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Abstract In this paper, we present two non-zero inner-product encryption (NIPE) schemes
that are adaptively secure under a standard assumption, the decisional linear (DLIN) assump-
tion, in the standard model. One of the proposed NIPE schemes features constant-size
ciphertexts and the other features constant-size secret-keys. Our NIPE schemes imply an
identity-based revocation (IBR) system with constant-size ciphertexts or constant-size secret-
keys that is adaptively secure under the DLIN assumption. Any previous IBR scheme with
constant-size ciphertexts or constant-size secret-keys was not adaptively secure in the stan-
dard model. This paper also presents two zero inner-product encryption (ZIPE) schemes each
of which has constant-size ciphertexts or constant-size secret-keys and is adaptively secure
under the DLIN assumption in the standard model. They imply an identity-based broadcast
encryption system with constant-size ciphertexts or constant-size secret-keys that is adap-
tively secure under the DLIN assumption. We also extend the proposed ZIPE schemes in two
directions, one is a fully-attribute-hiding ZIPE scheme with constant-size secret-keys, and
the other a hierarchical ZIPE scheme with constant-size ciphertexts.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue
on Cryptography, Codes, Designs and Finite Fields: In Memory of Scott A. Vanstone”.

An extended abstract of a preliminary version [26] of this paper was presented in CANS 2011, the 10th
International Conference on Cryptology and Network Security. This is the full version of the extended
abstract [26] and provides significant technical contributions over [26], e.g., fully-attribute-hiding ZIPE
scheme with constant-size secret-keys, a hierarchical ZIPE scheme with constant-size ciphertexts, and proofs
of all lemmas for security. Refer to Sects. 10 and 12, and Appendix.
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1 Introduction
1.1 Background

Functional encryption (FE) is an advanced concept of encryption or a generalization of
public-key encryption (PKE) and identity-based encryption (IBE). In FE systems, a receiver
can decrypt a ciphertext using a secret-key corresponding to a parameter v if and only if v is
suitably related to another parameter x specified for the ciphertext, or R(v, x) = 1 for some
relation R (i.e., relation R holds for (v, x)). More generally, a secret key in FE is associated
with a function f and a ciphertext of plaintext x is decrypted to f (x) by the secret key [9,28].

The first flavor of functional encryption traces back to the work of Sahai and Waters
[29], which was subsequently extended in [2,3,6,10,13,14,17,18,20,25,32]. In their concept
called attribute-based encryption (ABE), for example, parameter v for a secret-key is an access
control policy, and parameter x for a ciphertext is a set of attributes. Decryption requires
attribute set x to satisfy policy v, i.e., relation RABE (v, x) = 1 iff x satisfies v. Identity-based
broadcast encryption (IBBE) [1,8,12,16,30] and revocation (IBR) [21] schemes can also
be thought of as functional encryption systems where a ciphertext is encrypted for a set of
identities S = {I Dy, ..., I D, } in IBBE (resp. IBR) systems, and to decrypt it by a secret-key
associated with I D requires that /D € S (resp. ID ¢ S), i.e., relation R'BBE(ID, §) = 1
(resp. R'BR(ID, §) = 1)iff ID € S (resp. ID ¢ ).

Katz et al. [19] introduced a functional encryption scheme for zero inner products, zero
inner product encryption (ZIPE) where a ciphertext encrypted with vector X can be decrypted
by any key associated with vector ¥ such that 7 - ¥ = 0, i.e., relation RZPE(¥, X) = 1 iff
v - X = 0. Their scheme is selectively secure in the standard model and the ciphertext size
is linear in the dimension of vectors, n, although it achieves an additional security property,
attribute-hiding, in which X is hidden from the ciphertext. As shown in [19], ZIPE provides
functional encryption for a wide class of relations corresponding to equalities, polynomials
and CNF/DNF formulae.

Attrapadung and Libert [4] proposed a ZIPE scheme as well as a non-zero IPE (NIPE)
scheme, where NIPE relation RNPE(T, ¥) = 1iff 7 - X # 0. NIPE supports a wide class
of relations corresponding to the complement of those for ZIPE. In their ZIPE and NIPE
schemes, without retaining the attribute-hiding property, the ciphertext size reduces to a
constant in n (the dimension of vectors, v and X), as long as the description of the vector
is not considered a part of the ciphertext, which is a common assumption in the broadcast
encryption/revocation applications. Hereafter in this paper, “constant” will be used in this
sense. In addition, the number of pairing operations for decryption in [4] is constant. Their
ZIPE system is adaptively secure in the standard model, but the NIPE scheme is not adaptively
secure (co-selectively secure) in the standard model.

The ZIPE system [4] implies an adaptively secure identity-based broadcast encryption
(IBBE) scheme with constant-size ciphertexts in the standard model, while previous IBBE
schemes with constant-size ciphertexts were either only selective-ID secure [ 1,8, 12] or secure
in a non-standard model [16,30]. Among IBBE systems with short ciphertexts (includ-
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ing selective-ID secure ones), the IBBE scheme [4] is the only one relying on standard
assumptions, namely the DBDH and DLIN assumptions. The NIPE scheme [4] implies a co-
selectively secure (not adaptively secure) identity-based revocation (IBR) system [21] with
constant-size ciphertexts in the standard model. Lewko et al. [21] presented IBR systems
with constant-size public and secret keys that are not adaptively secure. Hence, the following
problems are still remained.

1. No NIPE scheme with constant-size ciphertexts is adaptively secure in the standard
model, and no IBR scheme with constant-size ciphertexts or constant-size secret-keys is
adaptively secure in the standard model. No NIPE scheme with constant-size secret-keys
has been presented.

2. No ZIPE (or no IBBE) scheme with constant-size ciphertexts is adaptively (or selectively)
secure under a single standard assumption in the standard model. No ZIPE scheme with
constant-size secret-keys has been presented.

1.2 Our result

We address the problems. Note that all of our results are obtained in the standard model.

1. This paper presents the first adaptively secure NIPE scheme that has constant-size cipher-
texts or constant-size secret-keys (Sects. 6 and 7). The security assumption is a standard
one, the decisional linear (DLIN) assumption. This implies the first adaptively secure
IBR scheme with constant-size ciphertexts or constant-size secret-keys.

2. This paper also presents the first ZIPE scheme that has constant-size ciphertexts or
constant-size secret-keys and is adaptively secure solely under a single standard assump-
tion, the DLIN assumption (Sects. 8 and 9). This implies the first IBBE scheme with
constant-size ciphertexts that is adaptively secure solely under a single standard assump-
tion.

3. We present two extensions of the proposed ZIPE schemes. One is a fully-attribute-hiding
ZIPE scheme with constant-size secret-keys (Sect. 10). It is obtained by applying the
technique of the fully-attribute-hiding ZIPE scheme in [27] to the proposed ZIPE scheme
with constant-size secret-keys in Sect. 9, while the ZIPE scheme in Sect. 9 is weakly-
attribute-hiding. The other extension is a hierarchical ZIPE scheme with constant-size
ciphertexts (Sect. 12). These schemes are adaptively secure under the DLIN assumption.

The number of pairing operations for decryption is constant in all the proposed schemes.
We summarize a comparison of our results with those of [4] in Table 1 in Sect. 11 (see the
items of ‘Security’, ‘Assump.’, ‘CT Size’ and ‘SK Size’ in Table 1, for the features discussed
in Sects. 1.1 and 1.2).

1.3 Related works

Adaptively secure and attribute-hiding ZIPE scheme under the DLIN assumption has been
presented [25], but the ciphertext-size is linear in n (not constant), while our ZIPE scheme
has constant-size ciphertexts and is adaptively secure but not attribute-hiding.

After the publication of the preliminary version [26] of this paper, Chen—Wee [11] con-
structed a constant-size ciphertext and adaptively secure spatial encryption scheme, which
includes ZIPE as a special case. Although both of our ZIPE scheme and Chen—Wee’s scheme
have constant-size ciphertexts, the concrete size of a ciphertext in their scheme is shorter
than ours.
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1.4 Key techniques

All of the proposed schemes in this paper are constructed on dual system encryption [22,31]
and dual pairing vector spaces (DPVS) [20,24,25]. See Sect. 1.5 for some notations in this
section. In DPVS, a pair of dual (or orthonormal) bases, B and B*, are randomly generated

using a fully random linear transformation X g GL(N,F,) (N: dimension of span(B) and
span(B*)) such that B and B* are transformed from canonical basis A by X and (X -hT,
respectively (see Sect. 2 and [20,24,25]). In a typical application of DPVS to cryptography,
a portion of B (say B) is used as a public key and the corresponding portion of B* (say B*)
is used as a secret key or trapdoor.

In this paper, we develop a novel technique on DPVS, where we employ a special
form of random linear transformation X € GL(N,F;), or X € L(4,n,F;) of Eq.(3)

in Sect. 6.2, in place of fully random linear transformation X <E GL(N,F,). This form
of X provides us a framework to achieve short ciphertexts or short secret-keys as well
as a small number of pairing operations in decryption. It, however, is a challenging task
to find such a special form of X like Eq.(3) that meet the several requirements for the
dual system encryption method to prove the adaptive security of ZIPE and NIPE schemes
under the DLIN assumption. Such requirements are given hereafter. To reduce the secu-
rity of our schemes, especially Problems 1 and 2 in this paper, to the DLIN assumption,
the form of X should be consistent with the distribution of the DLIN problem. The form
of X should be sparse enough to achieve short ciphertexts or secret-keys. We should also
have a special pairwise independence lemma, Lemma 6 in Sect. 6.4, that is due to the
special form of X, where linear random transformations U and Z are more restricted (or
specific) than those of previous results, e.g., [25], with fully random X. See Sect. 6.1 for
more details.

1.5 Notations

. . . R .
When A is a random variable or distribution, y <— A denotes that y is randomly selected

from A according to its distribution. When A is a set, y <E A denotes that y is uni-
formly selected from A. A vector symbol denotes a vector representation over [, e.g.,
X denotes (xp,...,x,) € . For two vectors X =g ...,x)and v = (vy,..., V),
X - ¥ denotes the inner-product > ;_, x;v;. The vector 0 is used to denote the zero vec-
tor in F/ for any n. XT denotes the transpose of matrix X. I, denotes the £ x ¢ identity
matrix. A boldface letter denotes an element of vector space V, e.g., x € V. When b; € V

i=1,...,¢0),span(by, ..., by) C V (resp.span{xy, ..., x¢)) denotes the subspace gener-
ated by by, ..., by (resp. X1, ..., X¢). Forbases B : =(b1, ..., by) and B* : =(b7, ..., by),
(X1,...,XN)B : =Zf\’=1 xibj and (y1,..., yn)B* : = ZlNzl yib}. An n-dimensional vector
L
Ej denotes the canonical basis vector (0---0,1,0---0) € IFq” forj=1,...,n. GL(n,Fy,)
denotes the general linear group of degree n over ;. For a linear subspace V C F/,
VL denotes the orthogonal complement, i.e., V= : ={w € IF,;’lJ) v =0 forall v €
V.
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2 Dual pairing vector spaces by direct product of symmetric pairing
groups

In this paper, for simplicity of description, we will present the proposed schemes on the sym-
metric version of dual pairing vector spaces (DPVS) [23,24] constructed using symmetric
bilinear pairing groups given in Definition 1. Owing to the abstraction of DPVS, the presen-
tation and the security proof of the proposed schemes are essentially the same as those on
the asymmetric version of DPVS, (¢, V, V*, G7, A, A*, e), for which see Appendix “Proofs
of Lemmas 4-12 in Sect. 6” in the full version of [25]. The symmetric version is a specific
(self-dual) case of the asymmetric version, where V.= V* and A = A*.

Definition 1 (Symmetric bilinear pairing groups) (q, G, Gr, G, e) are a tuple of a prime
q, cyclic additive group G and multiplicative group Gr of order ¢, G # 0 € G, and
a polynomial-time computable nondegenerate bilinear pairing ¢ : G x G — Gr ie.,
e(sG,tG) = e(G, G)*" and e(G, G) # 1.

Let Gppg be an algorithm that takes input 1* and outputs a description of bilinear pairing
groups (¢, G, Gr, G, e) with security parameter A.

Definition 2 (Dual pairing vector spaces (DPVS)) (q,V, Gr, A, e) by a direct product of
symmetric pairing groups (¢, G, Gr, G, e) are atuple of prime ¢, N-dimensional vector space
N

——
V:=G x --- x G over Fy, cyclic group Gt of order g, canonical basis A : =(ay, ...,ay)
1 N_i
/—l/b\ r—/;\
of V, where a; : =(0,...,0,G, 0,...,0), and pairing ¢ : V x V — Gr. The pairing
is defined by e(x, y) : =H1N=1 e(Gi, H;) € Gr where x : =(Gy,..., Gy) € V and
y : =(Hy, ..., Hy) € V. This is nondegenerate bilinear i.e., e(sx, ty) = e(x, y)*' and if

e(x,y) =1forally € V,thenx = 0.Foralli and j,e(a;,a;) = e(G, G)%.i where 3i,j =1
if i = j, and O otherwise, and e(G, G) # 1 € Gr.

DPVS also has linear transformations ¢; ; on V s.t.¢; j(a;) = a; and ¢; j(ax) = 0 if

i—1 N—i

k # j, which can be easily achieved by ¢; j(x) : =(0,...,0,G;,0,...,0) where x :
=(Gy, ..., Gn). Wecall ¢; ; “canonical maps”.

DPVS generation algorithm Ggpys takes input 1*(x € N)and N € N, and outputs a
description of paramy : =(q,V, Gr, A, e) with security parameter A and N-dimensional
V. It can be constructed by using Gppg.

3 Definitions of zero and non-zero inner-product encryption (ZIPE/NIPE)

This section defines zero and non-zero inner-product encryption (ZIPE/NIPE) and their secu-
rity. The relations RZPE of ZIPE and RNPE of NIPE are defined over vectors ¥ € IF; \ {0}
and v € F)! \ {0}, where RZPE(G, %) : =1iff ¥ - U = 0, and RNPE(D, X) : =1iff ¥ - ¥ # 0,
respectively.

Definition 3 (Zero and non-zero inner-product encryption: ZIPE/NIPE) Let a relation R be
RZPE or RNIPE " A zero (resp. non-zero) inner-product encryption scheme consists of four
algorithms with R : =RZPE (resp. R : =RNIPE),

Setup This is a randomized algorithm that takes as input security parameter. It outputs
public parameters pk and master secret key Sk.
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KeyGen This is a randomized algorithm that takes as input vector v, pk and sk. It outputs
a decryption key skj.
Enc This is a randomized algorithm that takes as input message m, a vector, X, and
public parameters pkK. It outputs a ciphertext ctz.
Dec This takes as input ciphertext ct; that was encrypted under a vector X, decryption
key sky for vector v, and public parameters pk. It outputs either plaintext m or
the distinguished symbol L.

A ZIPE (or NIPE) scheme should have the following correctness property: for all
(pk, sk) & Setup(1*), all vectors v, all decryption keys skj & KeyGen(pk, sk, v),

all messages m, all vectors X, all ciphertexts Ct; a Enc(pk, m, X), it holds that m =
Dec(pk, sk, ct;) with overwhelming probability, if R(v, x) = 1.

We define three security notions in Definitions 4-6.

Definition 4 (Adaptively payload-hiding security) The model for proving the adaptively
payload-hiding security of ZIPE (or NIPE) under chosen plaintext attacks is given hereafter.

Setup The challenger runs the setup algorithm, (pk, sk) & Setup(1*), and gives
public parameters pK to the adversary.
Phase 1 The adversary is allowed to adaptively issue a polynomial number of queries, v,
to the challenger or oracle KeyGen(pk, sk, -) for private keys, sk, associated
with v.
Challenge The adversary submits two messages, m © and mM, and a vector, X, provided that
no v queried to the challenger in Phase 1 satisfies R(v, X) = 1. The challenger

flips a coin b <E {0, 1}, and computes Ct)(?b) <E Enc(pk, m® ). 1t gives Ct)(?b)
to the adversary.
Phase 2 The adversary is allowed to adaptively issue a polynomial number of queries, v,
to the challenger or oracle KeyGen(pk, sk, -) for private keys, Skj, associated
with v, provided that R(v, X) # 1.
Guess The adversary outputs a guess b’ of b.

