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Abstract Two fluorescent derivatives of 2-amino-3-
carbonitrile-4H-chromene were synthesized by means of a
fluorogenic Michael addition of dimedone to dicyano alkene
labeled BODIPY derivatives. Different organocatalysts were
used in different conditions to obtain compounds 3 and 4 in
good yield (up to 65% and 85%) and moderate enantiomeric
excess (51% and 41% ee, respectively). This work provides
the first example of an enantioselective organocatalytic con-
version combined with fluorogenesis.
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Introduction

Chemical reactions that generate a bright fluorescent species
are called Bfluorogenic^. Such fluorescence turn-on is often
used as a way to construct fluorescent markers for a particular
substrate based on a reaction between the marker and a
fluorophore precursor [1–6]. In our laboratory we have initi-
ated a research program aimed at the study of organocatalytic
reactions using fluorescence spectroscopy [7–9]. In this con-
nection we explore fluorogenic reactions as a first step to-
wards unravelling the details of the reaction mechanisms
[10–12]. The present paper describes a novel fluorogenic

organocatalytic reaction in which a fluorescent chromene
derivative 3 is produced from the almost non-fluorescent
precursor 1 [6, 13].

Chromene is a structural component in biologically active
and natural compounds such as alkaloids, tocopherols, flavo-
noids, and anthocyanins [14–17]. Functionalized chromenes
have attracted a lot of attention in the field of synthetic and
medicinal chemistry [18–23]. Among the diverse chromene
derivatives, 2-amino-4H-chromenes are reported as potential
drugs in the treatment of human inflammatory TNFa-
mediated diseases [24]. Cytotoxicity of 2-amino-3-
carbonitrile-4H-chromene in human acute myeloid leukemia
(AML) cell lines has been demonstrated. These compounds
bind to the surface pocket of the cancer-implicated Bcl-2 pro-
tein and induce apoptosis or programmed cell death in follic-
ular lymphoma B cells and leukemia HL-60 cells [25–27].
Luminescent labeling of cells is used for flow cytometry and
microscopy [28–30]. The function of the cells can, however,
be affected by the dye. Furthermore, some dyes cannot be
used in combination with other dyes [31]. Having a broader
spectrum of dyes provides more possibilities for researchers to
overcome the limitations of the available ones. Especially, if
the labeling agent is the drug itself, it will be possible to detect
the components of the biological assemblies and imaging and
flow cytometry at the same time. In this case, there is hope to
find the mechanism of the interaction between the drug and
the tumor cell to design more effective drugs. Thus, although
it is not the primary aim of our study, the dye-labelled
chromenes may find applications in biomedical research.

BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)
dyes are often the preferred choice for labelling applications.
They are relatively nonpolar and the chromophore is
electrically neutral. These properties tend to minimize
dye-induced perturbation of the functionality of the labelled
species [32–35].
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In the present work we couple two dicyano alkene deriva-
tives of BODIPY (compounds 1 and 2) [6, 13, 36–38], with
dimedone to produce the corresponding fluorescent
chromenes (Scheme 1). Compounds 1 and 2 have been used
as a fluorescent turn-on and turn-off probes, respecetively, for
the detection of cyanide in solution [37, 38]. To the best of our
knowledge there is no report about the application of com-
pounds 1 and 2 in organocatalytic synthetic reactions. In this
article we present the main results of the first usage of these
compound in organocatalytic Michael addition reactions,
which are followed up in situ by a ring closure leading to
chromenes.

In compounds 1 and 2 the BODIPY skeleton is responsible
for the fluorescence. In compound 1 the fluorescence is
strongly quenched by a photo induced electron transfer mech-
anism [37]. The BODIPY part of the molecule acts as an
electron donor [39, 40], the dicyanoalkene as the electron

acceptor. In this compound the two units are not effectively
conjugated because the 8-phenyl substituent is almost
orthogonal to the BODIPY [40]. In compound 2, on
the other hand, the fluorescence is not quenched. In this case,
the dicyanoalkene group is directly conjugated with the
BODIPY unit, and the excited state has mostly a delocalized
π-π* character [36].

