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Abstract Rice productivity will be affected by climate

conditions not only in own region but also in neighboring

regions through technological spillover. Measuring such

direct and indirect influence of future climate change is

important for policy making. This study analyzes socio-

economic and climate factors in rice total factor produc-

tivity (TFP) and evaluates technological spillover effects

by using the spatial econometric model. To consider geo-

graphical situation, we use hydrological model in addition

to crop-yield and crop-quality models. Results show that

spatial autoregressive tendencies were observed in rice

TFP, even though the influences of climate factors were

removed. Such spatial dependence brings about synergistic

effects among neighboring prefectures in northern Japan

and depression effects, like a spatial trap, from neighbors in

southern Japan. Substantial impacts of climate change were

as high as socio-economic factors but different in degrees

by regions. Also, future climate change estimated by the

global climate model enlarged fluctuation degree in rice

TFP because accumulative or cancel out effects of tem-

perature and precipitation occurred year by year. There-

fore, technological development in rice production and

provision of precise climate prediction to farmers are im-

portant in order to ease and mitigate these influences.

Keywords Crop model � Hydrological model � Rice total
factor productivity (TFP) � Spatial lag model � Research
and development activities
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Introduction

Long-term climate change will influence regional rice

production in various ways (Watanabe and Kume 2009).

According to the fourth report of the Intergovernmental

Panel on Climate Change, the average temperature in Japan

will increase by 4–6 degrees Celsius (�C) by the year 2100.

Occurrence of gigantic typhoons will also become more

frequent with climate change. Rice productivity will be

affected by climate conditions not only in own region but

also in neighboring regions through technological spil-

lover. Measuring such direct and indirect influence of fu-

ture climate change is important for policy making.

Needless to say, Japanese rice production accounts for

only 1 % of gross domestic product, and rice consumption

is consecutively decreasing after the 1960’s. The peak per

capita consumption was more than 110 kg per person in the

1960’s, but is now less than 60 kg per person. Although the

government has tried to adjust production of rice by in-

creasing the area of set-aside-program, the price of rice

continues to descend under the excess supply tendency.

Due to a rapid decrease in rice consumption and rice price,

many paddy fields are abandoned without usage, and

hence, total areas of paddy fields are now 2/3 of the 1960’s.

However, the range of paddy fields in habitable land areas
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is still dominant, accounting for 20 %. If global warming

changes rice production amount and decreases rice price,

there is a great possibility of increasing abandoned paddy

field areas which used to be the base of hydrosphere

ecosystem. In this sense, influences of climate change on

rice productivity are not ignorable in view of future land

use and sustainability of ecosystems for both producers and

consumers.

Kunimitsu et al. (2014) measured the influences of cli-

mate and socio-economic factors on rice total factor pro-

ductivity (TFP) in nine regions of Japan. Their analysis

showed that the potential impacts of the yield index were as

high as socio-economic factors such as economies of scale

and research and development activities. However, there

were two issues remaining in this analysis. First, spatial

interactions in the objective regions were not considered.

Generally, rice production in one region has similarities

with conjunctive regions. Climate factors can partly ex-

plain such spatial correlations, but there may be other latent

factors, such as technological spillover into neighboring

prefectures. Polsky (2004) showed that agricultural prof-

itability, measured by farmland price, in US counties had

significant spatial autocorrelations, and these spatial effects

were rarely removed from the data even with the intro-

duction of climate factors. Their study indicates high needs

for consideration of spatial dependence and climate factors

to measure regional impacts on rice production. Second,

influences of flood, as one causative factor in TFP, were

considered by maximum precipitation during the harvest

season, but geographical conditions were not taken into

account in the previous study. Flood flow and drainage

conditions are different from region to region due to the

steepness of mountains, width of river catchment areas, and

different land uses. A hydrological model is one way to

introduce geographical information into the analysis (Park

et al. 2009).

The present study analyzes the causative factors and

technological spillover shown as spatial dependence in rice

TFP with panel data consisting of 38 prefectures and

31 years. Future TFP levels are predicted by estimations of

the model and climate projections of the high-resolution

version of the ‘‘model for interdisciplinary research on

climate (MIROC),’’ a global climate model, for policy

implications. Features of this study are that (i) the spatial

autoregressive model with panel data is used to measure

technological spillover shown by the spatial direct and

indirect impacts of socio-economic and climate factors, (ii)

estimations use the climate indexes measured from only

climate and geographical conditions with a hydrological

model in addition to the crop-growth and crop-quality

models to avoid endogenous problems in the estimations,

and (iii) rice TFP is measured by the Malmquist index

which considers regional disparities in production skills

among regions and quantifies relative TFP of each region

against other regions.

The structure of this paper is as follows. The second

section introduces previous studies and raises scientific

questions. The third section explains the working hy-

pothesis and empirical models. The fourth section shows

how to quantify dependent and explanatory variables. The

fifth section is an explanation about the data sources. The

sixth section shows the estimations and discusses future

levels of regional rice TFP under climate change projected

by MIROC. Based on these findings, the final section

provides policy implications as a conclusion.

