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Abstract Modeling and control of diabetes mellitus
(DM) are difficult due to the highly nonlinear atti-
tude, time-delay effects, the impulse kind input sig-
nals and the lack of continuously available blood glu-
cose (BG) level to be regulated. Regarding the men-
tioned problems, identification of DM model is cru-
cial. Furthermore, due to the lack of information about
the internal states (which cannot be measured in every-
day life) and because the BG level is not available in
everymoment over time, adaptive robust control design
method regardless exact model dependency would suc-
cessfully handle these unfavorable effects without sim-
plifications. The recently developed nonlinear robust
fixed point transformation (RFPT)-based controller
design method requires only a roughly approximate
model in order to realize the controller structure.More-
over, parallel simulated approximate models—in order
to provide additional internal information—canbeused
with themethod. In this paper, the usability of the novel
RFPT-based technique is demonstrated on the physio-
logical problem of diabetes.
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1 Introduction

The concept of modern control technology, under the
name “Theory of Governors,” originates from a paper
by Maxwell [25], in which, without entering into any
details of the particular mechanisms that were known
at that time, he directed the attention of engineers
and mathematicians to a more general dynamical the-
ory. Following his fundamental achievements in the
description of the electrical and magnetic phenomena
[26], by the use of the elementary circuit components
as resistors, capacitors and inductances as linear time-
invariant (LTI) elements, in the field of electrical engi-
neering rapid development was produced that inten-
sively utilized the mathematical achievements of the
nineteenth century as the analysis of complex num-
bers, Laplace, Z, Fourier, Mellin and other transforms
[6]. In this great flourishment of linear control tech-
nology, the use of, and thinking on the basis of the
frequency picture became prevailing. This general atti-
tude lasted till the beginning of 1960s when, accord-
ing to [19], Rudolf Kalman “…challenged the accepted
approach to control theory of that period, limited to the
use of Laplace transforms and the frequency domain,
by showing that the basic control problems could be
studied effectively through the notion of the state of
the system that evolves in time according to ordi-
nary differential equations in which control appears
as parameters. …Liberated from the confines of the
frequency domain and further inspired by the develop-
ment of computers, automatic control theory became
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the subject matter of a new science called systems
theory.”

This liberation from the LTI systems tailored fre-
quency domain-based problem tackling that opened
the way for studying nonlinear dynamical systems in
“system theory,” happened relatively lately in compari-
son with other revelations of fundamental significance
in life sciences and chemistry, regarding biophysical
and/or biochemical systems.

Lapicque [22] elaborated a strongly nonlinearmodel
for describing neuron spiking. Hodgkin and Huxley
[15] quantitatively modeled the membrane current in
nerve excitation. In the early 1960s, further research
results were published for the pulse transmission and
membrane models [10,27]. To ease the study of these
nonlinear dynamic phenomena, L. Chua and T. Mat-
sumoto constructed and studied a special nonlinear,
but relatively simple electrical circuit [24]. In the last
decade of the twentieth century, the significance of
chaotic phenomena in the nervous system obtained
general interest among the researchers [12,29]. At the
beginning of the twenty-first century, systematic, geo-
metric and mathematical modeling of these phenom-
ena was initiated [7,13,18], and the subject area of
chaos synchronization obtained great attention as well
[36,40]. Nowadays, the combination of nonlinearity
and fractional order dynamics became an interesting
research area [2,38].

In general, in biomedical problems the main sources
of nonlinearities and variable coupling originate:

– From themass action law due towhich the products
of various integer or rational powers of concentra-
tions occur in the balance equations,

– Nonlinear truncations, because the physical inter-
pretation does not allow negative concentrations,

– The limitation of the control signals because a
reagent can have only positive ingress rate—it can-
not be purely extracted from the stirring tank or the
living organism,

– From the phenomena of “Input Coupling” [35],
meaning that by adding some reagent to the sys-
tem its other components are inevitably diluted.

