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Abstract We study the spectral zeta functions of the Laplacian on fractal sets which
are locally self-similar fractafolds, in the sense of Strichartz. These functions are
known to meromorphically extend to the entire complex plane, and the locations of
their poles, sometimes referred to as complex dimensions, are of special interest. We
give examples of locally self-similar sets such that their complex dimensions are not
on the imaginary axis, which allows us to interpret their Laplacian determinant as the
regularized product of their eigenvalues. We then investigate a connection between
the logarithm of the determinant of the discrete graph Laplacian and the regularized
one.
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1 Introduction

If we have a differential Laplace operator L with discrete spectrum, we can define its
spectral zeta function as

ζL(s) = Tr

{
1

Ls

}
=

∑
n

1

λsn
,

where the zero eigenvalue is excluded and eigenvalues are added according to their
multiplicities. Equivalently, if we have the heat kernel trace K (t) = ∑

n e
−λn t , we

can define the spectral zeta function as the Mellin transform of the heat kernel trace
minus one to remove the eigenvalue zero, namely:

ζL(s) = 1

Γ (s)

∫ ∞

0
(K (t) − 1)t s−1dt.

Now we can write formally

detL =
∞∏
i=1

λi

to be the product of its nonzero eigenvalues, and we make the convention for the rest
of this paper that the zero eigenvalue will always be excluded from any determinant.
Of course, in the cases that we will consider the eigenvalues diverge to infinity, so this
product exists only in a formal sense. We are interested, however, in assigning some
meaning to it, which we can do by the following formal observations

ζ ′
L(s) =

( ∞∑
k=1

1

λsi

)′
= −

∞∑
k=1

1

λsi
log λi .

Evaluating at s = 0 we get

ζ ′
L(0) = −

∞∑
k=1

log λi = log
∞∏
i=1

λi = − log detL,

so we can define the determinant of the operator L to be detL = e−ζ ′
L(0).

The spectrum of the Laplace operator on fractals has been the focus of considerable
work, see e.g., [9,10,19,22,29,30,32,33,35]. Given a post-critically finite (p.c.f.) self-
similar set (see [21] for the definition of p.c.f.), one can compute its spectral dimension
ds and walk dimensions dw, and these dimensions are connected via the Einstein
relation ds = 2 df

dw
where df is the Hausdorff dimension. In [12,31,37,38], the spectral

zeta functions have been studied, and while they are defined initially only for s > ds
2 ,

they are shown to meromorphically extend to the entire complex plane. Their poles,
also called complex dimensions [24], are studied in [31] and it is proven that for a large
class of p.c.f. fractals with symmetries, that the poles can only be on the imaginary
axis or on the axis where Re(s) = ds

2 .
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Regularized Laplacian determinants of self-similar fractals 1565

Our long-term motivation comes from quantum physics, in particular such recent
papers as [1–5,14,15,25,28,36] andmore classical works [16,17,20,23]. Our immedi-
ate mathematical motivation is twofold. On the one hand, it comes from the following
statement found in [12] and [13]:

“If there were no poles on the imaginary axis, then e−ζ ′
Δ(0) would be the regularized

product of eigenvalues or the Fredholm determinant of Δ.”
On the other hand, in [11] a connection between the determinant of the discrete

Laplacians and the regularized determinant has beenmade in the setting of the discrete
Euclidean torus. Specifically, let N = (n1(u), . . . nd(u)) denote a d-tuple of positive

integers parametrized by u ∈ Z, such that for each j , we have
n j (u)

u → a j as u → ∞.
One then defines the d-dimensional discrete torus as the product space

DTN (u) =
d∏

i=1

n j (u)Z/Z.

If A is the diagonal matrix with entries a j and V (a) = a1 · · · ad , the authors of [11]
established the formula

log detΔDTN (u)
= V (N (u))Id(0) + log u2 + log detΔRT,A + o(1) as u → ∞,

(1.1)

where RT, A is the real torus AZ
d/R

d , and I is a specific special function. A variation
of this result was also studied in [40].