Literature review and scientific questions

TFP shows the profit level represented by comprehensive

productivity that is calculated by the ratio of the total output

against the total costs consisting of all input factors. Previous

studies measured agricultural TFP and empirically analyzed

several causative factors including economies of scale

(Thirtle et al. 2008), research and development (R&D) ac-

tivities (Alene 2010), human capital (Astorga et al. 2011),

soil quality (Jayasuriya 2003), and public facilities such as

roads, and irrigation and drainage facilities (Suphannachart

and Warr 2010; Chen, et al. 2008).

In order to introduce the flexible proportion of inputs

under variable return to production scale, recent studies in-

creasingly use the Malmquist index. This index is calculated

by non-parametric procedures such as data envelopment

analysis (DEA), so no assumptions on statistical distribu-

tions are needed (Fare et al. 1994). Also, this index is con-

sistent with real situation where many producers or regions

use relatively outdated technology in spite of an existence of

high skilled producers or regions, and it shows relative level

of comprehensive productivity compared to other regions. In

addition, this index can treat multiple outputs with multiple

inputs. However, DEA used for this index is weak for the

statistical errors existing in the actual data, and the original

TFP level cannot be calculated reversely from this index.

Pratt and Yu (2010) estimated agricultural TFP of 63

developing countries based on the Malmquist index, and

found that agricultural TFP was growing steadily during the

past 20 years, especially in Sub-Saharan countries. Ya-

mamoto et al. (2007) quantified rice TFP by the Malmquist

index, and showed that regional gaps in TFP existed and

tended to converge over time in Japan until 1995. Umetsu

et al. (2003) measured chronological changes in rice TFP of

the Philippines by the Malmquist index and showed that rice

TFP was improved by the green revolution and this change

was different by region.

In terms of climate effects on agriculture, Salim and

Islam (2010) showed a negative influence on TFP in
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Australian agriculture because of serious drought under

long-term climate change, and the degree of this influence

was as high as that of R&D expenditures. Their analysis

assumed log-linear influences of climate factors at the

production level, but influences of climate factors change

signs from positive to negative depending on the threshold

temperature (Yokozawa et al. 2009). As such, an intro-

duction of non-linear effects of climate factors is an im-

portant subject for investigation.

Considering spatial dependence caused by technological

spillover in production studies is another important issue.

Esposti (2010) estimated the spatial autoregressive (SAR)

model (spatial lag model) to show the causative factors on

divergence in agricultural TFP for 20 Italian regions during

1951–2002. They concluded that (i) technological spillovers

were the key convergence force and (ii) public agricultural

R&D mostly behaved as a divergence force because it

prevalently affected productivity through its region-specific

part. Unfortunately, they did not consider climate factors.

Polsky (2004) used the SAR model to explore relationships

between humans and the environment associated with cli-

mate sensitivities, and showed influences varied over space

and time in US agriculture. They showed that agricultural

productivity measured by land value was influenced by

neighboring counties, net effects of the specified climate, and

other socio-economic factors. In their estimations, the spatial

lag coefficients relating to the technological spillover took

significant values in all periods studied. DiGiacinto and

Nuzzo (2006) also used spatial econometric methods to

analyze TFP gaps in manufacturing sector in the Italian re-

gions and showed that TFP gaps changed due to five factors,

i.e., the degree of agglomeration economies, efficacy of

political and social institutions, transportation infrastruc-

tures, development of financial markets, and R&D expen-

ditures. Although spatial influences were significant in their

spatial error model (SEM), a slight difference was found in

estimated coefficients of explanatory variables with and

without spatial specifications. Actually, results from most

studies favor the SEM that considers only spatial autocor-

relations in the error term rather than SAR model that takes

direct affects of neighboring regions into consideration

(Fingleton andLppez-Bazo 2006).Unfortunately, therewere

few empirical studies that applied the spatial econometric

method to rice production, so it is important to see how

spatial interactions affect regional rice productivity in Japan.

Empirical model

Based on previous studies (Kuroda 1989, 1995), economies

of scale and R&D investments are strong candidates

for causative factors that increase rice productivity. Also,

urbanization is another candidate for a causative factor, if

we consider the Von-Thunen’s model that explains loca-

tion of agricultural production areas with different yields.

As explained by this model, urbanized areas tend to have

high costs due to strong competition for input resources

with other industries. Hence, rice TFP in urbanized areas is

probably low under evenly allocated set-aside areas in Ja-

pan. In addition to these socio-economic factors, rice TFP

is influenced by climate factors through changes in harvest

quantity, quality, and production cost affected by heat

stress and floods. Considering these factors, we assume the

following relationships.

lnðTFPr;tÞ ¼ b0 þ b1 lnðMAr;tÞ þ b2 lnðKKnt þ KKpr;tÞ
þ b3 lnðPOPr;tÞ þ b4 lnðCHIr;tÞ
þ b5 lnðCQIr;tÞ þ b6 lnðCFIr;tÞ ð1Þ

where suffix r indicates region, t indicates year, and b’s are

coefficients to be estimated. MA represents economies of

scale measured by the average farm management area per

management organization. KKn is the nationwide R&D

capital stocks of the central government, universities, and

private companies. KKp is R&D capital stocks of the

prefectural government and becomes the source of tech-

nological spillover among regions. Nationwide R&D

capital stocks are assumed to be pure public goods and

uniformly improve rice TFP in all regions, so the same

KKn is used for all regions and has no r suffix. POP is the

population density within the inhabitable land area, repre-

senting the influence of urbanization. CHI is the rice yield

index, CQI is the rice quality index, and CFI is the flood

index. CHI, CQI, and CFI are estimated from only climate

and geographical conditions with the crop-growth model,

crop-quality model, and hydrological model, respectively.

