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This paper employs a system dynamics-based framework to exam- 
ine the limitations of experiential learning as a guide for decision- 
making in organizations. This framework departs from the more tradi- 
tional approach to modelling experiential learning processes in organi- 
zations by emphasizing the systematic interaction between decision- 
making agents and their environments, rather than the effects of varying 
degrees of noise on perjormance. We present the results of a series of 
computer simulations that examined the consequences of adaptive 
learning in organizations by concentrating explicitly on the link 
between individual decisions and the system-level consequences gener- 
ated by the interaction of individual choices. The results show that expe- 
rience is a poor basis for learning primarily because the understanding 
of structural relations between individual actions and their aggregate 
consequences is confounded by nonlinear dynamics, time delays, and 
misperception of feedback. 

Behavioral theories of the firm model organizations as target-oriented, routine- 
based systems that adapt incrementally to past experience (Cyert & March, 1963; 
March & Simon, 1958). In the tradition of behavioral research, learning is viewed 
as a continuous process of adjustment to changes in contingencies of reinforce- 
ment (Rachlin, 1991). As experience about individual contingencies accumulates, 
routines are developed that allow faster and faster response to recurrent stimuli, 
and the learning strategies encoded in these routines become the foundation for 
future rule-governed behavior. It is in this sense that routines are the basis for both 
organizational reliability and performance, and organizations are likely to behave 
in the future according to routines used in the past (Nelson & Winter, 1982; 
Hannan & Freeman, 1989). 
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In the behavioral decision theory literature, inference errors and judgment 
biases have traditionally been associated with uncertainty due to the probabilistic 
nature of the tasks (Kahneman, Slavic & Tversky, 1982). Following this experi- 
mental tradition, organizational decision theorists have typically modelled ambigu- 
ity as the aggregate result of random factors (noise) interfering with accurate 
assessment of an underlying “true” performance, or state of the environment (signal) 
(Lant & Mezias, 1990). The effectiveness of organizational learning, search 
routines, and the level of performance are then shown to vary as a function of the 
signal to noise ratio (Lant & Mezias, 1990, 1992). Specifically, a central focus of 
this work has been on outlining how conditions of ambiguity in the relationships 
among structure, action, and performance will affect the behavior of organizations 
modeled as experimental learning systems. Hence, behavioral models of incremen- 
tal organizational learning are motivated on the ground that “if the world and pref- 
erences are stable, and experience prolonged enough, behavior will approach the 
behavior that would be chosen rationally on the basis of perfect knowledge.” (March, 
1989, p. 273). 

In this paper we show that this coincidence of learning and planning, i.e., of 
heuristic problem solving and anticipatory action, will not necessarily be realized 
even in the absence of any random disturbance confounding the agents’ percep- 
tion of the environment. Indeed, the value of experiential learning, we argue, is 
problematic even in environments that are completely deterministic and almost 
completely stable. We claim this to be the case because organizational environ- 
ments do not exist independently from the agents, but rather emerge from the 
network of interactions among them and from their perception of feedback. 

To illustrate this point, we report the results of a series of computer simula- 
tions of processes of adaptive learning within a system dynamics framework, a 
modelling approach that is particularly helpful in examining how interactions 
between decision-making agents and their environments occur over time (More- 
croft & Sterman, 1994). Our findings suggest that even in relatively simple 
nonstochastic environments, the interaction of multiple information feedbacks 
produces nonlinearities that result in complex-and, to the limit-chaotic, 
dynamic behavior. These results illustrate how the same decision-making 
processes that yield adaptive learning--behavioral re-enforcement based on past 
success-can also produce fundamental and irreversible failure. 

We begin by discussing how problems associated with the basic components 
of organizational learning (limited memory, form of the search process, speed of 
learning, and the structure of information) affect the success and reliability of 
incremental trial and error learning. After briefly describing the methodology 
adopted in our study, we next report the results of a series of computer simulations 
based on a well known production-distribution management game. The final 
section derives the implications of the simulation results in the context of current 
theories of organizational learning. 

Limitations of Experiential Learning in Organizations 

According to the adaptive learning perspective of organizations, organiza- 
tional choices stem from decision rules that adjust cumulatively on the basis of the 
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successes or failures associated with past trials and errors (Glynn, Lant & 
Milliken, 1994). Organizational change is seen as the result of a basic learning 
process resulting in the updating of routines based on the interpretation of experi- 
ence (Lant & Mezias, 1992). Routines and beliefs are updated in response to expe- 
rience through trial and error experimentation and incremental search. The 
likelihood that a given routine will be used is increased when it is associated with 
past success in meeting a target, and decreased when it is associated with failure 
(Cyert & March, 1963). Organizations gradually adopt routines that lead to favor- 
able outcomes. 

Adaptive models of organizational learning are typically based on the notion 
of bounded rationality, according to which individual agents have a limited ability 
to process information in uncertain and rapidly changing environments. As a 
result, “Most human decision-making, whether individual or organizational, is 
concerned with the discovery and selection of satisfactory alternatives; only in 
exceptional cases is it concerned with the discovery and selection of optimal alter- 
natives” (March & Simon, 1958, pp. 140-141). 