The advantage of adversary A in the above game, AdvﬂPE’PH Q) (or Adv[\j‘lPE‘PH (A)), is
defined by Pr[b’ = b]—1/2 for any security parameter A. A ZIPE (or NIPE) scheme is adap-
tively payload-hiding secure if all polynomial time adversaries have at most a negligible
advantage in the game.

Remark 1 We have two remarks on variants of the above security notion.

e Inaweaker security notion, selectively payload-hiding, the adversary is required to declare
the challenge vector X at the beginning of the game (before Setup). Similarly, the weaker
(selective) security variants can be defined in place of the two (adaptive) security notions
in Definitions 5 and 6.

e The above security notion, which is secure against chosen-plaintext attacks (CPA), can be
easily extended to the security notion against chosen-ciphertext attacks (CCA) by allowing
an adversary to give decryption queries in Phases 1 and 2. Since there is a standard
(efficient) methodology to transform a CPA-secure FE (including NIPE/ZIPE) scheme
to a CCA-secure FE scheme by using the Canetti—-Halevi—Katz (CHK) transformation or
the Boneh—Katz (BK) transformation [7] as is given in [25], we only present CPA-secure
NIPE/ZIPE schemes in this paper.
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Definition 5 (Adaptively weakly-attribute-hiding security) The model for proving the adap-
tively weakly-attribute-hiding security of ZIPE under chosen plaintext attacks is obtained
from the above game by replacing Challenge and Phase 2 steps by the following:

Challenge The adversary submits two messages, (m ©, m )y, and two vectors, (x©@, D),
provided that no v queried to the challenger in Phase 1 satisfies R(v, X Oy = 1or

R, X¥) = 1. The challenger flips a coin b d {0, 1}, and computes Ct;) &
Enc(pk, m®, X)) 1t gives ct;u) to the adversary.

Phase 2 The adversary is allowed to adaptively issue a polynomial number of queries, v,
to the challenger or oracle KeyGen(pk, sk, -) for private keys, sky, associated
with v, provided that R(¥, ¥@) # 1 and R(@, xD) # 1.

The advantage of adversary A in the above game, AdVE‘IF’E'WAH (M), is defined by Pr[b’ =
b]—1/2 for any security parameter A. A ZIPE scheme is adaptively weakly-attribute-hiding
secure if all polynomial time adversaries have at most a negligible advantage in the game.

Informally, in adaptively fully-attribute-hiding security game, adversary is allowed to issue
both types of key queries, R(¥, ¥?)) = 0 and R(¥, ¥®) = 1, in a single security game. It
gives a strong security than Definition 5 and is given in the following Definition 6.

Definition 6 (Adaptively fully-attribute-hiding security) The model for proving the adap-
tively fully-attribute-hiding security of ZIPE under chosen plaintext attacks is obtained from
the above game by replacing Challenge and Phase 2 steps by the following:

Challenge The adversary submits challenge attribute vector (X(@, (1)) and challenge plain-
texts (m @, m(), subject to the following restrictions:

e 1-X@ £0and v - XV # 0 for all the key queried predicate vectors, .
e Two challenge plaintexts are equal, i.e., m©® = m(, and any key query v satisfies
R(@, @) = R@, V), i.e., one of the following conditions.

O =0andv- XD =0,
X0 £0and v - XD £0,

el S

The challenger flips a coin b <E {0, 1}, and computes Ct:) <E Enc(pk, m® | f(b)). It gives
ctyw) to the adversary.

Phase 2 The adversary is allowed to adaptively issue a polynomial number of queries, v,
to the challenger or oracle KeyGen(pk, sk, -) for private keys, Sk, associated
with v, subject to the restriction given in the challenge step.

The advantage of adversary .A in the above game is defined as Advi'PE’AH()L)

=Pr[A wins ] — 1/2 for any security parameter A. An IPE scheme is adaptively fully-
attribute-hiding (AH) (against chosen plaintext attacks) if all probabilistic polynomial-time
adversaries .4 have at most negligible advantage in the above game.

For each run of the game, the variable s is defined as s : =0 if m© % m( for challenge
plaintexts m©@ and m®, and s : =1 otherwise.

4 Decisional linear (DLIN) assumption

Definition 7 The DLIN problem is to guess g € {0, 1}, given (paramg, G, £G, kG, 86¢G,
okG,Yp) bl ggL'N(ﬂ), where g};L'N(ﬂ) . paramg : =(¢. G, Gr, G, ¢) Pl Gopg (1),
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K, 8,60 < Ty, Yo:=(3+0)G, Y| < G, return (paramg,. G, £G, kG, 86G, ok G, Yp),
for <E {0, 1}. For a probabilistic machine £, we define the advantage of £ for the DLIN

problem as: AdvB-NGy) : = |Pr [5(1'\,9) -1 ‘Q il gg’L'N(lk)] —Pr[ea*, o) — 1

o ¥l G P LIN (12 ] ‘ . The DLIN assumption is: For any probabilistic polynomial-time adver-

sary £, the advantage AdV?LIN (1) is negligible in A.

5 Special matrix subgroups

Lemmas 1-3 are key lemmas for the security proof for our (H)IPE schemes. For a positive
integer n, let

u u} )
. . u,uy €y forl =1,...,n,
Hn,Fy) = . /3 a blank element in the matrix § , (1)
Wi,_1 || denotes 0 € F,
/
ul‘l
u/
1
N ub u u,uy e Fyforl=1,...,n,
Hn,Fy) : = . . a blank element in the matrix ¢ . 2)
: ’ denotes 0 € F,
u, u

Lemma 1l H(n,Fy) N GL(n,Fy) andﬁ(n, Fy) N GL(n, Fy) are subgroups of GL(n, Fy).

Lemma 1 is directly verified from the definition of groups. O
For positive integers w and n, let

L(w,n,Fy):=
i, j Kiia
Xl,l Xl,w . l'j EH(”,Fq)
X:=| D[ X = o | ferii=
Xt Xuw Hi.j “i,/,n—] L...,w
Hijn
() GLwn.F,). (©)
L(w, n, Fy): =
/
Hi g1
X . X JJ ~
1,1 1w /’L;,J‘,Q 14i. c H(I’l, Fq)
X:= Xij:= . fori,j =
Xuwi1 - Xuw , 1,...,w
Hi jn Mi,j
() GLwn, Fy). (4)

Lemma 2 L(w,n,F,) and Z(w, n,Fy,) are subgroups of GL(wn, F,).
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X0,0 XO,lzn e XO,wEn Xij c H(l’l, ]Fq)’

=T
X1,0 X1 o Xiw Yio:=(y; _ c F?
CHw.nFy) =1 X:= . . . Xi,0 1 =(Xi,0,01=1,...n € Fg,
: : : X0,05 X0.j € Fyq
XIE’O X1 - Xow fori,j=1,...,w
() GL(wn +1,F,). )

Lemma3 £ (w,n, Fy) is a subgroup of GL(wn + 1, F,).

Proofs of Lemmas 2 and 3 are given in Appendix “Proofs of Lemmas 2 and 3 in Sect. 5”.

6 NIPE scheme with constant-size ciphertexts
6.1 Key ideas in constructing the proposed NIPE scheme

In this section, we will explain the key ideas of constructing and proving the security of the
proposed NIPE scheme.

First, we will show how short ciphertexts and efficient decryption can be achieved in our
scheme. Here, we will use a simplified (or toy) version of the proposed NIPE scheme, for
which the security is no more ensured in the standard model under the DLIN assumption.

A ciphertext in the simplified NIPE scheme consists of two vector elements, (¢, ¢1) €
G’ x G", and ¢3 € Gr. A secret-key consists of two vector elements, (kj,k]) €
G5 x G". Therefore, to achieve constant-size ciphertexts, we have to compress ¢; € G"
to a constant size in n. We now employ a special form of basis generation matrix,

w W
X:=| b | e HF,) of Bq.(1) in Sect. 6.2, where i, iy, ... 1, <
My
I
F, and a blank in the matrix denotes 0 € F,. The system parameter or DPVS pub-
b unG wiG
lic basis is B: =] - D= e : . Let a ciphertext associated with
wG G
by G
X:=x1,...,xp) bee; : =(wX)p = w(xiby + -+ + xpby) = (x10uG, ..., xy—10uG,

w31 xi})G), where w g IF,. Then, ¢ can be compressed to only fwo group elements
(C1 : =ouG, Cy: =a)(Z:l'-':1 x,',bL;)G) as well as X, since ¢ can be obtained by (x1Cy, ...,
xn—1C1, C2) (note that x; C1 = xjouG fori =1, ..., n—1). Thatis, a ciphertext (excluding
X) can be just two group elements, or the size is constant in 7.

Let B* : =(b]) be the dual orthonormal basis of B : =(b;), and B* be the master secret
key in the simplified NIPE scheme. We specify (co. k), ¢3) such that e(co, k§j) = g% . g“T"S
and c3 : =g§m € Gr. We also set a secret-key for v as ki : =(8V)px = S(uibt + - +
v, b%). From the dual orthonormality of B and B*, it then holds that e(cy, k}) = g(}’s(z"—)).
Hence, a decryptor can compute g”T“S if and only if X - ¥ # 0, i.e., can obtain plaintext m by
c3-e(co, k(“;)_1 e(cq, k’l‘)@"ﬁ’)f1 . Since ¢ is expressed as (x1C1, ..., x,—1C1, C2) € G" and

1 is parsed as a n-tuple (K1, ..., K,) € G", the value of e(cy, k}) is Hl'»l;ll e(x;Cy, K;) -
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734 T. Okamoto, K. Takashima

e(Ca, Kp) = [112) e(C1, xiK) - e(Ca, Ky) = e(C1, Y1) xiKi) - e(Ca, K,). Thatis, n — 1
scalar multiplications in G and two pairing operations are enough for computing e(cy, k7).
Therefore, only a small (constant) number of pairing operations are required for decryption.

We then explain how our full NIPE scheme is constructed on the above-mentioned sim-
plified NIPE scheme. The target of designing the full NIPE scheme is to achieve adaptive
security under the DLIN assumption. Here, we adopt a strategy similar to that of [25], in
which the dual system encryption methodology is employed in a modular or hierarchical
manner. That is, two top level assumptions, the security of Problems 1 and 2, are directly
used in the dual system encryption methodology and these assumptions are reduced to a
primitive assumption, the DLIN assumption.

To meet the requirements for applying to the dual system encryption methodology and
reducing to the DLIN assumption, the underlying vector space as well as the basis generator
matrix X is four times larger than that of the above-mentioned simplified scheme. For exam-

X1 X4
ple, ki : =(8v, 0", ¢1, 0" )p+, ¢1 = (X,0",0",mX)p, and X : =| : €
X1 --- X44
L4, n,F,) of Eq.(3) in Sect. 6.2, where each X; ; is of the form of X € H(n, ;) in the
simplified scheme. The vector space consists of four orthogonal subspaces, i.e., real encoding
part, hidden part, secret-key randomness part, and ciphertext randomness part. The simplified
NIPE scheme corresponds to the first real encoding part.

Akey factin the security reductionis that £(4, n, F;) is asubgroup of GL(4n, F;) (Lemma
2), which enables a random-self-reducibility argument for reducing the DLIN problem to
Problems 1 and 2 in this paper. The property that H(n, F;) N GL(n, F,) is a subgroup of
GL(n,F,) is also crucial for a special form of pairwise independence lemma in this paper
(Lemma 6), where H(n, F,) is specified in £(4, n, F;) or X. Our Problem 2, which is based on

this lemma, employs special form matrices U <E H(n,Fy) NGL(n,Fy) and Z : =(UHT.
Informally, our pairwise independence lemma implies that, for all (X, v), a pair, (XU, vZ),
is uniformly distributed over (span(x, ¢,) \ span(e,)) x (F; \ span(é,)) with preserving
the inner-product value, X - v, i.e., (XU, vZ) reveal no information but X and X - v.

A difference of matrix X with the ZIPE scheme will be noted in Remark 10.

6.2 Dual orthonormal basis generator

We describe random dual orthonormal basis generator QoNt:PE’CT below, which is used as a

subroutine in the proposed NIPE scheme.

R
GNPECT(1* 4, n) : paramg : =(¢, G, Gr, G, ¢) < Gopg(1*), No:=5, Ni:=dn,

paramy, : =(q, Vy, Gr, Ay, €) : =Gapus(1*, N;, paramg) fort =0, 1,
u
Y <F), gr:=e(G,G)", param, : =({paramy, };=o1, &r),

.....

.....

boi :=(x0,i1s---5 X0,i,5)4 = Z§=1 xoijajfori=1,...,5 Bo:=(bo,1,...,bos),
Bij:=pui G, Bl-”jJ : :M;,j,lG fori,j=1,....,41=1,...,n,
fort = 0,1, Vi i jmt,n, =Y - (XD,
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* oL _ NN P . (B* *
bt.i '_(ﬂlsiwl’"'7191,5,N1)A_z./';1 19,,,-4(1.,' fori=1, o Ny B;k : _(bt,]""’ t,Nt)’

/
return (param,,, Bo, By, (Bi j, B j }i.j=1,..4:1=1,...n, BY).

.....

Remark 2 Let

Bi Bi/,l,l Bi4 Bi/,4,l
b i—1yn+1 )
I I
by Bi1 Bi,l,nfl Bi4 Bi,4,n71 6)
1,in ’ B’
Bi,l,n i,4,n
fori=1,...,4,
By : =11, ...,b14n),

where a blank element in the matrix denotes 0 € G. B; is the dual orthonormal basis of B,
ie.,e(by;,by;) =grande(b;, ’f’j) =1forl <i#j<dn.

6.3 Construction

In the description of the scheme, we assume that input vector, X : =(xp, ..., X;), has an
index [ (1 <[ < n — 1) with x; # 0, and that input vector, v : =(vy, ..., v,), satisfies
v, # 0. The plaintext space is Gr.

R
1) < GarECT (1t 4, m),

Bo s =(b0.1,bo.3, 0. B =55 1. B3, 03,00, B 1 =05 1, B Byt - B,

1A =~ e
return pk : =(1*, param,, By, {B; ;, B,{,j,l}i=1,4;j=1,...,4;1:1 ,,,,, n), sk ={B;}=0.1.

Setup(1*, n) : (param,,, By, By, {Bij, B,{,j,l}i,j=1,...,4 =1

=1,...,

KeyGen(pk. sk, 1) : 8,90 < Fy. §1 < Fl, kj: =, 0, 1, go. O,
n n n n
e it T Nt .
ki:=(s8v, 0", ¢, 0" )p;, return sk; 1 =, kg, k7).
- U
Enc(pk, m, ¥): @, n0,m,¢ < Fy, € :=(—w, 0, £, 0, no)m,, €3 : =gym,
Clqj : :a)Bl.j + 7]134’1', Cz,j : :Z?zl xl(wBi,j,l + ’7134/1,1',1) forj=1,...,4,
return Ct; : =(%, co, {C1,j, C2,j}j=1.....4, C3).
Dec(pk, sky : =(1, kg, k}), ctz : =(X, co, {C1,j, Ca,j}j=1
Parse k7 as a 4n-tuple (KT, ..., K},) € G*,
D¥ : =3 HE - ) K¥ pp forj=1,....4,

Fi=e(eo. k§) - TTj=y (¢(C1j D) - e(Ca K3, rewum m' s =cs/F.

