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Abstract This paper presents a simple method for estimat-
ing the impact of assimilating individual or group of obser-
vations on forecast accuracy improvement. This method is
derived from the nsemble-based observation impact analysis
method of Liu and Kalnay (Q J R Meteorol Soc 134:1327–
1335, 2008). The method described here is different in two
ways from their method. Firstly, it uses a quadratic func-
tion of model-minus-observation residuals as a measure of
forecast accuracy, instead of model-minus-analysis. Sec-
ondly, it simply makes use of time series of observations
and the corresponding model output generated without data
assimilation. These time series are usually available in an
operational database. Hence, it is simple to implement. It
can be used before any data assimilation is implemented.
Therefore, it is useful as a design tool of a data assimilation
system, namely for selecting which observations to assim-
ilate. The method can also be used as a diagnostic tool,
for example, to assess if all observation contributes posi-
tively to the accuracy improvement. The method is appli-
cable for systems with stationary error process and fixed
observing network. Using twin experiments with a simple
one-dimensional advection model, the method is shown to
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International Liège Colloquium on Ocean Dynamics, Liège, Bel-
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work perfectly in an idealized situation. The method is used
to evaluate the observation impact in the operational storm
surge forecasting system based on the Dutch Continental
Shelf Model version 5 (DCSMv5).
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1 Introduction

Accurate forecasts of storm surges are important in the
Netherlands, since a large part of its land lies below sea
level. A number of decisions rely on forecasts, for example,
whether to close the storm surge barriers along the coasts,
to send out the dike watch, or whether to activate an evacua-
tion scenario. In such situations, the ability to make correct
and timely decisions is essential.

For this purpose, a storm surge forecasting system has
been developed and used operationally since the 1980s.
The forecasting system is based on a numerical hydrody-
namic model called the Dutch Continental Shelf Model
(DCSMv5). A Kalman filter was added to the forecasting
system in the 1990s to improve the accuracy of the model.
The Kalman filter assimilates observed water level data
from eight observing stations located along the British and
the Dutch coasts. Along the Dutch coasts, the Kalman fil-
ter improves the accuracy up to the forecast horizon of 12 h
(Heemink and Kloosterhuis 1990; Gerritsen et al. 1995).

The set of observing stations used for the data assimila-
tion has never been modified since the Kalman filter was
implemented. It remains a question whether it is possible
to use a different set of observing stations to improve the
Kalman filter performance. It is an open question whether
each assimilation station actually has positive impact on the
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forecast accuracy improvement. To answer these questions,
a method is needed for analyzing the observation impact.

A traditional method for analyzing observation impact
is the so called observing system experiments (OSEs; Ver-
laan et al. 2005; Kelly et al. 2007; Yamaguchi et al. 2009).
This method provides observation impact information by
actually adding or removing observations from the data
assimilation system and evaluating the resulting forecast
accuracies. Although it measures directly actual impact, it
requires a lot of independent data-denial experiments to
study the impact of various observing setups. It is therefore
computationally expensive, especially for large numerical
models common in geophysical applications.

Complementary to the OSEs, the adjoint-based obser-
vation sensitivity technique of Langland and Baker (2004)
has become more popular recently for analyzing the impact
of observations. It offers a quick analysis method, that
reveals the impact of various observing setups in one exper-
iment. With this method, results similar to an OSE’s can
be approximated without performing any data-denial exper-
iments. Because of its potential, it has been applied and
attracted more studies on its formulation and interpretation
(e.g., Errico 2007; Daescu and Todling 2009; Gelaro and
Zhu 2009; Cardinali 2009).

Liu and Kalnay (2008) has derived a similar formulation
for ensemble Kalman filtering. The implementation of this
method is relatively easy, since no adjoint model is required.
This method has been used to analyze the impact of various
observing instruments on different weather forecast systems
(Kunii et al. 2012; Ota et al. 2013; Hotta 2014; Lien 2014).

In this paper, the ensemble-based observation impact
method of Liu and Kalnay (2008) is rederived. Here, a
measure of forecast accuracy based on observation-minus-
forecast residuals is used (Todling 2012) instead of analysis-
minus-forecast differences as in their formulation. This
does not rely on analysis being more accurate than fore-
cast everywhere in the whole model area. Moreover, it is
more compatible with the minimizing criterion used in the
data assimilation. This formulation leads to an expression
of observation impact that depends only on the observation-
space quantities.

Based on our ensemble-based observation impact for-
mulation, a further approximation is proposed that simply
requires time-series of observations and the correspond-
ing model output (forecast observations). These data are
normally available in an operational database. Unlike the
methods of Langland and Baker (2004) and Liu and Kalnay
(2008) that are applicable for an existing data assimilation
system, this method can be used for the estimation of obser-
vation impact even prior to the actual implementation of a
Kalman filter. It does not require a forecast ensemble nor
additional model runs. Hence, it can also be useful at the

design phase of a data assimilation system where decisions
have to be made, for example, on which set of stations or
what parameters to assimilate.

In this study, by using a simple one-dimensional advec-
tion model, twin experiments are first performed to demon-
strate that the methods work and to illustrate the properties
of the methods. In the end, an application of the timeseries-
based method on the DCSMv5 is presented, to illustrate
how each operational observing station contributes to the
improvement of forecast accuracy.

Section 2 presents the notation and observation sensitiv-
ity formulation used throughout this paper. In Section 3,
rederivation of the ensemble-based observation impact for-
mulae is given. A simplified formulation of this method
that simply makes use of observation and forecast obser-
vation time-series is presented in Section 4. We illustrate
the properties of the methods by using twin experiments in
Section 5. In Section 6, application of the timeseries-based
method on the Dutch operational storm surge forecasting
system is presented. The paper concludes in Section 7.

2 Notation, Kalman filtering, and observation
sensitivity

Consider a nonlinear discrete time system given by

x(k + 1) = Mx(k) + w(k) (1)

y(k) = Hx(k) + v(k) (2)

Here, x(.) denotes the state vector, y(k) are the observa-
tions with uncertainty v(k). To allow for model errors, an
additional input vector w(.) is constructed. These control
variables, known as system noise in Kalman filtering liter-
ature, are considered unknown a priori. When computing
statistics, we assume w(k) to be independent Gaussian ran-
dom vectors with zero mean and covariance Q(k). Similar
for v(k) with covariance R(k). We have omitted time sub-
scripts for several operators, where these are clear from the
context.

To study the impact of observations, an analysis step is
added. We denote the estimate for the state x at time k

based upon observations until time l as x̂(k|l). Now a linear
analysis update can be written as:

x̂(k|k) = x̂(k|k − 1) + K[y(k) − H x̂(k|k − 1)] (3)

with the notation of the corresponding forecast changing to

x̂(k + 1|k) = M x̂(k|k) (4)

Here, x̂(k +1|k) denotes our estimate x̂ for time k +1 based
on observations up to and including time k.

