C, u ∈ Cn(Q) is a periodic function}.
The space L2 = L2(Q) is a Hilbert space with the inner product

〈u, v〉L2 =
∫

Q

u(x)v(x)dx.

http://creativecommons.org/licenses/by/4.0/
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Fourier representation of u ∈ L2 Let k = (k1, . . . , kd) ∈ Z
d , and |k| = |k1| +

· · · + |kd |.

Definition 1 The Fourier transform F : L2(Q) → Z
d , u �→ F (u) = (ck)k∈Z is

defined by

ck := 1

(2a)d

∫

Q

u(x)e−i(k·x)/a dx, k ∈ Z
d ,

and the inverse transform yields the representation

u(x) =
∑

k∈Zd

ck e
iπ (k·x)/a.

Parseval’s identity implies an isometric correspondence

‖u‖L2 =
⎛

⎝(2a
)d ∑

k∈Zd

|ck|2
⎞

⎠

1
2

. (6.1)

Remark 1 Since the torus has finite measure, we have Lq ⊆ Lp for 1 ≤ p ≤ q ≤ ∞.

We introduce the following notations: Hs = Hs(Q), α = (α1, . . . , αd) ∈ N
d
0 ,|α| = α1 + · · · + αd , α! = α1! · · · αd !. Weak derivatives are denoted by Dαu. The

norm on Hs is

‖u‖Hs =
⎛

⎝
∑

|α|≤s

|Dαu|2
⎞

⎠

1
2

.

H s is a Hilbert space with inner product

〈u, v〉Hs =
∑

|α|≤s

〈Dαu, Dαv〉L2 .

Fourier representation of Dαu The weak derivative has the Fourier representation

Dαu(x) =
(
iπ

a

)|α| ∑

k∈Zd

kα ck e
iπ (k·x)/a,

and thus

|Dαu(x)|2 = (
2a
)d (π

a

)2|α| ∑

k∈Zd

k2α |ck|2

as a consequence of Parseval’s identity (6.1). Here, kα = k
α1
1 · · · kαd

d .
In the following, we will need to resort to the fact that the norms on the Sobolev

space Hs can equivalently be stated in terms of the Fourier coefficients. The proof of
the following lemma is given in [19].
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Lemma 1 With computable constants C, C depending on d and s, we have

C‖u‖Hs ≤
⎛

⎝(2a
)d ∑

k∈Zd

(
1 + |k|2s)|ck|2

⎞

⎠

1
2

≤ C‖u‖Hs .

Lemma 1 shows that Hs is identical to the space
⎧
⎨

⎩u(x) =
∑

k∈Zd

ck e
iπ (k·x)/a ∈ L2,

∑

k∈Zd

(
1 + |k|2s)|ck|2 < ∞

⎫
⎬

⎭ , (6.2a)

and the norm ‖u‖Hs is equivalent to the norm

‖u‖Hs∗ =
⎛

⎝(2a
)d ∑

k∈Zd

(
1 + |k|2s)|ck|2

⎞

⎠

1
2

. (6.2ba)

Moreover, (6.2) serves as the definition of the spaces Hs for non-integer s.

Appendix B: Sobolev embeddings

Continuity

Theorem 2 For s > d/2, we have Hs ⊆ C0, and the embedding Hs ↪→ C0 is
continuous, i.e.,

‖u‖∞ ≤ Cs ‖u‖Hs for all u ∈ Hs. (6.3)

Proof The proof is indicated in [19]. In the following, we work out the argument in
detail. Consider an arbitrary u ∈ Hs . With

|u(x)| =
∣∣∣
∑

k∈Zd

ck e
iπ (k·x)/a

∣∣∣ ≤
∑

k∈Zd

|ck|,

‖u‖∞ ≤
∑

k∈Zd

|ck|,

the Cauchy-Schwarz inequality in �2 = �2d yields

‖u‖∞ ≤
∑

k∈Zd

1
(
1 + |k|2s) 12

(
1 + |k|2s)

1
2 |ck|

≤
⎛

⎝
∑

k∈Zd

1

1 + |k|2s

⎞

⎠

1
2

·
( ∑

k∈Zd

(
1 + |k|2s)|ck|2

) 1
2

︸ ︷︷ ︸
=C‖u‖Hs∗
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(with C = (
2a
)− d

2 ), provided that the series

∑

k∈Zd

1

1 + |k|2s (6.4)

is convergent.

– For d = 1,
∞∑

k1=−∞

1

1 + |k1|2s
= 1 + 2

∞∑

k1=1

1

1 + |k1|2s
,

where
∞∑

k1=1

1

1 + |k1|2s
≤

∞∑

k1=1

1

|k1|2s

is convergent for 2s > 1, i.e., s > 1/2 = d/2.
– For general d, we consider

∑

k∈Zd

1

1 + |k|2s ≤ C
∑

k∈Nd
0

1

1 + |k|2s =
∞∑

m=0

∑

|k|=m

k∈Nd
0

1

1 + m2s

=
∞∑

m=0

(
m + d − 1

d − 1

)
1

1 + m2s
≤ C

∞∑

m=0

md

1 + m2s
< ∞

for s > d/2.

