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Abstract The numerical method of lines is a technique for solving partial differential
equations by discretising in all but one dimension. In this paper the solution of the
approximate problem is extended outside the domain using the boundary condition.
This leads to functional differential-algebraic equations. Sufficient conditions for the
well-posedness, stability and convergence of the resulting method of lines are given.
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1 Introduction

The method of lines (MOL) is a computational approach for solving PDE problems
of the form

∂t u = f
(
t, x, u, ∂xu, ∂2xxu

)
.

The numerical solution process proceeds in two steps:

1. Space semi-discretization (using, for example, finite differences).
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2. The resulting system of semi-discrete ordinary differential equations (ODE’s) is
integrated in time.

From the numerous literature concerning the numerical method of lines for classical
differential equations we mention the monographs [8,25,27]. MOL for nonlinear par-
abolic functional differential equationswith initial boundary conditions of theDirichlet
type are investigated in [30], where the error estimates implying the convergence of
MOL on a rectangular domain is given. Shakeri and Dehghan [24] present two forms
of MOL for one-dimensional nonlocal hyperbolic partial differential equation. MOL
is used in [4] to obtain numerical solutions to a quasilinear parabolic inverse prob-
lem. Parabolic inverse problems can be reduced to a system of ODE’s by fourth order
compact scheme (see [18]).

The aim of the paper is to construct a method of lines for nonlinear parabolic
functional differential equations with general initial boundary conditions and with a
non-rectangular domain. To deal with a cylindrical domain, we can proceed in several
ways. For instance, we can consider the polar coordinate system, like in [25,27] or
the Cartesian coordinate system. In the later case we have at least two possibilities.
We can add extra points either at the boundary of the domain (see [14,17]), or outside
the domain (see [19]). In this paper we consider the second possibility. In our scheme
we obtain additional points using the reflection with respect to the boundary. We
extend the solution of the approximate problemoutside the domain by a transformation
generated by the boundary condition. This leads to differential-algebraic equations
(DAE). The theoretical analysis of DAE’s and some appropriate numerical methods
for initial and boundary value problems can be found in [3,15]. In [6] the authors study
numerical solutions of DAE’s. Soltaniana et al. [26] present a homotopy perturbation
method to solve DAE’s. The numerical solution of DAE’s by the Rosenbroch one-
stage scheme with complex coefficients are investigated in [2]. However, there are
considered systems which depend only on present time. Equations with aftereffects
of various kinds (such as delays) are called functional differential equations (FDE)
The theory of FDE’s can be found in [7]. Semiexplicit numerical methods of the
Rosenbroch type for functional differential-algebraic equations in the whole space
were studied in [10]. In [13] the authors, on the basis of Newton’s method, propose
a fast quasilinearization numerical scheme, coupled with Rothe’s method, for fully
nonlinear parabolic equations. Comparison theorems for ODE and DAE systems are
investigated in [11].

We admit some advantages of such scheme:

1. Simplicity of description and implementation.
2. No need to multiply cases.
3. No need to look for the nearest points.
4. No need to approximate boundary conditions.
5. A universal interpolation pattern and the values of u in the grid points outside the

domain Q.

The new approach is applicable for n-dimensional spatial variables, even though the
numerical experiments are implemented for a two-dimensional spatial case. The weak
point of the proposed method is a limitation on the boundary of the area of the spatial
variable. Namely, we assume that the domain� is bounded, convex with the boundary
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Method of lines for parabolic functional differential equations 69

of class C2+α, 0 < α < 1. We require this assumption to construct a suitably regular
extension of the functions beyond the domain Q. Fakhar-Izadi and Dehghan [5] deal
with irregular domains for a weakly parabolic partial integro-differential equation.
They propose a spectral method to find numerical solutions. It seems that spectral
methods are more time consuming compared with methods on regular meshes which
obey a kind of maximum principle.