With observation sensitivity experiments, one would like
to study the impact of various sets of observations on
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the accuracy of the subsequent forecast. Here, we will
use a measure based on observations to study the impact
(Todling 2012):

J (k, l, m) = (y(k + m) − H x̂(k + m|l))′R−1(y(k + m)

−H x̂(k + m|l)) (5)

with k being the time of the start of the forecast, l is the time
of the last assimilated observations, and m is the forecast
lead-time considered for validation. The notation prime ′ is
used for a matrix transpose. In particular, we are interested
in the impact of the observations at the most recent analysis
update. To study this impact in more detail, the analysis in
Eq. 3 is extended to

x̂s(k|k) = x̂(k|k − 1) + sK(y(k) − H x̂(k|k − 1)) (6)

with 0 ≤ s ≤ 1, so at s = 0 observations y(k) are ignored
and with s = 1 they are fully included. The corresponding
cost becomes

Js(k, m) = (y(k + m) − H x̂s (k + m|k))′R−1(y(k + m)

−H x̂s (k + m|k)) (7)

where x̂s(k + m|k) is a forecast started from x̂s (k|k). With
this notation, the impact of the observations at time k can
be written as �J(k, m) = J1(k, m) − J0(k, m), which is
commonly approximated with a trapezoid estimate

�J(k, m) =
∫ 1

0

dJs(k, m)

ds
ds

≈ 1/2

[
dJs(k, m)

ds
|s=0 + dJs(k, m)

ds
|s=1

]
(8)

Note that the impact of the observations is often of simi-
lar magnitude as the forecast errors, which makes a linear
approximation of J a very poor one. The second-order accu-
rate trapezoid rule is much better in this case. Higher-order
approximations are possible, but require more computations
(Errico 2007).

A common approach to compute �J(k, m) is with an
adjoint model (see, e.g., Langland and Baker 2004; Daescu
and Todling 2009). These equations can easily be derived
by noting that Js(k, m) is a concatenation of three steps:
analysis, forecast, and evaluation of cost at forecast time,
i.e.,

dJs(k, m)

ds
=2(y(k+m)−H x̂s(k+m|k))′R−1H

∂ x̂s (k+m|k)

∂s

=2(y(k+m)−H x̂s(k+m|k))′R−1H
∂ x̂s (k+m|k)

∂ x̂s (k|k)

∂ x̂s (k|k)

∂s

=2(y(k+m)−H x̂s(k+m|k))′R−1H
∂ x̂s (k + m|k)

∂ x̂s(k|k)

K(y(k)−H x̂(k|k−1))

=2(y(k+m) − H x̂s(k+m|k))′R−1HMk→k+m

K(y(k)−H x̂(k|k−1)) (9)

Here,Mk→k+m denotes the linearized model for multiple
time-steps at once. The time-steps can be chained together
and with the chain-rule the same holds for the derivatives.
The last line can be evaluated left to right with: the adjoint
of the cost at forecast time, the adjoint of the model, and
the adjoint of the analysis with respect to the observations.
Because of the trapezoid rule, two adjoint runs are needed.
Here, we have no adjoint model available and will use an
alternative based on an ensemble of forecasts.

3 Ensemble-based observation sensitivity

In this paper, the estimates of observation sensitvity will
be based on the Ensemble Kalman filter (EnKF) (Evensen
1994; Burgers et al. 1998; Evensen and van Leeuwen 1996).
This algorithm computes the forecast error covariance by
integrating an ensemble of randomly perturbed initial anal-
ysis states in time with random perturbations added to the
forcing. This Monte Carlo type approach based on the full
nonlinear model allows for consistent statistics in the case
of nonlinear dynamics. The analysis of the perturbed states,
known as ensemble members, is carried out with perturbed
observations. For the system of Eqs. 1 and 2, the algorithm
can be denoted as

ξi (k + 1|k) = M(ξi(k|k),wi (k)) (10)

x̂(k + 1|k) = (1/q)

q∑
i=1

ξi (k + 1|k) (11)

[L(k + 1|k)]:,i = (1/
√

q − 1)
(
ξi (k + 1|k) − x̂(k + 1|k)

)
(12)

Kc(k + 1) = L(k + 1|k)L(k + 1|k)′H ′

(HL(k+1|k)L(k+1|k)′H ′+R(k+1))−1 (13)

ξi (k + 1|k + 1) = ξi (k + 1|k)

+Kc (y(k+1)−Hξi(k+1|k)−vi (k+1)) (14)

where ξi(k|l) is an ensemble of state vectors generated with
the realizations wi and vi of the processes w and v, respec-
tively. These realizations are made using a pseudo random
generator. Note that x̂ for finite samples depends on the
actual realization used, i.e., different random number gen-
erators or different initial seed values will give (slightly)
different results.

For the derivation of the observation sensitivity for the
EnKF, it is assumed that the adjoint operators for the model
and observations are not available. If they are available,
one may use the same approach as above. The absence
of the adjoint operators requires different approximations.
A first approximation is that the second-order approxima-
tion is mainly needed for the non-linearity of the cost-
function at forecast time, which is approximately quadratic.
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The forecast and the analysis at time k are often much better
aproximated with a linear map, so we can reduce �J(k, m)

to

�J(k,m) = [(y(k + m) − H x̂(k + m|k)) + (y(k + m)

−H x̂(k + m|k − 1))]′
R(k + m)−1HMk→k+mK(y(k) − H x̂(k|k − 1)) (15)

For the ensemble-based observation sensitivity, the fore-
cast tangent can be approximatedwith an ensemble forecast.
Let D(k|l) denote the square-root of the covariance of
H x̂(k|l), i.e.,

[D(k|l)]:,i =(1/
√

q − 1)

⎛
⎝Hξi(k|l)−(1/q)

q∑
j=1

Hξj (k|l)
⎞
⎠

(16)

This can be used to apply a linear approximation to
HMk→k+mL(k|k − 1) as

HMk→k+mL(k|k − 1) ≈ D(k + m|k − 1) (17)

Substitution of Eq. 17 in Eq. 15 gives

�J(k, m) ≈ [(y(k+m)−H x̂(k+m|k))+(y(k+m)−H x̂(k+m|k−1))]′
R(k+m)−1D(k+m|k−1)D(k|k−1)′(
D(k|k−1)D(k|k−1)′+R(k)

)−1
(y(k)−H x̂(k|k−1)) (18)

Note that Eq. 15 is similar with Eq. 7 of Langland and
Baker (2004), except that a different cost function is used
here. Moreover, in the ensemble-based estimation, instead
of using a tangent linear model, the nonlinear dynamics is
used to propagate the forecast ensemble as stated in Eq. 17.
This has likely made the ensemble-based technique more
robust in some applications than the adjoint-based method
(Liu and Kalnay 2008). Like any ensemble-based technique,
however, this method suffers from sampling uncertainty.

Covariance localization is an essential component for
large-scale applications of an ensemble data assimilation
(e.g., Houtekamer and Mitchell 2001; Hamill and Whitaker
2001). For the ensemble-based observation impact analysis
method, localization is needed at assimilation and valida-
tion times to estimate the square root covariance matrices
D(k|k − 1) and D(k + m|k − 1), respectively. In this study,
we do not explore how localization should be treated. How-
ever, the simplest approach is to use a localization function
(e.g., Gaspari and Cohn 1996) with the same local support
for both assimilation and validation. Another possiblility is
a method for generating localization functions that move
in time with the true error correlation function, especially
for systems with highly flow-dependent error correlation
(Bishop and Hodyss 2009; Ota et al. 2013).

