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Abstract The un-reduction procedure introduced previously in the context of classi-
cal mechanics is extended to covariant field theory. The new covariant un-reduction
procedure is applied to the problem of shape matching of images which depend on
more than one independent variable (for instance, time and an additional labelling
parameter). Other possibilities are also explored: nonlinear σ -models and the hyper-
bolic flows of curves.
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Sigma models

Mathematics Subject Classification 58E30 · 53C05 · 37J15

1 Introduction

Symmetry (i.e. invariance under a Lie group action) greatly facilitates the study of
variational problems, both for the construction of explicit solutions of the variational
equations and for their qualitative analysis. A rich variety of information arises from
Lie symmetries of variational problems, especially when they are formulated geomet-
rically. For example, a vast literature exists on the topic of reduction by symmetry. In
the theory of reduction by symmetry, the idea is to take advantage of the group of sym-
metry to reduce the dimension of the phase space for the variational problem, thereby
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making the problem easier to solve. When performing such a reduction, one must
provide a method for the reconstruction of the solutions of the original, un-reduced
variational problem from solutions of the reduced problem. In the context of field
theory, this step requires additional compatibility conditions, not needed in classical
mechanics.

Surprisingly, there are instances where this procedure is more useful backwards.
For example, a variational problem can appear to be rather complicated but may be
recognised as the reduction by a certain group of symmetries of a simpler variational
problem.Although the dimensionof the correspondingun-reduced configuration space
will be larger, the equations or the space itself may be simpler. Furthermore, the
existence of this group of symmetries will shed light on the nature of the original
equations. The idea of enlarging the configuration space of a variational problem can
be found in classic references such as [23]. However, geometric mechanics enhances
our understanding of reduction, by showing how the structure of the variational equa-
tions changes under regular reduction by symmetries. For example, in the theory of
Lagrange–Poincaré reduction (i.e. when the configuration space is a manifold Q on
which a Lie symmetry group G acts properly, see [8–10,17]), the reduced variational
equations split in two. The first equation is an Euler–Lagrange operator coupled with
a gyroscopic term (the curvature of a chosen connectionA in the bundle Q → Q/G).
The second equation is a conservation law, or Euler–Poincaré equation. In order to have
a free variational problem in the reduced space, or equivalently Euler–Lagrange equa-
tions, one needs to introduce forces into the un-reduced principle so that the equations
will decouple. The choice of this force can be made by splitting the Lagrangian into
horizontal and vertical parts with respect to the connectionA. This is the un-reduction
construction given in [6] for variational problems in mechanics and generalised in
this article to a covariant field theoretical setting. We will also explore the interesting
situations which arise when the parameter manifold is no longer simply connected.

The main motivation of [6] was in shape analysis: given two planar shapes
S1, S2 ∈ Sh(R2), understood as closed curves in R

2, they seek the optimal path
of shapes joining S1 to S2. This problem is also analysed in [12,29] and references
therein. The shape space Sh(R2) is a complicated infinite dimensional manifold but
in fact Sh(R2) = Q/G, where G = Diff+(S1), and Q is the space Emb+(S1,R2) of
positively embedded parametrisations of the circle in the plane. The space of embed-
dings turns out to be a simpler functional space than the shape space Sh(R2). By
means of conveniently chosen forces, one may use the un-reduction scheme to lift
the problem of curve matching to Emb+(S1,R2). In simpler terms, this means that
the parametrisations of the curves are now included in the configuration space. For
field theories, this situation becomes richer. In particular, we can study matching of
shapes depending on, say, two independent variables. A primary case is where the
shapes depend on time and another parameter, for example labelling a set of subjects
in a research study. This so-called spatio-temporal analysis of shapes is a recent and
active field of research. We will briefly explain this method here and refer the reader
to [14,19,31] for more details. In spatio-temporal shape analysis, there are two main
approaches: the time-specific and subject-specific approaches. Their difference is in
the variablewhich parametrises the evolution in shape comparisons; either for a certain
subject at a sequence of times, or for a sequence of subjects at a certain time. The two
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Un-reduction in field theory 227

Fig. 1 This diagram illustrates the spatio-temporal deformation of curves in Sh(S1,R2) that is considered
in this work. The combination of spatial and temporal deformations, where the precise meaning of space
and time has to be defined depending on the context, allows for a simultaneous deformation of a curve along
two parameters. The solution is then a function of (x, t) which minimises an given energy functional. In
the simplest case of quadratic energy functional, the solution is known as being a harmonic map

approaches to the spatio-temporal construction are illustrated in Fig. 1, which shows
that either of the two methods may be obtained from the other by exchanging the roles
of the x and t variables. Here, in the context of field theory, the evolution of both x
and t is studied together in a single equation. Note that the number of these variables
is not limited to be 2, although we will often discuss two-dimensional examples for
the sake of simplicity. A remarkable extension of the spatio-temporal matching is also
found in [14] where the authors build a subject-specific approach together with a time
reparametrisation, with interesting applications to the compared evolution of Homo
Sapiens Neanderthalensis andHomo Sapiens Sapiens, or bonobos and apes. However,
the deformations are not completely general in [14], because of certain statistical con-
straints. The configuration space of this approach is Diff(R2) together with the time
reparametrisation in Diff(R).

Another improvement compared to [6] is with the use of a Riemannian metric in the
space of embeddings that depends on derivatives of the curve (i.e. a Sobolev metric),
which is a more appropriate metric for the dynamical evolution of curves. We refer to
[3,4] formore details on this topic. In [1], the authors further investigated this approach
with a simple numerical test in the classical mechanical setting, but more work would
be needed in order to obtain a reliable numerical scheme.

Apart from themotivationwhich arises from curvematching,we point out two other
completely different areas of mathematical physics where covariant un-reduction is
already present. The first example arises in the study of σ -models, introduced in
[18], which consist of harmonic maps with values in homogeneous spaces G/H .
Here, we will show that the σ -models may also be written as an un-reduction prob-
lem in G. Interestingly, we may sometimes combine the un-reduction method with
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another Euler–Poincaré reduction and obtain a different set of equations written
on a vector space instead of a homogeneous space. These equations have already
appeared in the literature. However, the understanding of their geometric meaning
is enhanced, by using a concatenation of un-reduction and reduction. In a second
example, covariant un-reduction is applied to hyperbolic curve evolution, regarded
here as a simple geometric construction of other more sophisticated geometric flow
equations.