The goal of this paper is to give examples of fractals whose spectral zeta functions
have no poles on the imaginary axis, which then allows us to define the corresponding
Laplacian determinant, interpreted as the regularized product of the Laplace eigenval-
ues. This result can be stated as a regularized limit and has been proven again with
a different methodology in [40]. More specifically, if f ∈ C∞(R+, C) and is of the
form

f (x) =
N−1∑
j=1

Mj∑
k=0

a jk x
a j logk x +

M0∑
k=0

a0k log
k x + o

(
xaN logMN x

)

for some N ∈ N, (a j ) ⊂ C such that (Re(a j )) is monotonically decreasing and

Re(aN ) < 0 then we define the regularized limit of f as ˜limx→∞ f (x) = a00. Then
as in [40] we can restate the above result as

l̃im
n→∞ log detΔn = log detΔ.

Motivated by the above-mentioned connection between a classical determinant
and a zeta regularized determinant, we investigate a similar relation on some fractal
examples. In this paper,we study three concrete examples: the diamond fractal, the N−
1-dimensional double Sierpiński gaskets (SGN ), and the double pq-model on the unit
interval. All three examples satisfy spectral decimation, which leads to closed-form
expressions for the spectral zeta functions and the Laplacian determinants. However,
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1566 J. P. Chen et al.

only for the double Sierpiński gaskets and the double pq-model do we have exact
analogs of (1.1). Details will be described in subsequent sections, after a review of
basic notions from analysis on fractals and graph theory.

2 Notions of analysis on fractals and graph theory

The fractals we will study are self-similar sets defined in the following way. Given
a compact connected metric space (X, d), and injective contractions Fi : X → X ,
i ∈ {1, 2, . . . ,m}, there exists a unique non-empty compact subset K of X that satisfies

K =
m⋃
i=1

Fi (K ).

This will be our self-similar set. A fixed point p1 of one of the maps Fi for some
1 ≤ i ≤ m is called an essential fixed point if there exists another fixed point p2 such
that Fj (p1) = Fk(p2) for some (1 ≤ j = k ≤ m). Associated with K is a sequence
of approximating graphs {Gn : n ≥ 0}, defined as follows. Let V0 be the set consisting
of the essential fixed points of the maps Fi and G0 be the complete graph on V0. For
n ≥ 1, we define inductively

Vn :=
m⋃
i=1

Fi (Vn−1),

and declare x, y ∈ Vn to be connected by an edge in Gn (denoted x ∼
n
y) if F−1

i (x)

and F−1
i (y) are connected by an edge in Gn−1 for some 1 ≤ i ≤ m. We define the

Dirichlet form on Gn in the usual way

Em(u, v) =
∑
x∼
m
y

(u(x) − u(y)) (v(x) − v(y)) , u, v : Vm → R.

In many fractal examples, it is possible to show that limn→∞ r−nEn(u, v) exists,
where r > 0 is a renormalization constant. We denote this limit by E(u, v) and write
E(u) to stand for E(u, u). For example, the standard two-dimensonal

Sierpiński gasket SG2 satisfies this property with r = 3
5 . Every function of finite

energy is continuous. In fact domE , the space of functions of finite energy is a dense
subspace of the space of continuous functions on K . Given the energy, we can define
the Laplacian which is the main focus of our study. For u ∈ domE we say u ∈ domΔμ

and Δμu = f if

E(u, v) = −
∫
K

f vdμ for all v ∈ dom0E

where dom0E denotes the subset of domE such that the functions also vanish on the
boundary. We will use the convention from now on −Δμ = L, and we always assume
thatμwill be the standard self-similar measure so it will be omitted from the notation.
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Regularized Laplacian determinants of self-similar fractals 1567