Diabetes mellitus (DM) is a chronic disease of the
human metabolic system regarding the malfunction in
the production and utilization of insulin hormone. Sev-
eral types of DM exist grouped on the reason of DM
[1,11]:

– The lack of insulin production classifies Type 1DM
(T1DM);

– Resistance against the effect of insulin categorizes
Type 2 DM (T2DM);

– Both the aforementioned cases create Double DM
(DDM);

– DM during pregnancy classifies Gestational DM
(GDM);

– Finally, there are DM caused by genetic disorders.
The most dangerous type of DM is T1DM which

occurs when the patients’ own immune system iden-
tifies the pancreatic β-cells—which producing the
insulin hormone—as targets and destroys them dur-
ing an autoimmune reaction. Because of the lack of
internal insulin, the patients need external insulin in
order to avoid metabolic collapse. Beside the short-
term handling, maintaining the long-term variability of
glycemia is also important to avoid the long-term side
effects of the disease [5].

Diabetes is not curable, but treatable. The treat-
ment depends on the type of diabetes; however, in case
of T1DM and over time in T2DM this means exter-
nal insulin administration by insulin pen (manual) or
insulin pump (semiautomated) [17]. From engineering
point of view, the best solution in order to reach a close-
to-normal glycemia during DM treatment is the semi-
automated insulin pump therapy, where the electrome-
chanical device administers the required insulin based
on a developed control algorithm [4].

Modeling and identifying DMmodels are not trivial
tasks. Almost all available models contain high nonlin-
earities which make the control designing procedure
difficult. The input time signals have impulse nature,
since the meal intakes and the external insulin admin-
istration can be modeled as impulse functions [11,31].
Moreover, the output of such models can be compared
only with quantized blood glucose data, since the com-
mercially available continuous glucosemonitoring sen-
sors (CGMS) [4] used with the insulin pump systems
measure on every 5min due to technological limita-
tions.

In the recent years, several advanced control solu-
tions appeared with regard to maintain the glycemia
[30]. However, most of them are model-based solu-
tions using different simplifications of the nonlinear
problem because of the aforementioned unfavorable
circumstances [16,21].

The current research work focuses on a recently
appeared robust nonlinear solution, the robust fixed
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Table 1 Parameters of the
model [23]

Name Unit Description

kl mg/dLmin Internal glucose production by the liver

kb mg/dLmin Glucose consumption by the brain

ksi mg/Umin Insulin-dependent glucose decrease rate

kr min Static gain constant of glucose

ku min Static gain constant of insulin

Tu min Time constant of insulin dynamics

Tr min Time constant of glucose dynamics

Vi dL Insulin distribution volume

VB dL Blood volume

M kg Body weight

point transformation (RFPT) control method [32], that
does not need exact models just roughly approxima-
tion of the real-world problem. The RFPT-based design
method is demonstrated on the DM control problem
using two control design approaches based on the affine
or non-affine model of the physiological problem.

The paper is structured as follows. The first sec-
tion contains the detailed description of the applied
diabetes model, while the second section introduces
the RFPT-based methodology. In the third section, the
controller design procedure is demonstrated followed
by the research results. The final section contains the
conclusions and future work possibilities.

2 Diabetes model

In this study, a recently appeared glucose-insulinmodel
is investigated, developed in order to increase the effi-
ciency of identification from real patients’ samples
[23]. The state-space representation of the model is
given as follows:

Ġ(t) = − ksi I (t) + kl − kb + D(t) (1a)

Ï (t) = − 1

T 2
u
I (t) − 2

Tu
İ (t) + ku

ViT 2
u
u(t) (1b)

D̈(t) = − 1

T 2
r
D(t) − 2

Tr
Ḋ(t) + kr

VBT 2
r
r(t) (1c)

Table 1 contains the description of the model param-
eters , while there numerical values were taken from
[23].