Plan and main contents of the paper Section 2 reviews the basic concepts of covariant
Lagrange–Poincaré reduction, before formulating the main result of the paper, which
is the un-reduction theorem 2, in Sect. 3. Section 4 provides examples of explicit
applications of the un-reduction theorem for curve matching in the plane in Sect. 4.1,
nonlinear σ -model in Sect. 4.2 and finally hyperbolic curve evolution in Sect. 4.3. Each
of these examples demonstrates the method of un-reduction and illustrates different
ways to take advantage of the geometry of the reduced space.

2 Covariant Lagrange–Poincaré reduction

The main result of the paper will be formulated as Theorem 2 in the next section. This
section first reviews the basic concepts of covariant Lagrange–Poincaré reduction. The
version of this reduction in mechanics takes place when a Lie group of symmetries G
acts properly on the configuration manifold Q of the variational problem under study
(for example see [10]). In the field theoretical setting, the group of symmetries acts
on a fibre bundle π : E → N by vertical diffeomorphisms, that is, actions such that
π(y · g) = π(y),∀y ∈ E, g ∈ G. We refer the reader to [8,9,17] for the exposition
of the theoretical framework of this procedure. For our purposes, in this article we
have adapted these results as follows. On one hand, we just consider trivial bundles
Q × N → N , so that the dynamical objects of interest are mappings from N to Q
and the problem is defined by a first-order Lagrangian defined in the first jet space
J 1(N , Q). This simplification is mainly done for convenience in the applications,
although the theoretical core of this work can be done in full generality. On the other
hand, we need to incorporate forces to our scheme, which will induce new terms in
the equations in a straightforward manner.

2.1 Background material

We will review here the background notions of differential geometry that we will
use throughout this work and refer the reader to [20,24] for more extensive texts on
differential geometry and field theory.

Let π : Q → Q/G = � be a G-principal bundle where the action Rg : Q → Q,
g ∈ G, is assumed to be on the right. Recall that a principal connection A is a g-
valued 1-form in Q such that the equivariance property R∗

gA = Adg−1 ◦A holds, and
A(ξQ) = ξ , for any ξ ∈ g, where ξQ is the infinitesimal generator of the right action
Rg , i.e. ξQ(q) := d/dε|ε=0Rexp(εξ)(q). This definition is equivalent to a choice of
G-invariant splitting of the tangent bundle T Q into horizontal and vertical parts
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Un-reduction in field theory 229

TqQ = HqQ ⊕ VqQ,

for q ∈ Q, where VqQ = {(ξQ)q : ξ ∈ g} and HqQ = kerA. We denote by
ph : T Q → HQ and pv : T Q → V Q the induced projections. The curvature ofA is
defined to be the g-valued two form B = dA + [A,A] and satisfies the equivariance
property (Rg)

∗B = Adg−1 ◦ B. One can also define a 2-form in �, but taking values
in the adjoint bundle g̃ = (Q × g)/G as

B̄(uρ,wρ) =
[
q,B

(
uhq , u

h
q

)]
G

, uρ,wρ ∈ Tρ�,

where uhq stands for the unique tangent vector (the horizontal lift of uq with respect to

A) in HqQ such that Tπ
(
uhq

)
= uρ . The definition does not depend on q ∈ π−1(ρ)

because the curvature is also equivariant.
Let N be an oriented manifold endowed with a volume form v and consider a

Lagrangian function L : J 1(N , Q) → R defined in the 1-jet space of mappings
s : N → Q. As the jet space J 1(N , Q) can be naturally identified with T ∗N ⊗ T Q,
we will also use this representation of this space in the following. We assume that L
is invariant with respect to the lifted action of G in J 1(N , Q), defined as

R(1)
g

(
j1x s

)
:= j1x (Rg ◦ s),

for g ∈ G and any (local) mapping s. We can thus drop L to the quotient to obtain a
reduced Lagrangian function

� : J 1(N , Q)/G 	 T ∗N ⊗ (T Q)/G −→ R.

If we fix a principal connectionA of the bundle Q → Q/G, we have a diffeomorphism

α : (T Q)/G → T� ⊕ g̃

α
([

vq
]
G

) 
→ (
Tπ

(
vq

)
,
[
q,A (

vq
)]

G

)
,

so that the reduced phase space decomposes as

(
J 1(N , Q)

)
/G = T ∗N ⊗ (T Q)/G

∼= T ∗N ⊗ (T� ⊕ g̃)

= J 1(N , �) ⊕ (T ∗N ⊗ g̃).

From this decomposition, the reduced Lagrangian can be written as

� : J 1(N , �) ⊕ (T ∗N ⊗ g̃) → R.

In the following sections, we will work with variational principles which will
include a force term, that is, a map F : J 1(N , Q) → T ∗Q. Now, recall that the
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connection A splits the cotangent bundle T ∗Q = V ∗Q ⊕ H∗Q which directly gives
the decomposition F = Fh + Fv , where Fh = ph ◦ F and Fv = pv ◦ F with pv

and ph denoting the projections of V ∗Q and H∗Q, respectively. Notice that we will
use the same notation as for the projection of the tangent bundle as no confusion can
occur. If in addition F is G-equivariant with respect to the action of G in both the
source and target spaces, we can drop Fh and Fv to J 1(N , Q)/G as

f h : J 1(N , �) ⊕ (T ∗N ⊗ g̃) → T ∗�, and

f v : J 1(N , �) ⊕ (T ∗N ⊗ g̃) → g̃∗.

Note that for f h we use H∗Q/G 	 T ∗�, and for f v we have the isomorphism
V Q/G 	 g̃ given by [(ξQ)q ]G 
→ [q, ξ ]G .

Finally, we recall the definition of the canonical momentum map for the natural lift
action of G on T ∗Q

J : T ∗Q → g∗

〈J(αq), ξ 〉g×g∗ = 〈αq , ξQ〉T Q×T Q∗

where αq ∈ T ∗Q, ξ ∈ g, and ξQ ∈ T Q. We can extend J trivially in the factor T N to
obtain

J : T N ⊗ T ∗Q → T N ⊗ g∗. (1)

Furthermore, if we identify T N 	 ∧n−1T ∗N , n = dim(N ), by means of a fixed
volume form v, the map J : T N ⊗T ∗Q → T N ⊗g∗ is the covariant momentum map
of field theories, see [20][Proposition 4.4].