4,€3)) :

yeens

.....

tified with @1 : =0b1.1,...,b1.0,b130+1, ..., b1.4n) through the form of Eq.(6), while
By : =(b1,1, ..., by 4y) is identified with {B; ;, Bi/,j,z}i,j=1,.~,4; i1=1....n by Eq.(6). Decryp-
tion Dec can be alternatively described as:

Remark 3 A part of output of Setup(l}‘, n), (B j, Bl.’,j Yi=1,4;j=1,...4;=1,...n» €an be iden-

.....
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Decl(pk7 Sklj : :(‘U’ kév T)a Ct)? : :(27 €o, {Cl,jv CZ,/’}_/’:] ,,,,, 4, C3)) :

n n
ci:=(x1C11, ..., %-1C1,1,C21, ..., x1C1 4, ..., %,-1C1,4,C2 4 ),
n n n n
thatis, ¢; = ( wX, 0", 0", miX )p,, F:=e(co, ky) - elcr, (X -V)7k}),

return m’ : =c3/F.

[Correctness] Using the alternate decryption Dec’, F = e(co, kj) - e(e, x-v)" 'kt D =

g;w5+;g(;8(x v)/(3-9) — g? if Xx-0 # 0.

6.4 Security
The proofs of Lemmas 412 are given in Appendix “Proofs of Lemmas 4—12 in Sect. 6”.

Theorem 1 The proposed NIPE scheme is adaptively payload-hiding against chosen plain-
text attacks under the DLIN assumption.

For any machine A, there exist probabilistic machines &1, Ey-1 and &Ey-p whose run-
ning times are essentially the same as that of A, such that for any security parameter

n AWNPEPRGY < AVBENGY + 3, (AdvEZ'-_'/f"l(x) + AN (1)) e, where

Er-p-2
Erp-1() 1 =&-1(h, ), Ex-p-2(+) : =E2-2(h, -), v is the maximum number of A’s key queries
and e : =(11v + 6)/q.

6.4.1 Lemmas for the Proof of Theorem 1

We will show Lemmas 46 for the proof of Theorem 1.

Definition 8 (Problem I) Problem 1 is to guess 8, given

- R
(param,,, Bo, By, ep.0, {Bij. B ; }ij=1...4i=1.... ns BY, {Eg, i Ep jiti=tdi=1,.n) <
Q§1 (1)‘, n), where

NIPECT
GE' (1%, ) : (param,,, Bo, BY, (Bij, B)j Vi jmt..dsi=1,.ns BY) < (%, 4,m),

™k . __(p* ™ L _
]BO . _(b0,17b0,3’ ...,bo’s), ]Bl . _(bl,]’ ""bl,n’bt,Zn-H’ "'!bt,4n)’

0, T 00 M < By, U < Hn, Fy) N GL(n, F,), hereafter, u, u, € F,
ul,...,u,_; €F, denote non-zero entries of U, as in Eq. (1),
€0 :=(w,0,0,0,n0)B,, e1,0:=(w,1,0,0,n0)5,,
forj=1,...,4;
Eoj:=wBi j+mBaj, Eyj,;:=wBj ;,+mBy;,forl=1...n
Eyj:=wB) j+tuBj+nBsj,
E} ;i =wB] +ruB§j, +tupBy ;, +mBy
forl=1,...,n—1, andEljn._a)Bljn—i-ru szn—i—mBMn,
return (paramn,Bo,BO,eﬂ,o {Bi;, B,jl},, 1,..,40=1,..., naAik’

{Epjs Eg j 1} j=1....4:0=1,..n)
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for B g {0, 1}. For a probabilistic machine B, we define the advantage of 5 as

the quantity Advh'(n) : =|Pr |:B(1’\, 0) — 1 ‘Q a ghar, ")] —Pr[B(*,0) — 1

‘g ﬁgf”(ﬂ,n)”.

.....

By : =11, ..., b14n) [(Eq. (6)] Ifwemakeeﬁll 6V1 for,B—O 1;1=1,...,nas:

n n
eprri= (070 Epu 07 By 07 g, 0L B )
fori=1,...,n—1,
egln:= ( On_l, E/ﬁ,l,n’ e, On_l, E/ﬂ,4,n ),
they are expressed over B as:
n n n n
e Y e e
€1, = ( wéy, 0", 0", e )]B] forl=1,...,n
e :=( we, U, 0, nig )Bl forl=1,...,n

Using these vector expressions, the output of g§1(1*, n) is expressed as (param,, By,
B, g0, B1, B, {eg.1.1}i=1,...n)-
Lemma 4 For any machine B, there exists a probabilistic machine &£, whose runnlng times

are essentially the same as that of B, such that for any security parameter X, Adv A <
AdveN ) +5/9.

Definition 9 (Problem 2) Problem 2 is to guess 8, given
(param,,, Bo, B, kg o. €0, {Bij, B} ; /Ji=1.3,4:j=1,....4i1=1

E ) jmt kit ) < GR2(1%, ), where

ns BT» {hz,l,l’ Ej7

.....

GE2(1*,n): (param,, Bo, By, (Bij. Bl i jmt... aiimt,.ns BY) < GNPECT(1% 4. ),
By : =(bo.1,b03,...,b05), 8,p,90,w,T 2 Fy, @ 2 IF;' forl=1,...,n
U <L HnF)NGL®,F,), Z:=UNT,
hereafter, u,u, € F, u},...,u,_ €Fgandz,z, € F 2}, ..., 7, € Fy
denote non-zero entries of U and ZT, as in Eq. (1), respectively,
h§o:=(3,0,0, ¢, 0)m; » hio:=(@,p,0, 0, 0);. €0 : =(,7,0,0,0)8,,
& :=0""1,0"" eF} forl=1,....n

n n n n
—— N ——

R o= 8¢, 0 g, 0O )B,f forl=1,...,n,

hi,, = ( 8¢, parz, @, O )B,f forl=1,...,n,
forj=1,...,4; Ej:=wB;;+tuby}j,
E}J : =a)Bi’j7l + ‘L'uBé’j’l + TM;Bé,j,n fori=1,...,n—1,
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/ . / ! p/
Ej,n : —a)B]’j,n + TMnBz,j,n»

o /
return (param,,, Bo, By, h% o, e, {Bi,j, B; j }i=13.4;j=1,...4:1=1,...n> B,

for 8 <E {0, 1}. For a probabilistic adversary B, the advantage of B3 for Problem 2, AdVng2 (A),
is similarly defined as in Definition 8.

Remark 5 A part of output of g;z(l’\, n), {Bi j, Bl.”j’,},':1,3,4;1-:1,,“,4;1:1 1, can be iden-

.....

tified with @1 =11, b1.0,b12041, - ... b1,4y) in the form of Eq.(6), while B; :

=(b1,1,...,b1,4n) is identified with {B; ;, Bi/’jyl},',jzl ,,,,, 4:1=1,...n by Eq.(6). If we make
ejyeViforl=1,...,nas:
n n
e := (0171, Eq, =1 Ell,l’ R o1, Ey, 0"7171, E‘/‘,l )
forl =1, n—1,
ern:=( o1, El . o 0", Ej, ),
they are expressed over B as:
n n n n
———— —— ——
er):=( wé, e, U, 0", o" )]Bl forl=1,...,n.

Using these vector expressions, the output of g;z(l)‘,n) is expressed as (param,,
Bo, By, b . €0, B, B, {hp 1 ) €10}i=1,...n)-

.....

Lemma 5 For any machine B, there exists a probabilistic machine £, whose running time
is essentially the same as that of B, such that for any security parameter A, Advz2 ) <

AdvEENGY +5/4.

Lemma 6 Leté, : =(0,...,0,1) € Fj. For all X e Fy\ span(é,) and w € Fy, let

Wi ={(F, w) € (span(x, ,) \ span(e,)) x (F} \ span(é,)t) | 7 - w = x}.
For all (;,7) € (F; \span(én)) x (Fg \span(é,,)i), for all 7.0) € Wi i),

Pr[)?U =FAN UVZ = 12)'] = 1/1j W, 5.5y, where U d Hn,Fy) N GL(n,Fy) and Z :
=UHT.

6.4.2 Proof outline

At the top level of strategy of the security proof, we follow the dual system encryption
methodology proposed by Waters [31]. In the methodology, ciphertexts and secret keys have
two forms, normal and semi-functional. In the proof herein, we also introduce other forms of
secret keys called Ist-pre-semi-functional and 2nd-pre-semi-functional. The real system uses
only normal ciphertexts and normal secret keys, and semi-functional ciphertexts and semi-
functional/1st-pre-semi-functional/2nd-pre-semi-functional keys are used only in a sequence
of security games for the security proof. To prove this theorem, we employ Game 0 (original
adaptive-security game) through Game 3. In Game 1, the challenge ciphertext is changed to
semi-functional. When at most v secret key queries are issued by an adversary, there are 3v
game changes from Game 1 (Game 2-0-3), Game 2-1-1, Game 2-1-2, Game 2-1-3 through
Game 2-v-3.
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In Game 2-h-1, the first (h — 1) keys are semi-functional and the h-th key is Ist-pre-
semi-functional, while the remaining keys are normal, and the challenge ciphertext is semi-
functional. In Game 2-h-2, the first (h — 1) keys are semi-functional and the A-th key is
2nd-pre-semi-functional, while the remaining keys are normal, and the challenge ciphertext
is semi-functional. In Game 2-4-3, the first & keys are semi-functional (i.e., and the A-th
key is semi-functional), while the remaining keys are normal, and the challenge ciphertext is
semi-functional.

The final game (Game 3) with advantage 0 is conceptually changed from Game 2-v-3. As
usual, we prove that the advantage gaps between neighboring games are negligible.

When at most v key queries are issued by an adversary, we set a sequence of sk : =skj’s,
ie., (sk* ..., sk™*), in the order of the adversary’s queries. Here we focus on I;f;h)* :
=(kgl)*, kgh)*), and ¢; : =(co, {C1,j, C2,j}j=1,...4, ¢3), and ignore the other part of sk
(resp.Cty), i.e., U (resp.i.e., X), and call them secret key and ciphertext, respectively, in this
proof outline. In addition, we ignore a negligible factor in the (informal) descriptions of this
proof outline. For example, we say “A is bounded by B” when A < B + €(A) where €(}) is
negligible in security parameter A.

-(h .
A normal secret key, k% )*norm, is the correct form of the secret key of the proposed NIPE
scheme, and is expressed by Eq.(7). Similarly, a normal ciphertext ¢;"°™, is expressed by

> (h)* 1st- i
Eq. (8). A Ist-pre-semi-functional secret key, kf; )* Tst-psemi

2 (h)* 2nd- i . .
pre-semi-functional secret key, k% 2 pseml, is expressed by Eq.(11), a semi-functional

>(h i, . . . - i
secret key, k% s seml, is expressed by Eq.(12), and a semi-functional ciphertext, c;fem', 1S

expressed by Eq. (9).
To prove that the advantage gap between Games 0 and 1 is bounded by the advantage of
Problem 1 (to guess B € {0, 1}), we construct a simulator of the challenger of Game O (or 1)

, is expressed by Eq. (10), a 2nd-

(against an adversary A) by using an instance with j g {0, 1} of Problem 1. We then show
that the distribution of the secret keys and challenge ciphertext replied by the simulator is
equivalent to those of Game 0 when 8 = 0 and Game 1 when 8 = 1. That is, the advantage
gap between Games 0 and 1 is bounded by the advantage of Problem 1 (Lemma 7). The advan-
tage of Problem 1 is proven to be bounded by that of the DLIN assumption (Lemma 4). The
advantage gap between Games 2-(h — 1)-3 and 2-4-1 is similarly shown to be bounded by the
advantage of Problem 2 (i.e., advantage of the DLIN assumption) (Lemmas 8 and 5). The dis-

= (h)* 1st-psemi
tributions of Ist-pre-semi-functional secret key kf; x Tstzpsem (Eq.(10)) and 2nd-pre-semi-

= (h)* 2nd-psemi

Sfunctional secret key kj (Eq. (11)) are distinguishable by the simulator or chal-
= (h)* 1st- i - semi = (h)* 2nd- i - semi
lenger, but the joint distributions of (k,(; et psemt. ¢>°™)and (k% Jx2n psemt. ¢°°™) along

with the other keys are (information theoretically) equivalent for the adversary’s view, when
%0 =0,i.e., RNPE(X, §) # 1. Therefore, as shown in Lemma 9, the advantages of Games 2-
h-1 and 2-h-2 are equivalent. The advantage gap between Games 2-4-2 and 2-h-3 is similarly
shown to be bounded by the advantage of Problem 2 (i.e., advantage of the DLIN assumption)
(Lemmas 10 and 5). Finally we show that Game 2-v-3 can be conceptually changed to Game
3 (Lemma 11) by using the fact that basis vectors b > and b§73 are unknown to the adversary.

6.4.3 Proof of Theorem 1
To prove Theorem 1, we consider the following (3v + 3) games. In Game 0, a part framed by

a box indicates coefficients to be changed in a subsequent game. In the other games, a part
framed by a box indicates coefficients that were changed in a game from the previous game.
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Game 0 Original game. That is, the reply to a key query for v is
ko =(5. [0] 1. go. Osg.  Kf =63, [07], 61, 07),,., 7

where §, ¢ b Fy. ¢1 b [y and U:=,...,v,) € F with v, # 0. The challenge
ciphertext for challenge plaintexts (m(o), m(l)) and X, (¥, ¢, {C 1,j» C2,j}j=1,...4, c3), which

is identified with (X, cg, ¢1, ¢3) in Remark 3, is
co:=(-o, [0] [¢] 0, o)y, €1 :=(F, [0"] 0", mB)s,, c3:=gfm, ()

where b <E {0, 1}; w, ¢, no, m <E Fy and ¥ : =(x1,...,x,) € IF; with x; # 0 for some
le{l,...,n—1}.

Game 1 Same as Game 0 except that the challenge ciphertext for challenge plaintexts
m©@, mWy and X is

co:=(~w, [=1] £, 0, o). €1: =X, [tZU] 0", mDp,. c3:=g5m, ()

where T <E F,, U <E H(n,Fy;) NGL(n,Fy), and all the other variables are generated as in
Game 0.

Game 2-h-1(h=1, ...,v) Game 2-0-3 is Game 1. Game 2-4-1 is the same as Game 2-
(h — 1)-3 except that the reply to the h-th key query for v, (k§, k7), is

Ko =0, [P] L oo, Ompe ki =G0, [p0Z] 61 0", 10y

.....

where p < F,, Z : =(U~)T for U < H(n,F,) N GL(n,F,) used in Eq.(9) and all the
other variables are generated as in Game 2-(h — 1)-3.

Game 2-h-2(h=1, ..., v) Game 2-h-2 is the same as Game 2-h-1 except that a part of the
reply to the h-th key query for v, (k§, k7), is

k=G, [w], 1, g0, Oz, K} =(69, p3Z, G1, 0"z, (11

where w 2 [F, and all the other variables are generated as in Game 2-h-1.
Game 2-h-3(h=1, ..., v) Game 2-h-3 is the same as Game 2-h-2 except that the reply to
the -th key query for v, (k§, k7), is

ki :=6. w, 1, go. Oz, Kkf =7, [0"] &1, 0", (12)

where all the variables are generated as in Game 2-h-2.
Game 3 Same as Game 2-v-3 except that ¢p and c3 of the challenge ciphertext are

co:=(~w. —t. [¢'] 0. no)zy. 31 =gfm®,

where ¢’ g F, (i.e., independent from ¢ g IF,), and all the other variables are generated
as in Game 2-v-3.
Let Adv) (), Advy 0, Adv ™00 (h = 1,..., v = 1,2,3) and Adv (1) be

the advantage of A in Game O, 1, 2-h-t and 3, respectively. Advfg) (%) is equivalent to

AdV[\:‘IPE’ PH (1) and itis obtained that Advfi) () = 0by Lemma 12. We will show five lemmas
(Lemmas 7-11) that evaluate the gaps between pairs of Advfg) ), Adviall) ), Advﬁ'h'l) )
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forh=1,...,v;t=1,2,3 and Advﬁ) (A). From these lemmas and Lemmas 4 and 5, we
obtain Theorem 1. O

Lemma 7 For any machine A, there exists a probabilistic machine By, whose running time
is essentially the same as that of A, such that for any security parameter A, |AdV52) ) —
Adv' (V)] < Adv! (b).