This search for satisfying solutions is local (i.e., new solutions emerge as 
marginal modification of pre-existing routines); sequential (i.e., alternatives are 
considered one at a time); and driven by experience, i.e., learning results in an updat- 
ing of current routines on the basis of interpretation (or recollection) of past expe- 
rience (Wall, 1993). Levinthal and March (1981) observed over a decade ago that 
search strategies may be problematic, i.e., they occur when performance is below 
target and emphasize relatively immediate refinements or they can be innovative, 
i.e., they occur when performance exceeds target and emphasize search activities 
that cannot be justified in terms of their expected return for the organization. This 
explains why the internal dynamics of organizational processes may sometimes 
produce outcomes of search processes that are not expected. In extending this line 
of reasoning to the subject of corporate renewal, Mezias and Glynn (1993) docu- 
mented how organizational processes interact with the effects of environmental 
ambiguity to create the paradoxes of institution and revolution. In a more recent 
application of this idea to the management of technology, Mezias and Glynn (1995) 
found linkages between the degree of organizational inertia and subsequent levels 
of innovation and refinement that result from organizational processes. 

Components of Adaptive Learning 

The effectiveness of the process of experiential learning depends on the 
assumptions about: (1) memory, or the extent to which organizations are able to 
encode inference from history into routines that guide future behavior, (2)form of 
the search process, or how new information is obtained and in which direction the 
organization moves to obtain it, and (3) speed of learning, or the speed at which 
the organization can adjust its current state to the desired state. An additional 
element that is needed to understand the context of adaptive learning as an effec- 
tive guide to strategic decision making is the structure of information or, more 
specifically, the terms on which information becomes available to organizational 
decision makers, i.e., the notion of feedback. 
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Memory. An organization with perfect memory would always be able to 
deduce from its current state everything that it once knew (Binmore, 1992). This 
game-theoretic assumption does not apply without quali~cations to org~izational 
learning since organizations and institutions, in general, are known to unlearn and 
“forget” previous practices (Hedberg, 1981). For example, organizational unlearn- 
ing may be the result of continuous process related to membership turnover 
(Cohen, March & Olsen, 1972), or discrete events related to competence-destroy- 
ing innovations that make previous organizational knowledge obsolete (Tushm~ 
& Anderson, 1986). 

Determining how exactly limits on organizational memory affect organiza- 
tional action and how institutions selectively retain information and direct atten- 
tion is an important agenda for empirical research (Argote, Beckman & Epple, 
1990; Carley, 1992; Walsh & Ungson, 1991). For the purpose of the current 
paper, it is sufficient to note that organizational decision makers cannot be 
assumed to be boundedly rational while, at the same time, having perfect recall. 
Since organizational learning is driven by a recursive relation between perfor- 
mance and goals (Levinthal & March, 1981; Lant, 1992), it is important to estab- 
lish exactly what fraction of the total information derived from previous 
experience agents actually take into account in their decision-making activity. 

Form of ~e~rc~ Process. The vial-and-e~or search for satisfying courses of 
action is usually modelled as a linear learning process similar to a hill-climbing 
search algorithm (Lounaama & March, 1987). When the decision maker is close 
to her goal (i.e., the distance between desired state and actual state is small) then a 
small step is taken. Conversely, if the perceived difference from the goal is large, 
the search will proceed in bigger steps in a direction indicated (or, in extreme 
cases, dictated) by past experience. This kind of search implies that-if after 
taking a given step in a given direction the goal appears to be farther away than 
before (i.e., the agent is worse off)--it is always possible to go back and restart 
the search in a different direction. 

There are good theoretical, as well as practical, reasons to keep the search 
process simple and intuitive. Search is needed because decision makers cannot 
possibly know the optimal response and have to experiment to find one that is 
good enough given their current level of aspiration. Linear relations are used as 
realistic information processing mechanisms to capture causal connections 
between the organization and its environment. 

Speed. A third issue related to learning by doing has to do with the speed of 
learning, i.e., the speed at which agents can modify organizational routines as the 
environment changes. Boundedly rational organizations cannot move from one 
equilibrium to the next as the environment changes without bearing some adjust- 
ment costs and without systematic implications for their life chances (Hannan & 
Freeman, 1989). In models of adaptive rationality, the speed of learning deter- 
mines whether a stable (or sustainable) solution is obtained. If an organization 
closes the gap between its desired and actual state “too fast,” then search may be 
prematurely terminated and the final state may be far from satisfactory or unsus- 
tainable (Levinthal & March, 1981; March, 1991). Similarly, if adaptation is slow, 
search is prolonged unnecessarily and the organization will have to bear the costs 
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of operating in a subsatisfactory situation for long periods of time. In competitive 
environments, both outcomes can result in an increased likelihood of organiza- 
tional failure. The problem seems to be that decision makers often have no way of 
distinguishing ex ante between reacting rapidly to changes and overreacting to 
transient disturbances. As shown by Lounaama and March (1987, p. 122) in their 
computer simulations of the internal dynamics of learning organizations, “false 
lessons are learned as rapidly as true lessons.” 