2.2 Lagrange–Poincaré reduction

In the sequel, we will assume that N is compact or that the domain of variations of
the maps s : N → Q is compactly supported. We project the variational principle
for L defined on J 1(N , Q) to its quotient J 1(N , Q)/G to obtain � : J 1(N , �) ×
(T ∗N ⊗ g̃) → R. Critical solutions of this reduced variational principle are maps
σ : N → T ∗N ⊗ g̃ which project to maps ρ : N → � = Q/G as ρ = πg̃ ◦ σ

according to the following diagram

T ∗N ⊗ g̃
σ↗ ↓πg̃

N
ρ−→ �

(2)

Here, πg̃ : T ∗N ⊗ g̃ → � is the projection of the adjoint bundle forgetting the
T ∗N factor. The free variations of the initial problem provide a family of constrained
variations that define a new type of variational equations. They are called Lagrange–
Poincaré equations, see [8,17] for more details on these equation in this context of
field theory. The next theorem gives the Lagrange–Poincaré reduction with forces F
which corresponds the equations in the literature when F = 0.
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Un-reduction in field theory 231

Theorem 1 (Covariant Lagrange–Poincaré reduction with forces) Let π : Q →
Q/G = � be a principal G-bundle, A a principal connection and N a compact
manifold oriented by a volume form v. Given amap s : N → Q, let σ : N → T ∗N⊗g̃
be defined as

σ(x)(ω) = [s(x),A(T s · (ω))]G,

with ω ∈ Tx N , x ∈ N and let ρ : N → �, ρ(x) = [s(x)]G = πg̃ ◦ σ . By con-
sidering a G-invariant Lagrangian L : J 1(N , Q) → R and a G-equivariant force
F : J 1(N , Q) → T ∗Q the following are equivalent.

(1) s is a critical mapping of the Lagrange–d’Alembert constrained stationary prin-
ciple with free variations δs

δ

∫

N
L

(
s, j1s

)
v +

∫

N

〈
F

(
s, j1s

)
, δs

〉
v = 0. (3)

(2) The Euler–Lagrange form of L satisfies the relation

EL(Lv)
(
j2s

)
= F.

(3) σ : N → T ∗N⊗ g̃ is a critical mapping of the stationary principle

δ

∫

N
�
(
j1ρ, σ

)
v +

∫

N

〈
f h

(
j1ρ, σ

)
, δρ

〉
v +

∫

N

〈
f v

(
j1ρ, σ

)
, η

〉
v = 0,

for variations of the form δσ = ∇Aη −[σ, η]+ B̄(δρ, Tρ) ∈ g̃, where δρ ∈ Tρ�

is a free variation of ρ and η is a free section of g̃ → �.
(4) σ satisfies the Lagrange–Poincaré equations

ELρ(�v) = f h −
〈
δ�

δσ
, iTρB̄

〉
,

divA
δ�

δσ
+ ad∗

σ

δ�

δσ
= f v,

(4)

where ELρ(�v) : J 2(N , �) → T ∗� is the Euler–Lagrange form of �with respect
to the variable ρ only and divA stands for the covariant divergence operator
defined by the connection A.

Wewill not give the proof of this theorem here but only an important remark. Given
a solution of the Lagrange–Poincaré equations (4), the reconstruction of a solution
of the initial variational problem requires a compatibility condition. Given the map
σ : N → T ∗N ⊗ g̃ and the induced map ρ : N → �, we consider the pullback
principal bundle ρ∗Q → N and the pullback of the connection ρ∗A. Recall that the
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232 A. Arnaudon et al.

space of connections is an affine space modelled over the vector space of g̃-valued 1-
forms in the base manifold. We can thus consider the new connectionAσ = ρ∗A+σ .
Then, the compatibility condition is

Curv(Aσ ) = 0. (5)

Indeed, if this condition is satisfied and the manifold N is simply connected then
the solutions s : N → Q are the integral leaves or sections of that connection. See
[8,9,17] for more details.

3 The covariant un-reduction scheme

We are now almost ready to describe the un-reduction scheme for field theories. As
in the case of mechanics (see [6]), this construction requires the Lagrangian to be
decomposed into horizontal and vertical parts with respect to the connection A.

3.1 Vertical and horizontal Lagrangians

We first give an expanded expression of the Euler–Lagrange form EL(L) :
J 2(N , Q) → T ∗Q for an arbitrary Lagrangian L : J 1(N , Q) → R once a linear
connection ∇ in Q has been fixed. For that, we consider the horizontal lift v 
→ v̂

from T Q to T (T ∗N ⊗ T Q) with respect to ∇ (the lift is done in the T Q part only

and is trivial in the T ∗N factor). Then we define ∇L
ds : J 1(N , Q) → T ∗Q as

〈
∇L

ds

(
j1x s

)
, δs

〉

T Q×T ∗Q
:= dL

(
j1x s

)
· δ̂s,

for any δs ∈ TqQ, q = s(x). On the other hand, we define the vertical derivative
∂L
∂ j1s

: J 1(N , Q) → T N ⊗ T ∗Q as

〈
∂L

∂ j1s
( j1x s), ω

〉
:= d

dε

∣∣∣∣
ε=0

L( j1x s + εω),

for any ω ∈ T ∗
x N ⊗ TqQ, q = s(x). The Euler–Lagrange form is thus

EL(L)
(
j2s

)
= ∇L

ds

(
j1s

)
− div∇,v ∂L

∂ j1s

(
j1s

)
, (6)

where div∇,v stands for the divergence operator defined by the volume form v and the
affine connection ∇. This operator acts on T ∗Q-valued vector fields in N (note that
along the map j1s, ∂L/∂ j1s is precisely a section of T N ⊗ s∗T ∗Q → N ) and is
defined as the only operator such that
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Un-reduction in field theory 233

divv 〈X , X〉 =
〈
div∇,vX , X

〉
+ 〈X ,∇X

〉

for any vector field X ∈ T N ⊗ T ∗Q and any section vector field X in T Q.
We now assume that the Lagrangian L : J 1(N , Q) = T ∗N ⊗ T Q → R can be

decomposed as L = Lh + Lv where

Lh(ω ⊗ v) = Lh
(
ω ⊗ ph(v)

)
and Lv(ω ⊗ v) = Lv

(
ω ⊗ pv(v)

)
,

for any ω ⊗ v ∈ T ∗N ⊗ T Q, with respect to the connection A. Furthermore, as
T Q = HQ ⊕ V Q, we have

Lh : T ∗N ⊗ HQ → R and Lv : T ∗N ⊗ V Q → R.

