
On Testing Satisfiability of Tree Pattern Queries

Laks V.S. Lakshmanan, Ganesh Ramesh,
Hui (wendy) Wang, Zheng (Jessica) Zhao

Department of Computer Science
University of British Columbia

{laks,ramesh,hwang,zzhao}@cs.ubc.ca

Abstract
XPath and XQuery (which includes XPath as a
sublanguage) are the major query languages for
XML. An important issue arising in efficient eval-
uation of queries expressed in these languages is
satisfiability, i.e., whether there exists a database,
consistent with the schema if one is available, on
which the query has a non-empty answer. Our ex-
perience shows satisfiability check can effect sub-
stantial savings in query evaluation.

We systematically study satisfiability of tree pat-
tern queries (which capture a useful fragment of
XPath) together with additional constraints, with
or without a schema. We identify cases in which
this problem can be solved in polynomial time and
develop novel efficient algorithms for this purpose.
We also show that in several cases, the problem
is NP-complete. We ran a comprehensive set of
experiments to verify the utility of satisfiability
check as a preprocessing step in query processing.
Our results show that this check takes a negligi-
ble fraction of the time needed for processing the
query while often yielding substantial savings.

1 Introduction

With XML becoming the standard for data exchange,
substantial work has been done on XML storage, and
query processing and optimization [17, 6, 19, 7, 15,
1, 18, 12, 23, 13]. However, relatively little work has
been done on detecting whether a given query is sat-
isfiable, i.e., whether there is any database satisfying
the query. This is an important problem for the fol-
lowing reasons. (1) Formulating queries against XML
databases can be more challenging than for relational
databases. As a preview, we will show by example,
how very similar queries can greatly vary in terms

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

of satisfiability. Indeed, even in the context of rela-
tional databases, Levy et al. [8] studied satisfiability
for various fragments of the datalog query language
and established complexity and decidability results.
Hidders [5] is the only work on XPath satisfiability
we are aware of. A detailed comparison with our work
appears in Section 6. (2) XML is intended to cater
for situations where no a priori schema is available for
data. Querying an XML database in the absence of
any schema knowledge can be tricky. The interaction
between various structural constraints, that restrict
structural relationships among elements, and value-
based constraints, that constrain the contents of el-
ements or their attribute values, can be intricate. (3)
Even when a schema is known, getting the query right
can still be non-trivial for the user. For, the schema
imposes structural constraints on its own which tend to
interact with structural and value-based constraints in
the query in subtle ways and may make the query un-
satisfiable. Our experience shows that checking satisfi-
ability of queries can pay substantial dividends in sav-
ing considerable time in query evaluation, while adding
a negligible overhead to the overall query evaluation.
Besides, given the considerable similarity between a
satisfiable query and an unsatisfiable one, it would be
useful to have the system assist the user in getting
their queries right. Satisfiability testing is a necessary
first step in building any such tool. This was the moti-
vation behind our work. Next, we shall illustrate these
points with examples.

XQuery [3] is the de facto standard query language
for XML and includes XPath [3] as a sublanguage.
Both these languages are based on a basic paradigm
of finding bindings of variables by matching tree pat-
terns against a database. Benedikt et al. [9] study the
expressive power of tree pattern queries in relation to
XPath and existential first-order logic. E.g., consider
the XPath expression //a[/b//d = /c//d]. It corre-
sponds to the tree pattern query (TPQ) Q4 in Figure 1
(ignore dashed lines for now). Single (double) lines
represent parent-child (ancestor-descendant) relation-
ship between nodes.1 As another example, consider
the XQuery statement:

FOR $a IN document(‘‘doc.xml’’)//a,

1TPQs are formally defined in Section 2.