This shows that, for s > d/2, the series (6.4) is convergent and that u ∈ Hs sat-
isfies (6.3). Furthermore, the absolute summability of the Fourier coefficients ck

implies that the Fourier series for u is uniformly convergent, which in turn implies
the continuity of u.

Corollary 1 For s > d/2 + n, we have Hs ⊆ Cn, and the embedding Hs ↪→ Cn is
continuous, i.e.,

‖u‖Cn ≤ Cs,n‖u‖Hs for all u ∈ Hs.

Integrability

In order to study integrability properties of functions u ∈ Hs , we need to interrelate
them to summability properties of its Fourier transform in �q spaces, with

‖û‖�q =
⎛

⎝
∑

k∈Zd

|ck|q
⎞

⎠

1
q

(û = (uk)k∈Zd ). For the proof of the following result, see [20, Theorem 2.1 and 2.2]
and also [21].
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Lemma 2 (Hausdorff-Young) Let 1 ≤ p ≤ 2 and 1
p

+ 1
q

= 1. Then,

‖û‖�p ≤ C‖u‖Lq , (6.5)

and
‖u‖Lq ≤ C‖û‖�p . (6.6)

Theorem 3 For s < d/2 and

2 ≤ p <
d

d
2 − s

,

we have Hs ⊆ Lp, and the embedding Hs ↪→ Lp is continuous, i.e.,

‖u‖Lp ≤ C‖u‖Hs for all u ∈ Hs.

Remark 2 It can be shown that the assertion of Theorem 3 is also valid for the
endpoint case s = d/2 and p < ∞; see [19].

Proof The proof is indicated in [19]. In the following, we work out the argument in
detail.

For p = 2, the assertion is trivial. For 2 < p < ∞ and 1
p

+ 1
q

= 1, inequality (6.6)

implies1

‖u‖Lp ≤ C‖û‖�q = C

⎛

⎝
∑

k∈Zd

|ck|q
⎞

⎠

1
q

= C

⎛

⎝
∑

k∈Zd

((
1 + |k|2s)|ck|2

) q
2
(
1 + |k|2s

)− q
2

⎞

⎠

1
q

≤ C

⎡

⎢⎣

⎛

⎝
∑

k∈Zd

(
1 + |k|2s)|ck|2

⎞

⎠

q
2
⎛

⎝
∑

k∈Zd

(
1 + |k|2s)−

q
2−q

⎞

⎠

2−q
2
⎤

⎥⎦

1
q

= C

⎛

⎝
∑

k∈Zd

(
1 + |k|2s)|ck|2

⎞

⎠

1
2
⎛

⎝
∑

k∈Zd

(
1 + |k|2s)−

q
2−q

⎞

⎠

2−q
2q

≤ C‖u‖Hs

⎛

⎝
∑

k∈Zd

(
1 + |k|2s)−

q
2−q

⎞

⎠

2−q
2q

.

Here, we have used Hölder’s inequality with conjugate exponents 2
q
, 2
2−q

, and
Lemma 1. This estimate makes sense provided the sum in the latter expression is

1Here, p plays the role of q in (6.6) and vice versa. We have 1 ≤ q ≤ 2.
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finite, i.e., if

∑

k∈Zd

(
1

1 + |k|2s
) q

2−q =C

∞∑

k∈Nd
0

(
1

1 + |k|2s
) q

2−q

< ∞ .

We reason as in the proof of Theorem 2: We have

∑

k∈Nd
0

(
1

1 + |k|2s
) q

2−q =
∞∑

m=0

∑

|k|=m

k∈Nd
0

(
1

1 + m2s

) q
2−q

=
∞∑

m=0

(
m + d − 1

d − 1

)(
1

1 + m2s

) q
2−q ≤ C

∞∑

m=0

md

(
1 + m2s

) 2sq
2−q

< ∞

for (2sq)/(2−q) > d , i.e., q > 2d/(2s +d). With 1/p +1/q = 1, this is equivalent
to p < d/

(
d
2 − s

)
, as asserted.

In the special cases d = 1, 2, 3, which are relevant to our analysis, this means:

– d = 1: For s < 1/2 and

2 ≤ p <
1

1
2 − s

,

we have Hs ⊆ Lp.
– d = 2: For s < 1 and

2 ≤ p <
2

1 − s
,

we have Hs ⊆ Lp. In particular, H 1 ⊆ Lp for all 1 ≤ p < ∞.
– d = 3: For s < 3/2 and

2 ≤ p <
3

3
2 − s

,

we have Hs ⊆ Lp. In particular, H 1 ⊆ L6.
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