Feedback. Feedback can be defined as the “process by which an environment 
returns to individuals a portion of the information in their response outcome 
necessary to compare their present strategy with a representation of an ideal strat- 
egy” (Balzer, Doherty & O’Connor, 1989, p. 412). The notion of feedback illus- 
trates how the structure of information constrains learning from experience. By 
structure of information, we mean: (1) the temporal patterns of availability of 
information related to the delay interval between a given action and its observable 
outcome, and (2) the sources of information related to how, and from whom, 
information is obtained. 

Many organizational decision-making situations are characterized by 
substantial time delays, i.e., response to action is not immediate. As the delay 
period increases, learning becomes more ambiguous due to the interferences of 
the simultaneous response (and learning) of others. Individuals in organizations 
cannot experience the complex system of organizational-environment relations 
directly but only through local information. In this situation, ambiguity is 
common since “the channels for diffusing observations and interpretations often 
obscure the events” (March & Olsen, 1976, p. 352). Thus, experience may not be 
a good teacher not only because of inaccuracy in the perception of performance 
feedback, but because the relation between actions of individuals and outcomes is 
confounded by the simultaneous learning and actions of other actors. 

Using a computer simulation to explore the dynamics of mutual learning 
among different organizational members, Lounaama and March (1987) demon- 
strate that even when performance outcomes are clear, the simultaneous learning 
of group members and the coordinator can lead to mistakes that become larger 
over time. They suggest that the effectiveness of experiential learning may be 
significantly improved by using such heuristics as slowing the rate of adaptation, 
reducing the simultaneity of change, and scaling the size of change to be neither 
too small nor too big. 

Exogenous Noise Versus Structural Uncertainty 

To examine the limitations of experiential learning in organizations, the 
dominant approach to modelling learning processes has been to simulate the 
effects of varying degrees of noise on performance (see Lant, 1994, for a review). 
Thus, the “noise” interfering with accurate assessment of causal links between 
outcome and action is determined by exogenous sources. 

In contrast, a system dynamics-based perspective of adaptive learning in 
organizations emphasizes the structured and time-dependent interaction between 
decision-making agents and their environments. Therefore, in a system dynamics- 
based simulation of organizational decision-making processes, “environments” do 
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not exist independently from the decision-making agents’ understanding of their 
structure. Accordingly, the “uncertainty” interfering with accurate assessment of 
causal links between structure and action emerges as the systematic result of the 
misperception of feedback. 

Rather than examining how search routines take decision makers from infor- 
mation to specific actions through the update of their beliefs, our model of adaptive 
organizational learning emphasizes the emergent structure of the decision-making 
landscape shaped by a stream of individual decisions. Therefore, we argue that 
search strategies that are typically in the form of linear hill-climbing algorithms are 
of no avail to decision makers in environments characterized by nonlinearities and 
rich feedback structures (Domer, 1980), which is the case in many organizational 
decision-making situations. To explore whether the limitations of experiential 
learning in organizations may be even more severe than suggested by previous 
simulations (Lounaama & March, 1987; Mezias & Lant, 1994), we conducted a 
series of computer simulations of a production-distribution decision-making 
process. The next few sections describe the methodology and discuss our findings. 

Methodology 

Computer Simulation. 

Since Cyert and March (1963) introduced the notion of organizational learn- 
ing, computer simulation has been frequently used as a tool for developing and 
testing theories about how organizations and individuals learn or fail to learn 
(Lant, 1994; Lant & Mezias, 1990, 1992; Levinthal & March, 198 1; Lounaama & 
March, 1987). In this modelling tradition, the central result is that when either the 
causal structure of the organizational environment or the link between action and 
performance is confounded by random components, learning from experience is 
not guaranteed to produce desirable results (Lant, 1994). 

The computer simulations we conducted to examine the consequences of 
adaptive learning in organizations concentrate explicitly on the link between indi- 
vidual decisions and the system-level consequences generated by the interaction 
among individual choices. Using a system dynamics framework to model time- 
dependent behavior (Morecroft, 1988), we explore the performance outcomes of 
disequilibrium, complexity, and interdependence, which we claim to be promi- 
nent features in real-life economic and management systems. 

The Beer Game 

The series of computer simulations conducted were based on the Beer 
Game, a well-known experiential simulation that has been used in management 
education and development for more than 30 years (Forrester, 1961; Jarmain, 
1963; Sterman, 1989; Senge, 1990). In this experiential simulation, participants 
have to minimize cost by managing inventory levels in a production-distribution 
chain. Among the thousands of people from undergraduates to top managers who 
have played the game, most have discovered that what at the outset looks like a 
simple task is almost impossible to accomplish. 
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The Beer Game consists of 4 sectors: retailing, wholesaling, distributing, and 
production. There is an external customer whose demand is determined in 
advance, although the players do not know the demand pattern. Each sector has an 
initial small buffer inventory of 12 cases. All the retailer has to do is fill the orders 
received from the customer, and then decide how much to order from the whole- 
saler. The wholesaler has to fill the orders received from the retailer, and then 
decide how much to order from the distributor. The distributor similarly ships 
beers to the wholesaler and places orders at the factory. The factory delivers to the 
distributor, and then decides how much to produce. The production time for beer 
is two weeks. 