The model has two inputs, namely the external
insulin infusion rate u(t) (U/h) and the carbohydrate

(CHO) intake r(t) (mg/min2), and one output, the
glycemia, G(t) (mg/dL) used as a state of the model as
well. Other states of themodel are the insulinemia, I (t)
(U/L) and the digestion of CHO, D(t) (mg/dL/min).
The first subsystem (Eq. 1a) is responsible to simu-
late the glucose dynamics with regard to the external
and internal glucose appearance, the effect of insulin
and the internal insulin-independent glucose consump-
tion. The second subsystem (Eq. 1b) describes the
insulin dynamics including the changing of insulinemia
and external insulin intake, while the third subsystem
(Eq. 1c) presents the digestion dynamics and creates
connection between the CHO r(t) in meal and D(t).

In order to determine the relative order of the neces-
sary control, the order of the time-derivative ofG(t) has
to be found. This can be immediately set by the control
signal u(t), the insulin ingress rate. For this, the “effect
chain” of the control signal has to be clarified.

2.1 Effect chain of the control signal

According to (1b), u(t) immediately influences the
Ï (t). Since Ï (t) occurs in the third time-derivative of
G(t), Eq. (1a) has to be differentiated two times:

G̈(t) = − ksi İ (t) + Ḋ(t) (2a)
...
G(t) = − ksi Ï (t) + D̈(t) (2b)

Via substituting (1b) and (1c) into (2b), the control
equation can be obtained:

...
G(t) = ksi

T 2
u
I (t) + 2ksi

Tu
İ (t) − kuksi

ViT 2
u
u(t)

− 1

T 2
r
D(t) − 2

Tr
Ḋ(t) + kr

VBT 2
r
r(t) (3)
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from which the necessary control signal u(t) for the
prescribed

...
G(t) can be calculated:

u(t) = −ViT 2
u

ksiku

...
G(t) + Vi

ku
I (t) + 2ViTu

ku
İ (t)

− ViT 2
u

ksikuT 2
r
D(t) − 2ViT 2

u

ksikuTr
Ḋ(t)

+ ViT 2
u kr

ksikuVBT 2
r
r(t) (4)

From Eq. (4), it becomes clear that the u(t) control
signal directly affects the

...
G(t)—that means the control

law has to cover this connection.

3 The robust fixed point transformation-based
adaptive control method

The idea of solving nonlinear equations via iterative
techniques has long traditions in numerical computing.
In a wider context, the original task can be transformed
into a fixed point problem that in the next step can be
solved by iteration. For instance, the Newton–Raphson
algorithm is a classic example that seems to be one
of the fundamental methodologies and attracts great
attention even nowadays [8,20,28,39]. In the sequel,
the transformation of the adaptive control task into a
fixed point problem is briefly highlighted. This is fol-
lowed by the creation and the convergence properties
of the iterative control signal.

3.1 Determination of the relative order of the control
task: the kinetic tracking error prescription and
the “response function”

In order to determine the relative order of the control
task, the first step is to consider the physical quantity for
which a nominal time-variation or nominal trajectory
GN (t) is defined in the given task.

This step can be made on the basis of purely kinetic
considerations by trying to prescribe the appropriate
order time-derivative of the controlled quantity that
instantaneously can be affected by the control signal.
As it will be seen in Sect. 4, in our case, according
to the model in use, the third time-derivative of the
glucose concentration of the blood

...
G (mg/dLmin3)

can be directly influenced by the control input u (U/h)
that is the external insulin infusion rate. For instance,

by considering the integrated tracking error defined as

eint(t)
def= ∫ t

t0

[
GN (ξ) − G(ξ)

]
dξ , and by introducing

a positive real number 0 < �(s−1), we may wish to

have
( d
dt + �

)4
eint(t) ≡ 0 that yields the “desired sys-

tem response” as:
...
G

Desired
(t) = ...

G
N
(t) + 4�

(
G̈N (t) − G̈(t)

)

+ 6�2
(
ĠN (t) − Ġ(t)

)

+ 4�3
(
GN (t) − G(t)

)
+ �4eint(t)

(5)

In the possession of an available approximate system
model, in the given situation, the controller can esti-
mate the appropriate value u that, if the model would

be exact, just would generate this
...
G

Desired
(t) value.