2.1 Spectral decimation and zeta functions

The Laplace operator L with Neumann or Dirichlet conditions is a nonnegative self-
adjoint operator with compact resolvent. Its spectrum consists of discrete eigenvalues
such that

0 � λ1 < λ2 � λ3 � · · ·

with λn → ∞, and thus, we can define its spectral zeta function as in the introduction.
The key technique to studying the spectrum of the Laplacian on fractals is spectral
decimation. Essentially, spectral decimation allows us to recursively obtain the eigen-
values of a given graph level approximation from knowledge of the previous graph
approximation. In the end, taking a limit gives us the spectrum of the Laplace operator
on the self-similar set. More rigorously, we say that we have spectral decimation if all
eigenvalues of L are of the form

−λm lim
n→∞ λn R(−n)(w)

for w ∈ A, where A is a finite set and R is a rational function. For the limit to exist
the elements of the preimages R−(n)(w) must be chosen appropriately. The value m
stands for the so-called generation of birth of the eigenvalue w and is independent
of n; more information may be found at [12,19,34,38]. In many cases, this rational
function turns out to be a polynomial. The quantity λ is also known as the time scaling
factor.

Now, let R(z) = ad xd + · · ·+λx be a polynomial with real coefficients and d ≥ 2
which satisfies R(0) = 0 and R′(0) = λ > 1. We denote as Φ the entire function
which is a solution of the functional equation

Φ(λz) = R(Φ(z)) with Φ(0) = 0, Φ ′(0) = 1.

We also define the so-called polynomial zeta functions

ζΦ,w(s) =
∑

Φ(−μ)=w
μ>0

μ−s

or equivalently as

ζΦ,w(s) = lim
n→∞

∑
z∈R−n(w)

(λnz)−s .

These zeta functions have been studied in [12,38] and were used in the meromorphic
extension of the spectral zeta functions. We know the following facts about them. For
w < 0, we have that

ζΦ,w(0) = 0 and ζ ′
Φ,w(0) = log ad

d − 1
+ log (−w)
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1568 J. P. Chen et al.

and for w = 0

ζΦ,0(0) = 1 and ζ ′
Φ,0(0) = log ad

d − 1
.

Moreover, they can be meromorphically extended to the entire complex plane and
have no poles on the imaginary axis. More specifically, all the poles are simple and
are located on the imaginary line where Re(s) = log d

log λ
. For further information we

refer the reader to [12,38].

2.2 Counting spanning trees in fractal graphs

In the graph theoretic setting, the determinant of the discrete Laplacian is widely
studied, as it is related to the enumeration of spanning trees via Kirchhoff’s Matrix-
Tree theorem. To be concrete, we define the combinatorial graph Laplacian of a graph
Gn asΔn = D− A, and the probabilistic graph Laplacian asLn = I −D−1A, where
D is the diagonal degree matrix and A is the adjacency matrix. Then the number of
spanning trees in Gn may be expressed in either of two ways:

τ(Gn) = detΔn

|Vn| or τ(Gn) =
( ∏

i di∑
i di

)
detLn,

where di are the vertex degrees. One can further introduce the asymptotic complexity
constant of (Gn), studied in [26],

c = lim
n→∞

log τ(Gn)

|Vn|
provided that the limit exists.

For fractal graphs admitting spectral decimation, the determinant of the graphLapla-
cians, as well as the asymptotic complexity constant, has been evaluated in [6]. The
key insight is that one can split the eigenvalues into two disjoint finite sets A and B. If
the rational function associated with spectral decimation is of the form R(z) = P(z)

Q(z)
with degree d, and Pd is the leading coefficient of P , then

detLn =
(∏

α∈A

ααn

) ⎡
⎣∏

β∈B

⎛
⎝β

∑n
k=0 βk

n

(−Q(0)

Pd

)∑n
k=0 βk

n

(
dk−1
d−1

)⎞
⎠

⎤
⎦ . (2.1)

where αn = multn(α) and βk
n = multn R−k(β), where multn(λ) denotes the multi-

plicity of the eigenvalue λ of Ln . We refer the reader to [6,7] and [27] for details.