In passing, we note that the observing network used for
data assimilation can be different from that used for valida-
tion. This can be useful, for example, in cases where one is
interested in having accurate forecasts over a specific area
while observations are available on locations distributed
over a larger area in the model domain.

4 Timeseries-based observation sensitivity

This section describes a further approximation of the ensem-
ble based observation sensitivity method that is based on
time-series of observation and the corresponding model
forecast. To derive the timeseries-based method, two addi-
tional assumptions are required. The first assumption is that
the model is linear. The second assumption is that the model
and observational error processes are stationary. A Kalman
filter applied to models satisfying these assumptions will
have a constant Kalman gain. In the derivation that fol-
lows, we will assume that the Kalman gain is constant and
estimated from a forecasts ensemble.

Equation 18 shows that the observation impact estimate
depends merely on the observation-space quantities. Essen-
tially, there are only two covariance matrices that need to
be estimated from a forecast ensemble: the error covari-
ance matrix of the forecast observations at the analysis time
D(k|k − 1)D(k|k − 1)′ and the error covariance of the fore-
cast observations at analysis and those at validation time
D(k+m|k−1)D(k|k−1)′. For stationary, nearly linear sys-
tems with static observing network, one can estimate these
covariance matrices also by using long time-series of the
forecast observations and the observations, which are usu-
ally already available in an operational forecast system, even
when data assimilation is not yet implemented.

Suppose we are interested in estimating observation
impact on forecast accuracy at m time steps away from the
last assimilation time k. To estimate the updated forecast
observation, we first introduce an augmented state vector
that combines the state vectors at assimilation time k and at
validation time k + m:

x̃(k|k − 1) =
[
x̂(k + m|k − 1)
x̂(k|k − 1)

]
(19)

We introduce also the associated observational operators for
assimilation and validation:

H̃a = [0 H ] (20)

H̃v = [H 0] (21)

Using these definitions, the analysis equation of the Kalman
filter now reads

x̃(k|k) = x̃(k|k − 1) + K̃c

(
y(k) − H̃a x̃(k|k − 1)

)
(22)
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where K̃c is a Kalman gain for the augmented model repre-
sentation computed from an ensemble of forecasts accord-
ing to Eq. 13. The updated forecast observations can be
obtained by applying directly the observation operator for
validation to this update equation

H x̂(k+m|k)=H̃v x̃(k|k−1)+H̃vK̃c

(
y(k)−H̃ax̃(k|k−1)

)

(23)

Using Eqs. 12, 13, and 16 to express K̃c for the augmented
state x̃, it can be shown that H̃vK̃c is a function of the square
root of forecast observation covariance matrices at time k

and k + m:

H̃vK̃c = D(k+m|k−1)D(k|k−1)′
(
D(k|k − 1)D(k|k − 1)′ + R

)−1

(24)

In this paper, two methods for estimating the square root
of forecast observation covariancematricesDC(k|k−1) and
D(k+m|k−1) are proposed. Both methods are based on the
assumption of stationary error processes, that allows one to
estimate the error covariance matrix by averaging over time.

The first method makes use of two realizations of the
forecast observations and assumes that the forecast errors
in the two realizations are independent of each other (Sum-
ihar et al. 2008). Suppose we have two realizations of
forecast observations H̃vx̃1(k|k − 1) and H̃vx̃2(k|k − 1),
for k = 1, ..., N . With this method, each column of the
square root covariance matrices is the difference between
the two realizations, scaled by a factor to make the estimate
unbiased:

[D(k|k−1)]:,i =1/
√
2(N − 1)

(
H̃a x̃1(i|i−1)−H̃a x̃2(i|i−1)

)
(25)

[D(k+m|k−1)]:,i =1/
√
2(N − 1)

(
H̃v x̃1(i|i−1)−H̃v x̃2(i|i−1)

)
(26)

The secondmethod utilizes the difference between obser-
vation time-series and the corresponding forecast observa-
tion as proxy to the actual forecast error. With this method,
each column i of the square root covariance matrices reads:

[D(k|k−1)]:,i = 1/
√

(N − 1)
(
y(i)−H̃a x̃(i|i−1)

)
(27)

[D(k+m|k−1)]:,i =1/
√

(N − 1)
(
D(i+m)−H̃v x̃(i|i−1)

)
(28)

Note that with this approach, the termD(k|k−1)D(k|k−1)′,
contains also R in addition to the model error covariance.
Hence, for this method, the term R in Eq. 24 should be
dropped out.

For this second approach, it is possible to use the same
time series for computing both the covariance matrices
and the innovation as well as the validating time series.
However, this will give inaccurate estimates of observation

impact when the actual error correlation is small. In such a
situation, the method will always indicate positive impact of
observations, while the impact should actually be negative
due to spurious correlation. To obtain a more accurate result,
the time series used for estimating the covariance matri-
ces should be different from the one used for computing
the updated forecast. To be more precise, the time series y
and x̃ in Eqs. 27–28 should be different from y and x̂ in
Eq. 18.

To summarize, the time-series-based observation impact
analysis procedure consists of the following steps:

1. Arrange the original forecast observation time-series
into N segments to create time-series of H̃a x̃(k|k − 1)
and H̃vx̃(k|k − 1), as defined in Eqs. 19–21, for k =
1, ..., N

2. Compute the square root of forecast observation covari-
ance matrices D(k|k − 1) and D(k + m|k − 1) using
Eqs. 25–26 or Eqs. 27–28

3. Compute the updated forecast observationH x̂(k+m|k)

using Eq. 23
4. Compute the observation impact estimate �J using

Eq. 18 for each k

5. Average �J over total number of data assimilation
cycles

For simplicity, we have derived the time-series-based for-
mulation by augmenting the state vectors at only two time
levels. The same concept actually holds for augmenting
the state vectors at more time levels. This can be used to
estimate observation impact at various forecast time lev-
els at once. Moreover, it is also possible to augment the
state vectors within a time window in the past. This allows
us to extend the method easily to estimate the impact of
assimilating asynchronous observations (Sakov et al. 2010).

Covariance localization is less of an issue for this
method. Because the method is aimed for an off-line appli-
cation, it is generally possible to generate two long time-
series of model forecasts from a prespecified model error
statistics, for example. Since we only need observation-
space quantities, and not the whole model state variables,
computational cost is also not likely to be an issue. In
this way, one can generate a large forecasts ensemble that
covariance localization is no longer needed. Besides, with
this method, we estimate an observation impact that is aver-
aged over various times. The temporal averaging will reduce
the impact of spurious correlation from the results.

The time-series-based methods are mainly useful for ana-
lyzing observation impact based on an existing operational
database. The methods are practical since they only need
observations and model output time-series that are normally
available in an operational database, even if data assimila-
tion is not yet implemented. The model time-series in the
two models approach can be generated, for example, by
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running the same model twice with two different input forc-
ing, when input forcing is known to be the main source
of uncertainty in the model forecasts. For the storm surge
forecasting system in the Netherlands, for example, it is a
general assumption that the wind input is the main source of
forecast uncertainty. It is a common practice to run the fore-
cast model by using various wind forecasts. The two model
time-series can also be generated, for example, by two ver-
sions of the model having different grid size, when the main
source of uncertainty in the numerical approximation.