Due to modeling and/or state estimation errors, when
this control signal u is applied on the actually con-
trolled system, the realized (and measurable) “realized

response,” i.e.,
...
G(t) will differ from

...
G

Desired
(t). On

this basis, a “response function” can be defined that for

an arbitrary input
...
G

In
yields the realized response as

...
G = f

(...
G

In
, . . .

)
, in which in the place of the sym-

bol “…” the zero-, first- and second-order derivatives
of G(t) and the other state variables of the system can
be understood. Since

...
G can be instantaneously modi-

fied by u, while the other arguments in the place of the
symbol “…” vary only slowly, we can use the approxi-

mation
...
G ≈ f

(...
G

In
)
. In the lack of information on the

exact model parameters, the analytical expression of f
is not available for the controller. However, the pairs

made of
...
G and

...
G

In
are always known: the input value

is determined by the controller, and
...
G is measurable.

In the sequel, by the use of the response function, an
iteration is suggested to find the appropriate value

...
G�

for which
...
G

Desired = f
(...
G�

)
.

3.2 Transformation of the control task into a fixed
point problem: the “robust fixed point
transformation”

Assume that we have a digital controller, and in each
control step we can make exactly one step of iteration

by the use of a function H defined as follows:
...
G

In
1 =

...
G

Des
1 , and
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...
G

In
n+1 = H

(...
G

In
n ,

...
G

Des
n+1

)

def=
(...
G

In
n + Kc

)
· {1 + Bc [tanh (Ac

[
f
(...
G

In
n

)
− ...

G
Des
n+1

])]}
− Kc (6)

where the real numbers Kc, Ac, and Bc are the adap-
tive control parameters. This simple functionwas intro-
duced in [33].

If
...
G

Des
n+1 varies slowly, the

...
G

Des ≈ constant assump-

tion can be done. Evidently, if f
(...
G�

) = ...
G

Des
, Eq. (6)

provides
...
G

In
n = ...

G� = ...
G

In
n+1 that represents the solu-

tion of the control task, the Fixed Point of function H .

The other trivial fixed point is
...
G

In
n = −Kc = ...

G
In
n+1

that cannot be used for control purposes.
This construction evidently corresponds to the

requirement of causality; the controller learns from the
experience made in the “recent past”: the signal to be

used in control cycle number (n+1), i.e.,
...
G

In
n+1, is cre-

ated by the use of the signal in cycle n, i.e.,
...
G

In
n , and by

the observed response, i.e., f
(...
G

In
n

)
. In the next sub-

section, the convergence properties of the here defined
sequence are considered.

3.3 Guaranteeing the convergence of the iteration in
general

As is well known, a Banach space (as a set, casu-
ally denoted by B) by definition is a complete, lin-
ear, normed metric space [14], i.e., it has the following
properties:

– Linearity: ∀α, β ∈ C and x, y ∈ B, the linear
combination is defined and belongs to the space:
αx + βy ∈ B;

– Existence of a norm for defining a metrics: ∀x ∈ B
∃‖x‖ ≥ 0 so that from ‖a‖ = 0 it follows that
a = 0 (i.e., the norm separates points), ∀α ∈ C

‖αx‖ = |α| · ‖x‖ (absolute scalability), and ‖x +
y‖ ≤ ‖x‖ + ‖y‖ (norm inequality); by the use of
this norm, the metrics or the distance between the

elements as ρ(x, y)
def= ‖x − y‖ can be defined;

– Completeness: By the use of the concept of the
norm the so-calledCauchy-sequences canbedefined
as follows: a sequence {xn; n ∈ N} is a Cauchy-
sequence if ∀L ∈ N ‖xn+L − xn‖ → 0 as n → ∞;
completeness means that each Cauchy-sequence
must be convergent in a complete space, i.e., for the

above sequence ∃x� ∈ B so that ‖xn − x�‖ → 0
as n → ∞.