Lemma 8 For any machine A, there exists a probabilistic machine B;-1, whose run-

ning time is essentially the same as that of A, such that for any security parameter A,
2-(h—1)-3 2-h-1

|Adv£4 (=33 — AdV( () < Adez ot A), where Byp1(-) © =Bo-1(h, -).

Lemma 9 Forany machine A, for any security parameter A, |Advﬁ_h_l) ) — Advﬁ_h_z) )|
=1/q.

Lemma 10 For any machine A, there exists a probabilistic machine By-», whose run-

ning time is essentially the same as that of A, such that for any security parameter A,
2-h-2 2-h-3

IAdVET" P ) — AV V()] < AdVER (W), where Byapa () : =Baaa (., ).

Lemma 11 Forany machine A, for any security parameter A, |Adv£i'”'3) ) —Adv(3) W] <
1/q.

Lemma 12 For any machine A, for any security parameter A, Advg) *) =0.

7 NIPE scheme with constant-size secret-keys

7.1 Dual orthonormal basis generator

We describe random dual orthonormal basis generator ggﬂPE'SK below, which is used as a

NIPE,CT .

subroutine in the proposed NIPE scheme, where G is given in Sect. 6.2.

NIPE,SK , 12 R ,NIPE,CT
Gob (1*,4,n) : (param,, Do, DG, {D;,j, D; ; i, j=1....41=1,..n- DT) < Gy

(1", 4,n),

By : =D§, By : =Do, By : =DJ, Bl-’fj :=D; ;. B’ I _D/-.i»l
fori,j=1,....,41=1,...,n

return (param,,, Bo, B, By, { B} r ,'/j-,l}i,j=1 ,,,,, 4l=1,...n)-

Remark 6 From Remark 2, {Bl i l][}i,jzl,__,,“ 1,...n is identified with basis B}

_(bl’l, e bl,4n) dual to B].

,,,,,

7.2 Construction and security
In the description of the scheme, we assume that input vector, v : =(vy, ..., v,), has anindex

[ (1 <1 <n—1)with v; # 0, and that input vector, X : =(x1, ..., x,), satisfies x, # 0.
The plaintext space is G7.
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(EgNIPE SK(IA 4,n),

=1,...

Bo : =(bo,1. b3, bo,s). B : =B} 1. b 5. bF.4).
By =11, ... bln,b13n+1,-- b14n),
KeyGen(pk, sk, v) : 8, @o, @1 <—Fq, kj: =@, 0, 1, o, O)p;,
K =8Bf , + @B}, Ki :=3/ w@B, +¢By,) forj=1..4,
return sk : =(v, k¢, (K7 ;. K3 j}j=1,...4).
N U - U
Enc(pk, m, X): w,no,¢ < Fy, 71 <—IE<‘Z, co:=(—w, 0, ¢, 0, no)s,,
| =¥, 0", 0", fi)p,, c3:=gym, return Ct; :=(X,co, c1,c3).
Dec(pk, sk : =(U, k¢, {KT ;, K3 ;}j=1,...4), Clz : =(X, co, €1, ¢3)) :
Parse ¢ as a 4n-tuple (Cy, ..., C4p) € G*,
=" ((x ) Cii—tyngt forj=1,...,4,
F :=e(co, ky) - szl (e(Dj, Kik,j) -e(Cijp, Ki"’j)) , return m’':=c3/F.
Remark 7 lipart of output of Setup(1*, n), {Bi’fj, Bz‘/j‘,l}i=1,3:./'=1,~-~,4:1 1....n. can be iden-
tified with Bf : =(b7, 17""bT,il’bT,2n+l’""bT,Bn)’ while BY : =(b] 1, ...,b},) is

identified with {B], i B " *Ji.j=1,...4:=1,...n in Remark 6. Decryption Dec can be alter-
natively described as:

Dec'(pk, skj : =(U, kg, (K7 ;. K5 ;}j=1,

,,,,,

..... 4), Cty 1 =(X, co, €1, 3)) :

n n
* . * * * * * *
ki:= (u11<1 IS Y ¢ 1,1{21, v K o1 K g K ),
that is, k} = (80, 0", 0", @10)z:, F :=e(co, k) - e((X-0) " er, k}),

return m’ .=C3/F.

Theorem 2 The proposed NIPE scheme is adaptively payload-hiding against chosen plain-
text attacks under the DLIN assumption.

For any machine A, there exist probabilistic machines £, E2-1 and Ey-p whose run-
ning times are essentially the same as that of A, such that for any security parameter

a AWPEPG) < AdVRINGY + i, (AVEEN 6o+ AdVREN, () e, where

Ex-n-1
Erp-1() 1 =E-1(h, ), Ea-p-2(¢) 1 =E2-2(h, -), v is the maximum number of A’s key queries
ande : =(11v + 6)/q.

Theorem 2 is proven similarly to Theorem 1.

8 ZIPE scheme with constant-size ciphertexts

8.1 Dual orthonormal basis generator

We describe random dual orthonormal basis generator QZIPE CT below, which is used as a

subroutine in the proposed Zero IPE scheme. Since the deﬁnltlon is employed for the scheme
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Short ciphertexts or short secret-keys for adaptively secure general IPE 743

ZIPE,CT

with w = 5 in Sect. 10, we describe G for general w. (We use only the cases with
w=4,5).
R
ggl!)PEYCT(]A’ w, n) : paramG : :(Q7 G5 GT? G» e) < gbpg(l)\), N :=wn =+ 1,

U
Y < FX. gr :=e(G,G)V, paramy : =(q,V,Gr, A, e) : =Ggpys(1*, N, paramg),

param, : =(paramy, gr), X <E £+(w,n,IFq), hereafter,

{X0,0, X0,/ Xi,0.15 i, j» M;’j’,}i,jzhmw;l:] ,,,,, » denotes non-zero entries of X,

where {1;,;, u;’j’ ;} are non-zero entries of submatrices X; ; of X

as given in Egs. (5) and (1), (9 )i, j=0,...wn : =V - (XT)_I,

Bo,o : =x0.0G, Bo.j :=x0,;G, Bioi:=xi01G, Bij:=ui;G, Bl{,j,l : :ME,,/,IG
fori,j=1,...,w;l=1,...,n,

b:k : :(19,"1, ey ﬁi,N)A = 2720 z?i,jaj fori = 0, Lo, wn, B* : :(bzk), ey b:m)’

!
return (param,,, {Bo,0, Bo,j. Bi,o,i, Bi,j. B; j i}, j=1,...wii=1

1

.....

Remark 8 {Bo,0, Bo,j, Bi,0,i, Bi,j Bl.’jl}i,jzl ,,,,, w:l=1,...n 1s identified with basis B : =
(b, ..., byy) dual to B* as in Remark 2.

8.2 Construction and security

In the description of the scheme, we assume that input vector, X : =(x, ..., X,), has an
index [ (1 <1 < n — 1) with x; # 0, and that input vector, v : =(vy, ..., v,), satisfies
v, # 0. The plaintext space is Gr.

Setup(1*, n) :
R ,ZIPE,CT
(param,, {BO,O9 BO,j’ BioJ, Bi,jv Bi/,j,l}isjzl ,,,,, 4;1=1,...,n» B*) <~ gob (l)‘, 4,n),
ﬁ* N :(bz;, ey b;, bzn_i,_l’ R b;n)’

.....

sk : =B*.
n n n n
- U - u e o Nad Nast
KeyGen(pk, sk, v) : § < Fy, ¢ <—IFZ, k*:=(1, sv, 0", ¢, 0")

return sk : =k*.

B*,

Enc(pk, m, X): w,n,¢ = Fy, Co:=C(Boo+ > xi(wBi0;+nBasoy),
c3: =g§m, C1,j : =wBy,j + 1By,
Crj:=(Boj+ >, xl(a)Bi’j’l + nBé’Lj,l) forj=1,...,4,
return Ctz : =(X, Co, {C1,j, C2,j}j=1,....4, C3).
Dec(pk, sk; : =k*, ct; : =(x, Co, {C1,j, C2,j} j=1,...4, €3)) :
Parse k™ as a (4n + 1)-tuple (K, ..., KJ,) € G4l

R -1 s
D;‘ =200 le(*jfl)n+l forj=1,...,4,

F:=e(Co. K3 - TTL, (e(cl,j, D) - e(Ca,. an)), return m' : =c3/F.
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Remark9 A part of output of  Setup(1*,n),  {Boo, Bo,j, Bios Bij.
Bi/,j,l}i=1-4§j=1,~~s421=1 ,,,,, n, can be identified with B : =(by, ..., by, b3p+1, - . ., bay), while
B : =(bo. ..., b4) is identified with {Boo, Bo,j, Bi,o.i» Bij, Bj ; }ij=1,..4i=1,.n in
Remark 8. Decryption Dec can be alternatively described as:

Dec'(pk, skj : =k*, cty : =(X, Co, {C1,j, Ca,j}j=1,..4, C3)) :

n n

c:=(Co, x1Ci1,....x0—1C1,1. C21, -y X1C14y ..., X—1C1 4, Ca4 ),

n n n n
. —_ s s ,
thatis, ¢ = (¢, wx, 0", 0%, nxX ), F:=e(c, k™), return m’ : =c3/F.

[Correctness] Using the alternate decryption Dec’, F = e(c, k) = g§+w8f-ﬁ = g% ifx.v=

0.

Remark 10 The proposed ZIPE in this section employs a single basis, B, generated by
X e GLAn+1,Fy) [or X € LY@, n, F,) of Eq.(5)], and a ciphertext can be expressed
as (c, g?m) with ¢ = (¢, wX, 0%, nX)p as shown in Remark 9. The proposed NIPE
scheme in Sect. 6.3 employs two bases, By and Bj, generated by Xg € GL(5,Fy)
and X; € GL(4n,F,), and a ciphertext can be expressed as (co, cl,gém) with ¢ :
=(—w, 0, ¢, 0, no)B, and ¢; = (WX, 02", 77155)131. Hence, the ciphertext and secret key
of the ZIPE scheme are shorter than those of the NIPE scheme (see Table 1 in Sect. 11). It is
due to the difference of the decryption tricks in the ZIPE and NIPE schemes. Similarly to the
fact on L(4, n, IF;) (for the security of the NIPE scheme) shown in Sect. 6.1, it is crucial for
the security of the ZIPE scheme that £* (4, n, F,) is a subgroup of GL(4n + 1, F;) (Lemma
3), and its security proof is made in the essentially same manner as explained in Sect. 6.1.

Theorem 3 The proposed ZIPE scheme is adaptively payload-hiding against chosen plain-
text attacks under the DLIN assumption. For any machine A, there exist probabilistic
machines &1 and &, whose running times are essentially the same as that of A, such that for
any security parameter A, AdVvZLlIF,E’F,H ) < Adv?lL'N(A) + > Adv%L_lhN (A) + €, where
Er-n(0) 1 =& (h, +), v is the maximum number of A’s key queries, and € : =(11v + 6)/q.

Proof To prove Theorem 3, we consider the following (v 4+ 3) games. In Game 0, a part
framed by a box indicates coefficients to be changed in a subsequent game. In the other
games, a part framed by a box indicates coefficients that were changed in a game from the
previous game.

Game 0 Original game. That is, the reply to a key query for v is

K =( 105, [07] g0m)

where § <E Fy, 0 <E IE‘Z and v : =(vq,...,v,) € IF; with v, # 0. The challenge cipher-
text for challenge plaintexts (m @, m() and ¥, (¥, co, {C1,j, C2,j}j=1,.. 4, c3), which is

identified with (.X, C, C3) in Remark 9, is
Cc:.= g , WX, 0" s On, nx ) , €3 .= Cm,
( 3 gl

where b P {0,1}; , 2,1 b F, and X : =(x1,...,x,) € Iy with x; # 0 for some
le(l,....,n—1).

.....
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Game 1 Same as Game 0 except that the challenge ciphertext for challenge plaintexts

m®, mD) and ¥ is
=(¢ wf [F] 0m n7) L e3i=gfm,

where 7 <E span(x, e,), and all the other variables are generated as in Game 0.
Game 2-h(h=1, ...,v) Game 2-0 is Game 1. Game 2-/ is the same as Game 2-(h — 1)
except that a part of the reply to the A-th key query for v, k*, is

“o=(1, 89, ] ¢ 0" )p,

where w <E IFZ and all the other variables are generated as in Game 2-(h — 1).
Game 3 Same as Game 2-v except that ¢ and c3 of the challenge ciphertext are

=(, WX, 7, 0", ni)B, 3 =gom®,

where ¢’ <E F, (i.e., independent from ¢ <E IF,), and all the other variables are generated
as in Game 2-v.

Let Adv(o) ), Adv(l)(k) Adv(2 ) A (h=1,...,v)and AdV(S)()L) be the advantage
of A in Game 0, 1, 2-h and 3, respectively. Adv A) (A) is equivalent to Ade|PE PH (1) and
Adv(3) (1) = 0. We can evaluate the gaps between pairs of Adv A) ), Adv(l) A, Adv(2 " Q)
for h = 1, ..., v using (variants of) Problems 1 and 2 as in the proof of Theorem 1. The
following Lemma 13 gives a gap evaluation between Adv(2 »2) (2) and Adv(3)(k) which
requires a detailed proof for our ZIPE with constant-size 01phertexts (see Appendix “Proof
of Lemma 13 in Sect. 8” for the proof). Combining the gap evaluations, we obtain Theorem
3. O

Lemma 13 For any machine A, for any security parameter X, |Advﬁ'v) ) — Advfl) )] <
1/q.

9 ZIPE scheme with constant-size secret-keys

9.1 Dual orthonormal basis generator

below, which is used as a

is defined in Sect. 7.1. Since the
ZIPE,SK

We describe random dual orthonormal basis generator gZ'PE SK

subroutine in the proposed ZIPE scheme, where QZIPE CT

definition is employed for the scheme with w = 5 in Sect. 10, we describe G for
general w. (We use only the cases with w = 4, 5).
Goo (1w, m) :
R _ZIPE.CT
(param,, {Do.0, Do.j» Di.o.1 Di.j» D} j bi.j=1...wii=1...., D) < Ggg -~ (1%, w, n),
B : =D*, B&O : =Dy.0, BE)k,j :=Dy,;, Bi,O,l =Dy, B;fj =D, Bi/,j',l : :Dl{,j,l

for i,j=1,...,w;l=1,...,n

* * /*
return (param,,, B, {Bg o, By j. B s Bl js Bi Yij=1,...wii=1,...n)-
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Remark 11 {Bg . By I By, B;‘fj, B,{j,l}i,jzl,..., .g=1,..n is identified with basis B*

=(b;, ..., b},) dual to B as in Remark 6.

.....

9.2 Construction and security

In the description of the scheme, we assume that input vector, v : =(vy, ..., U,), has an index
[ (1 <1 <n—1)with v; # 0, and that input vector, X : =(x1, ..., x,), satisfies x,, # 0.
The plaintext space is G7.
A ZIPE,SK
Setup(l s n) : (paramm B, {B{)k’()’ B(g)ij, ;‘jo’lv B, j’ B, s ]}l j=1,.,41=1,..., n) (_ gob

(1*,4,n),
B:=(bo,...,bn b3us1, ... ban),

. A o . ’
return pk : =(1*, param,,, B), sk : =(Bg o, Bg ;, Bio ;> B ;, B }i=1,3:j=1,...41=1,...n-

> U
KeyGen(pk, sk, 1) : &,¢ <—]Fq, K;; C=Bio+ 2 vBBY o, + B3 ),
K;‘,j::(SB*A—f—(pB;‘j K*.: +Zl ]v1(831]1+<pB3],) forj=1,...,4,
return skj : =(U, K, {Klj,sz}J 1...4)-

Enc(pk, m, X):w,¢ Pl Fy, 1 glﬁ‘;,c c=(¢, wx, 0", 0", 14 g, c3: =g§m,
return Ct; : =(c, c3).
Dec(pk, sk; : =(v, K§, {KT ;, K3 ;}j=1...4), Ctz 1 =(c, ¢3)) :
Parse ¢ as a (4n + 1)-tuple (Co, ..., Cqy) € Gl
=3 0C oty for j=1,...,4,
F i =e(Co. K§) - TTj= (D). Kf )+ e(Cln K3 ) o retumn m’ s =c/F.