As pointed earlier, the method is developed on the
assumption that the underlying model is linear and that the
model and observational error is stationary. However, it is
likely that the method still works for weakly non-linear sys-
tems and where the statistics of error processes vary slowly
in time. Since it relies on estimating a Kalman gain by aver-
aging over a long time, it also requires a fixed observing
network.

In the next sections, various experiments are presented
to validate and investigate the properties of the methods.
This is done by using twin experiments as well as by
applying the method in a real operational case. Table 1
provides a complete overview of the experiments. In the
remainder of the paper, the observation impact analy-
ses methods are addressed by the following acronyms:
EnBOI (ensemble-based method), TSBOI-MM (timeseries-
based method using two model differences), and TSBOI-
OM (timeseries-based method using observation-model
differences).

5 Experiments using a 1D advection model

To test the validity and usefulness of the methods above,
twin experiments have been performed with a simple one-
dimensional advection model. The goal is to illustrate

experimentally the properties of the ensemble-based and
timeseries-based methods.

5.1 Setup of experiments

Consider a one-dimensional system of temperature advec-
tive flow. The dynamics of the system are such that the
temperature at a grid point is advected to its right at each
time step. The system is discretized into 50 grid cells. At
the left-end of the model area, a boundary condition ψb is
specified as an autoregressive AR(1) process:

ψb(tk+1) = αψb(tk) + ν(tk) (29)

where ν is a white noise process. Here, we set α to 0.85,
which corresponds to a decorrelation time of around six
time steps. The standard deviation of ν is set such that the
standard deviation of ψb is equal to 1 ◦C.

For representing the truth, the model is run with one real-
ization of the AR(1) process. This truth model is used to
generate synthetic observations. A row of eight hypotheti-
cal observing stations are defined along the model area. The
first station is located at the fourth grid cell and the distance
between any two adjacent stations is six grid cells (Fig. 1).
To represent the observational error, independent Gaussian
random numbers with a standard deviation of 0.1 ◦C are
added to the output of the truth model that correspond to
these locations.

In the description which follows, we divide the eight sta-
tions into two groups: Set U (upstream) that consists of the
first four upstream stations (Stat 1–Stat 4) and Set D (down-
stream) that consists of the other four downstream stations
(Stat 5–Stat 8). Suppose that our interest is to have accurate
forecasts of temperature at the downstream area covered by
set D, by using the model as well as observations from all
observing stations. In this study, we used all the methods

Table 1 Overview of
experiments Section Method Model Objectives

5.2 EnBOI 1D advection Demonstrate the performance of EnBOI and

provide a reference for the TSBOI’s experiments.

5.3 TSBOI-MM, 1D advection Validate the TSBOI’s methods and illustrate

TSBOI-OM the properties.

5.5 TSBOI-MM, 1D advection Demonstrate the TSBOI’s in the presence of

TSBOI-OM biased observation.

6.2 TSBOI-MM DCSMv5 Validate the TSBOI-MM and evaluate the impact of

the observing network currently used in the

Dutch operational storm surge forecasting system.

6.3 TSBOI-MM DCSMv5 Apply the TSBOI-MM method to evaluate all

available observation stations, to explore the

possibility of a better observing network.
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Fig. 1 A snapshot of the 1d advection model. The solid line shows the
distribution of temperature over the model area. The flow is from left
to right. The circles Stat 1–Stat 8 are the locations of the eight hypo-
thetical observing stations. The stations are divided into two groups:
Set U (upperstream) and Set D (downstream)

above to explore how each set of stations give impact on the
forecast accuracy.

Three scenarios are considered: assimilating all obser-
vations, assimilating only set U, and assimilating only set
D. Validation of the methods is performed by comparing
the results obtained by using the EnBOI methods to the
actual impact of observations. Here, the actual impact is
defined similarly as in the traditional OSEs (e.g., Gelaro
and Zhu 2009), i.e., the difference between forecast accu-
racy obtained by actually assimilating the observation set of
interest and forecast accuracy of a base case. But, instead of
using a data assimilation system where all available obser-
vations are assimilated as the base case, we use the model
run without data assimilation as the base case. In this way,
the interpretation of the results of both methods is consis-
tent with each other. We can therefore compare the results
of the two methods directly to validate the proposed meth-
ods. Note that the same realizations of the open-boundary
condition are used in both the base case as well as all data
assimilation setups. In this way, we make sure that forecast
accuracy differences of the various setups are only due to
the differences in the initial condition as resulted from data
assimilation.

For these experiments, forecast accuracy is measured by
a quadratic cost function, computed over the observations in
set D:

J (tk) = 0.5[(yB(tk) − HBψ(tk))
′R−1(yB(tk) − HBψ(tk))]

(30)

where yB(tk) is a vector of observations in set D at time
tk , R is a diagonal observational error covariance, and HB

is an observation operator, which practically selects the ele-
ments of state vector ψ that correspond to the observations
in set D. The cost is computed starting from the analy-
sis time (tk = 0) up to the forecast horizon of 60 time
steps.

We used the methods above to study the impact of dif-
ferent sets of observing stations on the forecast accuracy.
The observations are assimilated once to improve the accu-
racy of the initial condition. To gain insights about the effect
of ensemble size, each method is tested with the ensem-
ble size of 50, 200, and 800 members. To further reduce
the sampling error, each experiment is repeated 200 times
with different realizations of model and observational error.
Validation of the observation impact estimates is performed
based on the average of the observation impact measure over
all repetitions.

5.2 Ensemble-based observation impact analysis

In this section, we demonstrate the EnBOI method experi-
mentally and will use the results as a reference for studying
the properties of the timeseries-based method in the next
section. A forecasts ensemble of q members is generated by
drawing q independent realizations of the stochatic bound-
ary condition Eq. 29 and let the model run with each
realization.

The actual and EnBOI estimates of observation impact
for all scenarios are shown in Fig. 2. It indicates that for
each group of observing stations, the impact oscillates on
top of a general trend, with a period of six time steps. This
oscillation is caused by the fact that at analysis times, data
assimilation has its largest impact on the locations of the
assimilation stations, which are six time steps away from
one to another. This figure also indicates that assimilating
sets U and D simultaneously improves the forecast accuracy
immediately. The impact remains constant up to 28 time
steps and then decreases eventually to 0 a few time steps
after 50 time steps. The initial state flows completely out of
the model area after 50 time steps. The remaining time steps
are due to the temporal correlation of the random forcing.
Separate analysis for each group shows that set D is respon-
sible for the immediate impact, while set U for later. This is
because the cost function is defined over the observing sta-
tions in set D. The impact of set U comes later according to
the travel time of the advection from the locations of set U
to set D.

Figure 2 indicates that the observation impacts are
smoother for larger ensemble size. With a small ensemble
size, set D is found to give negative impact in the medium
forecast range and set U right around the assimilation time.
This negative impact is likely due to spurious correlation as
a result of estimating small correlation from a small sam-
ple of random numbers. As the ensemble size is larger, the



228 Ocean Dynamics (2016) 66:221–241

Fig. 2 Ensemble-based observation impact (EnBOI), with ensemble size 50, 200, and 800 (top to bottom): actual (left) and estimates (right)

negative impact becomes smaller. Nevertheless, for each
ensemble size, it is clear that the EnBOI method can repro-
duce its respective actual impact. It should also be noted that
in this case, each figure of the actual impacts is obtained
by running the corresponding data assimilation system three
times. On the otherhand, the EnBOI estimates are obtained
from one run. This suggests an advantage of using the

EnBOI method, especially for cases where simulation time
is an issue.