120

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191695035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


$1

~~~~ ~~~~ ~~

~~ ~~

~~

Q1 Q2

D

A

B C

FE

$2 $3

$4 $5

E

$6

F

$7

$5 $7$6

Q3 A

CB

$1

$2

B
$3

$1

Q4 Q5 A

B C

D D

$1 $2

$3 $4

$3$1

B

A

B C

CDD

$1
$2 $3

$4 $5 $6

$4 $5$6$2 $4

A

B C

D D

$1 $2

$3 $4

$3 $4 $3 $4

$3

Figure 1: Examples in the Absence of Schema

$e IN $a/b//e, $f IN $a/d//f,
$c IN $a//c, $e1 IN $c//e, $f1 IN $c//f

WHERE $e = $e1 AND $f = $f1
RETURN{$a}

This corresponds to the TPQ Q2 in Figure 1. In-
deed, each TPQ in the figure corresponds to an XPath
expression, or an XQuery query. Each query is un-
satisfiable, but when the dashed lines are added (i.e.,
when certain parent-child relationships are relaxed to
ancestor-descendant), the queries become satisfiable.
We explain this below.

First, consider Q3. It asks for A nodes that have
a node B that is both a child and is a descendant via
an intermediate node C. This is clearly unsatisfiable in
any tree. However, relaxing the child to descendant
makes it satisfiable. Next, consider Q4, which asks for
A nodes which have a descendant D via a B child as well
as via a C child. Since each element has a unique tag,
this is unsatisfiable. Again, relaxing one of the child
constraints to descendant renders the query satisfiable.
Q5 is unsatisfiable, but for a subtler reason. If the two
D nodes are the same, the C descendant of A must be a
descendant of the B child. The descendant D of the C
node must thus be at a distance 3 or more whereas the
D child of B is at a distance 2 from A, which is impossi-
ble. Once again, relaxing any of the child constraints
to descendant renders the query satisfiable.

Next, consider Q2. The constraint that the two E
leaves must be identical requires nodes A, B, C and
the two E nodes to lie on the same (root-to-leaf) path.
Similarly, the identity of the two F nodes requires
nodes A, B, C and the two F nodes to lie on the same
path. This is impossible, since C, having a different tag
than the two children of A, is forced to be a descen-
dant of both, whereas B and D cannot lie on the same
path. Relaxing the child constraint on A, D, e.g., to
descendant makes the query satisfiable. Finally, con-
sider Q1. All edges except on B, D are descendant
constraints. The query is unsatisfiable because the
two B nodes are the same node, say v, and v has a

child D, which is a descendant of a descendant C node
of v. A contradiction arises because of the inconsis-
tency in the required distance between v and the D
node. Again, relaxing the only child constraint in the
query to descendant renders it satisfiable. A general
remark about all queries is instead of relaxing a child
constraint, dropping any other constraint in the query
(e.g., identity of two nodes) also renders it satisfiable.

The examples show that reasoning about satisfia-
bility is interesting and non-trivial. We make the fol-
lowing contributions in this paper.

• Reasoning about satisfiability can be reduced to
making inferences about relationships between
nodes and/or their contents or attribute values.
We develop inference rules for deducing additional
structural relationships between query nodes from
those stated in the query (Sections 3 and 4).

• We propose a constraint graph for a tree pattern
query. It consists of a structural part that cap-
tures structural constraints in the query and a
value-based part that captures value-based con-
straints. Using our inference rules, we develop a
chase procedure for closing the constraint graph
w.r.t. all constraints implied by given ones. We
show the chase is complete when the query con-
tains no wildcards: a query is satisfiable iff its
constraint graph, when chased, does not result in
any violations, in a precisely defined sense. Our
inference rules and chase are developed for both
when no schema is known and when a schema is
given (Sections 3 and 4).

• We identify conditions under which testing satis-
fiability is NP-complete (Sections 3.3 and 4.2.1)
and when it can be done in polynomial time. For
the latter cases, we develop efficient algorithms
for satisfiability testing (Sections 3.2 and 4.2).

• Finally, we ran a comprehensive set of experi-
ments on a synthetically generated data set on