Our techniquemay be used inmany physical problems such as chemical reaction [9]
and heat conduction [22], where a flow across the boundary surface is proportional to
the difference between the surrounding density and the density inside surface. In these
papers authors consider complex approximatemethods, exclusively for the differential
equationswithout any delay. In the article [23] one examines non-linearities and delays
with Robin boundary conditions. In our paper we deal with difference schemes for
functional differential equations with Robin boundary conditions, which is a much
wider class that delays. We can also use our technique to a quasilinear parabolic
system of PDE’s, more precisely in the chemotaxis model considered in [29]. Recent
advances in computational mathematical biology confirm our interest in theoretical
investigations, compare: [16]. If the domain is not convex, as it often happens in real-
world applications (chemotaxis, reaction-diffusion etc.), it is still possible to use our
techniques by means of some smooth mappings which transform an irregular domain
to a disc. For instance, a bean-shape region can be just projected to a disc.

The paper is organized in the following way. In Sect. 2 we set up the notation and
terminology. Section 3 contains auxiliary lemmas. In Sect. 4 ourmain results are stated
and proved. In the last section numerical experiments are presented.

2 Formulation of the problem

Let � ⊂ R
n be a bounded, convex domain with boundary ∂� of class C2+α . Write

Q0 = [−T0, 0] × �̄, Q = [0, T ] × �̄,

where T > 0 and T0 ∈ R+ = [0,+∞). For a function u : Q0 ∪ Q → R and for
t ∈ [0, T ] we define a function ut : Q0 → R by

ut (τ, x) = u(t + τ, x), (τ, x) ∈ Q0.

For any metric spaces X and Y we denote by C(X,Y ) the space of all continuous
functions defined on X and taking values in Y . In the case Y = R we write C(X).

Given f : Q × C(Q0) × R
n → R, ai j : Q → R, β : [0, T ] × ∂� → [0,+∞),

ψ : Q0 → R, we consider the functional differential equation

∂t u −
n∑

i, j=1

ai j (t, x)∂
2
xi x j u = f (t, x, ut , ∂xu), (t, x) ∈ Q (1)

with the initial boundary conditions
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70 H. Leszczyński, M. Matusik

∂u

∂n
+ β(t, x)u = 0, (t, x) ∈ [0, T ] × ∂�, (2)

u(t, x) = ψ(t, x), (t, x) ∈ Q0, (3)

where n = n(x) is the unit outward normal on ∂�.
Equation (1) with a particular right hand side can be interpreted as a reaction-

diffusion equation, which is widely used as a model describing various physical,
chemical and biological problems, see [1,16,20]. Note that the right hand side of the
equation contains a functional variable. Therefore, we can also consider differential
equation with deviated variables or differential integral equations, as it is shown in
our examples 1 and 2.

We transform the boundary condition (2) by considering an extension of a function
u outside Q̃ := Q0 ∪ Q. Set R(x) = x for x ∈ � and

R(x) = argmin
x̄∈∂�

‖x̄ − x‖ for x ∈ �c.

Given u : Q̃ → R and denoting r(x) = 2R(x) − x, we extend u to the set
[−T0, T ] × R

n by

u(t, x) = u(t, r(x)) exp {−‖x − r(x)‖ · β(t, R(x))} for x ∈ �c.

For any smooth function u this extension implies boundary condition (2) on [0, T ] ×
∂�. If β ≡ 0, then this extension is a mirror reflection with respect to the boundary
∂�, generated by Neumann’s conditions.

3 Discretization

We construct a regular mesh onRn in the following way. Let h = (h1, . . . , hn), hi > 0
be the steps of the mesh. For m ∈ Z

n, m = (m1, . . . ,mn), we denote nodal points
in the following way: x (m) = (m1h1, . . . ,mnhn). Write R

n
h = {x (m) : m ∈ Z

n},
�h = � ∩ R

n
h and

�∗
h =

{
x (m) ∈ R

n
h \ �h : ∀

x (m̄)∈�h

max
i

|mi − m̄i | ≤ 1

}
,

Qh = [0, T ] × �h, Q∗
h = [0, T ] × �∗

h, Q0.h = [−T0, 0] × (�∗
h ∪ �h).