Using these models, we can avoid endogenous problems

that occur in the reverse interrelationship between the de-

pendent variable, TFP, and the independent variables, such

as climate indexes. Namely, these indexes, which are es-

timated only by climatic and geographical conditions, have

‘one-way effect’ on the dependent variable, and the indexes

calculated are not influenced by TFP.

Equation 1 can be exhibited as following ordinary least

square estimation (OLS).

TFP ¼ Zbþ e; ð2Þ

where TFP is the vector of ln(TFPr,t), Z is the matrix for

causative factors, b is the vector of estimation coefficients,

and e is the error terms. Hereafter, gothic characters show

vector or matrix. To consider time lag effects, the follow-

ing dynamic autoregressive (DAR) model is used. Also,

SAR model, i.e., spatial lag model, is assumed as follows to

introduce spatial dependence between neighboring prefec-

tures (Anselin et al. 2004).

Paddy Water Environ (2016) 14:131–144 133

123



Dynamic autoregressive model; DARð Þ
TFPt ¼ Zbþ k � TFPt�1 þ et; ð3Þ

and

Spatial autoregressive model; SARð Þ
TFPr ¼ Zbþ qW � TFPr þ er; ð4Þ

where l and q are, respectively, the dynamic autoregres-

sive coefficient and the spatial autoregressive coefficient.

W is the spatial weight matrix to show the conjunctive

structure of each prefecture to neighboring prefectures.

If k and q are statistically insignificant, Eqs. (3) and (4)

result into the OLS model in Eq. (2). If k becomes statis-

tically significant, it means that present technology depends

on past technological level, showing dynamic techno-

logical transmission effect. If q becomes significant, it can

be interpreted as existence of the technological spillover

effects among neighboring regions (LeSage and Pace

2009). In this case, TFP at the r-th region is influenced by

TFP at other regions defined by W with non-zero element.

TFPs at regions with zero element in W including own

region have no influence to TFP concerned as dependent

region. Since climate factors are included in explanatory

variables, Z, q shows effects of spatial dependence other

than climate factors.

Coefficients, b, in Eq. (3) show temporal effects, so

ultimate effects at the steady-state situation are calcu-

lated as ð1� kÞ�1Zb. In terms of Eq. (4), estimated

coefficients, b, show direct effect of explanatory variable.

Other than such direct effect, indirect effects via neigh-

boring regions exist. Total effects are calculated as

ðI� qWÞ�1Zb.

Quantification of independent and explanatory

variables

Objective region

The data are composed as panel data with 38 prefectures

and 31 years (1979–1992, 1994–2010). Using the panel

data instead of single regional data allows us to (i) find

regional differences in rice TFP, (ii) increase the degrees of

freedom for estimations, and (iii) remove effects of com-

mon latent factors that equally change TFP in all regions.

However, spatial dependence cannot be removed by simple

panel data analysis, because this effect partially influences

the data of the certain region group. Hence, spatial

econometric models are needed to treat such heterogeneity.

Figure 1 shows the location of each prefecture of the

objective region. These exclude nine prefectures, i.e.,

Tokyo, Kanagawa, Yamanashi, Osaka, Nara, Wakayama,

Saga, Nagasaki, and Okinawa, where rice production is

relatively low and cost data are not published as official

statistics. Providing that spatial dependence occurs through

rice production, technological spillover effects for the

above excluded prefectures are small, and spatial rela-

tionships between rice producing prefectures and low rice

producing prefecture are negligible. Data period is 31 years

from 1979 to 2010 except for 1993. In 1993, serious

damage occurred due to cold weather, and cost data were

not observed in the major rice production prefectures.

In terms of neighboring structure, the row-wise values

for spatial weight,W, are firstly assigned one in the column

of prefectures conjunct to the objective prefecture, and 0

otherwise. For example, row values for Hokkaido are 1 at

only Aomori, and 0 otherwise, whereas row values of

Aomori are 1 at Hokkaido, Iwate, and Akita, and 0 other-

wise. Then, these values are standardized row-wise as

commonly done in spatial econometric estimations.

TFP by the Malmquist index

The Malmquist index is the geometric mean of output-

based technological gaps in two periods and can be cal-

culated by the panel data. Technological gaps are measured

by the distance from production of individual decision-

making units (or certain region) to the production frontier

observed by the DEA. Chronological changes in TFP by

the Malmquist index are defined as

TFPr;tþ1=TFPr;t ¼
dr;t xtþ1; ytþ1

� �

dr;tðxt; ytÞ
�

dr;tþ1 xtþ1; ytþ1

� �

dr;tþ1ðxt; ytÞ

� �1=2

ð5Þ

where d(�) is the function to measure the distance between

the production frontier and production point represented by

output vector y and input vector x. A greater value than one

in Eq. (5) indicates positive TFP growth from period t to

period t ? 1 in region r. The concrete values of d(�) are
calculated by the linear programming method in DEA that

constructs a piece-wise surface over data as production

frontier (Coelli 2008). The initial value of TFPr;t0 in Eq. (5)

is also calculated by the DEA method with cross-sectional

data in the first year of the data period.