3 Zeta function of the diamond fractal

The diamond fractal has been recently studied due to its connections related to physics.
In this section, we show that it is a fractal with spectral zeta function such that it has no
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Regularized Laplacian determinants of self-similar fractals 1569

Fig. 1 Diamond fractal and its G1 approximating graph

poles on the imaginary axis. Moreover, we establish a connection between the discrete
and continuous determinants of the Laplacian bearing some resemblance to [11]. We
depict the diamond fractal and its first graph approximation in (Fig. 1).

Proposition 3.1 The spectral zeta function of the diamond fractal factorizes as fol-
lows

ζL(s) = 4s(4s − 1)

3

(
4

4s − 4
+ 2

4s − 1

)
ζΦ,0(s)

and thus has no poles on the imaginary axis. Its regularized determinant is

detL = 2− 10
9

Proof For the diamond fractal spectral decimation has been done in [7] and it was
obtained that

R(z) = 2z(2 + z) and λ = R′(0) = 4.

Then Φ satisfies the functional equation Φ(λz) = R(Φ(z)) and thus we have that
Φ(4z) = 2Φ(z)(2 + Φ(z)). This allows us to say that

Φ(z) = −1 ⇔ Φ(4z) = −2

and

Φ(z) = −2 ⇔ Φ(4z) = 0 and Φ(z) �= 0.

We have that every eigenvalue of L is of the form −4m limn→∞ 4n R−n(−1) and
multn(1) = 4n+2

3 . Thus we get that

ζL(s) =
∞∑
n=1

(
4n + 2

3

)
4−nsζΦ,−1(s) = 1

3

(
4

4s − 4
+ 2

4s − 1

)
ζΦ,−1(s).
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We will show that in fact we have no poles on the imaginary axis because of can-
cellations from the solutions of 4s = 1. By using the observations above, we obtain
that

ζΦ,−1(s) =
∑

Φ(−μ)=−1
μ>0

μ−s =
∑

Φ(−4μ)=−2
μ>0

μ−s = 4s
∑

Φ(−4μ)=−2
μ>0

(4μ)−s = 4sζΦ,−2(s)

and

ζΦ,−2(s) =
∑

Φ(−μ)=−2
μ>0

μ−s =
∑

Φ(−4μ)=0
Φ(−μ) �=0

μ>0

μ−s =
∑

Φ(−4μ)=0
μ>0

μ−s −
∑

Φ(−μ)=0
μ>0

μ−s

= 4s
∑

Φ(−4μ)=0
μ>0

(4μ)−s −
∑

Φ(−μ)=0
μ>0

μ−s = (4s − 1)ζΦ,0(s)

From this it follows that

ζL(s) = 4s(4s − 1)

3

(
4

4s − 4
+ 2

4s − 1

)
ζΦ,0(s)

which proves that there are no poles on the imaginary axis.
Now by differentiating and using the fact that ζΦ,0(0) = 1 and that ζ ′

Φ,0(0) =
log ad
d−1 = log 2we obtain ζ ′

L(0) = 10
9 log 2. But due to the discussion in the introduction

this essentially means that the absence of poles on the imaginary axis allows us to
interpret this as the regularized product of the eigenvalues and thus

detL = e−ζ ′
L(0) = 2− 10

9 .

�
Remark 3.1 At first glance, the complex dimensions would be located at the positions
such that 4s = 4 which are s = 1 + ikπ

log 2 and at Re(s) = log 2
log 4 = 1

2 due to the poles
of the polynomial zeta functions. However, it was shown in [31] that the complex
dimensions can only be on the imaginary axis, which we have proven is not the case,
and at Re(s) = ds

2 = 1 and thus we can deduce that all the poles of the polynomial
zeta functions must be canceled by the zeros of the geometric part which we observe
that is indeed the case for Re(s) = 1

2 .