Denote �̃h = �∗
h ∪ �h . Let p∗ be the number of all nodal points of �∗

h and p—the
number of all nodal points of �h . Set P = p∗ + p, see Fig. 1. For any spaces X and
Y we denote by XY the class of all functions defined on X and taking values in Y .
Difference operators for spatial variables are defined in the following way. Write J =
{(i, j) : i, j = 1, . . . , n, i = j}. Suppose that we have two disjoint sets J+, J− ⊂ J
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Method of lines for parabolic functional differential equations 71

Fig. 1 Nodal points of �∗
h and �h

such that J+ ∪ J− = J and (i, j) ∈ J+ if ( j, i) ∈ J+. Given u : [−T0, T ] → �̃hR

and m ∈ Z
n . Write

δ+
i u

(m)(t) = u(m+ei )(t) − u(m)(t)

hi
, δ−

i u
(m)(t) = u(m)(t) − u(m−ei )(t)

hi
,

δi u
(m)(t) = 1

2

[
δ+
i u

(m)(t) + δ−
i u

(m)(t)
]
,

δu(m)(t) =
(
δ1u

(m)(t), . . . , δnu
(m)(t)

)
.

The difference operators δ(2) = [δi j ]i, j=1,...,n, are defined in the following way:

δ
(2)
i i u(m)(t) = δ+

i δ−
i u

(m)(t) for i = 1, . . . , n

and
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72 H. Leszczyński, M. Matusik

δ
(2)
i j u

(m)(t) = 1

2

[
δ+
i δ−

j u
(m)(t) + δ−

i δ+
j u

(m)(t)
]

for (i, j) ∈ J−,

δ
(2)
i j u

(m)(t) = 1

2

[
δ+
i δ+

j u
(m)(t) + δ−

i δ−
j u

(m)(t)
]

for (i, j) ∈ J+.

Let us consider the interpolating operator
Jh : C(Q0.h ∪ Qh ∪ Q∗

h) → C(conv(Q0.h ∪ Qh ∪ Q∗
h)) defined by

Jh[u](t, x) =
∑
s∈S+

u(m+s)(t)

(
x − x (m)

h

)s (
1 − x − x (m)

h

)1−s

(4)

where x (m) ≤ x ≤ x (m+1), 1 := (1, . . . , 1),

S+ = {s = (s1, . . . , sn) : si ∈ {0, 1}, 1 ≤ i ≤ n}.

In [12] (page 85) we find another extrapolationmethod. It is easy to see thatJh[u] ∈
C(conv(Q0.h ∪ Qh ∪ Q∗

h)) and the norm of Jh is equal to 1.
Consider the differential-difference equations

d

dt
u(m)(t) −

n∑
i, j=1

ai j
(
t, x (m)

)
δ
(2)
i j u

(m)(t)

= f (t, x (m), (Jh[u])t , δu(m)(t) (5)

for (t, x (m)) ∈ [0, T ] × �h , the algebraic equations

u(m)(t) = exp
{
−

∥∥∥x (m) − r(x (m))

∥∥∥β
(
t, R(x (m))

})
Jh[u]

(
r(x (m))

)
(6)

for (t, x (m)) ∈ [−T0, T ] × �∗
h , and with the initial condition

u(m)(t) = ψ
(
t, x (m)

)
(7)

for (t, x (m)) ∈ [−T0, 0] × �h .

The method of lines (5)–(7) can be written as the abstract differential-algebraic
problem [

Ip×p 0
0 0

]
d

dt
u − Ku = ϕh(t, ut ) (8)

with the initial condition

u(t) = ψh(t), for t ∈ [−T0, 0]. (9)

K is generated by [ai j ] and ∂q j f , while ϕh by f . The choice is not unique. Here
one can choose K dependent on ai j for the components with the indices not greater
than p and ϕh(t, ut ) dependent on f .
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Assumption A[σ ]
– σ : [0, T ] × R+ → R+ is continuous non-decreasing in the second variable,

σ(t, 0) = 0, and the only maximal solution ω(·; γ, γ̃ ) to the Cauchy problem

ω′(t) = σ(t, ω(t)) + γ̃ , ω(t) = γ for t ∈ [−T0, 0] (10)

tends to zero as γ̃ , γ → 0.

In particular ω′(t) = σ(t, ω(t)), ω(t) = 0 for t ∈ [−T0, 0] implies ω(·; 0, 0) ≡ 0.

Assumption A[K]

– K: [0, T ] → MP×P is bounded and continuous,
– ki1 + . . . + ki P = 0 for each i = 1, . . . , P ,
– ki j ≥ 0 for i = j , i, j = 1, . . . , P ,
– the matrix K is DA-irreducible (i.e. ki1 + . . . + kip > 0 for i > p).