Remark 12 A part  of output of  Setup(1*,n), {B}. B} I By, B;“j,
B[% =13 j=1... 41=1....n> can be identified withﬁB?* c=by, ... bE b5, ., ..., b}, while
B* : =(bg, .. b4n) is identified with {B o, By ;. B} ;. B} ;. Bi/j‘,l}i=1 A=l dd=1,. 0
in Remark 11 Decryption Dec can be alternatlvely described as:

Dec'(pk, skj : =(U, K§. (KT ;, K3 j}j=1...4), Ctz : =(c,¢3)) :

n n

K :=(K§ viKf v KE L KS o uiK v Ky Ky ),

n n n n
s Rathn Natee Nt
thatis, k* = (1, 8v, 0", v 0" )p«, F:=e(c, k"),

return m’ : =c3/F.

[Correctness] Using the alternate decryption Dec’, F = e(c, k) = §+w8x i =g ifX0=

0.

Theorem 4 The proposed ZIPE scheme is adaptively weakly-attribute-hiding against chosen
plaintext attacks under the DLIN assumption. For any machine A, there exist probabilistic
machines £ and &, whose running times are essentially the same as that of A, such that for
any security parameter A, AdvilPE’WAH ) < AdV?]LIN M+ 20 Advgzl‘_l,:\l (A) + €, where
Er-n(0) 1 =& (h, +), v is the maximum number of A’s key queries, and € : =(11v + 6)/q.
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Proof To prove Theorem 4, we consider the following (v + 3) games. In Game 0, a part
framed by a box indicates coefficients to be changed in a subsequent game. In the other
games, a part framed by a box indicates coefficients that were changed in a game from the
previous game.

Game 0 Original game. That is, the reply to a key query for v is

kK :=(1, v, , ov, 0" )IB*’

where §, ¢ <E F, and v:=(p,...,u,) € ]F;’ with v, # 0. The challenge ciphertext for
challenge plaintexts (m©, m() and ¥, (¥, co, {C1,j,C2,j}j=1,..4, c3), which is identified

with (X, ¢, ¢3) in Remark 9, is

where b < {0, 1}; 0, ¢ < Fy,7j < F! and ¥ : =(x1, ..., x,) € F with x; # 0 for some
lefl,...,n—1}

Game 1 Same as Game 0 except that the challenge ciphertext for challenge plaintexts
m©®, mMyand ¥ is

.....

c:=(t, ox, , 0", 7i)g. c3:=gpm,

where 7 <E F ;’, and all the other variables are generated as in Game 0.
Game 2-h(h=1, ...,v) Game 2-0 is Game 1. Game 2-% is the same as Game 2-(h — 1)
except that a part of the reply to the A-th key query for v, k*, is

k*:=(1, v, |w| ¢v, 0").,,
( )i

where i < span(v, e,) and all the other variables are generated as in Game 2-(h — 1).
Game 3 Same as Game 2-v except that ¢ and c3 of the challenge ciphertext are

c: =(’ ’ 7o, ﬁ)IB%’ 3 =g§m(b),

where ¢’ <E F, (i.e., independent from ¢ <E Fy), X <E ]FZ (i.e., independent from ¥ <H IFZ),
and all the other variables are generated as in Game 2-v.
Let Advig) ), Advi}l) ), Advﬁ'h) A (h=1,...,v)and Advﬁ) (1) be the advantage

of A in Game 0, 1, 2-h and 3, respectively. Advfg) (1) is equivalent to AdvﬂPE""'A"| (2) and
Advfi) (1) = 0. We can evaluate the gaps between pairs of Advfg) ), Advi) A, Advf‘_h) Q)
for h = 1, ..., v using (variants of) Problems 1 and 2 as in the proof of Theorem 1. The

following Lemma 14 gives a gap evaluation between Adv(j"’) (1) and Advf\) (A), which
requires a detailed proof for our ZIPE with constant-size secret-keys (see Appendix ‘“Proof
of Lemma 14 in Sect. 9” for the proof). Combining the gap evaluations, we obtain Theorem
4. o

Lemma 14 For any machine A, for any security parameter X, IAdVﬁ_") A) — Advfi) )| <
1/q.
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10 Fully-attribute-hiding ZIPE scheme with constant-size secret-keys

By applying our technique to the fully-attribute-hiding ZIPE scheme in [27], we obtain a
fully-attribute-hiding ZIPE scheme with short secret-keys.

10.1 Construction and security

In the description of the scheme, we assume that input vector, v : =(v1, ..., Uy), has an index
[ (1 <1 <n-—1)withv # 0, and that input vector, X : =(x, ..., x,), satisfies x,, # 0.
The plaintext space is Gr.

R ,ZIPE,SK
Setup(1*, n) : (param,. B, (Bjo. By ;. Bios B} j2 B Jisj=1...5i=t1...n) < Gag >

l]’
(1*,5,n),
@: =(bo, ..., bn, bapt1,...,bs5,),

. A w . /
returnpk :=(1%, param,, B), sk : ={B(>§,O’ Bg’j, 0.0 Bl*], Bij‘,l}i=1,4§j=11--~,5§l=1 ’’’’’ n-

.....

KeyGen(pk, sk, 1) : 8,9 < IFq, K :=Bjo+ S0 B, +9Bjo),
K}, :=8B{ ; + 9B}, Kj;:=B;,+2>/_u@B*, +¢By ) forj=1,..5,
return sky : =(v, Ky, {Klj,ng}j 1,...5)-
n 2n n n
Enc(pk, m, X): o, glﬁ‘q, ﬁglﬁ‘z, c:=(¢, Z)? B;? (-6"‘, ?)B,
3 :g?m
return Ct; : =(c, c3).
Dec(pk, sk; : =(1, K, {Kf’j, sz}j:l _____ 5), ctz 1 =(c, ¢3)) :
Parse ¢ as a (51 + 1)-tuple (Co, ..., Cs,) € G,
=1 wCn for j=1,...,5,

F :=e(Co, K§)) - H;:l (e(Dj, Kfj) ~e(Cjy, K;"j)) , return m' : =c3/F.

Remark 13 A part of output of §etup(1*, n, {Bf)k,o’ B(’;’j, B;o,l» B;‘jj,
Bi/j',l}i=1,4;j=1q--»,5§/=1 _____ n» can be identified with B* : =(bg, ..., b, b3, . ..., b},), while
B* : =(by, ..., b5,,) is identified with {Bg , By ;. By ;. Bf ;. B [Yi=1,...5:j=1,...5:1=1,...n
in Remark 11. Decryption Dec can be alternatively described as:

5), Cly : =(c, 3)) :

.....

Dec'(pk, sk : =(1, K¢, {K] ;. K5 ;}j=1

n n
*
k* = (K. vk KK lef,s,...,v,,_lK;ﬁs,K;,S),
n 2n n n
—~—

-

. AT P
thatis, k* = (1, §v, 0", v 0" )+, F :=e(c, k"),
return m’ : =c3/F.
[Correctness] Using the alternate decryption Dec’, F = e(c, k) = R T
g ryp 8r 8r
0.

@ Springer



Short ciphertexts or short secret-keys for adaptively secure general IPE 749

Theorem 5 The proposed ZIPE scheme is adaptively fully-attribute-hiding against chosen
plaintext attacks under the DLIN assumption.

For any machine A, there exist probabilistic machines &y-1, £y-2, £1-1, E1-2-1 and E1-2-2,
whose running times are essentially the same as that of A, such that for any security parameter

2 AdVEPEAR ) < AdVBENG) 4+ AdVBINGY) + 30, (AdvDL'N (1) + AdvBEN (5

1 E0-2-n E1-2-n-1

Er-2-n-2
=E&1-2-2(h, +), v is the maximum number of A’s key queries and € : =(29v + 17)/q.

+Adv2HN m) +€, where Eg-0-5 () 1 =Eo-2(h, ), E1-2-n-1() 2 =E1-0-1(h, ), E1-2-n2 ()

Proof Similarly to the proof of Theorem 1 in [27], the proof of Theorem 5 is reduced to that
of Lemma 15.
First, we execute a preliminary game transformation from Game 0 (original security game

in Definition 6) to Game 0’, which is the same as Game 0 except that flip a coin ¢ <E {0, 1}
before setup, and the game is aborted in the challenge step if ¢ # 5. We define that .4 wins with
probability 1/2 when the game is aborted (and the advantage in Game 0’ is Pr[.A wins ]—1/2
as well). Since ¢ is independent from s, the game is aborted with probability 1/2. Hence, the
advantage in Game 0’ is a half of that in Game 0, i.e., AdVI;’E’AH’O/ ) =1/2- AdVLEE’AH A).
Moreover, Pr[ A wins] = 1/2 - (Pr[.A wins | t = 0] 4+ Pr[./A wins | t = 1]) in Game 0’ since
t is uniformly and independently generated.

As for the conditional probability with # = 0, it holds that, for any adversary A, there
exist probabilistic machines £ and &, whose running times are essentially the same as that
of A, such that for any security parameter A, in Game 0°, Pr[A wins | t = 0] — 1/2 <
AdvEI'"N()L) + > Adv?zl'_l}[\l (A) + €, where &-,() : =& (h, -) and v is the maximum
number of A’s key queries and € : =(6v 4 5)/q. This is obtained in the same manner as
the weakly attribute-hiding security of the OT10 IPE in the full version of [25]: Since the
difference between our IPE and the OT10 IPE is only the dimension of the hidden subspaces,
i.e., the former has 2n and the latter has n, the weakly attribute-hiding security of the OT10
IPE implies the security with ¢ = 0 of our IPE.

As for the conditional probability with # = 1, i.e., Pr[.A wins | = 1], Lemma 15 holds.

Therefore, Adv4T = () = 2. AdvAPEAMY (1) = Pr[ A wins | 7 = 0] + Pr[.A wins | 7 =
11— 1 = (Pr[A wins | £ = 0] — 1/2) + (Pr[A wins | 1 = 1] — 1/2) < AdvBIN () +
>hoi AQVBEN G+ AdVRENG) + 2h_; (AN )+ AdVBEY ) + €, where

Eo-2-1 E1-2-n-1 E1-2-n-2

€:=2% +17)/q. O

Lemma 15 For any machine A, there exist probabilistic machines £y, £;-1 and £->, whose
running times are essentially the same as that of A, such that for any security parame-
ter A, in Game 0’ (described in the proof of Theorem 5), Pr[A wins | t = 1] — % <

AdvENG) + 3, (AdvDL'N (1) + AdvBLN (x)) + €, where Eyp1 () : =Er1(hs ),

Ex-p-1 Ex-h-2

Er-n-2(v) 1 =Er-2(h, +), v is the maximum number of A’s key queries and € : =(23v +12)/q.

Proof To prove Lemma 15, we consider the following 4v + 3 games when ¢ = 1. In Game
0, a part framed by a box indicates coefficients to be changed in a subsequent game. In the
other games, a part framed by a box indicates coefficients which were changed in a game
from the previous game.

Game 0’  Same as Game 0 except that flip a coin ¢ 2 {0, 1} before setup, and the game is

aborted in the challenge step if # # s. In order to prove Lemma 15, we consider the case
with r = 1.
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The reply to a key query for U is:
ko=(1 00, [07] [01] . 07)5..

where §, ¢ L [F,. The challenge ciphertext for challenge plaintext m : =m©® =m® and
vectors (x©@, ¥(D) is:

c:=(¢. , , , 0", 7 )g. c3: =gim,

where b <E {0,1}and ¢, w <H F, and 7 <E IFZ. Here, we note that c3 is independent from
bit b.

Gamel Game 1 is the same as Game 0’ except that ¢; of the challenge ciphertext for
(challenge plaintext m : =m® = m® and) vectors (x@, x(V) is:

cri=(c, wi®, [@F® ] 07, 0", i)y,

where o’ <E [F, and all the other variables are generated as in Game 0’.

Game 2-h-1(h=1,...,v)  Game 2-0-4 is Game 1. Game 2-A-1 is the same as Game 2-
(h — 1)-4 except that ¢ of the challenge ciphertext for (challenge plaintext m : =m©® =
m® and) vectors (@, ¥V) is:

C1- =(§1 a))_c'(b)’ w/)?(b) A w(/)/)_(’(o) +a)’1’5c'(1) A 0"’ ﬁ)IB’

where o/, a)g s a);’ <E [F, and all the other variables are generated as in Game 2-(h — 1)-4.
Game 2-h-2(h=1,...,v) Game 2-h-2 is the same as Game 2-h-1 except that the reply
to the h-th key query for v is:

K :=(1, ov, , 0", v, 0" )p.,

where o’ 2 [F, and all the other variables are generated as in Game 2-h-1.

Game 2-h-3(h=1,...,v)  Game 2-h-3 is the same as Game 2-i-2 except that ¢ of the
challenge ciphertext for (challenge plaintexts m : =m© = m™ and) vectors (¥©@, (V)
is:

e =(¢, wx®, (¥ @ 4+ wjx M | wfi O + 7D 0", ﬁ)]B,

where wé), w’l <E [, and all the other variables are generated as in Game 2-h-2.
Game 2-h-4(h=1,...,v) Game 2-h-4 is the same as Game 2-%-3 except that the reply
to the h-th key query for v is:

¢ =(1, o5 [@) [75) o3, 0),..

where o” <E [, and all the other variables are generated as in Game 2-h-3.
Game 3 Game 3 is the same as Game 2-v-4 except that ¢; of the challenge ciphertext
for (challenge plaintexts m : =m® = m® and) vectors (@, ¥D) is:

o1 = (5 [00F® + TV ], ohF® + 6t fFO + 7D, 0, 7).

U . .
where wg, w1 < F, and all the other variables are generated as in Game 2-v-4. Here, we

note that ¢ is independent from bit b <E {0, 1}.
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LetAdvY’ (1), Adv (), AvE "D ), AdvE ™ (3) and Adv (1) be the advan-
tage of A in Game 0/, 1,2-h-1,...,2-h-4 and 3 when r = 1, respectively. Advgg/) (A) is
equivalent to the left-hand side of Eq.(15) and Advg) 1) =0.

We can evaluate the gaps between pairs of neighboring games, Advfg/) ), AdvE}l) (09 R
Advf{”"” 1), Advfi) (1), similarly to [27]. This completes the proof of Lemma 15. ]

11 Comparison

Table 1 compares the proposed ZIPE and NIPE schemes (ZIPE with short ciphertexts in
Sect. 8, NIPE with short ciphertexts in Sect. 6, ZIPE with short secret-keys in Sect. 9, NIPE
with short secret-keys in Sect. 7, and fully-attribute-hiding ZIPE with short secret-keys in
Sect. 10) with the ZIPE and NIPE schemes in [4] that are secure under standard assumptions.

12 Hierarchical ZIPE scheme with constant-size ciphertexts

The proposed hierarchical ZIPE (HIPE) scheme with short ciphertexts is constructed by
using two vector spaces, S-dimensional Vg and 4n-dimensional V1, where hierarchical vector
(U1, ..., Ug) (resp. (X1, ..., Xp)) of secret-key (resp. ciphertext) is embedded in an element
in V;. The delegation mechanism is based on the payload hiding HIPE scheme given in
Appendix H.3 in the full version of [25].