Remark 3.2 The value log 2 can also be interpreted as the tree entropy or the asymp-
totic complexity constant of the sequence of the fractal graphs approximating the
diamond fractal. Thus log detL = − 10

9 c.

For the diamond fractal, it has been calculated in [6] that

detLn = 2− 1
9 (2·4n−6n−11).
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Regularized Laplacian determinants of self-similar fractals 1571

Then using the fact that log detL = − 10
9 log 2 we conclude that

log detLn = 1

10
(2 · 4n − 6n − 11) log detL

We can see that the regularized determinant does not appear as an exact constant as
in [11] despite the fact that there are no poles on the imaginary axis. The resemblance
that appears here must be attributed to numerical coincidence.

There is also a quantum graph interpretation of the diamond fractal with spectral
zeta function

ζD(s) = ζR(2s)

π2s ldf−1
(
1 − l1−dws

1 − ldf−dws

)

where ζR is the Riemann zeta function, λ is a side length constant and dw and df are
correspondingly the walk and Hausdorff dimensions.

4 Zeta function of double Sierpiński gaskets

The spectral zeta functions for Dirichlet and Neumann boundary conditions for the
standard self-similar Laplacian on the standard two-dimensional Sierpiński gasket
have been calculated in [12,38] as follows:

ζ D
L (s) = 5−sζΦ,−2(s) +

(
3

2(5s − 3)
− 3

2(5s − 1)

)
5−sζΦ,−3(s)

+
(

1

2(5s − 3)
+ 3

2(5s − 1)

)
ζΦ,−5(s)

and

ζ N
L (s) =

(
1

2(5s − 3)
+ 3

2(5s − 1)

)
ζΦ,−3(s) +

(
3 · 5−s

2(5s − 3)
− 5−s

2(5s − 1)

)
ζΦ,−5(s).

Notice that the poles on the imaginary axis appear to be at the points such that
5s = 1. However, some are canceled out by the observation in [12] that ζΦ,−5(s) =
(5s − 1)ζΦ,0(s). Unfortunately, a similar argument cannot work for ζΦ,−3(s) and
numerical calculations by the authors in [12] indicate that we indeed have poles at
5s = 1.

In [32] the double Sierpiński gasket was defined. Essentially, it is the fractal created
by taking two copies of the regular Sierpiński gasket and gluing them at the boundary.
Then it becomes a fractal without boundary and its graph approximations are 4-regular
graphs (Fig. 2).

We can also consider higher-dimensional analogues of theSierpiński gasket.Denote
SGN to be the N−1-dimensional Sierpiński gaskets as in [19]. The time scaling factor
is then λ = N + 2. The Dirichlet spectral zeta function is evaluated in [12]
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1572 J. P. Chen et al.

Fig. 2 Approximating graph
G4 of the double Sierpiński
gasket. Points connected by a
dashed line are identified

ζ D
L (s) = λ−sζΦ,−2(s) +

(
(N − 1)2 − 1

2(λs − N )
− N

2(λs − 1)

)
λ−sζΦ,−N (s)

+
(

N − 2

2(λs − N )
+ N

2(λs − 1)

)
ζΦ,−(N+2)(s)

and by using explicit knowledge of the Neumann spectrum from [7,19], we can also
compute the Neumann spectral zeta function to be

ζ N
L (s) =

(
N − 2

2(λs − N )
+ N

2(λs − 1)

)
ζΦ,−N (s)

+
(
N (N − 2)

2(λs − N )
− N − 2

2(λs − 1)

)
λ−sζΦ,−(N+2)(s).

We can now create the double SGN by taking two copies of SGN and gluing them
together at the respective boundary points, making the appropriate N identifications.
Then it becomes a fractal without boundary and the spectrum of the Laplace operator
is the union of the Dirichlet and Neumann spectra with added multiplicities.