Assumption A[C]The initial functionψh ∈ C([−T0, 0],RP ) satisfies the consistency
condition

K3ψh.D(0) + K4ψh.A(0) + ϕ̃A(0) = 0

Lemma 1 Suppose that A[K], A[σ ] is satisfied and ϕ̃ is bounded and continuous.
Then problem [

Ip×p 0
0 0

]
d

dt
z − Kz = ϕ̃(t) (11)

with the initial condition z(t) = ψh(t) on [−T0, 0] has exactly one solution z :
[−T0, T ] → R

P provided that the initial data satisfy the consistency condition A[C].

Proof Problem (11) can be written in the following form

{
z′D − K1zD − K2zA = ϕ̃D,

−K3zD − K4zA = ϕ̃A

with the initial conditions zD = (ψh)D, zA = (ψh)A. From DA-irreducibility of the
matrix K it follows that det (K4) = 0. Hence

zA = K−1
4 (−K3zD − ϕ̃A).

Therefore
z′D −

(
K1 − K2K

−1
4 K3

)
zD = −K2K

−1
4 ϕ̃A + ϕ̃D. (12)

In this theoremwe only consider the casewhen the right hand side is dependent only
on t . Hence from the boundedness, DA-irreducibility and continuity of K there exist
a unique solution of problem (12) (see [28] Thm VII). The component zA is uniquely
determined by zD . The consistency condition A[C] guarantees the continuity of the
solution.
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74 H. Leszczyński, M. Matusik

Lemma 2 Suppose that A[σ ], A[K], A[C] are satisfied and |gi (t, ξ)| ≤ σ(t, ‖ξ‖)
for i ≤ p and gi (t, ξ) = 0 for i > p. Then

‖z(t)‖ ≤ ω(t; γ, γ̃ ) on [−T0, T ] × �̃h,

where z is a solution of

[
Ip×p 0
0 0

]
d

dt
z − Kz = g(t, zt ) + �̃(t)

with the initial condition (9) and γ = ‖ψh‖ γ̃ = ‖�̃‖.
Proof If γ̃ , γ ≡ 0, then according to [11] z ≡ 0. If we assume that γ̃ , γ ≥ 0 then
we consider the comparison system

x ′
i = Bi

p∑
j=1, j =i

ki j
x j
B j

+ Bi

{
σ

(
t, sup

1≤l≤p

∣∣∣∣
xl
Bl

∣∣∣∣
t
+ CK γ̃

)
+ γ̃

}
, i ≤ p

∣∣∣∣
xi
Bi

∣∣∣∣ ≤ sup
1≤l≤p

∣∣∣∣
xl
Bl

∣∣∣∣
t
+ CK γ̃ , i > p,

where |zi | ≤ xi
Bi
, CK = sup

p+1≤i≤P

( p∑
l=1

kil

)−1

and Bi is the solution of the ODE

B ′
i = −kii Bi , Bi (0) = 1.

Proceeding analogously like in [11] we have xi = x1
Bi
B1

, i = 2, . . . , P and

[
x1
B1

]′
≤ σ

(
t,

∥∥∥∥
x1
B1

1

∥∥∥∥
t
+ CK γ̃

)
+ γ̃ .

It follows from the comparison principle for ODE’s that

xi
Bi

= x1
B1

≤ ω(t; γ, γ̃ ) − CK γ̃ ≤ ω(t; γ, γ̃ ),

which completes the proof.

The following lemma is crucial in the proof of Theorem 1.

Lemma 3 Suppose that A[σ ], A[K], A[C] are satisfied and

|ϕi.h(t, w) − ϕi.h(t, w̃)| ≤ σ(t, ‖w − w̃‖) for i = 1, . . . , p

and ϕi.h(t, w) = 0 for i = p + 1, . . . , P. Then there exists exactly one solution of
problem (8,9).

123



Method of lines for parabolic functional differential equations 75

Proof Consider an iterative method, which starts from a prescribed function u0 ∈
C([−T0, T ],RP ) satisfying (8) with some error �̃(t) and γ̃ = ‖�̃‖. Now we consider
the linear system of equations for each k = 0, 1, . . .

[
Ip×p 0
0 0

]
d

dt
uk+1 − Kuk+1 = ϕh(t, (uk)t )

with the initial condition (9). It follows fromLemma 1 that there is exactly one solution
of the above problem. Applying Lemma 2 to the differences uk+l − uk for k, l ∈ N

we conclude that {uk}k∈N is the Cauchy sequence.