Minor differences exists between the actual and EnBOI
estimates of the observation impact. In the shorter forecast
lead-time, the EnBOI method can reproduce accurately the
actual total impact of assimilating sets U and D simultane-
ously. However, the actual impact of assimilating only set
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Fig. 3 TSBOI-OM observation impact, with ensemble size 50, 200, and 800 (from top to bottom): actual (left) and estimates (right)

U or set D is consistently slightly larger than the EnBOI
estimates. This difference is due to the different observing
sets used in the EnBOI method and in generating the actual
impact. In the EnBOI method, the two results are obtained
by assimilating set U and D simultaneously, while the actual
results are obtained by running two different data assim-
ilation system with the two observing groups separately.

In the absence of a group of observations, the other group
receives more weight in the data assimilation. This results in
a larger observation impact. Hence, the observation impact
estimates should be interpreted as the impact of set U or
set D in the presence of all stations (e.g., Gelaro and Zhu
2009; Liu and Kalnay 2008). Other slight differences in the
total impact appear at forecast lead-time longer than 28 time
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Fig. 4 TSBOI-MM observation impact, with ensemble size 50, 200, and 800 (top to bottom): actual (left) and estimates (right): actual (left) and
estimates (right)

steps. These differences are due to the presence of model
error at the area covered by Set D after this time.

5.3 Timeseries-based observation impact analysis

Here, we test the two proposed methods of computing the
square root covariance matrices (Eqs. 27–28 and Eqs. 25–
26). The setup for testing the TSBOI-MM and TSBOI-OM

methods is designed as to resemble the one used for testing
the EnBOI method. Three experiments for each time-series-
method are performed with three different ensemble sizes:
50, 200, and 800 members.

To generate a forecast ensemble, the model is run without
data assimilation for a sufficiently long simulation time that
it is possible to split the time-series output at each observa-
tion location into independent time-series of 60 time steps
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as many as the required ensemble size. The same procedure,
but with different random process realizations, is done for
generating the second model realization as well as the truth.
The observations time-series are generated by adding obser-
vational error realizations to the truth output. For testing the
method that is based on observation-model differences, an
extra set of independent forecast and observations is gen-
erated in the same way. Similar with the previous test, the
observation impact evaluation is repeated 200 times with
different random process realizations to reduce the sam-
pling error. For validation of the estimates, the average
observation impact over all repetition is used.

Figures 3 and 4 present the actual observation impact
and their estimates using the TSBOI-MM and TSBOI-OM
methods. The figures show that both TSBOI methods can
reproduce accurately their respective total actual impact,
obtained by assimilating sets U and D simultaneously.
The impact of set D decreases and becomes 0 at forecast
lead-time 24 time steps and continues to decrease after-
wards, before it reaches a constant value. This trend is
more pronounced for smaller ensemble size. The non-zero
constant value is due to certain numerical artifacts of esti-
mating zero correlation from a finite sample of random
numbers.

Different from the EnBOI method (Fig. 2), the obser-
vation impact does not reduce to zero after 50 time steps
here. This is because in the timeseries-based methods, the
forecasts are updated directly using observations at analyses
times by exploiting the correlation between forecast errors
at validation and analysis times. In the EnBOI method, an
updated forecast is generated by propagating a corrected ini-
tial state by the model. In this case, the initial state flows
completely out of the model area after 50 time steps, so that
the observation impact reduces to zero beyond this forecast
horizon.

5.4 Discussions

Each of the observation impact analysis methods tested
in these experiments assumes a different underlying data
assimilation procedure. Therefore, each method has its own
actual impact to compare to. Moreover, the actual impact
is also dependent on the ensemble size. For each ensem-
ble size, the above experiments have shown that the EnBOI
and TSBOI’s methods can reproduce their respective actual
impacts.

The main difference of the data assimilation proce-
dures assumed by the EnBOI and TSBOI’s methods is on
how the forecasts are corrected by observations. In the
EnBOI method, a forecast is updated by propagating an
analysis state by the model. On the other hand, in the
TSBOI’s, the forecasts are static and updated simultane-
ously using observations at analyses times. As a result,
it may give incorrect non-zero impact estimates at the
forecast horizon beyond which data assimilation has actu-
ally no longer impact, because the initial condition at
an analysis time has flown completely out of the model
area.

Despite of the differences, all methods give consistent
information on the importance of each set of observa-
tions. This is true especially in the forecast range when
the impacts are significantly larger than zero. This period
corresponds to the time when the true correlation between
the error at assimilation time and at the forecast time is
significantly non-zero. It is known that estimating a large
correlation is less susceptible to the finite ensemble size.
Nevertheless, the actual impacts of all the underlying data
assimilation procedures converge to each other as larger
ensemble size is used. With a large ensemble size, all
methods can reproduce very well the actual observation
impact.

Fig. 5 Timeseries-based observation impact in the presence of biased observation at Station 2, with ensemble size 50: with TSBOI-OM (left) and
TSBOI-MM (right)
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A practically relevant question may be: can we use the
TSBOI’s methods to estimate the performance of an EnKF
or a steady state Kalman filter prior to the actual implemen-
tation of these filters? The experiment results suggest that,
by interpreting negative impacts as no impact, the TSBOI’s
methods give accurate information on how an EnKF would
perform, given the same error statistics and ensemble size.
In this experiment, it is possible to do that because we know
that the negative impact is due to spurious correlation and
that it should be zero. However, in other cases, negative
impact may also reveal bias or redundancy in the observing
network. The latter can be checked by a combined use of
observation sensitivity based method and the OSEs (Gelaro
and Zhu 2009).

5.5 Biased observation

Assimilating significantly biased observation will reduce
forecast accuracy. In this section, we describe an extra
experiment for illustrating the ability of the TSBOI’s
methods in indicating the negative impact of biased
observation. To do this, a constant bias of 3 ◦C is
introduced to the observation at Station 2. The pre-
vious experiments are then repeated for ensemble size
of 50. The results are presented here by partitioning
the total impact into impact per assimilation station.
As can be seen in Fig. 5, both methods can success-
fully indicate negative impact of assimilating data from
Station 2.

6 Observation impact analysis on the Dutch
operational storm surge forecasting system

6.1 Introduction

In this section, we implement the timeseries-based method
for analyzing the operational storm surge forecasting sys-
tem in the Netherlands. The storm surge forecasting system
is based on the Dutch Continental Shelf Model (DCSMv5).
The DCSM model covers the area of the northwest Euro-
pean continental shelf to at least the 200 m depth contour,
i.e., 12◦ W to 13◦ E and 48◦ N to 62◦ N. It uses a spher-
ical grid with a resolution of 1/8◦ by 1/12◦ (Fig. 7). The
model mainly uses the forecasts of the meteorological high-
resolution limited area model (HIRLAM) as input. It runs
four times a day, following the HIRLAM data that are avail-
able four times a day with forecast start times 00:00, 06:00,
12:00, and 18:00 UTC.