The Michael addition to the double bond of the dicyano
alkene in 1 turns on the fluorescence because this effectively
removes the electron acceptor unit. This phenomenon allows
us to use fluorescence spectroscopy to follow the addition of
the nucleophile, deprotonated dimedone in this case, to form
compound 3 after a ring closure step.

The ability of hydrogen bond forming catalysts to speed up
and control the enantioselectivity of the Michael addition re-
actions has been amply demonstrated. Among the many avail-
able catalysts, we selected catalysts 5–8 which have been re-
ported to promote Michael additions in high yield and
enantioselectivity (Scheme 2) [41, 42].

In these catalysts, the amine group provides the required
basicity to produce the nucleophilic dimedone anion and the
hydrogen bond donating groups can activate the Michael ac-
ceptor by hydrogen bonding to the cyano groups.

Results and Discussion

The reaction between dicyanoalkene-BODIPY 1 and
dimedone was performed using different catalysts in dichlo-
romethane (DCM) at room temperature (Table 1).

The enantioselectivity in the presence of catalyst 6 is sim-
ilar to that obtained with catalyst 5 and is low in the presence
of catalysts 7 and 8. The result of the reactions between
dicyanoalkene-BODIPY 1 and dimedone in the presence of
catalyst 5 showed catalysis of the reaction in both polar and
non-polar solvents at room temperature (Table 2). Reaction in
DCM and toluene at room temperature provided the product

Scheme 1 Synthesis of 2-amino-3-carbonitrile-4H-chromenes 3 and 4

Scheme 2 Organocatalysts used

Table 1 Reaction between dimedone and compound 1 in the presence
of different catalysts in DCM at room temperature

Catalyst (10 mol%) 5 6 7 8

ee (%) 44 42 20 10

Yield (%) 80 85 73 70

Table 2 Reaction between dimedone and compound 1 in the presence
of catalyst 5 (10 mol%)

Solvent Toluene DCM DCM DCM THF

Temperature (°C) 25 25 0 -20 25

ee (%) 42 44 44 51 0
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with 42–44% enantiomeric excess (ee). The reaction in tetra-
hydrofuran (THF) was not enantioselective. The progress of
the reaction was followed in DCM at different temperatures
(Table 2). Decreasing the temperature slows down the reac-
tion, but the enantiomeric excess is higher.

We applied similar conditions for the reactions between
compound 2 and dimedone in the presence of the different
catalysts (Table 3).

In compound 2 conjugation of the double bond of the
dicyano alkene group with the pyrrole moiety of the
BODIPY decreases the nucleophilicity of this group. As a
result, the reaction with dimedone is slower for compound 2
than for compound 1. The structural assignments are provided
in the Supporting Information.

We determined photophysical properties of the pure reac-
tants and products by means of absorption and fluorescence
spectroscopy, and time-resolved fluorescence [43–45]. The
results are summarized in Table 4. The absorption spectra
are all similar, as expected, with small red shifts for 2 and 4,
in which the BODIPY core is substituted. The absorption
coefficients and radiative rate constants are similar, and char-
acteristic for the BODIPY chromophore.

The fluorescence decays of compounds 2, 3, and 4 are
described very well by a mono-exponential model. In the case
of compound 1, however, we observed a tri-exponentially
decaying intensity with a time constant of ~10 ps for the major
fraction, corresponding to the strongly quenched fluorescence.
The time resolution of our set-up is insufficient to resolve this
properly, so the real time constant may be smaller than 10 ps.
A slow decay component is present with a time constant sim-
ilar to that of the other BODIPY derivatives and may be due to
a minor impurity in the sample. A third component with an

intermediate decay time is clearly present, however. Further
research will be needed to ascertain its origin.

We applied fluorescence spectroscopy to follow the progress
of the Michael reaction. In order to be able to measure the fluo-
rescence of the reaction mixture directly, an HPLC pump was
used to circulate the solution through a microcuvette in the sam-
ple compartment of the fluorescence spectrometer. Because the
optical path length is short, internal filter effects are less impor-
tant. By using the circulation pumpwe can work with practically
manageable quantities of material and a reaction volume of
4 mL, and provide for continuous mixing of the reagents.