Obviously, the G invariance of L and A extends to the G-invariance of Lv and Lh so
that they drop to the quotient as

�h : J 1(N , �) = T ∗N ⊗ T� → R and �v : T ∗N ⊗ g̃ → R,

and form the reduce Lagrangian �( j1ρ, σ ) = �h( j1ρ) + �v(ρ, σ ). The variational
derivatives of the complete reduced Lagrangian � then simplify as

δ�

δ j1ρ
= δ�h

δ j1ρ
and

δ�

δσ
= δ�v

δσ
.

We then consider that the linear connection ∇ in Q is invariant under the action of
G so that it projects to a linear connection ∇ in � = Q/G by the condition ∇XY =
π∗

(∇XhY h
)
. In addition, the connection A induces a connection in the associated

bundle g̃ → �. With respect to these connections, we can compute

∇�

dρ
= ∇�h

dρ
+ ∇�v

dρ
,

and the Lagrange–Poincaré equations (4) thus read

div∇,v
(

δ�h

δ j1ρ

)
− ∇�h

δρ
= f h + ∇�v

δρ
−

〈
δ�v

δσ
, iTρB̄

〉

divA
δ�v

δσ
+ ad∗

σ

δ�v

δσ
= f v.

(7)

The Lagrangian splitting is crucial in this method and allows the appearance of the
standard Euler–Lagrange equations for �h in the left-hand side of the first equation.
The second important ingredient is the force term f h which will allow us to exactly
obtain the Euler–Lagrange equations by cancelling the right-hand side of the same
equation.
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3.2 The un-reduction theorem

Using the previous splitting of the Lagrangian and the corresponding Lagrange–
Poincaré equations (7), we can state and prove the theorem of un-reduction in the
field theory.

Theorem 2 (Un-reduction theorem) Let N be a smooth oriented manifold endowed
with a volume form v and let π : Q → � be a G-principal bundle equipped with
a principal connection A. Let l : J 1(N , �) = T ∗N ⊗ T� → R be a first-order
Lagrangian. We consider a G-invariant Lagrangian L : J 1(N , Q) = T ∗N ⊗ T Q →
R such that L = Lh + Lv where Lh ◦ ph = Lh is uniquely determined by l and
Lv ◦ pv = Lv is arbitrary. Recall that ph and pv are the projectors of the splitting
T Q = HQ ⊕ V Q induced by the connection A. We also consider a G-equivariant
force F : J 1(N , Q) → T ∗Q such that Fv = pv ◦ F is arbitrary and Fh = ph ◦ F
is given by the condition

f h = −∇�v

δρ
+

〈
δ�v

δσ
, iTρB̄

〉
, (8)

for its projection f h : J 1(N , �)×(T ∗N⊗g̃) → T ∗�. Then, the variational equations
of the problem defined by L and F read

EL(
Lh)( j2s) = 0

A∗divv
(
J

(
δLv

δ j1s

))
= Fv

(
j1s

)
,

(9)

where A∗ : g∗ → V ∗Q is the dual of the connection. Then, the critical solutions
s : N → Q of (9) project to critical solutions ρ = [s]G of the Euler–Lagrange
equations EL(l)( j2ρ) = 0.

Proof We follow the notations of the preceding sections. The variational principle of
L and F is

0 = δ

∫

N
Lhv + δ

∫

N
Lvv +

∫

N
〈Fh, δs〉v +

∫

N
〈Fv, δs〉v

= δ

∫

N
Lhv +

∫

N

〈
δ�v

δσ
, δσ

〉
v +

∫

N

〈∇�v

δρ
, δρ

〉
v

+
∫

N

〈
f h, δρ

〉
v +

∫

N
〈Fv,A(δs)〉v

= δ

∫

N
Lh( j1s)v +

∫

N

〈
δ�v

δσ
, δσ

〉
v +

∫

N

〈
δ�v

δσ
, B̄(Tρ, δρ)

〉
v

+
∫

N
〈Fv,A(δs)〉v.
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Un-reduction in field theory 235

From the expression of δσ in Theorem 1 with η(x) = (s(x),A(δs))G , we have that

∫

N

〈
δ�v

δσ
, δσ + B̄(Tρ, δρ)

〉
v =

∫

N

〈
δ�v

δσ
,∇Aη − [σ, η]

〉
v.

For any f : N → g, recall that the covariant derivative is ∇A(s(x), f (x))G =
(s(x), d f (x)+[A( j1s), f ])G = (s(x), d f (x))G +[σ, (s(x), f (x))G ]. Now, for f =
A(δs), we have

∫

N

〈
δ�v

δσ
, δσ + B̄(Tρ, δρ)

〉
v =

∫

N

〈
δ�v

δσ
, (s, dA(δs))G

〉
v

=
∫

N

〈
J

(
δLv

δ j1s

)
, dA(δs)

〉
v = −

∫

N

〈
divv

(
J

(
δLv

δ j1s

))
,A(δs)

〉
v.

Using that Lh( j1s) = l( j1ρ), the variation of the action defined by Lh with respect to
vertical variations of Lh vanishes. The variational principle naturally splits into vertical
and horizontal part to yield Eq. (9). Finally, the solutions of the variational problem
defined by M project to solutions of the problem defined by l = �h by Theorem 1. ��
Remark 3 (Reduction to classicalmechanics) In the case of classicalmechanics where
N = R and v = dt we have divv = d/dt and we recover the un-reduction equations
of [6].

In the un-reduction theorem, it was simpler to use the reduced expression of the
horizontal force Fh for the condition (8) and the corresponding form for the force Fh

is

Fh = −∇Lv

ds
+

〈
J

(
∂Lv

∂ j1s

)
, iT sB

〉
. (10)

The variational principle on the un-reduced space of Eq. (3) is then defined using this
particular force such that the reduced Lagrange–Poincaré equations decouple.