Socio-economic factors

The average farm management area per management or-

ganization, MA, and population density, POP, are directly

obtained from the statistics. KKn and KKp are quantified by

the perpetual inventory method as follows (Cabinet Office

of Japan 2010).

KKnt ¼ Int�Lag þ Int�Lag�1 þ � � � þ Int�Lag�N ð6Þ
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and

KKpt ¼ Ipt�Lag þ Ipt�Lag�1 þ � � � þ Ipt�Lag�N ð7Þ

Here, In and Ip areR&Dexpenditures by sectors.Lag is time

lag of which new technology prepares to diffuse, and N is

durable year of each technology invested.TheCabinetOfficeof

Japan (2010) showed that the time lag was approximately

3 years and the durable years were about 10 years. These years

weremeasured by questionnaires distributed to themanagers of

private companies. Based on the survey results, Lag = 3 and

N = 10 are set in Eqs. (6) and (7).

Climate indexes

Three climate indexes, CHI, CQI and CFI, are pre-

liminarily estimated by the crop-growth model, crop-

quality model, and hydrological model, respectively. Using

crop-yield and crop-quality models is the same as Ku-

nimitsu et al. (2014). In addition to these models, this study

uses the flood index, CFI, calculated by the unit out-flow

within the paddy mesh area. This index indicates degree of

flood during the mature and harvest stages of rice in August

and September as follows.

CFIr;t ¼ max
t

X

s2r

Qouts;day

 !

=AREAr ð8Þ

where Qout is the out-flow from s-th terrain mesh during the

typhoon season, August and September, and is estimated by

the hydrological model. Function maxt (�) selects the max-

imum value of the daily out-flow during the typhoon season

to show themost severe flood in year t. After calculating out-

flow in eachmesh, only paddymeshes, that have paddy fields

inside, are selected and aggregated as the total amount of out-

flow. Then, the maximum total out-flow among total out-

Hokkaido 

Tohoku 

Kanto 
(Kanto/Tosan) 

Hokuriku 

Tokai 

Kinki 
Chugoku 

Shikoku 

Kyushu 

Fig. 1 Location of prefectures in nine regions studied. Tohoku

includes six prefectures, such as [2] Aomori, [3] Iwate, [4] Miyagi, [5]

Akita, [6] Yamagata, and [7] Fukushima. Kanto includes six

prefectures, such as [8] Ibaraki, [9] Tochigi, [10] Gunma, [11]

Saitama, [12] Chiba, and [20] Nagano. Hokuriku includes four

prefectures, such as [15] Niigata, [16] Toyama, [17] Ishikawa, and

[18] Fukui. Tokai includes four prefectures, such as [21] Gifu, [22]

Shizuoka, [23] Aichi, and [24] Mie. Kinki includes three prefectures,

such as [25] Shiga, [26] Kyoto, and [28] Hyogo. Chugoku includes

five prefectures, such as [31] Tottori, [32] Shimane, [33] Okayama,

[34] Hiroshima, and [35] Yamaguchi. Shikoku includes four prefec-

tures, such as [36] Tokushima, [37] Kagawa, [38] Ehime, and [39]

Kochi. Kyushu includes five prefectures, such as [40] Fukuoka, [43]

Kumamoto, [44] Oita, [45] Miyazaki, and [46] Kagoshima. Other

nine prefectures, where polygons are white and numbers luck, are

excluded, because the data of rice production cannot be obtained in

statistics
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flows in paddy meshes is selected and divided by the total

area of the paddy meshes, AREA, in each prefecture to re-

move scale effects of regional areas. When heavy rain or

typhoons increase, CFI increases, and consequently rice

productivity is degraded not only by a decrease in rice har-

vest but also by an increase in costs required to pump excess

water and to repair damaged field facilities.

The hydrological model (distributed water circulation

model) is based on Masumoto et al. (2009) and Yoshida

et al. (2012) and calculates water flow of each meshed area

from climate conditions. In the model, data from a geo-

graphical information system are used to consider topo-

graphical conditions of each terrain mesh. Parameters of

the hydrological model are the same as Kudo et al. (2013).

Typical relationships between CFI and maximum pre-

cipitation are shown in Fig. 2. These variables correlate,

but some years show extreme values in either variables.

This is because out-flow is influenced by precipitation on

and before the day concerned. Furthermore, the slopes of

two variables, which correspond to the marginal unit out-

flow and reflect geographical situations, are different by

region, causing different unit out-flows from precipitation.

In general, the slope of out-flow against precipitation tends

to be steep in regions where the catchment area is large.

CHI is estimated by the crop-growth model based on

Iizumi et al. (2009) and Yokozawa et al. (2009). Growth

and flowering of rice are formulated by the non-linear

functions in the model. Roughly speaking, the marginal

effects of temperature, Temp, change according to the

threshold temperature, ~T :

oCHI=oTemp[ 0 for Temp� ~T

oCHI=oTemp\0 for Temp[ ~T:

(

ð9Þ

These tendencies show rice yield can increase until a

threshold temperature, but decreases afterward.