12.1 Dual orthonormal basis generator

We describe random dual orthonormal basis generator gggPE’CT below, which is used as a

subroutine in the proposed hierarchical ZIPE scheme.

HIPE,CT =, . . . d
gob (1)”,4,n.=(d,n1,...,nd)). n.:thln,,

paramg : =(g, G, Gr., G, ) < Gopg(1*), No: =5, Ny : =4n,
paramy, : =(q, V;, Gz, Ay, €) : =Gapus(1*, N;, paramg) fort =0, 1,

U -
Y < F), gr:=e(G,G)”, param; : =(ii, {paramy,}i=o,1. &r).

.....

boi i =(X0,i,1---» X0,i,5)A = 2311 xo,ijajfori=1,...,5 By :=(bo,1,...,bos),
B :=pui G, Blf’j,, : :“;,j,lG fori,j=1,...,4l=1,...,n,

fort =0, 1, Wi )ij=1..n i =¥ (XD,

by i =Write . Vi) a=D 0 Drijaj fori =1,... Ny, Bf :=(b},..... b} y),

/
return (paramg, Bo, By, (Bi j, B; ; }i j=1,..41=1,...n, BY).

i=1,...,
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Remark 14 Let

/ /
b1 G—1ynst Bi,l,l Bi,4,l
,i@—1n / . / .
. ) B2 Bin B4, Bia
bl in /: - /. ’
B, Bii  Bis, Bi4
fori=1,...,4,

By :=(b1,1,-..,b14n),

where a blank element in the matrix denotes 0 € G. B; is the dual orthonormal basis of IB%*I‘,
ie.,e(by;, by ;) = grande(by,;, bTJ) =l1forl <i#j<d4n.

12.2 Construction and security

In the description of the scheme, we assume that input vector, X; : =(x; 1, ..., X.n,), has
an index (¢,1) # (1, 1) with x;; # 0, and that level-1 input vector, U1 =115 -5 Vny),
satisfies vy, # 0. The plaintext space is Gr.

Setup(1*, ii : =(d;ny,....ng)): n:=>" n,

R _HIPE,CT .
..... D<= Gop (M 4,0,

Bo : =(bo,1, bo3, bos), By :=bg,b54), BY : =7 1,07, b7 5105 b7 3,
A = = .

return pk : =(1*, param;, Bo, {Bi j, B; ; jYi=1.4;j=1....4:1=1....n> {B} }1=0,1), SK : =b{ 5.

KeyGen(pk, sk, (v, ..., U¢) € Fg! x o x Fgt)

/
(param;, Bo, By, {Bi,j, B ; }i j=1....4:1=1

U - U

Si,0, 00 < Fy fort=1,...,¢, s0: =Zf=1 Sty @1 <—IFZ,

* oL N
k@,() :=(—s0, 0, 1, ¢o, O)]Boa

n
ki :=Csi€11 + 0101, ..., se€e1 +0p0p, 041, Lo, 0%, 0", @1, 0" g,
return 8K¢ : =((V1, ..., U¢), kj o, k7 1).
Enc(pk, m € Gr, (X1, ..., X¢) eFy! x - x )

0%) e F",
Clqj : :a)Bl,]’ + 7]134’1', Cz,j : :Z?:] xl(wBi,j,l + ’7134/1,1',1) forj=1,...,4,
Dec(pk, ske: =((V1, ..., Ve) k7 o,k7 1), Ct: (X1, ..., Xer), €0, {C1.j, C2,j}j=1...4, C3)):
if ¢ < ¢, parse kj asadn-tple (K}, ..., K}) € G,
X=X, Xp) i =(X1, ..., X, 0"C41, . 0M) € F",

D;'f =20, K(*jil)nH forj=1,...,4,

F i =e(eo, k) - TTjoy (¢(Crj DY) - e(Cajo Ky 1)) s retum m’ s =cs/F,
else, return L.
Delegate, (pk, ske, ve+1) :
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U o+1 - u
Sdel,» Odel.r» Pdel,0 < Fq fort =1,.... 8+ 1, sdel,0:=2,_| Sdel.r» $del,1 < Fy.
k:geL() : :( —Sdel,0> 0, 0, Pdel,0» 0 )IB%’

n

* — s bt e = n n
kge1 1 =(sdel.1€1,1 + 60101, ..., Sdel.e+1€¢+1,1 + Odel ¢+1Ve+1, 072, ., 07,

0n7 QBdel,l, On )BT?
k:g+l,z : :kzt +kj:<|el,t for 1 = 0’ 1,
return SKgyq @ =((V1, ..., Vgt1), kz—&-l,O’ sz_’_],]).
Remark 15 A part of output of Setup(1*, 1), {B; ;, Bi/,j,z}i:lA:j:l ,,,,, 4:/=1....n» can be iden-
tified with @1 : =(b11, ..., b1,n, b13041. - - ., b1.4y) through the form of Eq.(6), while
By : =(b1,1, ..., b1 4,) is identified with {B; ;, Bl.’yj’,}iyjzl,,__A; i1=1....n by Eq.(6). Decryp-
tion Dec can be alternatively described as:

.....

Dec’(pk, ske: (U1, ..., Ue).k} . kj ). €t =((X1, ... . Xp),c0, {C1.j, Ca.j}j=1...4, €3)):

x::(xl,...,xn)::(551,...,)?g/,O"WH,...,O"d)GIF",
n n
cp:= (Cz,l,xzcl,l,---,xncl,l, R C2,4,x2C1,4,-.-,xnC1,4),
n n n n

—_ T S
thatis, ¢; = ( wX, 0%, 0", X ), F:=e(co, ky) - elcr, k),

return m’ : =c3/F.

[Correctness] Using the alternate decryption Dec’, F = e(co,k§) - e(c1, k}) =
4
g0t g Ximt ol if g < ¢ and ¥ T =Ofort=1,...,¢.
The definition of adaptively payload-hiding security and the advantage Adv':l' PE,PH A)

of adversary A can be obtained through a straightforward extension of that of HIBE, e.g.,
[15], with replacing ID-matching by vector-orthogonality.

Theorem 6 The proposed HIPE scheme is adaptively payload-hiding against chosen plain-
text attacks under the DLIN assumption.
For any machine A, there exist probabilistic machines £1 and &, whose running times are

essentially the same as that of A, such that for any security parameter X, AdVJH“IPE’PH r) <

Adv?f‘lN(k) + > Advgzl‘_l}[\l (M) + €, where -1, (+) : =& (h, ), v is the maximum number

of adversary A’s key queries, and e = (11v + 6)/q.

Theorem 6 is proven similarly to Theorem 3.

13 Concluding remarks

The technique with using special type matrices shown in this paper can reduce the size of
ciphertexts or secret-keys of adaptively secure FE schemes in [25] from O(dn) to O(d),
where d is the number of sub-universes of attributes, and » is the maximal length of attribute
vectors. A key-policy attribute-based encryption (ABE) system with constant-size ciphertext
[5] is selectively secure in the standard model. Therefore, it is an interesting open problem
to realize an adaptively secure and constant-size ciphertext ABE scheme.
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Appendix: Proofs of Lemmas
Proofs of Lemmas 2 and 3 in Sect. 5

For a positive integer x, let [x]: ={1,...,x}.
Lemma 2 L(w, n, F,) and L(w, n, F,) are subgroups of GL(wn, Fy).

Proof Below, we will show that L(w, n, F,) is a subgroup of GL(wn, F). For Z(w, n,Fy),
the lemma is proven in the same manner as for L(w, n, Fy).
Based on the block partition on X € IF;""X’”” with submatrices X; ; € IF;X”, ie, X :

X1 Xiw

=(Xi )i, jew] i = : , we will define a permutation matrix I1. Since X; ; €

Xw,l e Xw,w
F;’X", each row of X is indexed by a pair (i, k) withi € [w]; k € [n], which is corresponding
to the ((i — 1)n + k)-th row. The swapping of the index pair (i, k) +— (k,i) leads to a
permutation 7 on the set [wn] as,

T [wn] — [wn]
w w (13)
Gi—Dn+k—(k—-Dw+i

with i € [w]; k € [n]. We denote the corresponding permutation matrix by IT, i.e., the left
multiplication by IT is equivalent to the permutation 7 on rows (of X). ITI~! = ITT since IT
is a permutation matrix, and we see that the right multiplication by IT~! is equivalent to the
permutation 7z on columns (of X).

Let the conjugate set P(w,n,Fy) : =I1 - L(w,n,Fy) - [1~'. Since the rows and
columns are permuted by m, for X : =(X; ;)i jeqw € L(w,n,F,;) with X;;
Mi, j /"L;.j,l Yo n
= B o ,Y i =M X TN 'isgivenas Y = : :
Kij Ki jn—1 Yo Yo
'u;,j,n g
K11 o Ul //“/l,l,i /’L/l,w,i
where Yy : = and Y; : = . Therefore, since
Mw,1 - Mw,w /’L;uli "'I’L;u,w,i
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L(w,n,Fy) C GL(wn, Fy),

Yo Y Yo, Y, € GL(w,Fy),
' : Yi,...,Y, ] e F¥>xw
Pw,n,Fy)=1Y:= . : Loees Yaop € B,
Yo Yoo1 || 2 blank element in the
Y, matrix denotes 0 € F,

(14)

We see that P(w, n, Fy) is asubgroup of GL(wn, Fy). So, L(w, n, Fy) = n! “P(w,n,Fy)-

I is also a subgroup of GL(wn, F,). This completes the proof of Lemma 2.
Lemma3 £t (w,n, IF4) is a subgroup of GL(wn + 1, Fy).
Proof For the proof, we define an injective group homomorphism,

1 GL(wn+1,F,) < GL((w + 1)n, F,)
w )

I,1 O
X — ( 0 X) .
We will show the following claim.
Claim 1 (£t (w, n, Fg)) = Lw+1,n,Fy) Ne(GL(w + D)n, Fy)).

This equality is on the bottom-right corner of the following diagram,

(: GL(wn + 1,F,) < GL((w + 1)n, F,)
U u

LT (w,n, F,) = (LT (w, n, Fy)) =L(w+1,nFy) Nu(GL{(w+ Dn, Fy)).

m}

Proof of Claim 1 Since X € L(w + 1,n,F;) N «(GL((w + 1)n,Fy)) is given

1
X1 o Xiwtl
as (Xi j)ijew+1] @ = : : , X1 = : | » Xig =
Xw+1,1 T Xtu+1.w+1 /
u’l,l,n
/
i1
fori =2,...,w+1l,and X ; = forj=2,...,w+l,
/
i K
where a blank element in the submatrices denotes 0 € F,. That is,
I
/ ’ e / -
Ml,%,n Kionén = Ky wg1,nn
X:= Ary X220 Xowtl

=/T
M/w+1!1 Xw+12  Xw+l,wtl

where ij | 1 =(uj |, .., 1} ,). This shows that (LT (w,n,Fy)) = Lw+ 1,n,Fy) N

t(GL((w + 1)n, F,)), i.e., Claim 1 holds.

[}

Since L(w + 1, n,Fy) (and «(GL((w + 1)n, F,))) are subgroups of GL((w + D)n, Fy,)
(Lemma 2), from Claim 1, «(£T(w, n, IF4)) is a subgroup of GL((w + 1)n, IF;). Therefore,
since ¢ is an injective group homomorphism, £ (w, n, F,) is also a subgroup of GL(wn +

1, F,). This completes the proof of Lemma 3.
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Game 2-0-3
n
Game Game | Game Game | Game Game Game Game Game Game Game
0 1 2-1-1 2412 | 213 2-241 T 2+v1)3 | 2-v 2-v-2 2-v-3 3
=~ ~ = ~ =~

Problem 1 | Problem 2
Basic Problem 1

| Basic Problem 2 |

Basic Problem 0

DLIN

Fig. 1 Structure of reductions for Theorem 1

Proofs of Lemmas 4-12 in Sect. 6
Preliminaries

Figure 1 shows the structure of security reduction for Theorem 1, where the security of the
scheme is hierarchically reduced to the intractability of the DLIN problem. Basic Problems
0, 1, 2 are defined below. The reduction steps indicated by arrows will be shown below, and
the step given by dotted arrow can be shown in the same manner as that in (the full version
of) [25].

For the proofs of Lemmas 4 and 5, we give the following intermediate problem, Basic
Problem O (Definition 10) and Lemma 16. (In [25], an additional element 6& G is included in
an output of Basic Problem O for a shorter dimension 3z + 1 than 4n. Here, it is not necessary.)

Definition 10 (Basic Problem 0) Basic Problem 0 is to guess B € {0, 1}, given (paramgpy,
B.B*. y}. f.6G.§G) < G5PO(1%), where

R
Ggro(1") : paramg : =(q. G, Gr, G, e) < Gopg(1™),

paramy : =(q, V,Gr, A, ) : =Gqpys(1*, 3, paramg),

)?1 51

fis U 2 _ U
Xi=| 12| =0 < GLB.Fy), @ijij:=[02 | :=(XH7", & <FS

X3 93

bi : =k(Xi)a =« Z§=1 xija; fori =1,3, B:=(bi,b3),
by i =E(W)a =& Vija,; fori =1,2,3, B*:=(b}, b} b},

gr 1 =e(G, G)*¢, paramgpg : =(paramy, gr), 6,0, g Fy, 0,7 =~ F,
yé : =(6,0,0')]B*, yT : =(87 PvO')IB*’ f : =((,(), 7, O)B’
return (paramgpg, B, B*, Vg f kG, EG).
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for B8 <E {0, 1}. For a probabilistic machine D, we define the advantage of D for Basic
Problem 0, Adv%Po(k), is similarly defined as in Definition 8.

Lemma 16 For any machine D, there is a probabilistic machine £, whose running time is
essentially the same as that of £, such that for any security parameter A, AdVBDPO(k) <
AdvBN ) +5/4.

Proof We note that dual bases (B, B*) in Basic Problem 0 are generated by a general linear

matrix X 2 GL(3,F,), so Lemma 16 is proven in a similar manner to the security proof of
Basic Problem 0 in [25]. ]

The following Remark 16 is for the proofs of Lemmas of 17 and 19.

Remark 16 For matrix W := (x; ;)i j=1,..N € IE‘;VXN and element v in N-dimensional

V, W(v) denotes Zf\;ﬁjzl Xi,j®i,j(v) using canonical maps {¢; ;} (Definition 2). Sim-
ilarly, for matrix (9 ;) : =(W=HT, (WHT@) : =301, 9 ;i ;(v). It holds that
e(W(x), (W HT(y)) =e(x,y) foranyx, y € V.

Proof of Lemma 4

Lemma 4 For any machine B, there exists a probabilistic machine £, whose running times
are essentially the same as that of B, such that for any security parameter X, Adv? A <
AdvBEN ) +5/4.

Proof At the top level, the proof of Lemma 4 is similar to the security proof of Problem
1 in [25]. The main difference is that special form matrices Eq. (3) are used for generating
master public and secret keys in our schemes. One key fact for the security reduction is that
L4, n,F,) is asubgroup of GL(4n, F;) (Lemma 2).

For the proof of Lemma 4, we give the following intermediate problem, Basic Problems
1 (Definition 11). From Lemmas 16, 17 and 18, we obtain Lemma 4. m]

Based on Remark 4, hereafter, we consider the output of Q§1 (1*, n) is expressed as
(param,,, By, @3, eg0, B, @T, {ep.,1,i}i=1,...,») and also we give the output of Basic Problem

.....

1 as such a vector form over bases {B;};~0.1.