The orders from the customer are represented as a stack of cards. Each week 
the retailer takes the top card that represents the customer’s demand for that week. 
Customer demand is simple, a step increase in week 5 from 4 cases to 8 cases of 
beer and then kept constant at 8 cases for the rest of the game. As in real life, not 
everything can happen at the same time, so there are built-in mail and shipping 
delays: it takes two weeks to mail an order and two weeks to ship the requested 
amount of beer from one sector to the next. This delay structure exists between all 
sectors. Finally, it is not possible to cancel orders. 

If a sector is unable to deliver the requested amount of beer to the sector 
downstream the remainder of the order will go into the backlog and will be deliv- 
ered when the sector receives beer from its supplier, which might take one or 
more weeks. It is assumed that it is more costly to end up in a stock-out situation 
than in a situation with surplus of inventory. Inventory-carrying cost is $0.5 per 
unit of beer per week. Stock-out associated with the possibility of losing custom- 
ers provides an incentive to hold some inventory. In the game, the stock-out costs 
are $1 .O per units of beer per week. 

When the game is used in the role-playing mode, each sector is controlled by 
one or two people, who have to make the decision described above. In principle, 
the players of different sectors are not allowed to communicate with each other. 
This means that the retailer is the only one who knows the customer’s demand. 
The wholesaler can try to estimate it from the orders he receives from the retailer, 
the distributor from the orders received from the wholesaler, and so forth. Effec- 
tive inventory is defined as (inventory-backlog), i.e., if the effective inventory is 
negative there is a backlog. 

Figure 1 shows the structure of the game in terms of the flow of orders and 
cases of beer. The system described is a typical cascaded production-distribution 
system, where each sector has its own small buffer stock, and it is not specific to 
beer production in any obvious way. Similar to other dynamic systems, a produc- 
tion-distribution system consists of two generic parts: the notions of a state (the 
essential information about a system) and a dynamic (a rule that describes how the 
state evolves with time). We next discuss the parameters of these basic compo- 
nents as they pertain to the development of a simulation model. 

A Simulation Model of the Beer Game. To model the decision making of the 
participants in the Beer Game, Sterman (1989) used a heuristic known as anchor- 
ing and adjustment. The fundamental idea behind this heuristic is that the decision 
maker chooses a variable that is known to him (i.e., last week’s order) and uses it 
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Orders 
k 
a- - - 
,o Retailer Wholesaler Distributor Factory 
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- - - 

_. 
U 

Cases of Beer 
Figure 1. The Beer Game Decision Making Structure: 

A Cascaded Production-Distribution System 

as an indicator (or anchor), and then adjusts the order accordingly (i.e., the adjust- 
ment for inventory and supply line) (Tversky & Kahnenman, 1974; Hogarth, 
1980). Sterman (1989) confirmed the validity of this heuristic by conducting 
econometric tests of experimental evidence drawn from 48 trials (192 subjects 
consisting of undergraduate, MBA, Ph.D. students, and senior executives) 
collected over a period of four years. Appendix 1 presents the equations behind 
the decision-making model, which is based on the following three criteria: 

1. As demand increases, orders increase as well and vice versa. There is a 
lag, however, in this response due to the time taken by decision makers 
to form a view of the extent and permanence of demand changes. 

2. Each sector has a target inventory. It is possible to adjust the actual 
inventory to this target inventory (if there is less than desired inventory, 
ordering should be increased and vice versa). 

3. Each sector keeps track of its supply line, i.e., what is ordered but not yet 
received. If the supply line grows larger than the desired supply line 
(given as the supply line target: desired supply line multiplied by 
expected orders), then orders are reduced to compensate, and vice versa. 

Using the decision making heuristic validated by Sterman (1989), Mosekilde, 
Larsen, and Sterman (1991) developed a computer simulation model of the Beer 
Game that captures the physical flow as well as the decision-making process in the 
game, and is capable of producing a variety of different behaviors. As we will 
discuss below, we used this model to examine the boundaries between regions of 
stable and unstable behavior that can be found on a policy-making space. 

Figures 2a and 2b show results from a short simulation of the model. Figure 2a 
shows the orders placed by the four sectors and Figure 2b the effective inventory (i.e. 
inventory-backlog). Shortly after the step increase in customer demand in week 5, 
the retailer realizes that his inventory is falling, and consequently starts to increase 
his orders to the wholesaler. As the demand from the retailer increases, the whole- 
saler’s inventory will rapidly disappear. This means that the retailer cannot get the 
increasing amount of units already ordered. The retailer perceives that nothing is 
happening, and therefore places new larger orders. Nothing, however, gets delivered. 
Watching inventory fall, the retailer might even increase orders more, and may start 
to panic as backlog grows while still only a fraction of what was ordered is being 
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- Retailer 
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Figure 2a 

Effective Inventory (cases) 
“_ 

i 

- Retailer 
------ Wholesaler 

--- Distributor 
- - Factory /--\ 

II-\ 

Figure 2b 

Figure 2. Patterns of Policy Making Observed in the Beer Game Simulation 

received. The wholesaler has the same experience, although it is likely to be slightly 
worse because of the retailer’s panic, which causes more ordering than is necessary. 
The distributor is even worse off because of having to deal with the panic of both 
the retailer and wholesaler. As the factory finally discovers the explosive growing 
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demand and production is increased to cope, more than 10 weeks have already past. 
As the factory increases production all the sectors will now discover that they have 
been ordering too much and will stop ordering. This leaves all sectors with large 
inventories. Over time these inventories are finally eliminated, and a new cycle of 
backlog and excess inventory might start. 