An extremely high temperature and insufficient solar

radiation degrade the quality of rice by causing chalky

color and cracked rice. To measure such influences, the

crop-quality model is used for estimation of CQI based on

Kawazu et al. (2007). We added non-linear tendency of

temperature. The equation of this model is as follows and is

newly estimated in the Appendix.

CQIr;t ¼ f ðSR7r;t; SR8r;t; Tmin78r;t; Tmax8r;tÞ þ er;t; ð10Þ
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Fig. 2 Relation between hydrological model and precipitation. The

vertical axis is maximum unit out-flow estimated by the hydrological

model, and the horizontal axis shows actual maximum precipitation

during August and September. Other prefectures are not shown

because of the space limitation
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where SR7 and SR8 are, respectively, the average solar

radiation in July and August, which are the critical months

for maturation after heading time. Tmin78 is the average

minimum daily temperature during July and August, and

Tmax8 is the average maximum daily temperature in Au-

gust. e is the error term. Estimation results (Appendix)

showed that SR7 and SR8 had positive coefficients (i.e.,

rice quality increases with solar radiation), whereas Tmin78

was positive or negative against TFP in the total (i.e., rice

quality increases with a rise in temperature until a threshold

value but decreases over the threshold). According to the

estimations of the quadratic function and absolute value

function, the threshold temperature was 19.5 �C. This

threshold value is higher than average minimum tem-

perature in northern Japan, such as Hokkaido, Aomori,

Iwate, Miyagi, Akita, Yamagata, Fukushima, and Nagano,

but lower than that in other prefectures. Comparing

Akaike’s information criterion, AIC, and adjusted R-square

among the functional types, the absolute value function

(non-linear function 3) is used for prediction.

Data sources

Table 1 shows the descriptive statistics of variables used for

estimation of causative factors in rice TFP. The data for y and

x to calculate the Malmquist index (Eq. (5)) are obtained

from Cost Research for Rice Production (Ministry of Agri-

culture, Forestry and Fishery (MAFF)). All nominal values

are deflated by the price indexes published in the Economic

Accounts for Agriculture and Food Related Industries

(MAFF). The farm management area per farm organization,

MA, is also from Cost Research for Rice Production (MAFF).

R&D expenditures, In and Ip, in Eqs. (6) and (7) are collected

from the statistics of Investigation Report on R&D Expendi-

tures for Scientific Technology (Statistics Bureau of Ministry

of Public Management, Home Affairs, Posts and Telecom-

munications, every year).

The data for CQI are based on ‘‘The Percentage of

Premium Grade Rice’’ (Official Document of MAFF based

on the Agricultural Products Inspection Act, http://www.

maff.go.jp/j/study/suito_sakugara/05/). Climate conditions

for calculation of climate indexes, i.e., CHI, CQI, and CFI,

are taken from the data of the Automated Meteorological

Data Acquisition System (AMeDAS) from 1979 to 2010.

For predictions, future climate conditions, such as tem-

perature, solar radiation, and atmospheric CO2 concentra-

tions, are drawn from the down-scaled outputs of global

climate model, the high-resolution version of MIROC (K-1

model developers 2004; Okada et al. 2009). The green-

house gas emission scenario used here is A1B, which

shows balanced growth with rapid economic growth, low

population growth, and rapid introduction of more efficient

technology in the Special Report on Emission Scenario

(Nakicenovic and Swart 2000).

Empirical findings and discussion

Chronological change in TFP by prefectures

Figure 3 shows the annual levels of rice TFP in represen-

tative prefectures calculated by the Malmquist index. Be-

cause of space limitations, nine prefectures, where rice

production was relatively large, were selected as repre-

sentation for nine broader areas (Fig. 1) designated in

Agricultural Census (MAFF), and results of other prefec-

tures were not shown. Rice TFP levels in the northern re-

gions, i.e., Hokkaido, Fukushima and Niigata, were higher

than other prefectures located in the southern part of Japan.

Chronologically, rice TFPs of most prefectures increased

from 1979 to 2010. Growth rate in Northern regions was

also higher than southern regions. Due to these different

growth rates, the coefficient of variation (CV) of TFP

chronologically increased to 0.212 for the 1980’s, 0.261 for

the 1990’s, and 0.308 for the 2000’s, revealing an increase

Table 1 Descriptive statistics of variables used for estimation of TFP

Variables Contents Unit Average SD

TFP Rice TFP measured by Malmquist index (Eq. 5) – 0.99 0.19

MA Management area per farm household ha/farmer 0.98 0.79

KKn Knowledge capital (nation wide) (Eq. 6) 100 billion yen 18.74 3.94

KKp Knowledge capital (prefecture) (Eq. 7) 100 billion yen 0.43 0.24

POP Population density (population per inhabitable area) 1000 people/km2 0.95 0.62

CFI Flood index estimated by the hydrological model (Eq. 8) 10 mm/day 40.00 47.27

CHI Crop-yield index estimated by the crop-yield model (Eq. 9) ton/ha 4.86 0.60

CQI Crop-quality index estimated by the crop-quality model (Eq. 10, Appendix) % 67.64 8.90
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in regional gaps. This tendency indicates a regional non-

convergence in the rice productivity of Japan and is dif-

ferent from Yamamoto et al. (2007) which showed regional

convergence in rice TFP until 1995.