By the use of the norm, for the functions Φ : B �→
B, contractive ones can be defined as follows: Φ

is contractive if ∀x ∈ B ∃K ∈ [0, 1) so that
‖Φ(x)−Φ(y)‖ ≤ K‖x − y‖. By the use of a contrac-
tive function, Cauchy-sequences can be generated in

the following manner: {x1; x2 def= Φ(x1); . . . xn+1
def=

Φ(xn); . . .}. This sequence is evidently a Cauchy-
sequence since:

‖xn+L − xn‖ = ‖Φ(xn−1+L) − Φ(xn−1)‖ ≤
≤ K‖xn−1+L − xn−1‖ ≤ . . .

≤ Kn−1‖x1+L − x1‖ → 0 as n → ∞
(7)

Due to the completeness ofB, ∃x� ∈ B so that ‖xn −
x�‖ → 0 as n → ∞. It is easy to show that x� is the
Fixed Point of Φ, i.e., Φ(x�) = x�. By utilizing the
properties of the norm, it can be written that:

‖Φ(x�) − x�‖ = ‖Φ(x�) − xn + xn − x�‖
≤ ‖Φ(x�) − xn‖ + ‖xn − x�‖
= ‖Φ(x�) − Φ(xn−1)‖ + ‖xn − x�‖
≤ K‖x� − xn−1‖ + ‖xn − x�‖ → 0 as n → ∞

(8)

As a result, the advantage of Banach spaces is the use
of the above simple and practical argumentation in the
case of quite “abstract” and “complicated” sets [3]. For
instance, the quadratically integrable functions ofmod-
ern quantum mechanics form a Hilbert-Space, that is
only a special example of Banach spaces.

The above simple considerations allowed the appli-
cation of the fixed point transformation-based approach
for the control of systems of Rn �→ R

n, n ∈ N-type
response functions and made it possible to further clar-
ify the conditions of convergence in [9].

3.4 Convergence conditions for SISO systems

In our case, the
...
G ≈ f

(...
G

In
)
response function cor-

responds to f : R �→ R, so we can use the Banach

space of real numbers with the norm ‖x‖ def= |x |.
Since our function is differentiable, we can use a sim-
ple integral estimation for guaranteeing contractivity:

| f (b) − f (a)| =
∣
∣
∣
∫ b
a

d f (x)
dx dx

∣
∣
∣ ≤ ∫ b

a

∣
∣
∣ d f (x)dx

∣
∣
∣ dx , there-

fore if it can be guaranteed that
∃

0 ≤ K < 1 so that
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∣
∣
∣ d f (x)dx

∣
∣
∣ ≤ K , a contractive map can be obtained that

makes the iterative sequence converge to the solution
of the control task.

Consequently, it is enough to maintain the contrac-
tivity nearby the useful fixed point. It is easy to see that
if |Kc| 
 |...G|, Bc = ±1, and Ac is a small positive
number, the not useful fixed point at −Kc can be made
repulsive, while

...
G� can be made attractive. Since |Kc|

is very big, in this case the initial element of the itera-
tionwill be either in the (−Kc,

...
G�) interval or it will be

greater than
...
G�; therefore, the iterationwill converge to...

G�. An advantage of this control method is that it does
not require very precise setting of its adaptive control
parameters. The actual setting concerns the speed of
convergence, therefore, to some extent the precision of
trajectory tracking. In the field of life sciences, this fact
is very important from practical point of view, because
themethod is not based on “exact proofs” for which the
necessary conditions rigorously have to be guaranteed.

4 Controller design

In the followings, the controller design method is
demonstrated in the given case by using the aforemen-
tioned theorems and methods started with the realiza-
tion of the affine and approximate system models.