several well-known DTDs including auction.dtd
and protein.dtd, tested various kinds of sat-
isfiable and unsatisfiable queries, and measured
both the additional overhead incurred on satisfi-
able queries and the amount of savings on unsat-
isfiable queries. While the savings are more than
an order of magnitude, our results show that the
overhead is a small fraction of overall query eval-
uation time (Section 5).

Some basic definitions and a problem statement are
given in Section 2. Related work appears in Section 6,
while Section 7 summarizes the paper and discusses
future work.

2 Background and Problems Studied

A(n XML) database is a finite rooted ordered tree
D = (N , E , r, λ), where N represents element nodes,
E represents parent-child relationship, λ, the labeling

121



function, assigns a tag with each node, and r is the
root. Associated with each node is a set of attribute-
value pairs. In this paper, we do not consider order
any further. Fig. 2(a) shows an example database D.

Tree pattern queries, introduced in [1], capture a
useful fragment of XPath. A tree pattern query (TPQ)
is a triple Q = (V, E, F), where (V, E) is a rooted
tree, with nodes V labeled by variables, and with
E = Ec∪Ed consisting of two kinds of edges, called pc-
(Ec) and ad-edges (Ed), corresponding to the child and
descendant axes of XPath. A distinguished node in V
(shown boxed in Figure 1)2 corresponds to the answer
element. F is a conjunction of tag constraints (TCs),
value-based constraints (VBCs), and node identity
constraints (NICs). TCs are of the form $x.tag = t,
where t is a tag name. VBCs include selection con-
straints $x.val relop c, $x.attr relop c, and join con-
straints $x.attr relop $y.attr’, and $x.val relop $y.val,
where relop ∈ {=, 6=, >,≤,≥, <}, attr, attr’ are at-
tributes, val represents content, and c is a constant.
With a few clearly identified exceptions, we assume
no disjunctions appear in VBCs, throughout the pa-
per. When we do allow disjunctions, they are con-
fined to selection conditions. NICs are $x idop $y,
where idop ∈ {≈, 6≈}.3 We adopt the term struc-
tural constraints to refer to NICs and predicates of
the form pc($x, $y), ad($x, $y), representing pc- and
ad-edges. Figure 2(b) shows an example TPQ Q.
An example use of disjunction in selection constraints
is the constraint $3.type = ‘paperback’∨ $3.type =
‘spiralbound’ on node $3 in place of the existing con-
straint there.

Answers for TPQs are formalized using matchings.
A matching of a TPQ Q to a database D is a func-
tion h : Q→D that maps nodes of Q to nodes of D
such that: (i) structural relationships are preserved –
whenever (x, y) ∈ Ec h(y) is a child of h(x) in D and
whenever (x, y) ∈ Ed, there is a path from h(x) to h(y)
in D; and (ii) the formula F is satisfied. We say that
a database D satisfies a query Q provided there is a
matching h : Q→D. A matching of the query Q in Fig-
ure 2(b) to the database D of Figure 2(a) is schemati-
cally illustrated with numbers besides database nodes.
A query Q is satisfiable provided there is a database
D that satisfies Q.

For readability, whenever the tag constraint
$x.tag = t appears in a TPQ Q = (V, E, F),
we drop that constraint from the formula part
F, and write t right next to node $x in Q. If
node $x is not tagged, we associate a wildcard
‘*’ next to node $x in Q. This is illustrated for
query Q in Figure 2(b)-(c). This corresponds to
the XPath expression /bib[//*/text()=‘Raymond
Smullyan’]/*[@type=paperback]/author[text()=‘B.
Russel’]. If the constraint $3.type 6= paperback
were replaced by $3.type = paperback in Q, database
D in Figure 2(a) wouldn’t satisfy it, as no matching

2Since distinguished nodes do not play any role in satisfiabil-
ity, we do not consider them further.

3The constraints $x ≈ $y and $x 6≈ $y say nodes $x and $y
are (not) the same.

(4)

bookbook

title author title authorauthoryear

bib

"What is the  
name of this 

book?"

"Raymond
Smullyan"

"1986"

type: paperback type: hardbound

"Principia 
Mathematica"

"A.N. 

Whitehead"
"B. Russel"

(a)

(1)

(2)

(3)

(c)

*

$1

$2
$3

bib

$4author

*

$2.val="Raymond
Smullyan" & 

$3.type !=paperback & 
$4.val="B.Russel"

$1

$2
$3

$4

$3.type !=paperback & 
$4.tag=author & 
$4.val="B.Russel"

$2.val="Raymond
$1.tag=bib &

Smullyan" & 

(b)