Spatial dependence in TFP

Table 2 shows the estimation results of TFP function in

Eqs. (2), (3), and (4) by the panel data analysis. We used

the spatial economic packages ‘‘plm’’ (Croissant and Millo

2008), ‘‘spdep’’ (Bivand 2013), and ‘‘splm’’ (Millo and

Piras 2012) with the statistical software, R (version 3.2). In

this table, there are 3 models, i.e., OLS model shown by

Eq. (2), the DAR model with time-lagged dependent

variable shown by Eq. (3), and the SAR model considering

spatial lag shown by Eq. (4). Both the fixed effect esti-

mation and random effect estimation were conducted for

OLS and SAR. The fixed effect models were chosen based

on the Hausman statistics and are shown in this table.

Comparing AICs and adjusted R-squared values among

models, SAR was superior to OLS and DAR. After esti-

mating SAR, the parameter l of serial correlation in resi-

duals, i.e., êr;t ¼ lr êr;t�1 þ mr;t where ê is residuals and m is
assumed to be independently identically distributed errors,

was estimated. Estimated coefficients l were significant in

31 out of 38 prefectures about estimations of OLS, but l
were significant only in 6 prefectures about SAR. There-

fore, there are few affects of serial correlation in SAR

estimations.
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Fig. 3 Rice TFPs by prefectures. Other prefectures are not shown

because of the space limitation

Table 2 Estimation results of causative factors for TFP change

Items OLS (basic model) DAR (time lag) SAR (spatial lag)

Coeff. (t-stat.) Coeff. (t-stat.) Coeff. (t-stat.)

Constant -1.3617 (-4.08***) -1.1596 (-3.01***) -1.0281 (-8.56***)

ln(MA) 0.3260 (6.32***) 0.1466 (2.84***) 0.2501 (8.71***)

ln(KKn ? KKp) 0.1773 (4.07***) 0.1305 (2.35**) 0.1168 (5.78***)

POP -0.7917 (-6.52***) -0.3902 (-3.42***) -0.6315 (-7.44***)

ln(CHI) 0.1893 (1.86*) 0.1944 (1.70*) 0.1494 (5.09***)

ln(CQI) 0.1065 (3.54***) 0.1033 (3.60***) 0.0871 (4.54**)

ln(CFI) -0.0136 (-2.63***) -0.0100 (-1.80*) -0.0088 (-2.99***)

ln(TFPt-1) [k] – 0.4931 (12.77***) –

ln(W�TFP)[q] – – 0.3070 (10.77***)

Adjusted R2 0.678 0.767 0.769

Log Likelihood 1011 1148 1431

AIC -1.641 -1.935 -2.353

Hausman Test (v2) 24.631 (p = 0.000***) – 50.221 (p = 0.000***)

Total panel observations are 1178 (38 9 30: 1979-1992, 1994-2010). All estimation models are the fixed effect model according to Hausman

Test statistics. OLS estimation is estimated by the Ordinary Least Square method. DAR with time lag of dependent variable and SAR with spatial

lag of dependent variable are estimated by the maximum likelihood estimation method. AIC is the Akaike’s information criterion. The signs

‘‘***’’, ‘‘**’’, and ‘‘*’’, respectively, show significant level at 1, 5, and 10 %
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To check random effects, the serial correlation, and

spatial dependence in the residuals of OLS, we conducted

Lagrange Multiplier diagnostics by the BSK test (Baltagi

et al. 2003) and the BSJK test (Baltagi et al. 2007).1 These

test statistics suggest existence of serial correlations, ran-

dom effects, or spatial dependence in the error terms of

OLS, so OLS estimations without the autoregressive term

have a high possibility of bias. Since the possibilities of the

random effect and serial correlation were low about resi-

duals of SAR, the above statistical tests consequently

suggest spatial dependence in the TFP data. From these

statistical observations, it can be said that an introduction

of spatial lag term in SAR can remove most effects from

serial correlation. Therefore, SAR is suitable to explain

regional rice TFP.

Influences of climate and socio-economic factors

The estimated coefficients, b, correspond to the elasticity of
TFP with respect to explanatory variables. The signs and

values of estimated coefficients were almost the same as the

results of Kunimitsu et al. (2014).2 The elasticity value with

respect to economies of scale, MA, was 0.15–0.33, and the

influence of MA was high among the causative factors con-

sidered here. The impact of R&D capital on rice TFP was

0.12–0.18. However, nationwide R&D capital stocks in-

crease TFPs in all regions at the same time (as assumed in the

model), so the total impacts of R&D throughout the country

are much higher than the elasticity value we measured.