Baisc Types of Behavior in the Model 

The model described above is capable of producing a number of different types 
of behavior including stable, periodic, and complex (chaotic, and hyperchaotic) 
behavior (Devaney, 1988). Figures 3 to 5 illustrate some of these types by showing 
the variations of the distributors’ effective inventory over the first 1000 weeks. 

Stable Behavior. After some initial oscillations, the stable behavior model 
reaches a solution where all variables have a constant final value as shown in 
Figure 3. In Figure 3, it takes around 150 weeks to reach this stable state. This is 
by far the most common approach to modelling behavior, as most economic 
models have focused on equilibrium. 

Periodic Behavior. After an initial transient (time to steady state, i.e., the time 
before the model reaches periodic behavior), the periodic behavior model repeats a 
certain pattern or sequence over and over again, as the model evolves. Each 

Distributor Effective Inventory (cases) 
80 

40- 

-4o- 

I 

-80 I I I, II I, I I I, I I I, II ,’ 
0 200 400 600 800 1000 

Time (weeks) 

Figure 3. Stable Behavior Model of Effective Inventory 
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Distributor Effective Inventory (cases) 
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IOO- 

O- 
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-100; I1 I I, I r I T , 1 T I I, I, I, 
0 250 500 750 l( 

Time (weeks) 

Figure 4. Periodic Behavior Model of Effective Inventory 

10 

sequence has fixed periodicity with an arbitrary length: A period can be one or less 
time unit or thousands or millions of time units long. Figure 4 shows an example of 
this. In this case, the period is relatively short-around 16 weeks. As shown in 
Figure 4, it takes some time before the system reaches this periodic mode. 

Chaotic Behavior. For a model to be chaotic, the output must be character- 
ized by the following three conditions. 

1. 

2. 

The output from the model must be aperiodic, which means that there is 
no repeated pattern in the output. Figure 5 shows an example of this. 
There must be sensitivity to initial conditions. Given an infinitesimal 
change to one of the initial conditions, a simulated trajectory of the mod- 
ified model must diverge exponentially from the original model. An exam- 
ple is shown in Figure 6. Here, the model was simulated twice: first with 
all 4 inventories at 12.00 units, and then with the initial inventories as 
11.999999999 units. The distance between the two trajectories was calcu- 
lated, normalized and plotted. As shown in Figure 6, exponential growth 
of the distance between the two trajectories occurs until nonlinearities of 
the model prevent the distance from growing any further. 
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3. The excursion of the model must be bounded. Nonlinearities should pre- 
vent variables in the model from approaching plus or minus infinity. 

Quasiperiodic behavior has some of the characteristics of periodic and 
chaotic behavior. Hyperchaos has all the characteristics of chaotic behavior in 
addition to other more complicated properties. Although the simulations that we 
conducted differentiate between stable, periodic, and complex behavior, they do 
not distinguish between different kinds of complexity (quasiperiodic, chaotic, 
and hyperchaotic). See Thomsen, Moskilde, and Sterman (1992) for a discus- 
sion of hyperchaos. 

Results of the Simulation Experiments 

Having described the dynamic structure of the policy-making system 
reflected in the Beer Game and the types of behavior it is capable of generating, 
we are now ready to simulate the model. Computer simulations were designed to 
investigate the range of qualitative behaviors the model produces as change 
occurs in the value of the decision parameters--a, (how fast the inventory gets 
updated in case of a discrepancy between desired and actual inventory) and 13 

Distributor Effective Inventory (cases) 

-40; f I I , I I I , I V I , I I I , I , I 
0 200 400 600 800 1c 

Time (weeks) 

Figure 5. Chaotic Behavior Model of Effective Inventory 
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Normalized distance 

600 900 

Time (weeks) 

Figure 6. Sensitivity to Initial Conditions in a Chaotic Behavior Pattern 

(what fraction of units ordered but not yet received has been taken into account 
when the new order is placed). The three main categories of behavior that can be 
found in the model-stable, periodic, and complex-are characterized in terms of 
the steady state behavior of the model, i.e., of the behavior after several thousands 
of simulated weeks. 

Policy-Making Space. Figures 7a and 7b show the results of a series of simu- 
lations using the model described earlier. The range of qualitative behaviors that 
the model can produce as a function of the policy-making parameters--B and 
a,-is represented by the policy-making space shown in Figures 7a and 7b, which 
was created by simulating the model (varying 13 and a,) 201 * 201 times. The 
composition of the policy-making space is defined in terms of three kinds of qual- 
itative behavior: Stable (represented in light grey), periodic (represented in black) 
and chaotic (represented in dark grey). The policy-making space can be thought of 
as a topological map. Where a topological map shows the altitude of the area for a 
given set of parameters, the policy-making space shows what kind of long-term 
qualitative behavior obtains for each possible pair of parameter values. 