Figure 2: An example: (a) database D and: (b) TPQ
Q, (c) Q made more readable.

is possible. In the sequel, we write element tags or
wildcards next to query nodes as appropriate. Thus,
a query Q is said to have wildcards if one or more
nodes do not have their tags constrained by a TC.
Otherwise it wildcard-free. Q is join-free if it contains
no join constraints and no NICs.

We abstract the schema of a database (in our pa-
per, we only consider DTDs) as a graph with nodes
corresponding to tags and edges labeled by one of the
quantifiers ‘?, 1, *, +’ with their standard meaning
of ‘optional’, ‘one’, ‘zero or more’, and ‘one or more’
respectively. An example of a schema graph appears
in Figure 8. It says, e.g., that categories consists
of category elements, each of which has a unique
description.
Problems Studied: We consider testing satisfiabil-
ity of various classes of TPQs (with/without VBCs,
with/without disjunction in VBCs, with/without join
and node identity constraints, with/without wild-
cards) both in the absence of a schema and in the
presence of a schema without disjunction (i.e., choice)
and cycles.

3 Satisfiability without Schema

Given a TPQ Q, determining whether Q is satisfiable
in the absence of a schema, solely depends on the struc-
tural constraints and any VBCs present in Q. In addi-
tion, it may be necessary to consider disjunctions and
wildcards in the query, if present. We systematically
study the problem for various TPQ classes.

3.1 Join-free TPQs with Wildcards

Recall that join-free TPQs do not contain join or node
identity constraints. Note that Q may still involve

122



value-based selection constraints. In the special case
that Q has no VBCs, it is always satisfiable. Indeed,
a satisfying instance D for Q can be constructed as
follows. D is a tree isomorphic to the query tree Q ex-
cept all edges are pc-edges. For every query node that
is tagged, the corresponding node in D has the same
tag; if the query node is a wildcard, the corresponding
node in D may have an arbitrary tag. It is easy to see
that D always satisfies Q.

Suppose Q = (V, E, F) does contain VBCs. Since
it does not contain any join constraints, every VBC
constrains a unique node in Q. Let Fx be the maxi-
mal subformula of F that constrains node x. To verify
that Q is satisfiable, it then suffices to verify if Fx is
satisfiable for each node x. The following proposition
summarizes the situation for join-free TPQs.

Proposition 3.1 For a join-free tree pattern query Q,
possibly containing wildcards, the following holds:

1. If Q contains no VBCs associated with any node,
then Q is satisfiable.

2. If Q contains value-based selection constraints
(but is join-free), then Q is satisfiable iff for every
node, the associated set of VBCs is consistent.

The complexity of verifying satisfiability thus de-
pends on the kinds of formulas Fx constraining each
node x. If no disjunction occurs, consistency of Fx and
hence of F can be verified in polynomial time using
the sound and complete axiom system given in [21]. If
VBCs Fx associated with a node x can involve arbi-
trary disjunctions, testing consistency of Fx becomes
equivalent to SAT and hence is NP-complete. If Fx is a
disjunction of conjunctions, then the method proposed
in [21] can be easily extended to yield a polynomial
time test for satisfiability of Q.

3.2 Wildcard-free TPQs with Joins

Let Q be a TPQ containing join and/or node identity
constraints, but no wildcards and no disjunction. We
relax the latter restrictions in Section 3.3. The pres-
ence of join and node identity constraints interacts in
an intricate way with the structural constraints. E.g.,
the constraint x≈y implies any ancestors of x and y
in the query Q must lie on the same path in a satis-
fying database. Below, we separate the reasoning into
structure and value-based parts and pin down exactly
how they handshake.

3.2.1 Reasoning about Structure

In this section, we consider queries with just NICs.
The effect of VBCs of the form $x.val relop $y.val etc.
are addressed in Section 3.2.2. Some issues involved
in reasoning about satisfiability are illustrated by the
following example.

Example 3.1 [Structural reasoning]
Consider the query in Figure 3, which is identical to

query Q2 in Figure 1. As discussed in the introduc-