Let us now comment on the un-reduction equation (9). The first equation in (9) is
the standard Euler–Lagrange equation for the horizontal Lagrangian Lh only. For the
second equation which is a conservation law there is an important comment to bemade
that is the position of A and divv cannot be exchanged in general as the authors did
in [6]. In fact, the divergence of A∗J

(
δLv/δ j1s

)
would require an additional (linear)

connection in Q. Moreover, as we mentioned in the definition (1) of the map J used
in this equation, we have that J

(
δLv/δ j1s

)
is a covariant momentum map, so that

divvJ
(
δLv/δ j1s

)
is the conservation law with respect to the group of symmetries G.

Being a conservation law, the right-hand side corresponds to forcing terms which in
this case are only the vertical forces Fv that may be used to externally control the
dynamic along the vertical space.

Remark 4 (Boundary conditions) For the sake of simplicity, we have restricted our-
selves to the family of compactly supported variations. This is the standard formulation
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in geometric field theories. However, one may also consider more general variations,
such as non-compactly supported variations or variations which do not vanish along
the boundary (if the manifold N has a boundary). In these more general cases, new
terms will appear in the formulas above, and these may be easily computed by using
the multisymplectic form formula, for example. See [28] for more details.

3.3 Reconstruction and surjectivity

Recall that the un-reduction theorem 2 says that solutions of the un-reduced problem
project to solutions of the Euler–Lagrange equations defined by the Lagrangian l. One
may ask if this projection is exhaustive, that is, if every solution of the variational
equations for the reduced Lagrangian l is a projection of a solution for the Lagrangian
L . The solution of this questionmay involve topological constraints concerning N (see
the next Sect. 3.4), but we give here an answer assuming that N is simply connected
or by just considering this question from a local point of view. From the Lagrange–
Poincaré reduction theorem 1, the variational equations defined by L are equivalent
to

EL(�h)( j2ρ) = 0 and divA
δ�v

δσ
+ ad∗

σ

δ�v

δσ
= f v,

that is, they contain the Euler–Lagrange equations for l = �h together with an addi-
tional equation which may restrict the solution of the first. This equation is written in
terms of the map σ : N → T ∗N ⊗ g̃ and ρ : N → �. Recall that σ determines ρ

as ρ = πg̃ ◦ σ (see diagram (2)) and that the first reduced equation only involves ρ

and its first jet j1ρ. Therefore, once we have a solution ρ and j1ρ, we may consider
both the second reduced equation and the compatibility condition which thus become
equations for map σ seen as sections of the bundle T ∗N ⊗ ρ∗g̃ → N . This means
that we “restrict” the vertical part of our construction to the fibres which sit on the
solution ρ. With the solution of these equations, we can perform reconstruction to get
a map s : N → Q such that ρ = [s]G . This discussion is summarised in the following
proposition.

Proposition 5 In the notation of Theorem 2, if the space–time domain N is simply
connected, then the un-reduction method is surjective. That is, each solution of the
Euler–Lagrange equations for the reduced Lagrangian l is the projection of a solution
of the un-reduced equations defined by L and F.

3.4 Topological constraints for un-reduction

The topology of the manifold N may create interesting situations in the reconstruction
and un-reduction frameworks. If N is not simply connected, the compatibility condi-
tion (5) does not ensure the existence of global integral sections and the surjectivity
of the projection s 
→ ρ of the solutions involves other global considerations.

An example of this situation is the following. Consider Q = S3 and G = S1 so
that Q → � = S2 is the Hopf fibration. Choose the mechanical connection A in this
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bundle, that is, the connection such that HqS3 ⊥ Vq S3 with respect to the standard
Riemannian metric in S3. For the sake of simplicity, we consider N = S1, that is,
a problem of mechanics with cyclic solutions where, in addition, the compatibility
condition (5) is satisfied automatically. We denote θ the coordinate of S1 and we
consider the G-invariant Lagrangian L : J 1(N , S3) → R,

L
(
j1θ s

) = 1

2
‖ṡ(θ)‖2 ,

where ṡ = ds/dθ ∈ Ts(θ)S3 and the decomposition L = Lh + Lv is induced by the
orthogonal splitting ṡ(θ) = ṡh(θ) + ṡv(θ) defined by the connection A. The adjoint
bundle g̃ → S2 is a trivial line bundle and the reduced phase space J 1(N , �) ×
(T ∗N ⊗ g̃) becomes T S2 × T ∗S1. We can also decompose the reduced Lagrangian
as � = �h + �v with

�h
(
j1ρ

) = 1

2
‖ρ̇‖2 and �v(σ ) = 1

2
ς2,

where ρ : S1 → � = S2, ρ̇ = dρ/dθ , and σ = ςdθ , ς being a map S1 → g̃ ∼= R.
The reduced equations can directly be computed to give

∇ρ̇ = 0 and ς̇ = f v.

First, the solution of the first equation is a closed geodesic in S2. Then, the curve s(θ)

of the un-reduced problemwill be in the restriction ρ∗S3 of the Hopf fibration along ρ.
This restriction is a torus and according to the reconstruction process seen in Sect. 2.2,
the curve s(θ)must be horizontal with respect to the connectionA+ςdθ . Under these
circumstances, the curve s(θ) need not be closed and in fact, the phase ϕ ∈ S1 such
that s(2π) − s(0) = ϕ is precisely the holonomy of the connection A + ςdθ along
the curve ρ. The holonomy of A alone is π (indeed, the connection A is not flat and
the holonomy is related with the Chern number of the Hopf bundle, see [24, Chapter
XII]). Hence, besides the conditions ς̇ = f v and ς(2π) = ς(0) for the closeness of
c(θ), ς(θ) must satisfy

∫ 2π

0
ς(θ)dθ = −π,

so that the holonomy of A vanishes. Only very specific functions f v can fulfil these
conditions. For example, f v(θ) = cos(θ) gives ς(θ) = sin(θ) − 1/2 as a possible
solution but other functions f v may not provide closed curves c(θ). Furthermore, it is
important to note that the constant value of the holonomy of the connection A along
geodesics ρ is rather unusual and other choices forAmay define a holonomy that will
depend on ρ. In that case, the choice of f v will depend on the global curve ρ and will
not be a local object anymore.