System Instability. Simulation results show that too fast an adjustment 
process will introduce instability in the system (Lyneis 1982; Morecroft 1983). 
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Mathematically, this is what happens when a, is large. Figure 7a shows clearly 
that the aperiodic solutions are in the area where a, is close to 1. This indicates 
that the adjustment between desired inventory and actual inventory is happening 
too fast. As soon as the adjustment process is slowed down the system becomes 
stable. When a, is smaller than 0.3, only stable solutions appear, i.e., the adjust- 
ment process has to take at least 3 weeks. 

Figure 7a 

Figure 7b 

Figure 7. Topological Maps of the Policy Making Space 
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When the other parameter-&is small, i.e., close to 0, a large amount of 
already ordered goods is not taken into account when the next order is placed. As 
the units ordered that were not taken into account eventually arrive, however, 
excessive inventories will start to accumulate in the system. Figure 7a shows 
clearly that the aperiodic solutions are found only for relative small values of 8. As 
B is increased, the decision maker takes more and more outstanding orders into 
account when making the new ordering decision, which, in turn, increases the 
stability of the system. It is important to note that there is no way of explaining the 
exact behavior found in Figure 7a. We can understand the “macro behavior,” i.e., 
where the various types of behavior can be found, but not the micro behavior, i.e., 
which kind of behavior a certain parameter combination of a and 13 might produce. 

To get a better view of the complicated nature of the borderline between 
periodic and aperiodic behavior, we have magnified a part of the policy making 
space. The region 0.35 < a, < 0.45 and 0.02 < 8 < 0.12 is shown in Figure 7b. 
Here, too, 40,000 simulations were run in order to illustrate the behavior of the 
model over time. As we can see in Figure 7b, the structure is very complex, as 
“fingers” of stable behavior penetrate deeply into the region of aperiodic behav- 
ior. If one looks carefully at the figure, the mixture of solutions could not be more 
complicated. It is possible to find examples of stable behavior surrounded by peri- 
odic solutions, stable solutions surrounded by periodic behavior, aperiodic behav- 
ior surrounded by stable solutions, and so on. 

Sensitivity to Initial Conditions. A further dimension of complexity is added 
to Figures 7a and 7b by looking at the initial conditions. Analyzing the behavior of 
a system by varying its initial conditions is a standard procedure in the study of 
nonlinear dynamics (Hilbom, 1994). To do this 13 and a, are kept constant (B= 
0.0775 and a, = 0.3775) and the number of initial units is left to vary in each simu- 
lation from 0 to 24 in Figure 8. In the previous set of simulations the initial inven- 
tory was fixed at 12 units. The result of each run in this case can be either a stable 
(white) or aperiodic (black) solution. A figure like this, which in this case resulted 
from 160,000 simulations of the model, is referred to as a basin ofattraction. 

Figure 8 illustrates one of the characteristics of complexity-sensitivity to 
initial conditions. There is a clear structure in Figure 8, although it is impossible to 
explain why this specific structure emerges in the basin of attraction. Notice that a 
small change in initial conditions will change the behavior dramatically thousands 
of weeks later. This reflects one of the key features of chaotic systems: small 
differences get magnified and eventually injluence macrobehavior. 

Discussion 

By examining the policy-making landscapes shown in Figures 7a and 7b and 
the basin of attraction shown in Figure 8, we can derive some important implications 
of employing an adaptive learning approach to organizational decision making. 

The main explicit objective in the game is to minimize cost. An implicit 
objective is to keep a stable stream of orders so as to avoid excessive inventories 
and backlogs and reduce oscillations. In a “real” production-distribution system, 
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Distributor Eff. I nv. 
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Figure 8. Topological Map of the ‘Basin-of-Attraction’ for the Beer Game 

this is important since production capacity is limited and it has to be kept at a 
reasonable and steady level of utilization. 

There is a close connection between behavior and cost (Mosekilde et al., 
1991). For a given combination of the-model parameters, the lowest cost is found 
in the stable area around a global minimum. A rational search strategy in the 
policy-making space will be, first, to locate the stable area and then to identify the 
lowest cost point. Once decision makers have located the stable area (i.e., the area 
where there is no mix of solutions and which is stable independent of the initial 
conditions), they will be able, in general, to reach the lowest cost using a hill- 
climbing trial-and-error algorithm. 

But what if the decision maker alights in an area of the policy-making space 
other than the stable area described above? In general, there is no way of knowing 
if there is a global minimum or where it is likely to be found in case it exists. Even 
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if the players understood the connection between their behavior and cost, and 
were assigned the explicit objective of locating the stable area, still they could not 
rely on experience and past information to find their optimal course of action. 