4 Stability and convergence

We are now in position to state our main stability and convergence result for the MOL
corresponding to (1, 2, 3). We need the following assumptions on the functions f , β,
ai j , and the steps h of the mesh.

Assumption A

– f : Q × C(Q0) × R
n → R is continuous in t, w, q, the same property have the

derivatives ∂q j f and they are bounded,
– ai j : Q → R are bounded and continuous in t for i, j ∈ {1, . . . , n},
– ∂q j f , ai j and steps h satisfy the relations (CFL)

−h j

2

∣∣∂q j f
∣∣ + a j j −

∑
l = j

h j

hl

∣∣a jl
∣∣ ≥ 0

ai j
(
t, x (m)

)
≤ 0 for (i, j) ∈ J−, ai j

(
t, x (m)

)
≥ 0 for (i, j) ∈ J+,

– | f (t, x, w̄, q) − f (t, x, w, q)| ≤ σ(t, ‖w̄ − w‖), | f (t, x, 0, 0)| ≤ M f ,

– β is a bounded, continuous function such that β ≥ 0.

Theorem 1 Suppose that A[σ ], A are satisfied. Then there exists exactly one solution
u : [T0, T ] → �̃hR of problem (5–7).

Proof Consider the iterative method. We choose an arbitrary function u0 ∈
C([−T0, T ],RP ). Consider the ODE system

d

dt
u(m)
k (t) −

n∑
i, j=1

ai j
(
t, x (m)

)
δ
(2)
i j u

(m)
k (t) = f

(
t, x (m), (Jh[uk−1])t , δu(m)

k (t)
)

(13)
with the initial and boundary conditions (6)–(7).

We apply the Hadamard mean value theorem to the difference

f
(
t, x (m), (Jh[uk−1])t , δu(m)

k (t)
)

− f
(
t, x (m), (Jh[uk−1])t , δu(m)

k−1(t)
)

.
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We have

d

dt
u(m)
k (t) −

n∑
i, j=1

ai j
(
t, x (m)

)
δ
(2)
i j u

(m)
k (t) −

n∑
i=1

∫ 1

0
∂qi f (�(τ))dτδi u

(m)
k (t)

= f
(
t, x (m), (Jh[uk−1])t , δu(m)

k−1(t)
)

−
n∑

i=1

∂qi f (�(τ))dτδi u
(m)
k−1(t),

where

�0(τ ) = (t, x (m), (Jh[uk−1])t , (1 − τ)δu(m)
k−1(t) + τδu(m)

k (t)).

We substitute the formulas for δ, δ(2) in the above equation. The matrix K consists of
elements which are linear combinations of ai j and ∂q j f .

According to Lemma 2 we show that the matrix K satisfies all conditions of A[K].
Put

S0 =
∑

(i, j)∈J

1

hi h j

∣∣∣ai j (t, x (m))

∣∣∣ − 2
n∑

i=1

1

h2i
aii

(
t, x (m)

)
,

S+
i = 1

2hi

∫ 1

0
∂qi f (�(τ))dτ + 1

h2i
aii

(
t, x (m)

)
−

n∑
j=1, j =i

∣∣ai j (t, x (m)
∣∣

hi h j
,

S−
i = − 1

2hi

∫ 1

0
∂qi f (�(τ))dτ + 1

h2i
aii

(
t, x (m)

)
−

n∑
j=1, j =i

∣∣ai j (t, x (m)
∣∣

hi h j
,

Si j = 1

2hi h j

∣∣∣ai j
(
t, x (m)

)∣∣∣ .

It follows from assumption A that

S0 ≤ 0, S+
i , S−

i ≥ 0, Si j ≥ 0, i, j = 1, . . . , n

and

S0 +
n∑

i=1

(S+
i + S−

i ) + 2
∑

(i, j)∈J

Si j = 0.