Proposition 4.1 The spectral zeta function of the double N−1-dimensional Sierpiński
gasket has no poles on the imaginary axis. Its regularized determinant is

detL = (N + 2)
N−2
N−1

2N
1

N−1

.

Proof The spectral zeta function for the double SGN is the sum of the Dirichlet and
Neumann spectral zeta functions of the single gaskets and thus becomes

ζL(s) = λ−sζΦ,−2(s)+ N (λs − 1) − λs

λs(λs − N )
ζΦ,−N (s)+ (N − 1)(λs − 2)

(λs − 1)(λs − N )
ζΦ,−(N+2)(s).

But since as in [12] we have that ζΦ,−(N+2)(s) = (λs −1)ζΦ,0(s)we see that we don’t
have any poles on the imaginary axis which allows us to have the interpretation of a
regularized determinant. By differentiating the formula above and taking into account
that the spectral decimation function is R(z) = z(N + 2+ z) with d = 2, ad = 1 and
also that
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Regularized Laplacian determinants of self-similar fractals 1573

ζΦ,0(0) = 1 and ζ ′
Φ,0(0) = 0

ζΦ,−N (0) = 0 and ζ ′
Φ,−N (0) = log N

ζΦ,−2(0) = 0 and ζ ′
Φ,−2(0) = log 2

we obtain that

ζ ′(0) = log 2 + 1

N − 1
log N − N − 2

N − 1
log (N + 2)

and therefore

log detL = − log 2 − 1

N − 1
log N + N − 2

N − 1
log (N + 2) (4.1)

from which the result follows. �
Remark 4.1 As in the case of the diamond fractal, the zeros of the geometric part
cancel all the poles of the polynomial zeta functions, and the only poles that remain
are at Re(s) = ds

2 = log N
log (N+2) .

We establish now a result analogous to [11].

Corollary 4.1 For the discrete combinatorial graph Laplacian determinant of the
double SGN , we have that

log detΔn = c|Vn| + n log (N + 2) − log detL,

where c is the asymptotic complexity constant which is

c = N − 2

N
log 2 + N − 2

N − 1
log N + N − 2

N (N − 1)
log (N + 2).

Proof By using (2.1), the fact that the spectrum is the union of the Dirichlet and
Neumann spectra with addedmultiplicities and the eigenvaluemultiplicities computed
at [19,29] we can evaluate that

detΔn = 2(N−2)Nn+1 · N (N−2)Nn+1+1
N−1 · (N + 2)

(N−2)Nn+n(N−1)−N+2
N−1

By usingKirchhoff’sMatrix-Tree theorem and also the fact that the number of vertices
for the double Sierpiński gasket graphs is |Vn| = Nn+1, we get that the number of
spanning trees is

τ(Gn) = 2(N−2)Nn+1 · N (N−2)Nn+1−(N−1)(n+1)+1
N−1 · (N + 2)

(N−2)Nn+n(N−1)−N+2
N−1

and therefore the asymptotic complexity constant is

c = N − 2

N
log 2 + N − 2

N − 1
log N + N − 2

N (N − 1)
log (N + 2).
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Using (4.1) we obtain the result. �
Remark 4.2 By this formula, we can see the connection between different “discrete
and continuous” determinants. In fact, the asymptotic complexity constant can also
be interpreted as a determinant, namely a Fuglede–Kadison determinant. We refer the
reader to [18,26] for more details. We then have a connection between “discrete and
continuous” determinants of the form

log detΔn = logDetΔ |Vn| + n log (N + 2) − log detL,

where DetΔ is the Fuglede–Kadison determinant.

Remark 4.3 By using Kirchhoff’s Matrix-Tree theorem and the above calculations,
we can also calculate the number of spanning trees for the single N − 1-dimensional
Sierpiński gasket confirming the formula conjectured in [8] and first proven via a
different methodology in [39]. The asymptotic complexity constant for the single and
double pre-fractal Sierpiński graphs are the same.