Table 3 Reaction between dimedone and compound 2 in the presence
of different catalysts at room temperature

Catalyst (10 mol%) 5 5 6 7 8

Solvent Toluene DCM DCM DCM DCM

ee (%) 27 34 41 12 34

Yield (%) 65 68 72 68 65

Table 4 Photophysical parameters of compounds 1, 2, 3 and 4 in DCM

Compound λmax, abs
a (nm) εb (103 L mol−1 cm−1) λem

c (nm) ϕf
d τe (ns) kf

f (s−1) knr
g (s−1)

1 505 75 517 0.025 0.01(0.57); 1.4 (0.30); 3.1 (0.13)

2h 516 (514) 77 (55) 532 (543) 0.54 (0.45) 3.08 1.7 × 108 1.5 × 108

3 500 74 511 0.45 3.50 1.3 × 108 1.6 × 108

4 512 78 523 0.61 3.94 1.6 × 108 1.0 × 108

a Absorbance maximum, bMolar absorption coefficient, c Emission maximum, dQuantum yield, e Decay time; for 1 the three time constants are given
with amplitudes in parentheses, f Fluorescence rate constant kf = ϕf /τ,

g Non-radiative rate constant knr = τ−1 - kf,
h Literature values from ref. 11c are

given in parentheses

Fig. 1 Emission spectra (λex = 478 nm) of the mixture of the reaction
between dimedone and compound 1 in the presence of catalyst 5 in DCE
at room temperature. a during the first two hours, b during the later stages
of the reaction
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The emission spectrum of the mixture was measured every
30 min for 32 h. In order to decrease the error due to evapo-
ration of the solvent and changing the concentration of the
mixture, we used the less volatile dichloroethane (DCE) as
the solvent instead of DCM. The emission of the solution of
compound 1 in DCE was measured. Then, catalyst 5 and
dimedone were added to the solution. The increase of the
intensity of fluorescence, already clearly visible after 5 min,
shows formation of the product. This increase slows down
after 25 h (Fig. 1).

It is evident that the shape of the spectrum changes during
the course of the reaction. Initially, the product spectrum is
broad and peaks at ~540 nm (Fig. 1(a)), later it shows a pro-
nounced peak at 532 nm (Fig. 1(b)). We tentatively attribute
this change to the presence of a distinct intermediate, which
initially builds up, and then decays as the final product is
formed in a cyclization reaction (See Scheme 3).

In contrast to compound 1 [6, 13, 37], its isomer 2 is strong-
ly fluorescent [36, 38]. The direct interaction of the dicyano
alkene group with the pyrrole moiety increases the length
of the conjugated system, which leads to red shifted
absorption and emission spectra, but also to lower reac-
tivity because the electron rich BODIPY donates some
electron density to the Michael acceptor group. As a
result, the reaction of compound 2 with dimedone is
clearly slower (Fig. 2) than that of 1.

We note that the shape and the position of the emission
spectrum of compound 2 and its reaction product in this

experiment are notably different from the spectra at low con-
centrations that were used to determine the photophysical
properties. The red-shifted and broadened spectra are due to
the higher concentrations used in the reaction mixture. At
higher concentrations the second shoulder appears at longer
wavelengths. The intensity of this new shoulder increases by
increasing the concentration. This change can arise from ag-
gregation of the chromphores (Fig. 3). During the reaction
leading to product 4, we observe only a small change in the
intensity of the emitted light and no change of the spectral
shape.

Conclusion

This work provides a simple method to synthesize labeled
chromenes with good yields and enantiomeric excess,
and introduces fluorescence spectroscopy as a powerful
tool to follow the reaction of the fluorogenic substrate
1. An intermediate of the two-step reaction could be
detected by its fluorescence spectrum that is different
from that of the product. The fluorescence of products
3 and 4 allows these compounds to be screened using
imaging methods and opens a new avenue for the study
of the efficiency of these compounds in the treatment of
diseases.