Since Jh[u] is a convex combination of u(t, x (m)) and

exp
{
−

∥∥∥x (m) − r
(
x (m)

)∥∥∥ β
(
t, R(x (m)

)}
≤ 1,

first two conditions of A[K] are satisfied. Note that at least one coefficient in Jh is
positive. Thus last two conditions of A[K] are satisfied. It follows from Lemma 1 that
there is exactly one solution of problem (13).
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Next we analyse the difference uk+l − uk for k, l ∈ N. Put �lu = uk+l − uk . We
have

d

dt
�lu

(m)
k −

n∑
i, j=1

ai j
(
t, x (m)

)
δ
(2)
i j �lu

(m)
k (t)

= f
(
t, x (m), (Jh[uk+l−1])t , δu(m)

k+l(t)
)

− f
(
t, x (m), (Jh[uk−1])t , δu(m)

k (t)
)

.

We apply the Hadamard mean value theorem

d

dt
�lu

(m)
k −

n∑
i, j=1

ai j
(
t, x (m)

)
δ
(2)
i j �lu

(m)
k (t) −

n∑
i=1

∫ 1

0
∂qi f (ϒ(τ))dτδi�lu

(m)
k

= f
(
t, x (m), (Jh[uk+l−1])t , δu(m)

k (t)
)

− f
(
t, x (m), (Jh[uk−1])t , δu(m)

k (t)
)

,

where

ϒ(τ) =
(
t, x (m), (Jh[uk+l−1])t , (1 − τ)δu(m)

k (t) + τδu(m)
k+l(t)

)
.

Applying Lemma 2 we have

‖�luk(t)‖ ≤ ωk(t, γ, γ̃ ),

where

lim
k→∞ ωk(t) = 0

uniformly on [0, T̃ ], for each T̃ ∈ (0, T ) (see [21]). We conclude that {uk}k∈N is the
Cauchy sequence.

Theorem 2 Suppose that A[σ ], A are satisfied and

– u is a solution of (1,2,3) and ũ is a solution of (5,6,7) such that

∣∣∣u(m)(t) − ũ(m)(t)
∣∣∣ ≤ γh on [−T0, 0] × �̃h,

∣∣∣u(m)(t) − ũ(m)(t)
∣∣∣ ≤ γ ∗

h (t) on (t, x) ∈ [0, T ] × �∗
h .

Then there is ωh : [−T0, T ] → R+ such that

∣∣∣u(m)(t) − ũ(m)(t)
∣∣∣ ≤ ωh(t), and lim‖h‖→0

ωh(t) = 0. (14)

Remark 1 We assume that sign ai j is constant. One can omit this assumption by
considering J−, J+ as sets which depend on x (m).
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Proof (Theorem 2) Let �h : Qh → R be defined by the relation

d

dt
u(m)(t) −

n∑
i, j=1

ai j
(
t, x (m)

)
δ
(2)
i j u

(m)(t)

= f
(
t, x (m), (Jh[u])t , δu(m)(t)

)
+ �

(m)
h (t) on Qh .

It follows that there is γ̃h such that

∣∣∣�(m)
h (t)

∣∣∣ ≤ γ̃h on Qh and lim
h→0

γ̃h = 0.

From the definition of Jh we have

|Jh[u] − Jh[ũ]| ≤ ‖u − ũ‖ ≤ γh on [−T0, 0] × �∗
h .

Applying the Hadamard mean value theorem we have

d

dt
(u − ũ)(m)(t) −

n∑
i, j=1

ai j
(
t, x (m)

)
δ
(2)
i j (u − ũ)(m)(t)

−
n∑

i=1

∫ 1

0
∂qi f (�(τ))dτ

[
δi (u − ũ)(m)(t)

]

= f
(
t, x (m), (Jh[u])t , δũ(m)(t)

)

− f
(
t, x (m), (Jh[ũ])t , δũ(m)(t)

)
+�

(m)
h ,

where

�(τ) =
(
t, x (m), (Jh[u])t , δũ(m)(t) + τ(δu(m)

(
t) − δũ(m)(t)

))
.

Hence the above equation can be written in the following form

[
Ip×p 0
0 0

]
d

dt
(u − ũ) − K(u − ũ) = g(t, (Jh[(u − ũ)])t ) + �h(t),

where

�i.h(t) =
{

�i.h(t), i = 1, . . . , p,
γ ∗
h , i = p + 1, . . . , P.