In other words, there are circumstances where one cannot recover all solutions of
the reduced problem from those of the un-reduced problem. It seems that the freedom
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in the choice of Lv and, especially, Fv may solve this issue but their specific expression
will depend on the solution ρ itself. We refer the reader to [27,30] for the study of
related approaches to this problem or [32] for a similar situation but in the context of
isoholonomic problems in quantum computations. The situation for manifolds N of
dimension greater than 1 is, of course, much more involved and will not be treated
here.

4 Applications

4.1 Planar curve matching

We begin the application section with curve matching, the main motivation for this
work and the original un-reduction scheme initiated in [6].

4.1.1 Geometric setting

Let Q = Emb+(S1,R2) be the manifold of positive oriented embeddings from S1 to
R
2. Elements in Q are maps c(θ) ∈ R

2 for θ ∈ S1 and elements in the tangent space
TcQ are pairs (c, v) with c ∈ Emb+(S1,R2) and u ∈ C∞(S1,R2) a parametrised
vector field along the curve c. Then the tangent bundle is trivial, read

T Q = Q × C∞(S1,R2),

and we can take a trivial linear connection ∇ in Q. We then consider an open domain
N ⊂ R×Rwith theEuclideanmetric, coordinates (t, x) and volume form v = dt∧dx .
Elements of the jet bundle J 1(N , Q) 	 T ∗N ⊗ T Q are written as

j1(x,t)c = ct (θ)(t, x)dt + cx (θ)(t, x)dx, (11)

that is, ct and cx are the derivatives of a map c : N → Q along t and x , respectively.
The symmetry of this problem is the reparametrisation of the curve, which corre-

sponds to the group G = Diff+(S1) of orientation preserving diffeomorphisms acting
of S1. Its Lie algebra g = X(S1) simply consists of vector fields on S1. The group G
acts on the right in Emb+(S1,R2) as reparametrisation of the curves c and the reduced
space is the space of shapes in R2, that is

� := Q

G
= Emb+(S1,R2)

Diff+(S1)
. (12)

The principal bundle Q → � is endowed with a canonical principal connectionA as
follows. Given u ∈ TcQ, we consider its tangent and normal decomposition

u(θ) = v(θ)t(θ) + h(θ)n(θ), (13)

where (t,n) is the orthonormal Frenet frame along c and v(θ), h(θ) are scalar functions
along the curve. We have that v(θ)t(θ) is a vector tangent to the orbits of G =
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Diff+(S1), i.e. v(θ)t(θ) ∈ VcQ. We can thus define the horizontal part of u to be
h(θ)n(θ) and we have a decomposition T Q = HQ ⊕ V Q. This is the natural choice
for the fibration Emb+ → Emb+/Diff+(S1), and the connection is not trivial (that is,
the curvature does not vanish).

The definition of a convenient Riemannian metric in Q = Emb+(S1,R2) that
should be invariant with respect to the action of G = Diff+(S1) is an interesting topic
which has attracted the attention of many recent works. See for example [3,4] and
references therein. The natural L2 metric

g(u1, u2) =
∫

S1
〈u1(θ), u2(θ)〉dl, (14)

where u1, u2 ∈ TcQ and dl = |cθ |dθ being the arc-length, is not very useful as it
may give a zero geodesic distance in both Q and Q/G, see [4] for more details. This
problem can be overcome in the shape space Q/G by the curvature weighted metric

g(u1, u2) =
∫

S1

(
1 + Aκ(θ)2

)〈u1(θ), u2(θ)〉dl, (15)

with A > 0 and κ the Frenet curvature of curve c. The drawback of is that this metric
again yields zero geodesic distances in Q along the fibres of the fibration Q → Q/G.
A metric with a well-defined Riemannian distance in both Q and Q/G is obtained by
adding higher-order derivatives of u1 and u2 in a Sobolev-type expression as

g(u1, u2) =
∫

S1

(
〈u1(θ), u2(θ)〉 + A2〈Dθu1(θ), Dθu2(θ)〉

)
dl, (16)

where Dθ = 1
|cθ |∂θ is the arc-length derivative, invariant under reparametrisations of

the curve. For simplicity here, we will encompass these three cases (as well as some
others, see [3]) in the metric

gP (u1, u2) =
∫

S1
〈u1(θ),Pu2(θ)dl〉 (17)

that depends on aG-invariant self-adjoint pseudo-differential operatorP . In particular,
this operator P for (15) is P = 1 + Aκ(θ)2 and for (16) it reads P = 1 − A2D2

θ .
Unfortunately, the mechanical connection defined by these metrics (that is, the

connection such that the horizontal and vertical distributions are orthogonal) need not
coincide with the natural connection given in formula (13). This problem has recently
been tackled in [5] where the authors exhibited the metrics that induce the natural
connection. In particular, they showed that the mechanical connection for the metrics
of the type

g(u1, u2) =
∫

S1
(h1(θ)Pch2(θ) + v1(θ)Pcv2(θ)) dl,

where Pc( f ) =
l∑

s=1

As(c)(D
s
θ f )

2, (18)
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for arbitrary smooth functions As is the natural connection. In addition, the metric
already presents a horizontal/vertical decomposition which fits perfectly in the un-
reduction scheme.

4.1.2 Reduction and un-reduction

Elements of the shape space of plane curves � = Emb+(S1,R2)/Diff+(S1) will be
denoted by ρ and the elements of the jet space J 1(N , �) = T ∗N ⊗ T� will be
expressed as

j1(t,x)ρ = ρt (t, x)dt + ρx (t, x)dx .

Furthermore, elements of T ∗N ⊗ g̃ are simply

σ(t, x) = σt (t, x)dt + σx (t, x)dx,

where σt (t, x) and σx (t, x) belong to the adjoint bundle g̃ → � and can be understood
as vector fields tangent to ρ ∈ �. We consider the Diff+(S1)-invariant Lagrangian
L : J 1(N , Q) 	 T ∗N ⊗ T Q → R with the metric (18) such that L = Lh + Lv with
respect to the connection A as

Lh( j1(x,t)c
) = 1

2

∫

S1
(htPht + hxPhx ) dl,

Lv
(
j1(x,t)c

) = 1

2

∫

S1
(vtPvt + vxPvx ) dl,

(19)

where
ct = vt t + htn and cx = vx t + hxn.