Experimental

Materials and Methods

All commercially available reagents and solvents were used as
received. Catalyst 5 was obtained from Sigma Aldrich.
Catalysts 6 and 8 were synthesized following the literatures
procedures [46, 47]. Catalyst 7 was prepared in the organic
synthesis group of the University of Amsterdam [48]. Flash
column chromatography was carried out using silica gel 60A,
0.040–0.063 mm. Commercially available pre-coated TLC
plastic sheets (Silica gel 60 F254) were used for thin layer

Scheme 3 Mechanism of formation of compound 3

Fig. 2 Emission spectra of the mixture of the reaction between dimedone
and compound 2 in the presence of catalyst 5 in DCE at room temperature
(λex = 478 nm)

Fig. 3 Emission spectra of compound 2 in dichloromethane at different
concentrations (λex = 478 nm)
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chromatography (TLC). Preparative TLCwas carried on com-
mercially available pre-coated TLC glass plates (PLC Silica
gel 60 F254, 1 mm). AUV lamp (254 or 366 nm) was used for
visualization. Chiral HPLC was performed using a Shimadzu
LC-20 AD liquid chromatograph equipped with SPD-M20A
diode array detector and chiral OD-H column. 20%
Isopropanol in heptane was used as the eluent. 1H and 13C
NMR spectra were recorded on a Bruker Avance 400 spec-
trometer and analyzed using the MestReNova v 7.1.2
(Mestrelab Research S.L.) software. Signal positions were re-
corded in δ ppm with the abbreviations s, d, dd and m
denoting singlet, doublet, doublet of doublets and multiplet
respectively. All 1H NMR chemical shifts are referenced to
SiMe4 as an external standard (0.00 ppm). All 13C NMR
chemical shifts in CDCl3 were referenced to the residual sol-
vent peak at 77.00 ppm but are reported vs. tetramethylsilane.
All coupling constants, J, are quoted in Hz. Infra-red spectra
were recorded on a Bruker IR spectrometer model α-Platinum
ATR using neat solid samples. Mass spectra were collected on
an AccuTOF LC, JMS-T100LP Mass spectrometer (JEOL,
Japan). The measurement conditions were as follows:
Positive-ion mode; Needle voltage 2000 V, Orifice 1 voltage
90 V, Orifice 2 voltage 9 V, Ring Lens voltage 22 V. Ion
source temperature 30 °C, spray temperature − 20 °C.
Flow injection with a flow rate of 0.01 ml/min. The
UV-Vis absorption spectra were recorded on a double
beam Sh imadzu UV-2700 spec t r opho tome t e r.
Fluorescence excitation and emission spectra of the com-
pounds were recorded using a SPEX Fluorolog 3–22
fluorimeter. The concentrations were chosen to have
A = 0.1 in a 1 cm cell at the excitation wavelength
(c ≈ 10−6 M). A Gilden Photonics FluoroSense-M series
spectrometer equipped with two double monochromators
was used to follow the reactions. A Bischoff HPLC
pump was used to circulate the solution. DCM
d y e ( 4 - ( d i c y a n om e t h y l e n e ) - 2 - m e t h y l - 6 - ( 4 -
dimethylaminostyryl)-4H–pyran) was used as the refer-
ence to determine the fluorescence quantum yields
( f = 0.43) [49]. The measurement of fluorescence decay
times was performed as described in reference [9]. The
excitation wavelength was λex = 478 nm. Decay curves
were fitted to a sum of exponential decays using a non-
linear least-squares routine implemented in Igor Pro 6.3
(Wavemetrics, Inc.). In all cases the χ2 value was <1.1,
indicating excellent fits.

Synthesis of 1

Compound 1 (8-(4-(2,2-dicyanovinyl)phenyl)-4,4-difluoro-
1,3,5,7-tetramethyl-4-bora-3a,4a–diaza-s-indacene) was pre-
pared according to references [6, 13]. Analytical data are in
agreement with the literature.

Synthesis of 2

Compound 2 (6-(2,2-dicyanovinyl)-8-phenyl-4,4-difluoro-
1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) was pre-
pared according to reference [37]. Analytical data are in
agreement with the literature.