4.1 The affine model

It is evident that (4) corresponds to an affine struc-
ture as the relationship between u(t) and

...
G(t) is con-

cerned. It is reasonable to assume that any abrupt jump
in u(t) immediately affects the instant value of

...
G(t);

hence, the “additive” parts of the affinemodel vary only
slowly. As a result, in the RFPT-based control design
the actual value of the control sequence rn will be the
“required” third derivative of G. It will be referred to
as

...
G(t)Req in the sequel. According to the available

model to
...
G(t)Req, the control signal u(t)Req becomes

as follows:

u(t)Req = −ViT
2
u

ksiku

...
Greq(t) + Vi

ku
I (t) + 2ViTu

ku
İ (t)

− ViT
2
u

ksikuT
2
r
D(t) − 2ViT 2

u
ksikuTr

Ḋ(t) + ViT
2
u kr

ksikuVBT
2
r
r(t)

(9)

The phenomenological restrictions that are so typi-
cal in the control of T1DM obtain significance at this
point.

Practically only G(t) can be measured by an appro-
priate continuous glucosemonitoring sensorwith 5min
cycle time. No direct measurement possibilities exist
for measuring D(t) and I (t) in the practice. However,
in principle r(t) may be known, as it depends on the
action of the patient, but it cannot be expected that
the patient “manually” provides the controller with this
information. Therefore, it is assumed that the controller
can “detect” the CHO intake through observing some
increase in G(t).

Consequently, it can be stated that in practice there
is no viable way to obtain information on the actual
value of the additive parts of the affine model. The
main feature of theRFPT-based adaptive controller that
can work with an incomplete model and approximate
it well fits to this practical problem: we do not need the
application of complicated state estimators to estimate
this term. In our model, this unknown contribution is
denoted as an “AffineAdditive” constant term as fol-
lows:

u(t)Req = −ViT 2
u

ksiku

...
Greq + AffineAdditive (10)

In this approach, the information on the variables D(t)
and I (t) is completely neglected.

4.2 Approximate model

As no real measurements can be done for the estima-
tion of the actual D(t) and I (t) values of the patient,
an alternative possibility is the application of some
“approximate model” (its parameters are denoted by
the symbol ∼) to estimate them by solving the com-
plete equations of motion for the approximate model
taking the same control signal as the actual patient
u(t), and producing the drift of “approximate state vari-

ables” ˙̃G(t), ˙̃I (t), ˙̃D(t). In the estimation of u(t)Req

the “approximate quantities” Ĩ (t), ˙̃I (t), D̃(t), ˙̃D(t)
are substituted from a computer program that emulates
the behavior of the approximate model, but it takes
the measurable actual G(t) value and—in the lack of
information—instead of the actual input r(t) it takes
zero:

u(t)Req = − ṼiT̃ 2
u

k̃sik̃u

...
Greq + Ṽi

k̃u
Ĩ (t) + 2ṼiT̃u

k̃u

˙̃I (t)

− ṼiT̃ 2
u

k̃sik̃uT̃ 2
r

D̃(t) − 2ṼiT̃ 2
u

k̃sik̃uT̃r

˙̃D(t) + 0. (11)
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This approach may give less work to the adaptive com-
pensation than that of the simple “affine model.”

4.3 Control law

During the study, a kinematic-typePID-control lawwas
used. This is an appropriate choice if the goal of the con-
trol is trajectory tracking as it is in this case. Since the
control signal affects the third derivative of the variable
to be regulated, the control law of the same order has
to be used:

(
d

dt
+ �

)4 t∫

t0

(
GN (ξ) − G(ξ)

)
dξ = 0 (12)

which determines the following desired
...
G

Desired
(t)

function:

...
G

Desired
(t) =

(
d

dt

)3

GN (t)

+
3∑

s=0

(
4

s

)

�4−s
(
d

dt

)s t∫

t0

(
GN (ξ) − G(ξ)

)
dξ

(13)

where the GN (t) is the reference (nominal) blood glu-
cose (BG) level, G(t) is the actual (real) BG level, and
the error is the GN (t) − G(t) that has to converge to
zero over time.

4.4 Final control environments

The final control environment consists of the PID-type
kinematic prescriptions (the control law), the adap-
tive block and the affine model (Fig. 1). However, in
this study another realization possibility was investi-
gated as well, where an approximate parallel simulated
model provides the non-measurable estimated states.
The structure of it is presented in Fig. 2. Note that the
PID-type prescription and the adaptive block were the
same.