Remark 6 (The connection A) Although we did not give the explicit form of the
connection A here, as we did not need its explicit form for the derivation of the
un-reduced equations, it is important that this connection is not trivial. In particular,
the holonomy of the connection is non-trivial, even for the rigid motion of a circle.
Interestingly, the holonomy is maximal in this particular case.

We are now ready to compute the un-reduction equation for curve matching that
we write in the next proposition for N = R

2.

Proposition 7 The un-reduced equations (9) for the two-dimensional problem of pla-
nar curves defined by a kinetic Lagrangian with the metric (18) are

∂x (Pchx ) + ∂t (Pcht ) = Dθ (hxPcvx + htPcvt ) − κH + 1

2

(
hx

δPc

δc
hx + ht

δPc

δc
ht

)

∂x (Pcvx ) + ∂t (Pcvt ) = Fv,

(20)
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with the decomposition

cx = vx t + hxn, ct = vt t + htn,

for any choice of vertical force Fv and where

H := hxPchx + htPcht . (21)

The term δPc/δc stands for the variational derivative of Pc with respect to c ∈
Emb+(S1,R2), computed with variations of the form δc = ξn. That is,

δPc

δc
( f )(ξ) = d

dε

∣∣∣∣
ε=0

Pc+εξn( f ).

Proof The Euler–Lagrange equation contains two terms, the first is readily found to
be

div
δLh

δ j1c
= ∂t (Pcht ) + ∂x (Pchx ).

Before computing the second term of the Euler–Lagrange equation, we can simplify
the calculation by rewriting the Lagrangian as

Lh(c, j1c)|t = 1

2

∫

S1
〈(ct · n)n,Pc(ct · n)n〉dl

= 1

2

∫

S1

(
ct · J cθ

|cθ |
)
Pc

(
ct · J cθ

|cθ |
)

|cθ |dθ,

for the temporal part only, denoted as Lh |t . The spatial part Lh |x is of the same formand
is not displayed here. Since this Lagrangian is horizontal, we only consider variations
of c that are horizontal with respect to A. These are variations of the form δc = nξ

for ξ ∈ C∞(S1). With the identities Dθn = −κt, Jn = −t and J t = n, we compute

δLh |t
δc

· (nξ) =
∫

S1
(ct · J (nξ)θ )Pc (ct · n) dθ + 1

2

∫

S1
ht

δPc

δc
(ht )ξdl

=
∫

S1
ξθ (ct · Jn)Pc (ct · n) dθ +

∫

S1
ξ (ct · J Dθn)Pc (ct · n) dl

+ 1

2

∫

S1
ht

δPc

δc
(ht )ξdl

=
∫

S1
ξDθ [(ct · t)Pc (ct · n)] dl −

∫

S1
ξκ (ct · n)Pc (ct · n) dl

+ 1

2

∫

S1
ht

δPc

δc
(ht )ξdl.
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The derivative of the Lagrangian is thus

δLh |t
δc

= Dθ (htPvt ) − κhtPht + 1

2
ht

δPc

δc
ht .

From the symmetry t ⇔ x , we obtain the un-reduction equations (20). ��
For the exact form of the variational derivative of the operatorP , we refer to [7,26].

Even without the explicit forms of these variations, though, some interesting obser-
vations can be made on the structure of these equations. Upon comparing equations
(19)–(21), one may interpret the term κH in (20) as a penalty term for the creation
of deformations of large curvature and large energy density. The sign of this term
depends on the concavity or convexity of the curve, which in turn means that this term
tends to make the loop circular and opposes collapse of the curve to a point. Equation
(20) also shows that the dynamics in (x, t) is governed by the coupling between ht
and vt required for the shape deformation to be independent of the reparametrisation.

4.2 Horizontal Lagrangians and σ -models

The freedom in the choice of forces and Lagrangians in Theorem 2 allows us to
investigate the trivial choice Lv = 0 and Fv = 0. From (8), the horizontal part Fh of
the force automatically vanishes. This simple situation appears when the un-reduced
Lagrangian L is just the pullback of the Lagrangian �h = l : J 1� → R with respect
to the projection J 1(N , Q) → J 1(N , �), j1s 
→ j1[s]G = j1ρ. A solution of the
problem defined by L is any map s : N → Q such that ρ = [s]G is a solution for l.
This means that there is a gauge degeneracy in the sense that, given a solution s and
any map g : N → G, the map s̄ = s · g is also a solution.

Even though these trivial choices for F and Lv are not always convenient, there are
some instances where they appear naturally. This is the case of σ -models in homoge-
neous spaces (see for example [13,15,16,21] formore details in this topic). Let Q = G
be a Lie group and H be a closed subgroup such that the Lie algebra decomposes as
g = m ⊕ h for a certain vector space m such that [h,m] ⊂ m. This corresponds to a
reductive decomposition m ⊕ h = g = TeG that we can right translate to every TgG,
thus obtaining a connectionA for the principal bundleG → M over the homogeneous
space � = M = G/H . If we consider the harmonic Lagrangian, or σ -model

l : J 1(N , M) → R

j1ρ 
→ 1

2
‖dρ‖2 ,

where the norm is taken with respect to a pseudo-Riemannian metric in N and a
Riemannian metric in M . The lift L of the reduced Lagrangian l to J 1(N ,G) is thus

L : J 1(N ,G) → R

j1g 
→ 1

2

∥∥∥ph(dg)
∥∥∥
2
,
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where ph : TG → HG is the horizontal projection defined by the connection A,
the norm is taken with respect to the metric in N and the lift of the metric in M to
horizontal vectors in M . The un-reduction theorem 2 can apply and solutions of the
force-free problem defined by L project to the desired harmonic maps in M .

In the majority of the homogeneous spaces where relevant σ -models are defined,
the groupG is endowedwith a bi-invariant metric. In this case, the reductive decompo-
sition is assumed to bem = h⊥ and we have a metric in M by imposing the projection
π : G → M to be an isometric submersion, that is, the metric in TxM is the same
as the metric in HgG for any g with π(g) = x . The group G acts on the left on the
coset space M by isometries. Hence, the Lagrangians l and L are both G invariant.
This group of symmetries is too big for M to do reduction (in fact the orbit space is a
single point), but we can perform covariant Euler–Poincaré reduction for L . We then
get a new reduced Lagrangian

l̄ : J 1(N ,G)/G = T ∗N ⊗ g → R

ς 
→ 1

2
‖ςm‖2

where ς = ςh + ςm is the splitting defined by the reductive decomposition. It is easy
to see that the Euler–Poincaré equation is

divvςm + [ςh, ςm] = 0,

which together with the suitable compatibility condition can be used to get solutions
of L that can then be projected to �. This approach can for example be found in
[13,16,22]. The advantage of this un-reduction and reduction procedure is in the fact
that g is a vector space, which is a simpler space than either of the manifoldsG and M .