tion, it is unsatisfiable. The reasoning involves infer-
ring that node pairs $2 and $4 must lie on the same
root-to-leaf path as well as that they must be cousins
of each other, leading to a contradiction.

The example illustrates several points. 1. Testing
satisfiability involves inferring relationships between
pairs of nodes based on structural constraints stated
in the query. Thus, we need inference rules. 2. Some
of the intermediate relationships inferred above can-
not be directly represented in the language of TPQs
(e.g., “x and y must lie on the same path”). Thus,
the language is not “closed” w.r.t. satisfiability rea-
soning. We could represent the new relationships by
permitting disjunction in structure. E.g., x and y lie
on the same path iff (x ≈ y ∨ ad(x, y) ∨ ad(y, x)).
However, permitting arbitrary disjunctions can lead
to high complexity. We show that all we need to
do is add the following predicates: sad(x, y) mean-
ing x≈y or ad(x, y), OTSP(x, y) meaning sad(x, y)
or ad(y, x), COUS(x, y) meaning ¬OTSP(x, y). Note
that the predicates OTSP, COUS,≈, 6≈ are symmetric
while pc, ad, sad are not. This expanded set of pred-
icates is indeed closed w.r.t. satisfiability reasoning.

$3

r

c

a a

e

b b

d

~~
~~

$5   $6 &

$7   $8 &

$5 $6 $7 $8

$4

Inferences:

1. ad(2,5), ad(3,6) −> OTSP(2,3)

2. ad(4,8), ad(3,7) −> OTSP(4,3)

3. pc(1,2), pc(1,4), (2!=4) −> COUS(2,4)

4. pc(1,2), ad(1,3), OTSP(2,3) −> sad(2,3)

6. sad(2,3), sad(4,3) −> OTSP(2,4)

5. pc(1,4), ad(1,3), OTSP(4,3) −> sad(4,3)

Q:

$2

−−−>VIOLATION: OTSP(2,4), COUS(2,4)<−−−

Merge Nodes $5 and $6

Merge Nodes $7 and $8

Q is SAT if (r,d) is 

ad instead of pc

$1

Figure 3: Inferring Structural Predicates

Determining satisfiability of a query works as fol-
lows. First, we use inference rules to obtain the closure
of structural predicates. Then, we check the resulting
set of predicates for violations (defined below). The
query is satisfiable iff the set of predicates is violation-
free (consistent).
Structural Constraint Graph: In order to effi-
ciently implement a procedure for satisfiability check-
ing, we construct a (structural) constraint graph GQ

for the query Q as follows. GQ contains one node for
each query node. For each predicate φ(x, y) in Q, GQ

contains a directed edge labeled φ from x to y. For
symmetric predicates, the edge is bidirected.
Inference Rules and Chase: New structural pred-
icates are inferred from existing ones in the query by
using a set of inference rules. An inference rule is of the
form P1, . . . Pk → R and says “if predicates P1, . . . , Pk

are true, then R is true”. Inference rules are used for
achieving closure of structural predicates and thus for
catching inconsistencies caused by conflicting pairs of
predicates. For the structural predicates, we have de-

123



veloped a total of 22 inference rules.4 For brevity, we
show only some interesting rules in Figure 4 and ex-
plain some selected ones. The complete details can be
found in [11]. We explain three of the rules. Rule 2
says whenever x lies on the same path as each of a
pair of cousins y and z, then x must be their ances-
tor5. Rule 3 says two unequal nodes x, y at an equal
distance from a node z must be cousins. The equal
distance implies the paths from z to x and y must in-
volve only pc-edges. Rule 7 says whenever x and y are
on the same path, x is a child of an ancestor of y, then
y must be a self or descendant of x, i.e., sad(x, y).
The chase procedure is to simply apply the inference
rules until no new inferences are possible. If a viola-
tion, defined next, is detected at any point, we can
exit from chase early. We will discuss a more efficient
implementation of chase shortly.

1. sad(x, z), sad(y, z) → OTSP(x, y)
2. OTSP(x, y), OTSP(x, z), COUS(y, z) → ad(x, y)
3. x6≈y → COUS(x, y), whenever x, y are

at the same distance from their least common
query ancestor z.

4. pc(x, z), pc(y, z) → x≈y.
5. pc(z, x), pc(z, y), OTSP(x, y) → x≈y.
6. ad(x, z), pc(y, z) → sad(x, y).
7. pc(z, x), ad(z, y), OTSP(x, y) → sad(x, y).

Figure 4: Selected Inference Rules (no schema).

Violations: A violation is a pair of conflicting predi-
cates between a pair of nodes. Examples of conflicting
pairs of predicates are x≈y, x 6≈y; ad(x, y), sad(y, x);
and OTSP(x, y), COUS(x, y). Indeed, these three