5 Results

In order to test the controller in the case of unfavorable
circumstances, long-term simulationswere applied and

Fig. 1 Control system realization in the affine case

Fig. 2 Control system realization in the non-affine case

123



2488 L. Kovács
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a unique glucose input function was designed. In every
case, the goal was that the controller should provide
an appropriate control signal by which the glycemia
of a patient can be stable and appropriate in long-term
beside continuous glucose disturbances.

The glucose input specificity of the used model
required a special input function. The designed func-
tion consists of an additive mixture of an arbitrarily
selected sinusoidal disturbance signal and an impulse
kind signal, r(t):

r(t) = sin(t) + sh
sw + (t − ti )4)

(14)

where the sh is the impulse height and sw is the impulse
width of the signal. The model needs the derivative of
the designed function dr(t)/dt as CHO input. Figure 3
shows the output of the designed specific CHO input
function.

The primary goal of this study was to prove the
usability of the RFPT-based controller design oppor-
tunity in case of the T1DM model created in order to
ease the identification procedures. Themethod requests
approximated models instead of exact patient models
that allows using one of the parameter sets from the
study of the model belonged to an identified patient
(Patient 1, [23]) given in Table 2.

TheAffineAdditive elements were set to zero during
the simulation. Naturally, the parameters from Table 2

Table 2 Exact parameters of the used model [23]

Name Unit Value

kl mg/dLmin 1.94

kb mg/dLmin 128/M

ksi mg/Umin 197

kr min 2.4VB 10−3

ku min 59Vi 10−3

Tu min 122

Tr min 183

Vi dL 2.5M

VB dL 0.65M

M kg 72

can only be used in the affine case. In the approxi-
mate case, the values of the state variables are non-
measurable; however, roughly estimable from parallel
simulation enough in order to efficiently use the RFPT-
based method. The parameters in this case were half
of the original values; namely, except the body weight,
every parameter in the approximate casewas equalwith
0.5 times of its original value.

Beside the selection of the used model parame-
ters, the appropriate selection of the control parame-
ters is also important. The general RFPT-based con-
troller parameters are those connected to the adaptiv-
ity, namely Ac, Bc and Kc. Moreover, depending on the
applied control law, different further control parameters
may occur. In this study, a kinematic control law was
used (see Sect. 4.3) with one tunable� gain parameter.
The values of the adaptivity parameters were adjusted
to the magnitudes of the controlled variable (the third
derivative of G(t)). The last selectable variable is the
reference (nominal) BG level GN which is used in the
adaptivity block and the control law as well. Due to the
desired goal, to prove the usability of the RFPT-based
controller, the same control parameters and reference
BG level were used during the simulations, without
online parameter tuning.However, in other applications
these properties of the RFPT-based controller design
were successfully tested [34,37]. The selected control
variables of the T1DM case is given in Table 3.

The arbitrarily selected simulation length was
4000min (more then 66h, or almost 3days), which is
enough to demonstrate the benefit of the RFPT-based
controller, i.e., the controller adapts to the patient’s
needs.
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Table 3 Selected control parameters of the T1DM casetable

Name Value Unit

Kc −10−2

Ac 1/(10|Kc|)
Bc 1

GN 100 mg/dL

� 0.003

Figure 4 presents the blood glucose level over time
in the affine case. It should be noted that the desired
blood glucose interval is 70–120mg/dL (the healthy
human blood glucose interval). Over 120mg/dL hyper-
glycemia (high BG), under 70mg/dL hypoglycemia
(lowBG) is diagnosed. The latter is themost dangerous
for a T1DM patient and should be completely avoided.
Hyperglycemia, however, could be tolerated, but the
amplitude should be reduced to 140mg/dL.