Definition 11 (Basic Problem I) Basic Problem 1 is to guess 8 € {0, 1}, given (param,,,

R _NIPE,CT
GEP (1, )+ (param,, (By. Bi}—o.) < Gop = CT (1%, 4, ),
By : =(bo1,b03s .- bos), B :=b11,....b1a b1ont1s .-, b1an),

U U
0, 0,1 < Fy, T < FS, fo0:=(@,0,0,0,70)8y, fi0:=(,7,0,0, )8,

fori =1,...,n;
¢ :=0""1,0"") ek},
n n n n
——— N — Y —
forii=( oé&, 0", 0", Ve g,
friii=( wé. Téi, 0", Ve g,

return (param,., {B;, Bi}i—o.1. £p.0. (£ p.1.i}i=1,..n)-
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for B 2 {0, 1}. For a probabilistic machine C, we define the advantage of C for Basic Problem
1, AdvBP™ (), as in Definition 8.

Lemma 17 For any machine C, there is a probabilistic machine D, whose running time is

essentially the same as that of C, such that for any security parameter A, AdvgP1 *) <
BPO

Advy T (R).

Proof D is given a Basic Problem 0 instance
(paramgpy, B, B, Vg [ kG, EG).
By using paramg : =(¢, G, Gr, G, e) underlying paramgpq, D calculates

param, : =(q, Vo, G, Ao, €) : =Gapys(1”, 5, paramg),
param, : =(q, Vi, Gr, A1, €) : =Gapys(1*, 4n, paramg),
param, : =({param,};=o,1, §7).

where gr is contained in paramgpq.

D generates random linear transformation defined by matrices Wy <E GL(5,F,) on Vg
and W, <E P4, n,F,)onV; as in Remark 16, where P(4, n, F,) is given in Eq. (14). Then
D sets

do, : =Wy(b},0,0) fort=1,2, do3:=Wp(0,0,0,£G,0),
dos:=Wp(0,0,0,0,£G), dos:=Wy(b3,0,0),

dy, =Wy HT(1,.0,0) fori=1,2, dj5:=(W;H70,0,0,«G,0),
dy 4 =(WyH7(0,0,0,0,kG), djs:=(W;")T(b3,0,0),

U
g0 =Wo(yg,0,0) + ndo s where n < Fy,
fori=1,...,n,
Plag—ne =W (0% b¥,0,0°" 7)) for 1 = 1,2,
Prag—nss  =Wi0*D 03 G, 0M ) py g =Wi(01 3, 0,000,
Piai—nye =W HTOY Y b, 0,0 D) for 1 = 1,2,
Plag—nes - =W HTONY 0% kG 0M70), pi ;o =Wi (0%, b3, 0,01 7).
gp1 =W (07D yE 0,0,

where (04D v, 0,0*=D) : =%~V G|, G,, G3,0, 0**=D) forany v : =(G1, G2, G3)
€ V = G*. Then, Dy : =(do,)i=1....5s and D} : =(d§ )i=1....5. P1 : =(Py)i1....4n and
Py =( p’f’i)izl ,,,,, 4n are dual orthonormal bases.

Moreover, we see that the distribution of D; is equivalent to that of bases generated by

using random special type matrix ¥ g P4, n,F,). For the permutation 7z given in Eq. (13)
and the associated matrix IT, the left multiplication by IT gives the permutation 7 of the basis
vectors {p ;}i=1,...4n and the right multiplication by n! gives the permutation 7w of the
coordinates of vectors in G*'. Therefore, by the conjugate action of the matrix IT, we obtain
a basis Dy : =(d1,,),=1.....4n, Whose distribution is equivalent to that of bases generated by

using random special type matrix X g L4, n,Fy) =01 P@, nF,)- T, and its dual
DT : =(dT,t)l=l ..... 4n-
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D can compute Dy, Dy, D : =(dg,1,d5 35 -5 dp5)s D* : =(d7 ;.. ..,Ad’{‘ﬂ, di 5,01
R d’f74n) fromB : =(b1, b3), B*, kG, and £G. D then gives (param,,, {D;, D} };—o 1, 85,0
{gﬁylyi}izl ,,,,, ») to C, and outputs 8’ € {0, 1} if C outputs B’. 88,0 is expressed over basis Dy
as

g0,0 - Wo(yév 05 0) + ndO,S - (57 0» 03 07 GO)Doa
g1.0=Wo(y7,0,0) +ndos = (8, p,0,0,00)m,.

with og : =0 + 1, and 8p1;(i=1,...,n)are expressed over bases P; and D as
g1 = Wi0* D, y5.0,0% D) = (0%71,5,0,0, 0,0 ),
n n n n

e R
= (8¢, 0", On,O’ei)]D)l,
g1 = Wi D yr 0,040y = (0D s, p, 0,0, 04Dy,

n n n n
S SRt R
= (de¢;, pe;, 0", o€ )p,,

where 8, p, o, and oy are distributed uniformly in IF, . Therefore, the distribution of (param,,,

.....

Lemma 18 For any machine B, there is a probabilistic machine C, whose running time

is essentially the same as that of B, such that for any security parameter A, AdVZ1 *) =
BP1

Adve ().

Proof Given a Basic Problem 1 instance

U U
C generates u, u,, < F >, u}, ..., u),_, < F, and
/ —1
u u) u
v:=| - |, z:=0H:= - 1 ,
/ —
uun/_l 1,/ " 1,7 1
7 \— 7 \— /—
u,, —(up) " uy =), uy,
T . T * * T .
(dl,n+17--~7dl,2n) . =Z - (b1,n+1,...,b1,2n) and (dl,nJrl,...,dl’zn) o =U -
* * T
BT 1> b1 )" - We set
Dy =11, ... bip,dinsr, o dion, bronst, -, b1an),
ko, * * * * * *
DY i =7 1o b7 A1 g1 T 200 B 15 - BT )

We then easily verify that D; and D} are dual orthonormal, and are distributed the same
as the original bases, By and B}. We note that C cannot calculate above d’f’i fori = n+
1,...,2n (from ﬁ’f) and D7 is consistent with @T. C gives (param,,, By, @3, Dy, ﬁ’f, fﬂﬁo,
{fp,1,i}i=1...n) to B, and outputs B’ € {0, 1} if B outputs B’

Then, with respect to Dy, ]D)’iF (instead of By, B’i‘), the above answer to B3 has the same
distribution as the Problem 1 instance, i.e., the above instance has the same distribution as
the one given by generator 951 (1%, n). O
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Proof of Lemma 5

Lemma 5 For any machine B, there exists a probabilistic machine £, whose running time
is essentially the same as that of B, such that for any security parameter X, AdVZZ ) <

AdvBHNGY) 4 5/4.

Proof Similarly to Lemma 4, we employ the fact that £L(4, n, ;) isasubgroupof GL (4n, F,)
(Lemma 2) in the proof. For the proof of Lemma 5, we give an intermediate problem, Basic
Problem 2 below (Definition 12). From Lemmas 16, 19 and 20, we obtain Lemma 5. O

Based on Remark 5, hereafter, we consider the output of g};’z(lk, n) is expressed as
(param,,, Bo, By, h:g’o, eo, By, B, {hi‘;,l,i’ e1.i}i=1,.. ) and also we give the output of Basic

.....

Problem 2 as such a vector form over bases {B;, B} };—0,1.

Definition 12 (Basic Problem 2) Basic Problem 2 is to guess B < {0, 1}, given (param,,,

R
GEP2(1* n) :  (param,, (B, B}i—0.1) < Gog =0 (1%, 4,n),

Bo : =(bo.1,b03, .-, b05), Bi:=b11,...,b10 012041, .., b1.4n),

8, 80, w qu, 0, T <E]FX,
yao : =(87 0,0, 507 O)BS! J’T,o : =(87 P, 0, 80, O)IB%S, fO : =(a), 7,0,0, O)Boa

fori=1,...,n;
& :=0"11,0"" eF",
n n n n
—mT————7————— ———
Youii=0 de, 0", o€, 0" )B
Yii =0 de pei, Soei, 0" B
frii= ( we, Té;, 0", 0" B,

for B <E {0, 1}. For a probabilistic machine C, we define the advantage of C for Basic Problem
2, AdvBP2(%), as in Definition 8.

Lemma 19 For any machine C, there is a probabilistic machine D, whose running time is
essentially the same as that of C, such that for any security parameter X, AdVEP2 ) <
AdvEPO ().
Proof D is given a Basic Problem 0 instance
(paramgpg. B, B*, y5. f.kG.£G).

By using paramg : =(gq, G, Gr, G, e) underlying paramgpq, D calculates

paramo L= (q7 VOa GT? AO? e) : :gdeS(lA, 55 paramG)v

param, : =(q, Vi, Gr, Ay, €) : =Gpvs(1*, 4n, paramg),

param, : = ({param,};=o,1, ¢7),

where gr is contained in paramgpyg.
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D generates random linear transformations defined by matrices Wy <E GL(5,F;) onVy
and W <B P4, n,Fy) on Vy as in Remark 16, where P (4, n, IFy) is given in Eq. (14). Then
D sets

do,:=Wp(,0,0) fort=1,2, do3z:=Wp(0,0,0,xG,0),
do4:=Wy(b3,0,0), dos:=Wp(0,0,0,0,«G),
dy, =Wy HT®;,0,0) forc=1,2, dj5:=(W;"7(0,0,0,£G,0),
d 4 =Wy H7T(85,0,0) df5:=(W;")7(0,0,0,0,£G).
@ =Wy HT(y5.0.0),  go:=Wo(f.0.0),
fori=1,...,n,

Plag—n =W (0% b, 0,0%7D) fori=1,2,3,

P —W,(0%=D, 03, kG, 04—y,

Pl iyt =W HTOYM D ¥ 0,047 fori=1,2,3,

P :(WI—I)T(04(1'—1), 03, £G, 04Dy,

AN =W HT*=D, 50, 040 =0y 4 21 M P aG—1y43

where 7; 1 =11, -, Nin) g Fy.
gl —W 04D £ 0, 04D

where (04D v, 0,0*=D) : =0*C=D G|, Gy, G3,0,0*" D) foranyv : =(G1, G2, G3)
€ V = G*. Then, Do : =(do,)i=1....5 and D} : =(d§ )i=1....5. P1 : =(py)i1....4n and
Py =( PT, ;)i=1,... 4n are dual orthonormal bases.

Moreover, we see that the distribution of P; is equivalent to that of bases generated by

using random special type matrix ¥ .l P4, n,F,). For the permutation 7z given in Eq. (13)
and the associated matrix IT, the left multiplication by IT gives the permutation 7 of the basis
vectors {p ;}i=1....4n and the right multiplication by n! gives the permutation 7 of the
coordinates of vectors in G*'. Therefore, by the conjugate action of the matrix IT, we obtain
a basis Dy : =(d1,),=1.....4n, Whose distribution is equivalent to that of bases generated by
using random special type matrix X <E L&, n Fy) = mn'. P4,n,Fy) - I, and its dual
]D)T : =(dT,t)l:1 ..... 41 N

D can compute Dy : =(do,1,do3,...,do5). D1 :=d11,...,d1n, dL2”+1’ e dian),
Dg, DY from B : =(b1, b3), B*, kG, and §G. D then gives (param,,, {I;, D} }i—o,1, 4% ¢
g0o» {‘12,1,[7 g1.i)i=1....n) to C, and outputs 8" € {0, 1} if C outputs .

qz’o, g are expressed over bases (Do, D)) as

.....

60=W5 ) (55,0,00=(5,0,0,0,00p;, ¢} o=W; ) (¥},0,0) =5, p,0,0,0)p;,
g0 = Wo(f.0,0) = (@, 7,0,0,0)p,,

and q:%,l,i’ g1 (i =1,...,n)are expressed over bases (P, P}) and (D1, DY) as

—1 P .
‘13,1,1‘ =W )T(O4D, 5. 0, 0*r=0) +Zl}=1 "i,jPT,4(,i71)+3

n n n n
——

— (04(i—1) 5.0.0.0 O4(n—i)) *+zn ¥ —(52' 0" - 0" ps
= » 0, U, 0, U, IPI j=1 Uz,]P1,4(j_1)+3— [} , @i, Dl’
_1 i i
g1 =W, )T D, 0, 010 =0) + Z?:l 'Ti,jI’T,4(,/—1)+3
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n n n n
43i—1) A(n—i) n * ~ - n
=(0 ,6,p,0,0,0 )IP’I‘"‘ZJ':] T?i,jpl,4(j_1)+3=(5€i . pei, ¢, 0 )D’l‘,
gl,i — Wl (04(i—1)’ f’ 0’ 04(11—i)) — (04(1'—1), (1), T, 0’ 0, 04(n—i))Pl

n n n n
e e Nt e
= (we;, te;, 0", 0" )p,,
where ¢; : =oe; +1;, and 8, p, 0, w, T € F,, and @; € F" are uniformly and indepen-
dently distributed. Therefore, the distribution of (param,,, {D;, D} };—0,1, qZ,Ov 20> {qng,l.,

. R
g1.i}i=1,...n) is exactly the same as [Q ’ 0 <« QEPZ(IA, n) ] O

.....

Lemma 20 For any machine B, there is a probabilistic machine C, whose runmng time
is essentially the same as that of B, such that for any security parameter ., Adv (A) =
AdvEP2(1).

Proof Given a Basic Problem 2 instance

(param,,, {ﬁh BT}::OJ, )’2707 fos {.)’;;,1,," fl,i}izl ..... n)s

U U
I X I /
C generates u, u,, <—Fq sy, .., u,_ <y and
’ —1
u u) u
U:= " : L Zi=UHT: = - . ,
, _
uun/_l 1 / " 1,7 -1
u,, —(u),)” e —=(up)” un]u
T . T T .
(dl,n+17--~9dl,2n) . =Z - (b1,n+1,...,b1,2n) and (dT,nJrl,...,dT’Z”) . =U -
* * T
BT 1 -5 b1 n) " - We set
1:=011 b dipg, o di 20, bLoagts - b1 4n),
1-=Wp s 0y s @y s - -5 @1 200 O 20415 -5 D 4p)-

We then easily verify that D; and D} are dual orthonormal, and are distributed the same
as the original bases, B; and B}. We note that C cannot calculate above d dy fori =n+
,2n (fromBl) and ID; is consistent with ]Bl C gives (param,,, IBO, IB%O, IB%I Dl yﬁ 0 fo
{yﬁ’l.l, Sf1.}i=1....n) to B, and outputs g’ € {0, 1} if B outputs p’.
Then, with respect to Dy, ]D)T (instead of By, IB%T), the above answer to 3 has the same
distribution as the Problem 2 instance, i.e., the above instance has the same distribution as
the one given by generator Q;’Z(l’\, n). O

Next is a key lemma for applying the proof techniques in [25] to our NIPE (and

ZIPE) schemes, where limited randomness is used in public parameter, e.g., {B; ;,
B] ji}i=14:j=1,...41=1,...n, in the NIPE scheme in Sect. 6.

Proof of Lemma 6

Lemma 6 Leté, : =(0,...,0,1) € ;. For all ¥ € F7\ span(e,) and w € F,, let
Wi 2 ={(F, w) € (span{, ¢,)\span(e,)) x (F) \ span(é,)) | 7 - w=m}.
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For all (%,7) € (F; \span(é’n)) x (F; \span(é,,)l),for all F.i) € Wi (i),

Pr[iU=7A 5Z=i] = 1/4Ws s, where U < H(n,Fy) N GL(n, F,) and Z
=U~HT.

u ul ul
Proof Let : =U,
uul, ul
u), —(uu;l)’lu/l —(uu;)’lu;71 (u)~!
=UNHT:=Z, andii’ : =@}, ..., up).ForX : =(x1,...,x,) and ¥ : =(vy, ..., v,) with
v # 0, let
Fi=xU= (uxy,...,ux,_1,x-u') = (uxy,...,ux,_1, p), and
W:=79Z=@w v — u’l(uu,’l)_lvn, e u oy — u;l_l(uu;l)_lvn, W) vy
= (u;)_]vn . (u_l (u;l(vlvn_l) —uj). ..., u! (u;(vn_lvn_]) —u,_y), 1)
= () g (s D,
where it : = u~! (ujl(vjvn_l) — u’j) forj=1,...,n—1and p: =x - u’. Then,
> o —1 -1 ~ 5> o
X-0=(u))” vu (Z?:K“xj)”j + p) =7-W. (15)
- - . N - ~ ~ U
Case that X - v % 0 Since X - U # 0, u and u’ can be generated as: (u, i1, ..., Uy—1, p) <
~ 1 ~ 1 -
{(u, @))j=1,..n-1, p) € FJ x Fy | Z'}:l(uxj)uj +p#0Lu,: :v,,(Z'}zl(uxj)uj +
p)/(X - V), and u"/. : :u;l(vjvn’l) —uuj for j =1,...,n — 1. We note that the condition
Z;;}(uxj)ﬂj +p#Oamongu,u; (j =1,...,n—1)and p is equivalent to the condition
’
u, # 0.