pairs capture all possible violations, since other vio-
lations are subsumed by them. For instance, pc(x, y)
conflicts with COUS(x, y). But since pc(x, y) im-
plies OTSP(x, y) this conflict is covered by the pair
OTSP(x, y), COUS(x, y). Violations make the query
unsatisfiable.

Figure 3 demonstrates the chase as logical infer-
ences. At the end of step 6, we find a violation because
of the conflicting predicates OTSP() and COUS(). To
implement the chase more efficiently, we employ the
constraint graph. Specifically, given a TPQ Q, we ini-
tialize its constraint graph CGQ. For every pair of
nodes $i, $j, whenever their tags are different, we add
a bidirected edge labeled 6≈ between $i and $j. We
apply the inference rules repeatedly. Whenever pred-
icate p($i, $j) is derived, add a (directed) edge from
$i to $j labeled p if p is one of ad, sad and make it
bidirected if p is one of 6≈, OTSP,COUS. When $i≈$j
is derived, we merge nodes $j and $j. We repeat un-
til no new inferences are made or a violation is de-
tected. A constraint graph, with chase applied on it,
is a chased constraint graph. Here is an example. The
query of Figure 3 becomes satisfiable if the pc-edge
from $1 to $4 is changed to an ad-edge (shown dotted
in the figure). Figure 5(a) shows the constraint graph

4Including “trivial” ones such as pc(x, y)→ad(x, y).
5Note that the rule is symmetric

for this query and Figure 5(c) shows the chased con-
straint graph. Figure 5(b) shows a satisfying instance
of the query.

$8

r

c

a b

e d

a b
~~

~~

Constraint Graph

$1

$2 $3 $4

$6 $7

ad
ad

adad

ad

pc

ad

$5

(a) Constraint Graph

r

c

e

a d

b

(b) Instance

L2

r

c

a b

e d

~~

~~
~~

L2
L2

L2 L2L2

L2

L1

Chased Constraint Graph

$1

$4

$5,$6 $7,$8

$3

L2
L2

$2

L2

L2

L2

COUSIN forced

L1 = {pc,ad,sad,OTSP,     }

L2 = {ad,sad,OTSP,    }

(c) Chased Constraint Graph

Figure 5: Determining Satisfiability
The main result of this section is the following:

Theorem 3.1 (Completeness of Chase) : Let
Q be a tree pattern query containing node identity
constraints but no wildcards. It is satisfiable iff the
chased constraint graph of Q is violation-free.

We refer the reader to [11] for the proof. Here, we
give the key intuition. The “If” direction is easy to
see since every inference rule is sound and therefore
preserves satisfiability. For the “Only If” direction,
suppose G is the chased constraint graph of query Q
and G is violation-free. We construct a satisfying tree
instance as follows.

Procedure FastChase(CGraph CG)
find all ≈-classes of nodes;
for each equivalence class E, find the maximal

OTSP set as
⋃

x∈E
pred(x)

in G, where pred(x) is the set of
predecessors of x in G;

for all x, y s.t. x6≈y ∈ G, apply the
distance rule (#3) to derive COUS(x, y);
propagate COUS() downward using inference rules;
if COUS(x, y) is derived, add x6≈y to G;
if a violation is found return ‘‘unsatisfiable’’;
if x≈y is derived, merge x and y;

while there is no change {
apply rules for inferring ≈, ad, sad;
if nodes are equated, merge them;
if a violation is found return ‘‘unsatisfiable’’; }

return true;

Figure 6: Apply Chase in CGraph

124



Call a set S of nodes in Q an OTSP set provided
∀x, y ∈ S: OTSP(x, y) ∈ G. OTSP sets are upward
closed, i.e., when x ∈ S, and sad(y, x) ∈ G, then
y ∈ S. Henceforth, we consider maximal OTSP sets,
i.e., OTSP sets whose proper supersets are not OTSP
sets. The idea is to force relationships between pairs
of nodes until G becomes a complete set, i.e., ∀ nodes
x, y ∈ G and for any predicate p, either p(x, y) or
¬p(x, y) holds in G. In particular, all nodes in a max-
imal OTSP sets are totally ordered using a topological
sort. Different maximal OTSP sets are incorporated
in different branches of the tree.

We next briefly comment on an efficient implemen-
tation of the chase. A naive implementation would
take time O(n5), where n is the number of nodes in
the query. This is because each rule involves 3 nodes
and there are O(n2) iterations possible in the worst
case before no new inferences are made. A more ef-
ficient implementation is suggested in Figure 6. The
idea is to exploit the upward closure (downward clo-
sure) of OTSP (COUS) predicate. It can be shown
that maximal OTSP sets can be computed “statically”