Evaluating the results presented in Fig. 4, it can be
seen that after the first transient the controller reacts
to the increasing BG level and administers insulin in
order to avoid hypergycemia. As a result, the BG level
finally reaches the nominal BG level GN ; however, the
controller was continuously operating to prevent the
unfavorable effects.

In the non-affine case of Fig. 5, the controller acts
faster, since the simulated approximate model signals
are available and the controller has direct, but roughly
approximated information about the possible internal
states. The mild waviness in the figures is the effect of
the control (insulin) signal, while the peaks occurred
are discussed later.

Figures 6 and 7 show the tracking errors in the
affine and non-affine cases. The same conclusions can
be observed; namely, in the affine case the tracking
error decay is slower (as the RFPT-based controller
did not have only indirect information), but the con-
troller works efficiently over time. The waviness effect
appears here as well, since the error signal stands from
GN − Grealized(t).

Figure 8 shows the injected insulin over time in the
affine case. Due to the affine model’s structure (Eq. 9)
insulin peaks occur over time because the third deriva-
tive of the requiredG(t). Originally, these effects come
from the food intake signals and reflects in the

...
G(t)Req

signal, respectively.
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Fig. 4 Simulation results of the blood glucose level in the affine
case
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Fig. 5 Simulation results of the blood glucose level in the non-
affine case

The same effects can be seen in the non-affine case
(Fig. 9). The average magnitude of the peaks is almost
the same. The main difference is that the controller
has approximated internal information about the states.
This knowledge insulinemia that allows us to have a
nonzero initial control signal and have the non-smooth
insulin signal around the peaks.
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Fig. 6 Tracking error simulation result in the affine case
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Fig. 7 Tracking error simulation result in the non-affine case

In Figs. 10 and 11, one can see the output of the
realized (the real system’s) answer, desired (based on
the control law) and required (recommendation of the
adaptivity block) third derivatives of the BG level G(t)
in both the affine and non-affine cases. In Fig. 10, the
realized signal tends to the desired signal after the diver-
sion caused by the insulin signals; hence, the adapta-
tion works well. In Fig. 11 the desired and required
signals are almost the same, which is the direct con-
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Fig. 8 Injected insulin in the affine case
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Fig. 9 Injected insulin in the non-affine case

sequence of that fact that the controller has internal,
however, roughly approximated information about the
states. The realized

...
G(t) was tended to the desired sig-

nal as the low magnitudes and due to the fact that the
desired and required signals were almost the same.

Figure 12 shows insulinemia variation I (t) over
time. It can be seen that the control insulin signal results
a stable internal insulin level, nonetheless the presence
of the insulin peaks. The delays of the effect coming
from themodel’s structure are also visible, since despite

123



A robust fixed point transformation-based approach 2491

0 500 1000 1500 2000 2500 3000 3500 4000

T [min]

10-4

-1.5

-1

-0.5

0

0.5

1
Desired, Required, Realized 3rd derivatives of G

Desired
Required
Realized

Fig. 10 Desired, required, realized third derivatives of G(t) in
the affine case
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Fig. 11 Desired, required, realized third derivatives of G(t) in
the non-affine case

the immediate insulin signal from the beginning the
insulinemia initially decays, but it stabilizes over time.

In the non-affine case (Fig. 13), thewaviness appears
come from the insulin peaks.
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Fig. 12 Simulation result of insulinemia I (t) in the affine case
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Fig. 13 Simulation result of insulinemia I (t) in the non-affine
case

6 Conclusion

In this paper, the usability of RFPT-based controller
design method was reported in the case of a type 1 dia-
betes nonlinear model optimized to long-term identifi-
cation purposes, but used for control purposes as well.
In line with the requirements of the T1DM model, an
appropriate feed intake function was designed and long
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simulation time was used in order to provide unfavor-
able circumstances to test the behavior of the developed
RFPT-based controller. During this study, fixed control
parameters were used without advanced optimization
techniques. On these considerations, the applicability
of the novelRFPTmethodhas beendemonstrated.With
online optimization techniques, better performance is
expected that is a next step of the presented research.
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