0} and u), : :vn(zsf;}(uxj)ﬁj + p)/(X - V), the pair of ¥ : =(uxy, ..., ux,—1, p) and

W= (u;l)_l Uy - (1, ..., Up—1, 1) is uniformly distributed in Wy z.5).
CasethatX - ¥ =0 Since X - v = 0, Eq.(15) is given as Z;;}(uxj)ﬁj +p=0.Since x ¢
span(e,), thereexistsanindex jo € {1, ..., n—1}suchthatx, # 0.Usingtheindex jo,« and
i’ can be generated as: u <E]qu,ﬁj <E]Fq G=1...,jo—1Ljo+1,....,n=1),p <£]Fq,
_ U _ ~
”/jo P=(= 2o ot ot el xju’j —u=p)/xjy, ul, < F ) andu’j c=u) (vjv, ) —uil;
forj=1,...,n—1.
. ~ ~ U ~ _ ~
Since (u,uy, ..., un—1,p) < {(W, @;)j=1,..n-1,p) € FS x Fy | zl}:}(”xj)uj +
U . - = —
p = 0} and u), < IFqX, the pair of r : =(uxy,...,ux,—1, p) and w : :(u;,) lvn .
(1, ..., Uy—1, 1) is uniformly distributed in W5 o. O

Proof of Lemma 7

Lemma 7 For any machine A, there exists a probabilistic machine B, whose running time
is essentially the same as that of A, such that for any security parameter A, |AdV52) ) —

Adv' (V)] < Adv! (b).
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Proof Lemma 7 is proven by the same manner as the proof of Lemma 4 in [25].
In order to prove Lemma 7, we construct a probabilistic machine 3; against Problem 1
using an adversary A in a security game (Game O or 1) as a black box as follows:

1. Bj is given a Problem 1 instance, (param,,, By, @(’;, eg0,{Bi ;. Bi/,j,l}i,./'=1,<--~,4:1=l ,,,,, Ny

Bi {Epj, Ej;}j=1..4i=1_.n), Which is identified with (param,,Bo,B}, g0,
By, B}, {ep,1.1)i=1,...n) (Remark 4).

2. Bj plays a role of the challenger in the security game against adversary .A.

3. At the first step of the game, B provides A a public key pk : =(1*, param,,, {@r}t:o,l)
of Game O (and 1), where @0 1 =(bo,1, bo,3,bo5) and ﬁ] c=b11,--..b10, 13041,
..., b1,4,), which are obtained from the Problem 1 instance.

4. When a key query is issued for vector v, By answers normal key (k. k) with Eq.(7),
which is computed using {@;‘},zo,l of the Problem 1 instance.

5. When B; receives an encryption query with challenge plaintexts (m©@, m™) and vec-
tor X : =(xg,...,x,) from A, B; computes the challenge ciphertext (X, co, {C1,j,
C3,j}j=1,...4, c3) which is identified with (X, cg, €1, c3) in Remark 3 such that ¢g :

=—epo+¢bosz, ¢ 1= 27:1 Xjeg1,1, €3 : :g%m(b), where b <E {0,1},¢ g F,, and
(eg,0, bo,3, {€p,1,1}1=1,....n) is a part of the Problem 1 instance.

6. When a key query is issued by A after the encryption query, B; executes the same
procedure as that of step 4.

7. A finally outputs bit . If b = b’, B; outputs B’ : =1. Otherwise, B; outputs g’ : =0.

Claim 2 The distribution of the view of adversary A in the above-mentioned game simulated
by By given a Problem I instance with 8 € {0, 1} is the same as that in Game 0 (resp. Game

Dif =0 esp. B =1).

Proof Since the public key pk and secret keys sk; answered by A are distributed as in Game 0
and 1, we consider the distribution of challenge ciphertext ¢ty : =(X, ¢o, {C1, i Cajtj=1,...4,
c3) which is equivalent to (X, ¢g, ¢1, c3) under the identification Eq. (6).

When 8 = 0, ciphertext Ct; generated in step 5 is

co=—ey0+¢bo3=(—w, 0, ¢, 0, —no)p,» ¢3: =g§m(b),
1= xeo1; = (wX, 0", 0", nX)g,,
where variables w, ¢, 19, n1 € Fy are uniformly and independently distributed. Therefore,
generated ct; and sk have the same distribution as in Game 0.
When g = 1, ciphertext ct; generated in step 5 is
co=—e10+¢by3=(~w, =1, ¢, 0, =no)B,, €3: =g§m(b),
c1 =2 e = (X, tX, 0", nX)p,,

where variables w, 7, £, no, 1 € F, are uniformly and independently distributed. Therefore,

generated ct; and sk have the same distribution as in Game 1. ]
This completes the proof of Lemma 7. O
Proof of Lemma 8

Lemma 8 Forany machine A, there exists a probabilistic machine By-1, whose running time is

essentially the same as that of A, such that for any security parameter X, |Advﬁ'(h71) 3 -
2-h-1

AdvV Gl < AdVER (), where Byoj1 (-) 1 =Ba-1 (h, ).
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Proof Lemma 8 is proven by the same manner as the proof of Lemma 5 in [25].

In order to prove Lemma 8, we construct a probabilistic machine B;-; against Problem
2 using an adversary A in a security game (Game 2-(h — 1)-3 or 2-h-1) as a black box as
follows:

I. Bo-1 is given an integer i and a Problem 2 instance, (param,, By, B, h o, €0,
{Bi,j, B} ; Yi=1,34;j=1,...40=1,..0. B, (kg 1 1 Ej, E} }j=1,...41=1,...n), Whichis iden-
tified with (param,. Bo. Bj. i . 0. Bi. B}, (b, ;. €1.1}i=1....n) (Remark 5).

2. By-1 plays arole of the challenger in the security game against adversary A.

3. Atthe first step of the game, B,-1 provides .4 a public key pK : =(1%, param,,, {I,B%}tzo, 1)
of Game 2-(h—1)-3 (and 2-h-1), where B, : =(bo,1, bo 3, bo,5) andB| : =(b1 1, ..., b1 s,
bisnt1, ..., b1an).

4. When the (-th key query is issued for v : =(v1, ..., v,), Ba-1 answers as follows:

(a) When 1 < ¢ < h —1, B>-1 answers semi-functional keys of the form Eq. (12), which
is computed using (Bf, B}) of the Problem 2 instance.

(b) When « = h, By-; calculates (k§, k7) using (h;o, {h27171}1:1 ,,,,, ) of the Prob-
lem 2 instance as follows: ki @ =hj o + b5, kT @ =2_  vhy,,;, where
(h;o, b; 3. {h§,1,1}1=1 ,,,,, n) is a part of the Problem 2 instance.

(c) When ¢ > h + 1, By-; answers normal keys of the form Eq. (7), which is computed
using (B, B}) of the Problem 2 instance.

5. When B,-; receives an encryption query with challenge plaintexts (m©, m() and vec-
tor X : =(xq,...,x,) from A, B; computes the challenge ciphertext (¥, co, {Ci. js
C3,j}j=1,...4, c3) which is identified with (X, ¢o, €1, c3) in Remark 3 such that ¢q :

= —eo+ ¢bo3 + nobos, c1 =2 xi(ers + mbisat), 3 : =g§m(b), where

,,,,,

Problem 2 instance.

6. When a key query is issued by A after the encryption query, B>-1 executes the same
procedure as that of step 4.

7. Afinally outputs bit o". If b = b’, By-; outputs 8’ : =1. Otherwise, B,-; outputs g’ : =0.

Claim 3 The distribution of the view of adversary A in the above-mentioned game simulated
by By-1 given a Problem 2 instance with 8 € {0, 1} is the same as that in Game 2-(h — 1)-3
(resp. Game 2-h-1)if B = 0 (resp. B = 1).

Proof We consider the joint distribution of ct; and sk;. We see that the distribution of
challenge ciphertext cty : =(X, ¢o, {C1,j,C2,j}j=1,..4,c3) is the same as that in Game
2-(h — 1)-3 (and Game 2-h-1) similarly to the proof of Claim 2 for the case with g = 1.
When 8 = 0, the h-th secret key sky : =(U, k{j, k) generated in case (b) of step 4 or 6 is
ki =hio+b53=(5,0,1,¢0, 0)m: K=, vlh(”;yu = (8, 0", ¢}, 0" )t Where,
variables 8, po € Fy, @] : =2, u@ € [ are uniformly and independently distributed.
Therefore, generated ct; and sk have the same joint distribution as in Game 2-(h — 1)-3.
When B = 1, the h-th secret key sk : =(, k), k7) generated in case (b) of step 4 or 6 is
ki = hi g+bg 5 = (8, p. 1, 9o, 0)p; ki =2 _juhi,, =8V, pvZ, ¢}, 0" )B; » Where,
2z u!

z.=| L= D=7
e u”!

~1 1 ~1
2y 7, —Quuy) " =) "l (u)
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for U <E 7-£(n, F,) NGL(n,F,) used for challenge ciphertext Cty, variables 8, ¢g € [y, ‘»5/1 :
=>7 v € IFZ; are uniformly and independently distributed. Therefore, generated ct;

and sk; have the same joint distribution as in Game 2-A-1. O
This completes the proof of Lemma 8. O
Proof of Lemma 9

Lemma9 Forany machine A, for any security parameter ., |Advﬁ_h_ b 9] —Advg_h_z) W <
1/q.

Proof We consider joint distribution of the h-th answered key (v, k, k7) and the challenge
ciphertext (X, ¢g, ¢1) in Game 2-h-1.

ki :=(8, p, L, @0, O)p;, ki :=(38v, pvZ, ¢1, 0" gz,

co:=(-w, =7, ¢, 0, n0)By, €1 :=(wX, XU, 0", mX)p,,

where &, p, @0, ®, T, £, No, N1 <E ]Fq,(ﬁl <B F*, U <E Hn,Fy) N GL(n,Fy) and Z :
=w-Ht.

By the security definition, it holds that X - ¥ = 0. From Lemma 6, (txXU, pvZ) is uni-
formly distributed in Wz o. In particular, if  # 0, it is uniformly distributed in W5 o. That
is, coefficient —t in kg is independent from all the other variables except with negligible
probability 1/¢, and the joint distribution is equivalent to that in Game 2-h-2 except with
negligible probability 1/q. O

Proof of Lemma 10

Lemma 10 For any machine A, there exists a probabilistic machine 32-2, whose running time

is essentially the same as that of A, such that for any security parameter A, |Advﬁ'h'z) ) —
2-h-3

Adv" V)| < AdVER (L), where Brpa () : =Baa(h, ).

Proof Lemma 10 is proven by the similar manner to the proof of Lemma 8. O

Proof of Lemma 11

Lemma 11 For any machine A, for any security parameter A, |Advfi'”'3) ) — Advj) =<
1/q.

Proof Lemma 11 is proven by the same manner as the proof of Lemma 7 in [25]. O
Proof of Lemma 12

Lemma 12 For any machine A, for any security parameter X, Advfi) *) =0.

Proof The value of b is independent from the adversary’s view in Game 3. Hence,
Adv® () = 0. O
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Proof of Lemma 13 in Sect. 8

Lemma 13 For any machine A, for any security parameter X, |AdVE¢2{U) ) - Advfi) <
1/q.

.....

Game 2-v and that in Game 3 are equivalent (see Remark 9). For that purpose, we define
new bases D of V and D* of V* as follows:

U
We generate random 6 < [, and set

dy,: = by, — 6by, 3: =b3 +9b§n’
D:= (b07-'-7b2n713d21’l!b2n+17'-'ab4}’l)7 D* : :(dz;, T""’bj;n)'

We then easily verify that D and D* are dual orthonormal, and are distributed the same as the
original bases, B and B*.

Keys and challenge ciphertext ( (k%) j=1
bases (B, B*) and (D, D*) as

v, €, c3) in Game 2-v are expressed over

.....

K9D* = (1, sD5WD, ), DD 0" yge = (1, §DWD | pU) WD 07 yps
c= (¢ ox, 7, 0" i) = (¢, ox, F, 0", 1)B

3= g%m(b).
where

- - - . U (i - -
7 i =pox + pie, with pg, p1 < Fg, y(f) =W —08,, =+ p16.

7 and ¢’ are uniformly, independently distributed since w/ s F} and 6 2 FF,, except
for the case p; = 0, i.e., except with the probability 1/4.

In the light of the adversary’s view, both (B, B*) and (D, D*) are consistent with public key
pk : =(1%, paramy, @). Therefore, {k(j)*}jzl,,__,v and ¢ above can be expressed as keys and
ciphertext in two ways, in Game 2-v over bases (B, B*) and in Game 3 over bases (D, D*).
Thus, Game 2-v can be conceptually changed to Game 3. O

Proof of Lemma 14 in Sect. 9

Lemma 14 For any machine A, for any security parameter A, |Advfi_‘)) ) — Advj) ] <
1/q.

Proof To prove Lemma 14, we will show distribution (paramsy, /E, {k(j )*} j=1
Game 2-v and that in Game 3 are equivalent.
For that purpose, we define new bases D of V and D* of V* as follows:
u u}

v, €, €3)in

.....

.. . U U
We generate F : = C <~ H(n,Fy), 0 < F,, and set
n—1
uy,
dptii=bypi —ub; fori=1,...,n—1, dayy:=bo, —0by— > 1, ulb,
dy:=by+0b5,, di:=b+ ub:_H +uiby, fori=1,...,n—1, d; :=b; +u,b;,
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Let
bi:=b1,.... b7, by: =(bpi1,....b2)", by :=b},..., 00", b,
T
dy:=(dys1.....do)" . dy =}, ... d)", 6:=(0,....0,6) e F".
That is,
bo 10 0\ /bo
b = 0 I, 0, b |,
d2 _QT _FT In ZZ
dy 106\ /b
vli=ton, F (b
b, 00, 1, ) \ b,
‘We set

]D)::(bOa"'9bn7dn+17"'7d2n7b2n+13"'7b4n)s ]D)* : :(dzk)a'~'7d:7 ;:+]7"'7bzn)'

We then easily verify that D and D* are dual orthonormal, and are distributed the same as the
original bases, B and B*.

Keys and challenge ciphertext ({k(j )*} j=1,...,v> €, c3) in Game 2-v are expressed over
bases B and B* as

KO = (1, 8O0, @), oDFWD, 0n yge = (1, 8D3D), D, oWFD | 07 )ps,
c=(¢ ox, 7, 0", i)p= (¢, X, 7, 0", i)p
c3: =g§m<b),

where

0 =D — (@ — usDo$ + 50 > v ué, — usHyW
{'i=¢+0r, X :i=wX+ru +ur.
pY) e span(¥'),é,), ¢ € F,, X' e Fy are uniformly, independently distributed since

o 2 span(v¥, e,), 6 b Fg, i’ : =@}, ... u)) P F} except for the case r, = 0, i.e.,
except with the probability 1/q.

In the light of the adversary’s view, both (B, B*) and (D, D*) are consistent with public key
pk : =(1%, paramy, @). Therefore, {k(j)*}‘,-:],,,,,v and ¢ above can be expressed as keys and
ciphertext in two ways, in Game 2-v over bases (B, B*) and in Game 3 over bases (D, D*).
Thus, Game 2-v can be conceptually changed to Game 3. O
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