The situation can even be considered in a more general framework. Let L be a
first-order Lagrangian on a Lie group G which is right invariant under the action of
a subgroup H ⊂ G and left invariant under the group G itself. Suppose that we are
interested in the induced variational problem in the homogeneous space G/H . The
un-reduction and reduction procedure will first give a variational problem in G and
then give an equation in the Lie algebra g which, in general, is simpler. See [33] for a
description of a similar situation in mechanics, i.e. N = R.

4.3 Hyperbolic curvature flow

The hyperbolic curvature flow of plane curves (see for example [25,34]) is the varia-
tional equation defined by the Lagrangian L : TEmb(S1,R2) → R

L(c, ct ) =
∫

S1

(
1

2
‖ct‖2 − 1

)
dl. (22)

Note that this is not a geodesic variational principle of the L2 metric which would
provide null geodesic distances in both the curve and shape spaces, but a Lagrangian
involving a kinetic and a potential term. Moreover, the Lagrangian L can be easily
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split into a horizontal and vertical part with respect to the connectionA(ct )= (ct · t)t
as

Lh =
∫

S1

(
1

2
h2 − 1

)
dl and Lv =

∫

S1

1

2
v2dl,

where ct = hn + vt. The Lagrangian L as well as Lh and Lv are Diff(S1)-invariant
as their definition is geometric and does not depend on the parametrisation of c.

One of the main features and applications of the hyperbolic flow (as well as of other
geometric flows of curves) is the study of the corresponding evolution of the shapes
of curves. If we suppose that we just want to study this evolution in the shape space
Emb(S1,R2)/Diff+(S1), the natural Lagrangian would be l = �h , the projection of
Lh to this quotient space. In this context, the un-reduction technique applies and we
have the last result of this paper.

Proposition 8 The un-reduced equations for the hyperbolic curvature flow with
Lagrangian (22) read

∂t h = Dθ (vh) − κ

(
1

2
h2 − 1

)
∂tv = Fv and ct = hn + vt.

In particular, if we choose Fv = 0 and a vanishing initial tangent velocity v(0) = 0,
then v(t) = 0 for all times and the velocity of h is proportional to the curvature κ .

The equations of this proposition for Fv = 0 are the hyperbolic mean flow equa-
tions that can for example be found in [25]. The usual approach in the literature uses
Emb(S1,R2) and then restricts oneself to the normal part of the flow. The approach
here is based on the shapes in Emb(S1R2)/Diff(S1) so that the trivial choice of Fv = 0
directly gives the geometric equations.

5 Conclusion and open problems

Apart from having set up a precise mathematical framework for the concept of un-
reduction in classical field theory, extending the work of [6], the un-reduction applied
to curve matching contains interesting open problems and possible improvements that
we will briefly discuss below.

Spatio-temporal matching The first application of our field theoretical approach for
curve matching would be for matching surfaces. Indeed, we can considering a given
set of slices along a cylindrical surface (a typical example would be a bone) where x
is understood as the parameter along the main axis of the surface. The first step would
be to generate the initial and final conditions by using the un-reduction scheme for
the initial value problem in order to interpolate between the curves each slice. This
step is made with the classical un-reduction, and the second step uses the covariant
un-reduction with a shooting method in time to find the solution of the full problem,
that is, a critical point of the action functional

∫
L(c, ct , cx )dtdx . In our simple case

with a quadratic Lagrangian, this solution will be a harmonic map, or a minimal
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surface, and would then require mathematics beyond the present discussion. This
model could compute the distance between two surfaces, taking into account the fact
that the interpolation between the slices in space should be imposed simultaneously
with the matching in time. The resulting distance will be different than a naive model,
which would compute the matching in time, slice by slice. For an illustration of
matching slice by slice,we refer to the last example in [11]where a surface representing
a nasal cavity is reconstructed out of a set of slices. The step done in this work
corresponds to the generation of initial and final surfaces only, whereas the covariant
un-reduction schemewould compute the distance between these two surfaces by taking
into account the temporal deformation of the entire nasal cavity.

Another application would be for the spatio-temporal analysis, recently reviewed
in [14], but from yet another viewpoint. Indeed, the matching in space done in [14]
does not depend on a space parameter, but is instantaneous, namely given by a single
map between the two curves. In [14] they also included a “time warp” which accounts
for the change of pace of the evolution of the two models to be compared. In our case,
the spatial variable comes into play on the same footing as time and may thus bring
more flexibility into the comparison. Again, the theory of harmonic maps could help
in understanding the properties of the solutions and it would even be possible that the
concept of time warp of [14] could be recovered in this context.

Choice of the vertical force The freedom in the choice of the vertical force in the
un-reduction equations provides additional flexibility for further studies when dealing
with particular examples. Different types of forces could be considered such as a force
which would optimally redistribute the parametrisation along the curve so that the
number of points needed for the discretisation would be optimal. Another force could
be used to match the paramerisation of the target curve in order to avoid the use of the
computationally more expensive method of currents.

Implementation In principle, the un-reduction equations in (20) can be used to solve
a matching problem with a shooting method. However, the treatment of the Sobolev
operatorP in these equations and especially its inversion raises an technical difficulty.
Indeed, the operator P is constructed using the non-standard arc-length derivative
Dθ and the use of a standard Fourier transform would be problematic as the mesh
along the curve is not uniform in general. At least two alternative approaches could
be useful here. Either one may assume small non-uniformities of the parametrisation,
so that the usual Fourier transform would be a good approximation, as done in [1], or
one could use a non-uniform discrete Fourier transform. Another possible approach
would be to solve the matching problem directly, by minimising the action functional
S = ∫

Ldx + ∫
Fdx on the space of parametrised curves, as recently implemented

in [2] for example. In the last approach, however, one needs to explicitly compute the
horizontal force (10) used in the un-reduction scheme.
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