As shown by the estimations of SAR, the elasticity

values with respect to the yield index, CHI, and quality

index, CQI, were almost the same as R&D capital, KK. The

impacts of the yield index and quality index were poten-

tially large,3 but the influences of these indexes were non-

linear. Fig. 4 shows the elasticity of TFP with respect to

temperature through CHI and CQI and with respect to

precipitation through CFI. The effects of temperature via

CHI and CQI changed the sign according to the threshold

value. Until the 2020’s, the effect of temperature via CHI

remained positive, but after the 2020’s, the effect became

negative in most regions. Only Hokkaido increased rice

TFP even under global warming until 2100. Impacts of

CQI were positive in Hokkaido and Fukushima until 2010,

but became negative afterward. Other prefectures suffered

from negative impacts of temperature via CQI for most

periods. As such, negative influences of temperature by

both indexes are multiplied when the temperature is over

the threshold level.

The elasticity value with respect to CFI was -0.01,

showing a negative effect of flood caused by heavy pre-

cipitation. As compared to other climate indexes, the po-

tential impact of the flood index was small. This is because

only limited areas of paddy fields are damaged by flood,

depending on the course of the typhoon and locations of

partial heavy rain. However, effects of flood were con-

stantly negative, so extreme precipitation under future

climate change certainly damages rice productivity.

Prediction of future rice TFP

Comparing absolute values of the estimated coefficient, DAR

and SAR show relatively lower estimation coefficients than

OLS. Theoretically, the estimated coefficients in DAR and

SAR models show the direct effects of the explanatory vari-

ables on rice TFP. In addition to direct effects, these models

consider indirect effects via other regions that change rice

TFP. The total effects can be calculated by multiplying ð1�
lÞ�1

or I� qWð Þ�1
to the direct effects.

Figure 5 shows the prediction results of rice TFP by

DAR and SAR with consideration of direct and indirect

effects. For these predictions, climate conditions were set

as forecast results of MIROC, and socio-economic factors

were set along with the past trends of MA, KKn, and KKp.

The chronological path of rice TFP fluctuated over time

because of changes in climate factors. The path of total

effects by SAR almost corresponds to the path of DAR, but

some prefectures, such as Hokkaido and Fukushima, show

some differences in these paths. These prefectures marked

high growth rate of TFP, so there might be upward bias of

dynamic autoregressive coefficient. The ratios of direct

effects versus total effects show degree of spatial depen-

dence caused by technological spillover. These rations

were higher in the northern prefectures than southern pre-

fectures. Northern prefectures indicated relatively high

TFP levels, so there is a positive synergistic effect via

technological spillover. However, TFP levels of southern

prefectures were low, so there is a depression effect in

these prefectures, becoming a spatial trap.

The fluctuation range in Fig. 5 became wider as time

passed. This change was only due to climate change. Fig. 6

shows the average level and CV in TFP’s for 2011–2030,

2041–2060, and 2081–2100. The CV’s were almost stable

in the northern prefectures, whereas CV’s in most of the

southern prefectures increased. In the northern prefectures,

1 The BSK one-sided joint test statistic (LM-H) was 3309.7

(p = 0.00), and conditional Lagrange multiplier statistics LM* was

27.7 (p = 0.00). The BSJK joint test statistic was LM-j = 3108.6

(p = 0.00)
2 These values of MA are bit lower and those of R&D capital are bit

larger than previous study (bMA = 0.32 and bKK = 0.08 in Kunimitsu

et al. 2014).
3 Theoretically, the elasticity of yield index, CHI, is one, if only yield

changes but production costs remain constant. However, in reality,

when yield is changed under climate change, production costs and

prices also change by adaptation behavior of farmers as well as the

market, so elasticity of CHI should be lower than one.

Paddy Water Environ (2016) 14:131–144 139

123



-0.6000

-0.5000

-0.4000

-0.3000

-0.2000

-0.1000

0.0000

0.1000

0.2000

0.3000

0.4000

2000-10 2041-60 2081-100 2000-10 2041-60 2081-100

Temp89 (via CHI) Tmin78 (via CQI) Rain89

Hokkaido
Fukushima
Chiba
Niigata
Aichi
Shiga
Hiroshima
Tokushima
Kumamoto

x10
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Fig. 5 Prediction of TFP under long-term climate change. Prediction

values were calculated by the DAR fixed effect model, the SAR fixed

effect model for total effect, and the SAR fixed effect model for only

direct effect. Future values of explanatory variables were assumed to

grow along to the chronological trend (socio-economic variables) and

climate prediction of MIROC
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future temperature was still lower than the threshold value

for many years, so positive impacts of CHI and negative

impacts of CQI canceled each other. However, in the

southern prefectures, future temperatures were beyond the

threshold value for many years, so negative impacts of both

CHI and CQI accumulated and increased variations in

annual TFPs. Negative effects by precipitation added to

these accumulated effects. From these tendencies, it can be

said that global warming is favorable in the northern pre-

fectures, but unfavorable in the southern prefectures.

Policy implications and conclusions

The present study analyzed socio-economic and climate factors

in rice TFP and evaluated technological spillover effects by

using the spatial econometric model. In addition to OLS and

DAR models, SAR model with the spatial lag term was esti-

mated to show spatial dependence existing in rice TFP. The

long-term impacts of climate change were projected by the

estimated model associated with the crop-yield, crop-quality,

and hydrological models. The future climate conditions as in-

puts were calculated by a high-resolution version of MIROC.