An adaptive learning strategy requires initialization in terms of specific 
values of a and 13, i.e., an initial course of action. If the starting point turns out to 
be in the border region between stable and complex behavior (e.g., somewhere in 
the lower right comer of Figure 7b), the initial course of action chosen-the set of 
(a, Q-will generate a periodic solution. In the context of the policy-making 
space, learning by experience means selecting new values for a and/or 8, which 
implies a series of small incremental adjustments, since-by definition+xperi- 
ence constrains the size of the area around which improvement is sought. Assum- 
ing the first step in a given direction makes the decision maker “better off,” i.e., 
takes the decision maker to a stable point, the improved condition will indicate 
that the next step will have to be taken in the same direction (a situation similar to 
following a course on a topological map determined with a compass). Because the 
policy-making space contains a mixture of different kinds of solutions, however, 
doing so could easily lead to a complex area, i.e., an undesirable state. In this situ- 
ation, experience will not be a useful guide to action. 

Things get even worse if we consider the situation described in Figure 8. The 
natural behavioral response to a move from a stable to a complex solution, i.e., 
from a relatively desirable to a relatively undesirable state, will be to move back 
to the original state and explore a different direction. In complex systems, this 
option may not be available to decision makers. In fact, as we try to return to the 
original state, we may end up in a totally different situation since the initial condi- 
tions changed. What the player may remember as a stable and relatively low-cost 
state may have turned into an area of high complexity and, consequently, high 
cost. This implies that even perfect organizational memory will not help adaptive 
learning, since there is no way of going back. 

Communication Structure 

Although the current research suggests that the model is capable of produc- 
ing equally complex behavior even when the number of sectors is reduced to two, 
we should point out that the behavior of the model is strongly affected by the time 
delay in the receipt and shipment of orders, and by the structure of communication 
among the different sectors of our simplified value chain. The type of production- 
distribution system we simulated can be found in many industries, including auto- 
mobile manufacturing, leather-shoe production, memory-chip production, and 
real estate (Senge, 1990). In all these cases, delays could be reduced, for example, 
by subsuming individual independent units under the hierarchical authority of a 
larger vertically integrated firm with organizational costs substituting market 
transaction costs. Among the documented advantages of vertical integration is the 
development of a coding system which increases communication efficiencies and 
provides stability in operations (Malmgren, 1961). Determining the circumstances 
under which vertical integration will actually improve the efficiency and effec- 
tiveness of the system as a whole, however, is a subject we leave to agency and 
transaction- cost theorists (see Mahoney, 1992, for a review). 
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The second main characteristic of the model that we mentioned above, 
namely the structure of information exchange and communication among sectors, 
also warrants some elaboration. It is not always realistic to assume that there is no 
other form of direct communication between sectors beyond the pure exchange of 
goods. This situation may represent a highly competitive market with no (or very 
low) supplier switching costs, where exchange is characterized by a series of spot 
market transactions among substitutable entities. The central point to this study, 
however, is not the realism of the model itself, but rather the fact that if complex 
dynamics can be shown to arise in simple (and simplified) situations, it will be 
even more likely to characterize systems with a more “realistic” structure of infor- 
mation exchange. 

The consequences of alternative information structures can be explored by 
identifying and re-engineering the basic processes in the game. This includes the 
consequence of introducing advanced management and inventory information 
systems, a strategy that has been followed by a number of major retailers. System 
dynamics modelling and continuous time simulation can provide a useful frame- 
work for carrying the process of business process re-engineering all the way from 
mapping to successful redesign (Van Ackere, Larsen & Morecroft, 1993). 

Conclusions 

Our computer simulation results have broad methodological, theoretical and 
practical implications for organizational learning. In their review of the organiza- 
tion learning literature, Glynn et al. (1994) identify two dominant theories: the 
adaptive learning approach and the knowledge development approach. The first 
operationalizes organizational learning in terms of changes in organizational 
routines or search strategies, emphasizes the individual level of analysis, and 
generally assumes organizations to be unitary entities; the second operationalizes 
organizational learning as changes in knowledge structures, emphasizes the orga- 
nizational level of analysis, and underscores the necessity of understanding the 
systems dynamics by which individual knowledge is transferred and retained 
within organizations. To advance the current state of understanding beyond what 
each of these perspectives has contributed, Glynn et al. (1994) call for an 
approach that helps bridge these two divergent perspectives. Although traditional 
theories of organizational learning have considered cross-level effects such as the 
relationship between individual level and organizational level learning, there is 
also a need to consider system interaction effects. 

The approach we have taken to explore organizational learning processes is an 
important step in this direction. From the methodological point of view, we build on 
a consolidated tradition of modelling organizational learning in the context of dise- 
quilibrium systems controlled by boundedly rational agents. The system dynamics- 
based simulation we presented shares with this tradition the fact that no equilibrium 
condition is assumed or imposed to the system. In fact, one of the main analytical 
insights that the simulation produced is that simple systems of decisions can have 
a very long transient (time to equilibrium) and-to the limit-generate periodic or 
chaotic motion. However, we have gone one step further by drawing the logical 
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implications of abandoning equilibrium assumptions. For example, our results indi- 
cate that extreme sensitivity to initial conditions suggests limitations to the useful- 
ness of traditional search methods that represent the core element in models of 
organizational and individual learning. Our models innovate on more conventional 
representations of learning processes by emphasizing systematic-rather than 
quasi-random-interaction between agents and their environments. 