Synthesis of 3

Compound 1 (40 mg, 0.1 mmol) was dissolved in 4 ml solvent
(see Table 2), dimedone (15.4 mg, 0.11 mmol) and
organocatalysts (0.01 mmol) were added. The mixture was
stirred at room temperature for 24 h. The product was purified
using flash column chromatography (25% EtOAc/petroleum
ether). 1H NMR (400 MHz, CDCl3): δ (ppm) = 7.43 (d, 2H,
J = 8 Hz, ArH), 7.23 (d, 2H, J = 8 Hz, ArH), 5.98 (s, 2H, CH-
pyrrole), 4.61 (s, 2H, NH2), 4.52 (s, 1H, CH), 2.56 (s, 6H,
CH3), 2.48 (AB pattern, 2H, ΔδAB = 0.09 ppm, J = 20 Hz,
CH2), 2.23 (AB pattern, 2H, ΔδAB =0.16 ppm, J = 16 Hz,
CH2), 1.35 (s, 6H, CH3), 1.14 (s, 3H, CH3), 0.98 (s, 3H, CH3).
13C NMR (100 MHz, CDCl3): 195.24, 161.11, 157.46,
154.18, 144.04, 143.09, 133.59, 128.52, 127.87, 121.02,
117.99, 113.85, 99.81, 62.89, 50.45, 40.48, 35.35,
31.92, 28.97, 26.72, 14.39, 14.09. IR: ν (cm−1): 3450,
3338, 3220, 2954, 2192, 1676, 1597, 1541, 1507, 1467,
1360, 1305, 1213, 1190, 1038, 971. High resolution mass
calculated for (C31H31BF2N4O2): 540.25081, Found:
540.24910.

Synthesis of 4

Compound 2 (0.1 mmol, 40 mg) was dissolved in 4 ml
solvent (see Table 3), dimedone (0.11 mmol, 15.4 mg)
and organocatalyst (0.01 mmol) were added. The mixture
was stirred at room temperature for 48 h. The product was
purified using flash column chromatography (25% EtOAc/
petroleum ether). 1H NMR (400 MHz, CDCl3): δ
(ppm) = 7.49 (m, 3H, ArH), 7.33 (m, 2H, ArH), 5.98 (s,
1H, CH-pyrrole), 4.51 (s, 2H, NH2), 4.43 (s, 1H, CH), 2.56
(s, 6H, CH3), 2.40 (AB pattern, 2H, ΔδAB =0.06 ppm,
J = 16 Hz, CH2), 2.23 (AB pattern, 2H, ΔδAB
=0.03 ppm, J = 16 Hz, CH2), 1.58 (s, 6H, CH3), 1.11 (s,
3H, CH3), 1.08 (s, 3H, CH3). 13C NMR (100 MHz,
CDCl3): 195.75, 161.08, 157.14, 155.14, 143.04, 135.07,
131.48, 129.89, 128.94, 128.08, 121.09, 118.23, 112.19,
61.20, 50.54, 47.04, 40.41, 31.99, 28.40, 28.00, 25.61,
14.47, 12.48, 11.39, 8.62. IR: ν (cm−1): 3338, 3175,
2957, 2925, 2191, 1680, 166s4, 1598, 1537, 1512, 1465,
1358, 1309, 1191, 1158, 976. Mass calculated for
(C31H31BF2N4O2) + CH3CN + Na: 604.26713, Found:
604.26829.
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Monitoring the Michael Reaction
between BODIPY-Dicyanoalkene (Compound 1
or Compound 2) and Dimedone in the Presence
of the Catalysts

In these reactions, (0.02 mmol) BODIPY-Dicyanoalkene was
dissolved in 4 ml 1,2-dichloroethane. The solution was circu-
lated through a 3 mm path length quartz flow cuvette. The
emission spectrum of the solution was measured. Then,
dimedone (0.03 mmol) and catalyst (0.002 mmol) were
added. The emission spectra of the solution were auto-
matically measured every 30 min. The excitation wave-
length was λex = 478 nm.
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