5 Zeta function of the double pq-model on the unit interval

In [34], the unit interval can be realized as a p.c.f. self-similar set with two contractions.
Then the standard self-similar measure is the Lebesgue measure and the fractal Lapla-
cian coincides with the standard − d2

dx2
operator. However, in [38] a different fractal

Laplacian on the unit interval has been constructed. Let 0 < p < 1 and q = 1 − p.
Define contraction factors

r1 = r3 = p

1 + p
and r2 = q

1 + p

and measure weights

m1 = m3 = q

1 + q
and m2 = p

1 + q

and observe that m1 + m2 + m3 = r1 + r2 + r3 = 1. We define the contractions
Fi : R → R for i = 1, 2, 3 as Fi (x) = ri x + (1 − ri )pi where pi is 0, 1

2 , 1,
respectively, or equivalently the fixed point of Fi . Then the unit interval is the self-
similar set created by these contractions and as usual Vn = ⋃

Fi (Vn−1) with the
boundary being V0 = {0, 1}. As our self-similar probability measure, we take the
unique measure satisfying μ = ∑3

j=1m jμ ◦ Fj and then we have that

Δμ(x) = lim
n→∞

(
1 + 2

pq

)n

Δn f (x)

where the discrete graph Laplacians are
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1 1

1

m1 m2 m3

q p p q 1

1 q p p q q p q p p q p q q p p q 1

Fig. 3 Associated random walk of the pq-model

Δn f (xk) =
⎧⎨
⎩
2p f (xk−1) + 2q f (xk+1) − 2 f (xk)

or
2q f (xk−1) + 2p f (xk+1) − 2 f (xk)

This Laplacian corresponds to a random walk as in Fig. 3.
Spectral decimation has been carried in [38] for the Neumann case with rational

function Rp(z) = 1
pq z(

z2
4 + 3z

2 + 2 + pq) and the following is obtained.

Proposition 5.1

σ(Δp,n) = {0,−4}
n−1⋃
m=0

R−m
p {−2 ± 2q}

and if p �= 1
2 then ds = log 9

log (1+ 2
pq )

< 1 and

ζ N
Lμ

(s) = 1

λs − 1
(ζΦ,w1(s) + ζΦ,w2(s))

for λ = 1 + 2
pq and w1, w2 = −2 ± 2q.

We can easily see that R−1(0) = {0,−2− 2p,−2− 2q} and R−1(−4) = {−4,−2+
2p,−2 + 2q} and thus the spectrum is obtained as follows

0 −4

0 −2− 2q −2 + 2q −4

0 −4

This calculation for the spectral zeta function was omitted in [38]. We clarify it here
and also fix a typo in the formula. Both eigenvalues −2 + 2q and −2 − 2q appear
with multiplicity 1 for m ≥ 1 and thus
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ζL(s) =
∞∑

m=1

λ−msζΦ,−2−2q(s) +
∞∑

m=1

λ−msζΦ,−2+2q(s).

= λ−s

1 − λ−s
(ζΦ,−2−2q(s) + ζΦ,−2+2q(s))

Now, we mimic the construction of the double Sierpiński gasket and glue this model
with a copy of itself at the two boundary points. Its spectrum is again the union of the
Dirichlet and Neumann spectra of the single case and we get the following.

Proposition 5.2 The spectral zeta function for the double pq-model is given by

ζLμ
(s) = ζΦ,0(s) + ζΦ,−4(s)

and thus it has no poles on the imaginary axis. Its regularized determinant is

detLμ = pq.

Before we give this proof, we must calculate the Dirichlet spectrum for the single
pq-model. By solving the Dirichlet eigenvalue equation on the first level, we see that
the eigenvalues are−1− p and−1+ p. These eigenvalues are initial and they show up
at every level, and we encounter no exceptional eigenvalues by taking their preiterates.
This means that the spectrum is of the following form.