Since 1990s, the model also runs with a steady state
Kalman filter (Gerritsen et al. 1995). The steady state
Kalman filter assimilates observed water level data from
eight stations: five stations are located along the British
coast and three others along the Dutch coast (Fig. 6).
Observed water level data are available from these sta-
tions regularly with a time step of 10 min. This model-
KF setup also runs four times a day, next to the model
runs without data assimilation, where at each hindcast run,
all observations from the past six hours are assimilated
sequentially.

Fig. 6 DCSMv5 area with
currently operational
assimilation stations (blue): 1
Wick, 2 North Shields, 3
Lowestoft, 4 Sheernes, 5 Dover,
6 Vlissingen, 7 Hoek van
Holland, 8 Den Helder, and non-
assimilation stations (red): a
Europlatform, b Oosterschelde-
11, c Roompotsluis, d IJmuiden,
e Harlingen, f Huibertgat, and g
Delfzijl
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Using the TSBOI-MM method, we are interested in
studying the impact of each station currently used in the
operational system for data assimilation. We also applied
this method to estimate the impact of other stations, should
they be used in the Kalman filter as well. For this study,
water level data from seven other locations along the Dutch
coast are available (Fig. 6).

In particular, we implement the TSBOI-MM variant of
the timeseries-based methods. Two DCSMv5 model real-
izations are available in the operational database, generated
without any data assimilation. One is generated by forcing
the DCSMv5 with HIRLAM wind and the other with the
meteorological forecasts of the UK Met Office (UKMO).
The latter runs also regularly in the operational system
as a benchmark and fall back option if for some rea-
son HIRLAM data is not available. Figure 7 presents an
schematic overview of the experiment setup.

The main reason of using this approach is that the main
source of uncertainty of the DCSM model is generally
believed to be the uncertain meteorological input. In an ear-
lier study, it has been shown that modeling the model error
based on the HIRLAM and UKMO differences leads to a
better performing Kalman filter (Sumihar 2009). Besides,
all these data are already available in the database. It is
straightforward to implement this method with these time
series.

In this study, we use the time-series of surge component
of the water level, instead of the total water level. This is
because the DCSMv5 provides a poor tidal representation
and hence in the operational system the Kalman filter is used
only to improve the surge component of the water level. The
surge component is defined as the total water level minus
the astronomical tides.

Like in the operational system, the observational error at
all stations is assumed to be independent from each other,
with a constant standard deviation of 5 cm. The obser-
vational error covariance R(k) is therefore diagonal and
constant in time. The observation impact is estimated within
a forecast range of 0–12 h, with a time step of 0.5 h. The
evaluation period is from July 1st, 2009 00:00 until July 1st,
2010 00:00.

6.2 Impact of the operational assimilation stations

In this section, we apply the TSBOI-MM method to ana-
lyze the impact of assimilating data from the eight observing
stations as used currently in the operational system. The
goals are twofold. The first one is to validate the esti-
mate produced by the method. The second one is to gain
insight about the contribution of each assimilation sta-
tion to the forecast accuracy improvement of the DCSMv5
model.

Fig. 7 Operational database (left) contains observation as well as
forecasts issued at various times (T0’s), generated by running the
DCSM5 model both by HIRLAM and UKMO wind. Flow chart of
the experiments with the DCSM5 (right): DCSM5-HIRLAM and
DCSM5-UKMO forecasts at each issue time are subtracted from each
other and the differences are rearranged corresponding to the T0. The

square root covariance matrices at time k (=T0) and k + m are then
computed using the forecast differences at the corresponding times.
These are used in turn to estimate the updated forecast at time k + m,
assuming that observation is assimilated at time k. The observation
impact �J can then be computed using all available matrices. The
required equations are indicated in the diagram
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Fig. 8 Total impact of assimilating all currently operational assimila-
tion stations, summed over all available stations

As a first check, the timeseries-based method is validated
by comparing the estimate of total impact over all available
stations against the actual impact (Fig. 8). The actual impact
is computed as the difference between the forecast accuracy
of the actual forecasts generated with data assimilation and
the ones without data assimilation (5), summed over all the
15 available stations and averaged over all forecast cycles
available in the period of July 1st, 2009 00:00 until July 1st,
2010 00:00. Figure 8 shows that the Kalman filter success-
fully improves the forecast accuracy and the improvement
decreases in forecast horizon. It also shows that the TSBOI
method underestimates the actual impact.

It is useful to elaborate the total impact over all available
stations into impact at each individual station. This shows
that similar underestimations of the observation impact
are found at most individual station, except at Wick (not
shown). As an example, Fig. 9 shows the observation impact
at validation station Harlingen. To make the interpretation
easier, here the forecast accuracy is converted to the root
mean square (RMS) of the water level residuals. It shows
that the estimate of the observation impact is less than the
actual one, but its pattern follows the actual one.

The underestimation is as expected and due to the dif-
ferences in the data assimilation procedures as used oper-
ationally and the one assumed in the observation impact
analysis method. The most important difference is that the
actual Kalman filter runs in a hindcast-forecast cycle of
four times a day. In each hindcast cycle, it assimilates all
observations from the past 6 h sequentially. In contrast, the
TSBOI-MM method is based on assimilating data at one
single time. Moreover, it does not cycle. That means that
the actual Kalman filter assimilates more observation than
the timeseries-based method. Moreover, a data assimilation

Fig. 9 Observation impact on accuracy improvement at Harlingen,
where all the eight operational stations are assimilated. The total obser-
vation impact is expressed in term of RMS of water level residual, with
and without data assimilation

cycle improves upon the previous cycle, which leads to an
improvement that remains longer. As a result, the actual
Kalman filter gives more accuracy improvement than one
assumed in the TSBOI-MM method.

Another difference is that in the actual Kalman filter,
the impact of data assimilation is propagated in time by
the model. In the TSBOI-MM method, the forecasts are
updated directly by observation at an analysis time without
any model propagation. To a lesser extent, the difference
in the assumed model error also contributes to the discrep-
ancy in the observation impact. In the actual Kalman filter,
the model error is assumed to be isotropic and the vari-
ance is constant in space (Heemink and Kloosterhuis 1990).
The TSBOI-MM method, on the other hand, assumes that
the model error has the same statistics as the difference
between HIRLAM and UKMO, which is anisotropic and
has spatially non-uniform variance (Sumihar 2009). In view
of these differences, we can argue that the method gives rea-
sonable estimate of the observation impact on the forecast
accuracy improvement.