The results and policy implications are as follows. First,

spatial autoregressive tendency was observed in rice TFP,

even though the influences of climate factors that cause

regional similarities were removed. In this sense, empirical

results of ordinary panel data analysis without consideration

of spatial dependence have a high possibility of estimation

bias. Such spatial dependence can be interpreted as tech-

nological spillover from neighboring prefectures. Techno-

logical spillover brings about synergistic effects among

neighboring prefectures in northern Japan and depression

effects, like a spatial trap, from neighbors in southern Japan.

Second, substantial impacts of climate change were as

high as knowledge capital stocks accumulated by R&D ac-

tivities but different in degrees by regions. However, climate

change showed a positive effect on rice TFP in the northern

regions of Japan, but rice TFP decreased in the southern

regions along with a decrease in rice yield and quality after

the 2050’s. The influence of precipitation via flood, which

occurred mostly in the cost side change, was always
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negative. In total, the northern part of Japan, where tem-

perature stays below the threshold value, can increase rice

TFP even under global warming, but southern regions suffer

from a decrease in future TFP with accumulative effects of

temperature and flood. To decrease such negative impacts of

long-term climate change, new technologies need to be de-

veloped by R&D activities, such as more heat-tolerant rice

species, and new planting techniques to shift rice planting

season to cooler period. Furthermore, provision of reliable

and accurate climate information to farmers is critical for

farmers to adopt new technologies and decrease risk.

Third, an increase in fluctuations of productivity in ad-

dition to a decrease in the average productivity creates

unstable rice production especially in the southern regions

where initial rice TFP is low. Such unstable situations may

result in an increase in abandoned paddy fields and change

in future land use. Land use change increases occurrence of

flood and changes the ecosystem. To avoid such changes, it

is important for our society to take appropriate measures,

such as mitigation policies for global warming. Against

flood problems caused by land use change, maintaining

paddy field areas inside the country by increasing rice

productivity and management scale of farmers is a critical

issue for policy making.

Limitations of this analysis and remaining issues are as

follows. This study could not simultaneously treat serial

correlations and spatial dependence in the estimations, so a

more advanced econometric method such as a dynamic

panel analysis is needed. Furthermore, analyses of other

agricultural products and other countries, evaluation of

other causative factors such as human capital and public

physical capital, and evaluation of the ripple effects of

changes in rice TFP on whole economies are important

issues that remain to be clarified in future studies.
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Appendix

Based on the previous study (Kawazu et al. 2007), we newly

estimated the crop-quality model using recent data. Table 3

Table 4 Estimation results of

the crop-quality (CQI) model

Total panel observations are

1178 (38 9 30: 1979–1992,

1994–2010). All estimation

models are the fixed effect

model according to Hausman

Test statistics. AIC is Akaike’s

information criterion. The signs

‘‘***’’, ‘‘**’’, and ‘‘*’’,

respectively, show significant

level at 1, 5, and 10 %

Items Linear function Non-linear func. 1 Non-linear func. 2

Coeff. (t-stat.) Coeff. (t-stat.) Coeff. (t-stat.)

Constant 111.698 (8.86***) -603.282 (-8.54***) 54.944 (12.46***)

SR7 0.290 (1.16) 0.548 (2.28**) 0.633 (2.87**)

SR8 0.966 (3.35***) 1.137 (4.11***) 0.899 (3.67***)

Tmin78 -3.155 (-4.45***) 67.086 (9.76***) –

Tmin782 – -1.729 (-10.27***) –

ABS(Tmin78-19.5) – – -6.624 (-10.44***)

DT � Tmax8 – – -1.312 (-13.78***)

Adjusted R2 0.35 0.41 0.48

Log likelihood -4925 -4873 -4796

AIC 8.43 8.35 8.21

Hausman Test (v2) 31.70 (p = 0.00***) 24.56 (p = 0.00***) 17.56 (p = 0.00***)

Table 3 Descriptive statistics of variables used for the crop-quality (CQI) model

Variables Contents Unit Average SD

CQI* Percentage of the 1st grade rice (actual) % 67.64 20.06

SR7 Average solar radiation in July MJ/m2 17.09 1.94

SR8 Average solar radiation in August MJ/m2 17.09 1.94

Tmin78 Average of minimum daily temperature in July and August �C 20.82 1.73

Tmax8 Average of maximum daily temperature in August �C 29.29 1.93

DT Spiked data dummy which takes 1 when yield level was rapidly

decreased only one year and recovered in the next year, 0 otherwise

1 or 0 0.02 0.15
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shows statistics of the variables used for estimation of the

CHI index. Table 4 shows the estimations of the crop-

quality model in Eq. (10). In the case of non-linear function

3 with absolute value of temperature, the best fitted esti-

mation with respect to log likelihood value was picked,

which was estimated by changing threshold temperature by

0.5 from 18 to 25 �C. At temperature of 19.5 �C, estima-

tions marked the highest log likelihood value, and showed

similar threshold temperature as the quadratic function.

The fixed effect model showed statistical superiority

over the random effect estimations, as shown by the

Hausman statistics, adjusted R2, and other statistics. Un-

fortunately, the adjusted R2 was approximately 0.5, show-

ing limited explanation power of the estimations. Using

these estimations, CQI used in Eqs. (1)–(4) was calculated.
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