This methodological innovation has important implications for developing a 
theory that helps bridge the chasm between microlevel individual processes and 
macrolevel organizational effects. In our model, “environments” do not exist 
independently from the agents’ understanding of their structure, but rather the 
structure of the environment and the action of the decision makers are codeter- 
mined. Therefore, the structure of the policy-making landscape emerging from a 
stream of individual decisions becomes the main object of our modelling effort. 

Our approach to theory building is consistent with the interpretive view of 
organizational life, which views the collective condition of human existence to be 
the source of meaning, and which emphasizes the centrality of “committed inter- 
pretation,” i.e., that people become bound to interacts rather than acts (Weick, 
1993). It is also consonant with the work of Porac, Thomas, and Baden-Fuller 
(1989) on cognitive communities (1989) and of Brown and Duguid (1991) on 
communities-of-practice, studies that view individual learning as inseparable from 
collective learning. In the terminology of Drazin and Sandlands (1992), our meth- 
odology reflects an autogenetic, rather than an exogenetic or endogenetic, view of 
organizational behavior. As opposed to an exogenetic perspective, which empha- 
sizes the importance of institutional forces outside the control of any individual 
actor, and an endogenetic perspective, which emphasizes the importance of inten- 
tional design choices, an autogenetic perspective emphasizes the importance of 
the self-organizing capacities of individuals interacting in a social field. 

In examining a typical system of interacting decision makers, our analysis 
suggests that the problems of experiential learning in organizations may be even 
more fundamental than has been previously acknowledged. The situation repre- 
sented by the simulated production/distribution system is defined in terms of 1) a 
stable environment-there is only one initial step change in customer orders, after 
which demand remains stable; 2) stable objectives-the players need only mini- 
mize total cost; and 3) prolonged experience-once within the policy-making 
space, decision makers have an arbitrarily long time to explore the “landscape” 
around themselves. Even in this quasi-ideal situation, decision makers seem to be 
unable to reconstruct the policy-making landscape accurately. 

A disquieting conclusion that emerges from the present research is that stable 
preferences, lack of structural change, and lack of time constraints are not suffi- 
cient to ensure that behavior of economic agents will ever approach the behavior 
that “would be chosen rationally on the basis of perfect knowledge” (March, 
1989: 273). Organizations and individuals learn from experience but experience 
requires interpretation and, as Lounaama and March put it, “simple learning is no 
more assured to be sensibly intelligent than anticipatory reason” (1987, p. 108). 

Our analysis shows that path dependence-the main consequence of sensi- 
tivity to initial conditions-requires that decision makers reach a detailed under- 
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standing of the global implications of their interdependent actions, i.e., that they 
approach a learning situation with an articulated strategy. The results of the simu- 
lation experiments also suggest that lack of randomness and turbulence in the 
environment is not sufficient to ensure that optimal solutions to management 
problems will be found. 

From the practical point of view, the fact that random components 
confounding the causal links between structure and action are not determined by 
exogenous sources implies that decision makers need to understand the implica- 
tions of nonlinearities and time delays on the outcomes of their decisions. It is in 
this sense that we believe that a system dynamics view may provide new insights 
to managers and help them improve the quality of their decisions. 
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Appendix 

The following equations are based on Sterman (1989) and Mosekilde et al. 
(1991): 

0, = MUX (OJO,) (1) 

Where 0, is the orders at time t. IO, is the indicated orders at time t. The Max 
function ensures that orders are not negative. 

IO, = L*, + AS, + ASL, (2) 

IO is given as the sum of L*, the expected loss (i.e. shipments or expected 
demand). AS, the adjustment for stock and ASL, the adjustment for supply line all 
at time t. 

L*, = OL,_l + (1 - 0) L*, _ 1 (3) 

The expected loss L*, is formulated using adaptive expectations where L*,_l 
was the expected loss at time t - 1 and L, _ 1 - the actual loss at time t - I - 0 is 
the relative weight of the expectations and the actual loss. 

AS, = a&S* - S,) (4) 

Adjustment for stock AS is given as the difference between the desired 
stock S* and the actual stock S. a, is the constant that determinate the “speed” 
with which any discrepancy between the actual and desired inventory will be 
closed. 
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ASL, = a,&SL* - SLJ (5) 

Adjustment for supply line, ASL is formulated in the same way as AS. 
Where SL* is the desired supply line and SL is the current supply line. The 
constant a,1 determines how much of the already ordered but not yet received 
orders are taken into account when the order decision is taken at any given time. B 
is defined as: 

13 = a,@x, (6) 

and S’ as 

S’ = s, + ssL,* (7) 

If we merge equation (2) to (7) the decision rule can be described as follows: 

IO = L + a&S’ - s,* - BSL,) (8) 

tNote that in this formulation S’is kept as a constant although it might be 
more realistic to let the desired supply line SLt* be a variable propo~onal to the 
expected acquisition delay and the expected throughput (Sterman, 1989). 
However, this change will not alter the arguments in the paper, but make the 
computer simulations much more time consuming. 
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