To get more insight about the contribution of each assim-
ilation station to the total observation impact over all val-
idation stations, our method allows us to split the results
into the total impact per assimilation station as presented
in Fig. 10. This figure indicates the relative importance of
each assimilation station on the total accuracy improve-
ment over all available stations at various forecast times. At
assimilation time, the assimilation stations located along or
nearby the Dutch coasts, except Sheerness, have the largest
impact (station Sheerness will be discussed below). This
is because most of the stations used for the validation are
located nearby or along the Dutch coasts. The total impact is
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Fig. 10 Total observation impact splitted per assimilation station,
summed over all validation stations

therefore more dominated by these stations. Assimilation of
observed data from nearby stations have clearly immediate
impact. This impact, however, decreases relatively quickly
in forecast time. On the other hand, the stations, which are
located along the British coast, have relatively little impact
in the beginning and more impact later in forecast time. Sta-
tion Lowestoft, for example, has its largest impact 3 h after
assimilation time, while station North Shields around 8 h. At
forecast range beyond 8 h, station Wick is indicated to have
more impact than any stations along the Dutch coast. The
fact that stations along the British coast have larger impact
later in time has to do with the wave propagation. For each
assimilation station along the British coast, the time of its
largest impact is equal to the time required for a gravity
wave to propagate from the location of that station to the
Dutch coast.

The observation impact analysis method here can also
provide information about the impact of various assimi-
lation stations on any individual validation station. This
detailed result is instructive for indicating which stations
have impact on the accuracy improvement at a particular
validation location and how the contribution varies in time.
As an example, detailed result at validation station Harlin-
gen is presented in Fig. 11. It shows that at assimilation
time, an immediate accuracy improvement at this location
comes mainly from the closest assimilation station Den
Helder. The impact of Den Helder increases in time and has
its largest after around 2.5 h. Its impact decreases gradu-
ally afterwards. Between forecast lead-time of 2 and 6 h, the
improvement comes from assimilation of observed data at
Den Helder, Hoek van Holland, and Vlissingen. The largest
impact of these stations appear one after the other according

Fig. 11 Observation impact on accuracy improvement at Harlingen,
where all the eight operational stations are assimilated: contribution of
each station on the forecast accuracy improvement

to the wave travel time from each of these assimilation loca-
tions to the location of Den Helder. The impact of station
Dover appear to be insignificant on the accuracy improve-
ment at station Harlingen. After 9 h, the impact of station
Wick becomes larger.

Station Sheerness is indicated to give negative impact.
The negative impact is also observed at all other stations
along the Dutch coasts. This is likely due to the fact that
the output of the DCSMv5 at Sheerness is very inaccurate.
The area around this station is characterized by shallow
water with spatially varying bathymetry. Due to its rela-
tively coarse grid size, it is difficult for the DCSMv5 model
to give a good representation of the non-linear interaction
with the surge. Assimilating data from such a station is like
assimilating biased or flawed observation. This will result
in negative impact. Assimilating data from Sheerness has,
however, a large positive impact at its own location at assim-
ilation time. It is as expected, since assimilation of observed
data from a location will improve the model accuracy at that
location. This is why Sheerness is indicated earlier to give
large positive impact in the beginning. However, the impact
decreases in forecast time and becomes negative after 3 h.

To gain insight about the spatial distribution of the obser-
vation impact, we present in Fig. 12 the forecast accuracy
improvement at each station as the result of assimilat-
ing observed data from the eight operational assimilation
stations. In this figure, the forecast accuracy is averaged
over the first 6 h forecast lead-time. For this presentation,
negative impact is set to zero.

This figure suggests that the largest impact on the fore-
cast accuracy comes from assimilation of data from its own
or nearby locations. For example, the impact of station Low-
estoft is significant on the location along the southern part
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Fig. 12 Observation impact at
stations along the British (top)
and the Dutch (bottom) coasts,
averaged over forecast lead-time
of 0–6 h. At each location, the
outer circle represents the cost
without data assimilation, the
inner circle with data
assimilation, and each colored
segment in between the two
circles represent the contribution
to the cost reduction of the
respective assimilation station
listed on the colorbar. The
diameter of each circle
represents the RMS of water
level residual

of the British coast as well as at all stations along the
Dutch coast. A somewhat smaller impact is also indicated
for station North Shield and Wick.

Assimilating data from a station has more impact on
other locations, which are located relatively downstream
of that station than upstream. These figures suggest that
there exists a persistent counter clock-wise flow direction
in the North sea. This strengtens the assumption that was
taken in selecting the operational assimilation stations for
the DCSMv5 (Gerritsen et al. 1995).

It should be noted here that detailed analysis on the
actual contribution of individual station has never been done
before since the Kalman filter became operational. This
study demonstrates the value of the TSBOI-MM method.

It indicates how each assimilation station contributes to the
forecast accuracy. It also indicates, for example, that assim-
ilating data from station Sheerness is likely to give negative
impact.

6.3 Impact of all existing observing stations

Suppose we are now at a design phase of a data assimilation
system for a numerical forecast model. One of the ques-
tions that needs to be addressed is: which stations to use for
data assimilation? To answer this question, it is useful to
know what the impact of assimilating data from each station
would be on the forecast accuracy. Based on this informa-
tion, one can decide, for example, to exclude stations with
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Fig. 13 Total observation impact of all assimilation stations summed
over all validation stations for different forecast horizons, where all
available stations are assimilated. Dashed line is the total impact of
the currently operational assimilation stations and full line is the total
impact if all the 15 available stations are assimilated

negative or hardly any impact. Or one can decide to use only
stations that give the largest positive impact.

A possible way to generate this information is to apply
the TSBOI-MMmethod where all available observations are
used for both data assimilation and validation. The analysis
can be done without having to actually implement a Kalman
filter. Like the adjoint-based sensitivity method, an advan-
tage of this method is that we can evaluate the impact of
assimilating data from all stations at once in one run only.
This section describes such an analysis for the DCSMv5.

To get a global picture on the expected impact of observa-
tion, it is illustrative to evaluate the impact over all available
locations. This can reveal the relative importance of the
stations in improving overall forecast accuracy. Figure 13
shows the total impact over all available stations. It shows
that assimilating observation from all stations is expected
to yield more forecast improvement than only from the 12
currently operational assimilation stations.

The elaborated estimates shown in Fig. 14 indicates,
however, that the contribution of each station varies in time.
Moreover, not all stations are expected to give positive
impact. Some stations like Sheerness and Delfzijl are indi-
cated to give negative impact after 3 h. Some other stations
are expected to give negative impact at certain later forecast
times. Other stations along the Dutch coasts are indicated to
give significant positive impact in the shorter forecast hori-
zon. The impact of the stations along the British coasts, like
Lowestoft, Northshields, and Wick, are indicated to give
significant impact in the longer forecasts. In short, there is
not a single station that is continously more important than
the others.

Fig. 14 Estimate of total observation impact per assimilation station
summed over all validation stations for different forecast horizons,
where all available stations are assimilated

A closer look at the level of individual station can give
more insight about how the observation impact is distributed
in time and space. For illustration, Fig. 15 shows the detailed
analysis at stations Hoek van Holland and Harlingen. At
these two locations, the overall impact of observations
is expected to improve the accuracy up to 12 h period.
However, the forecast accuracy improvement at these two
locations come from different stations. At Hoek van Hol-
land, for example, stations at North Shield and Wick are
expected to give the largest impact for the forecast time
longer than 4 h. These stations, however, are indicated to
have smaller impact on Harlingen. For both locations, sta-
tion Sheerness is consistently indicated to give negative
impact. The results also suggest that station Delfzijl gives
slightly positive immediate impact on Harlingen, but nega-
tive impact on Hoek van Holland. This is likely due to the
fact that Delfzijl is located relatively closely with Harlin-
gen. As a consequence, assimilating data from Delfzijl will
have immediate impact on Harlingen. On the other hand, as
the surge is expected to flow counterclockwise on the North
Sea, assimilating data from Delfzijl is expected not to affect
the forecast at Hoek van Holland. The indicated negative
impact is likely due to the spurious correlation as a result of
estimating small correlation from an ensemble with a finite
size as pointed earlier in Section 5.3.