According to Lemma 2 we show that the matrix K satisfies all conditions of A[K].
Put
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S0 =
∑

(i, j)∈J

1

hi h j

∣∣∣ai j
(
t, x (m)

)∣∣∣ − 2
n∑

i=1

1

h2i
aii

(
t, x (m)

)
,

S+
i = 1

2hi

∫ 1

0
∂qi f (�(τ))dτ + 1

h2i
aii

(
t, x (m)

)
−

n∑
j=1, j =i

∣∣ai j (t, x (m)
∣∣

hi h j
,

S−
i = − 1

2hi

∫ 1

0
∂qi f (�(τ))dτ + 1

h2i
aii

(
t, x (m)

)
−

n∑
j=1, j =i

∣∣ai j (t, x (m)
∣∣

hi h j
,

Si j = 1

2hi h j

∣∣∣ai j
(
t, x (m)

)∣∣∣ .

It follows from assumption A that

S0 ≤ 0, S+
i , S−

i ≥ 0, Si j ≥ 0, i, j = 1, . . . , n

and

S0 +
n∑

i=1

(S+
i + S−

i ) + 2
∑

(i, j)∈J

Si j = 0.

Since Jh[u] is a convex combination of u(t, x (m)) and

exp
{
−

∥∥∥x (m) − r(x (m))

∥∥∥)β
(
t, R(x (m)

)}
≤ 1,

first two conditions of A[K] are satisfied. Note that at least one coefficient in Jh is
positive. Thus last two conditions of A[K] are satisfied. The conclusion in (14) can
be seen by observing that the function ω : [−T0, T ] × H → R+ is a solution of the
Cauchy problem

ω′(t) = σ(t, ω(t)) + γ̃h, ω(t) = γh, for t ∈ [−T0, 0].

5 Numerical examples

We apply the results presented in Sect. 3 to a differential equation with deviated
variables and to a differential integral problem. We consider our numerical examples
on the cylinder [0, T ] × B1, where B1 is the unit ball centered at (0, 0).

Example 1 Consider the differential integral problem

∂t u − ∂2xxu + 1

2
∂2xyu − ∂2yyu =

(
1 + x2 + y2

) ∫ t

0
u(s, x, y)ds

+
(
4x2t2 − 2xyt2 + 4y2t2

)
u +

(
4t − 2 − x2 − y2

)
sin

(
t (x2 + y2 + 1)

)
,
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Table 1 Maximal error for PDE with integrals

t(r) 0.050000 0.100000 0.150000 0.200000 0.250000

ε
(r)
max 0.0004152 0.0008028 0.0033388 0.0074885 0.0132798

Table 2 Maximal error for PDE with delays

t(r) 0.100000 0.200000 0.300000 0.400000 0.500000

ε
(r)
max 0.0078578 0.0137890 0.0174465 0.0182035 0.0184644

with initial and boundary conditions

u(0, x, y) = 1 on B1,

∂u

∂n
+ 2t tan

(
t (x2 + y2 + 1)

)
u = 0 on

[
0,

π

8

]
× ∂B1.

The solution of the above problem is known, u(t, x, y) = cos(t (x2 + y2 + 1)).

In Table 1 we give experimental values of the maximal error εmax for h0 = 0.01 and
h1 = h2 = 0.125, where (h0, h1, h2) are steps of the mesh with respect to (t, x, y).

Example 2 Consider the differential equation with deviated variables

∂t ut − ∂2xxu + 1

2
∂2xyu − ∂2yyu = u

(
t

2
, x, y

)

+ [−x2 − y2 + 4t − 4t2x2 − 2t2xy − 4t2y2]u − exp{−0.5t (x2 + y2)},

with initial and boundary conditions

u(0, x, y) = 1 on B1,

∂u

∂n
+ 2tu = 0 on [0, 1] × ∂B1.

The solution of the above problem is known, u = e−t (x2+y2).

In Table 2 we give experimental values of the maximal error for h0 = 0.01 and
h1 = h2 = 0.125, where (h0, h1, h2) are steps of the mesh with respect to (t, x, y).

The above examples are carried out for two-dimensional spatial variables. This is
done only for our convenience of implementation. The theory presented in our paper
is not limited with respect to the dimension of spatial variables. Both coefficients of
the derivatives of the unknown function and the functions appearing on the right hand
side of the equation and the initial and the boundary conditions satisfy the assumptions
imposed inour paper. The computed results havebeen comparedwith the exact solution
to show the required accuracy of the method. The computation time is 0.38sec for the
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first example, and 24.82 s for the second example. The presented experiments illustrate
the convergence of the proposed method.
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