−2 + 2p −2− 2p

−2 + 2p −2− 2p

−2 + 2p −2− 2p

Thus while for the Neumann spectrum we have that dimΔn = 3 dimΔn−1 − 2 for
the Dirichlet spectrum we have that dimΔn = 3 dimΔn−1 + 2. Then the proof of the
proposition goes as follows.

Proof As in the case of the double Siepriński gasket, it suffices to add the spectral zeta
functions of the Neumann and Dirichlet spectrum. Every eigenvalue has multiplicity
one and from the calculations above we have that the Dirichlet spectral zeta function
is

ζLμ
(s) = 1

λs − 1
(ζΦ,w3(s) + ζΦ,w4(s))

where w3, w4 = −2 ± 2p. Since Φ(λz) = R(Φ(z)) we can observe that

Φ(z) = −2 − 2q ⇔ Φ(λz) = 0 and Φ(z) �= 0 and Φ(z) �= −2 − 2p

and

Φ(z) = −2 + 2q ⇔ Φ(λz) = −4 and Φ(z) �= −4 and Φ(z) �= −2 + 2p.

123



Regularized Laplacian determinants of self-similar fractals 1577

Then, as in the case of the diamond fractal, we have that

ζΦ,−2−2q(s) =
∑

Φ(−μ)=−2−2q
μ>0

μ−s =
∑

Φ(−λμ)=0
Φ(−μ) �=0

Φ(−μ) �=−2−2p and μ>0

μ−s

=
∑

Φ(−λμ)=0
μ>0

μ−s −
∑

Φ(−μ)=0
μ>0

μ−s −
∑

Φ(−μ)=−2−2p
μ>0

μ−s

= (λs − 1)ζΦ,0(s) − ζΦ,−2−2p(s)

and similarly we have that

ζΦ,−2+2q(s)) = (λs − 1)ζΦ,−4(s) − ζΦ,−2+2p(s).

The result then is obtained by adding theDirichlet andNeumann spectral zeta functions

and the fact that ζ ′
Φ,0(0) = log 1

4pq
2 and ζ ′

Φ,−4(0) = log 1
4pq
2 + log 4. �

Remark 5.1 The location of the poles must necessarily coincide with the location of
the poles of the polynomial zeta functions and are thus at Re(s) = log 3

log λ
.

Then as in [11] we establish that the logarithm of the regularized determinant appears
as a constant in the logarithm of the determinant of the discrete graph Laplacians.

Corollary 5.1 For the double pq-model, we have that

log detΔn = |Vn|(log 2 + log (pq)

2
) + n log

(1 − q2)(1 − p2)

(pq)2
− log detL (5.1)

Proof First of all, it is easy to calculate that |Vn| = 2 · 3n . Then, we use (2.1) with
Pd = 1

4pq , Q0 = 1 and α = −4, αn = 1, β1, β2 = −2 ± 2q, β3, β4 = −2 ± 2p and
multnβi = 1 for n ≥ 1 and we get that

detΔn = 4(2 − 2q2)n(−4pq)
∑n−1

k=0(3
k−1)(2 − 2p2)n(−4pq)

∑n−1
k=0(3

k−1)

and thus

detΔn = 22·3n (1 − q2)n(1 − p2)n(pq)(3
n−2n−1)

which gives us that

log detΔn = 2 · 3n log 2 + n(log (1 − q2) + log (1 − p2)) + (3n − 2n − 1) log (pq).

Since log detL = log pq we obtain our result. �
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We can observe that for p = q = 1
2 this corresponds to the standard combinatorial

graph Laplacian on the cyclic graph C2·3n . Therefore (5.1) becomes

log detΔn = n log 9 + log 4

which is exactly as expected by observing that the cyclic graph has as many spanning
trees as number of vertices and using Kirchhoff’s Matrix-Tree theorem. This is also
equivalent to the formula

2·3n∏
k=1

(
2 − 2 cos

2kπ

2 · 3n
)

= 4 · 32n .
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