Figure 16 shows the impact at these locations in terms of
the RMS residuals. It is also shown there what the impact
would be if stations Sheerness and Delfzijl, indicated ear-
lier to give negative impact, are excluded from assimilation.
Excluding these stations is expected to give slightly more
improvement between 4 to 6 h forecast lead time at Hoek
van Holland and after four hours at Harlingen.
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Fig. 15 Observation impact on
accuracy improvement at Hoek
van Holland and Harlingen of
each assimilation station, where
all available stations are
assimilated

The experiment in this section has demonstrated the
potential use of the TSBOI-MMmethod for revealing infor-
mation about the expected impact of observations on the
forecast accuracy. It illustrates the complexity of how an
individual station affects forecasts at other locations. It
shows that there is no simple conclusion that can be taken
about which station gives the most important contribution,
for example. The impact of a station varies in time and

space, and so does the relative importance of the stations.
For using the method in a design phase of a data assimilation
system, it is useful to define a certain objective that the data
assimilation system should achieve. The objective can be,
for example, a target forecast accuracy within certain fore-
cast horizon and over certain locations. When the number of
observing stations is also an issue, due to, e.g., maintenance
costs, the objective can also be extended as a minimization
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Fig. 16 Observation impact on accuracy improvement at Hoek van
Holland and Harlingen of each assimilation station, where all available
stations are assimilated (estimate 1) and where Sheerness and Delzijl
are excluded from the assimilation station set (estimate 2)

problem. In this case, the objective may be defined as to find
a minimum set of observing stations that achieves a target
accuracy at certain locations.

6.4 Discussions

The TSBOI-MM method proposed in this paper has been
implemented for analyzing the Dutch operational storm
surge forecasting system. The analyses provide information
on how an individual station contributes to the improvement
of forecast accuracy. It also shows how the impact of data
assimilation varies in space and forecast lead-time on the
reduction of forecast error. The temporal variation of the
impact can be associated in general with the propagation of
a gravity wave from an assimilation station to the location
of a validation station.

We note that here, the observation impact analysis results
present the observation impact estimate, that is averaged
over the whole study period, instead of the impact at cer-
tain specific events. The impact of a station can likely vary
in different events. The proposed method as used here can
not detect such variation. It rather indicates the impact that
is persistent in time. It is possible, however, to extend the
method as a real-time diagnostic tool. This is achieved by
storing the (square root) covariance matrices as prepared
earlier and using them for analyzing the observation impact
during an event in the future. It is also possible, for exam-
ple, to use time series of forecasts and observation only
during storm periods or extreme events. The time series are
collected from a large number historical storm events. In
this way, the method may give better estimates of the error
covariance and the corresponding observation impact during
storm conditions.

A combined use of OSEs and an observation sensitiv-
ity technique can reveal redundancies and dependencies
between observing stations (Gelaro and Zhu 2009). With
the proposed method, it is easy to perform such a combined
technique, because addition or removal of stations can eas-
ily be done. The analyses of two different sets of observing
stations in this study can be seen as such a combination.
Figures 11 and 15 illustrate this. As can be seen on these fig-
ures, the presence of the additional stations have reduced the
impact of the existing stations. This is because with a differ-
ent set of observations, the assimilation system will have a
different Kalman gain. In other words, the same station will
have a smaller weight in the presence of additional stations.

The observation impact analysis results indicate a pre-
ferred flow direction in the area of the DCSM. For such
physical systems, where the state tends to propagate in
certain direction, in general it is suggested to place the
observations upstream of the area where accurate forecast is
of interest. In this way, we can obtain more improvement of
forecast accuracy at a later lead-time. However, the actual
impact depends also on other factors like observation qual-
ity and local model error. The method proposed here allows
us to estimate the observation impact quantitatively before
the actual data assimilation system is implemented.

The relevance of the observation impact analysis results
depends also on the sample size used for the analysis. In
general, like in any statistical estimation, the larger the sam-
ple size, the more accurate the results. In this study, we have
used data from a 1-year period. From these data, removing
the ones with missing observations, an ensemble of about
500 time series of water level residual is extracted. Each
time series is of 12 h long, with a time step of 0.5 h. Consid-
ering the correlation between the time-series, the effective
sample size is smaller than that. It is suggested to interpret
the results by also taking into account the total impact. A
small impact or slightly negative impact may be due to a
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small signal to noise ratio, in which case sampling error can
dominate the results.

To get uncertainty estimate of the results due to the
finite ensemble size, one can use bootstrapping, a statisti-
cal method for estimating the statistics of an estimator using
resampling. Here, the observation impact analysis is per-
formed many times using different sample sets resampled
from the original set of the forecast time series. It results
in an ensemble of observation impact estimates. Various
statistics can be derived from on these observation impact
estimates. For illustration, Fig. 17 presents two results of
such an analysis, where the observation impact is presented
with a ±2σ confidence interval. The confidence interval
is obtained using 100 bootstrap sample, taken from the
original using sampling with replacement. Such uncertainty

Fig. 17 Estimates of observation impact of Hoek van Holland and
Sheerness on forecast accuracy at Harlingen with the two sigma con-
fidence interval obtained by bootstrapping. See Fig. 11 for the impact
estimates for other assimilation stations without confidence intervals

information can help determine whether or not a station has
positive impact on the forecast accuracy.

7 Conclusions

This paper provides a derivation of the ensemble-based
observation impact formulation (EnBOI), which directly
relates to the adjoint-based formulation of Langland and
Baker (2004). Here, a quadratic function of the observation-
minus-forecast residuals is used to measure forecast accu-
racy. With this measure, it is shown that the observation
impact is merely dependent on observation-space quantities.
This has led to the idea of TSBOI-OM and TSBOI-MM
methods, where observation impact is estimated by using
time-series of observations and the corresponding forecast
observations. An advantage of these methods is that one
can estimate observation impact even before a Kalman fil-
ter is actually implemented. The methods are applicable to
nearly linear systems with stationary error process and fixed
observing network.

Using a simple one-dimensional linear advection model,
the EnBOI, TSBOI-OM, and TSBOI-MM methods are
shown to give similar results in the limit of the ensemble
size. All methods are found to give consistent informa-
tion on the relative importance of the observations on their
impact on forecast accuracy improvement even for smaller
ensemble size.

The TSBOI-MM method has been applied to analyze
how the operational observing stations contribute to the
forecast improvement of the Dutch operational storm surge
forecasting system. It has successfully indicated time vary-
ing impact, which can be associated with the propagation of
a gravity wave in the model area.

The results of this study suggest the potential of the
TSBOI’s methods in estimating observation impact even
before a Kalman filter is actually implemented. In prac-
tice, however, model nonlinearity and non-stationary error
process may hamper the method from providing accurate
estimates of observation impact. Further study is required
to produce information on the significance of the TSBOI’s
estimates with regard to these issues.
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