based on the constraints given in the query. Similarly,
we can infer COUS edges efficiently. Inference rules
for the remaining predicates need to be applied re-
peatedly until either a violation is found or no new
inferences are possible. The worst-case complexity of
this algorithm remains the same. However, in practice
it is much better than the naive algorithm.

3.2.2 Interaction with VBCs

Up to this point, we have not considered VBCs. Even
when a query is satisfiable w.r.t. its structural con-
straints, the VBCs may render it unsatisfiable. As
mentioned earlier, consistency of a conjunction of
VBCs can be checked in polynomial time using the
sound and complete axiom system provided in [21].
The checking algorithm can be implemented efficiently
using a separate value-based constraint graph using
ideas similar to the structural constraint graph. The
details are similar and are omitted. What about in-
teractions between structural constraints and VBCs?
It can be shown that the interaction happens via two
main links: (i) The structural constraints may imply
x≈y for nodes x, y. All VBCs applicable to x are appli-
cable to y. This is automatically captured by merging
x and y. (ii) VBCs can imply x 6≈y for nodes x, y. This
can in turn trigger inferences of structural predicates.

The procedure for testing satisfiability of a query
Q with structural constraints and VBCs is then as
follows: (i) Chase the VBCs (using a separate value-
based constraint graph); if any violation is found re-
turn “unsatisfiable”. (ii) Construct the (structural)
constraint graph G of Q; propagate all constraints x 6≈y
derived from VBC chase to G and chase it; (iii) Q is
satisfiable iff the chase terminates with no violation.

We can show:

Theorem 3.2 (TPQs with VBCs) : Let Q be
a tree pattern query with structural constraints and

Disjunction NICs/join constraints Wildcards Complexity
X PTIME

X PTIME
X X NP-Complete

X X NP-complete

Figure 7: Complexity of checking Satisfiability without
Schema
VBCs and no wildcards. Then testing satisfiability of
Q can be done in polynomial time using the procedure
above.

3.3 TPQs with Wildcards, Joins, and Disjunc-
tion

We relax the restrictions on TPQs w.r.t. wildcards and
disjunctions in this section. The first observation is
that when wildcards are allowed, satisfiability testing
becomes NP-complete, even when there is no disjunc-
tion. This follows from the following result, proved by
Hidders [5].

Theorem 3.3 ([5]) : Suppose Q is a tree pattern
query with wildcards and only ≈ constraints, where
the query uses only pc- and sad-edges. Then testing
whether Q is satisfiable is NP-complete.

While Hidders’ result is couched in terms of a syn-
tactically different language, the fragment for which
this result applies corresponds to tree pattern queries
with wildcards and ≈ constraints, where the entire
query reduces to a single maximal OTSP set. It is
trivial to adapt his proof for tree pattern queries with
regular pc- and ad-edges.

Next, what if we disallow wildcards but allow dis-
junction in VBCs. The problem again becomes NP-
complete.

Theorem 3.4 (TPQs with disjunction) : Let Q
be a tree pattern query containing VBCs, with disjunc-
tion allowed in selection constraints associated with
nodes. Then testing satisfiability of Q is NP-complete.

The proof is by reduction from 3SAT, and only
makes use of pc-edges, disjunctive value-based selec-
tion constraints, and 6≈ constraints. It continues to
hold when 6≈ constraints are replaced by join con-
straints.

The complexity results for the schemaless case are
summarized in Figure 7.

4 Satisfiability in the Presence of
Acyclic Schema

A schema provides additional knowledge for inferring
structural predicates in a query. E.g, consider the
schema and query Q4 in Figure 8. It is not satisfiable.
The query Q4 asks for text which is both a child of de-
scription and a descendent of parlist, but the schema
does not permit this. However, if text is changed to be
a descendent of parlist, Q4 becomes satisfiable. Sup-
pose Q4 is accordingly changed. In the absence of

125



schema, the best we can conclude about description
and text then is that they must lie on the same path
but using the schema, we can conclude that descrip-
tion is the ancestor of text. A schema (auction.dtd)
together with a set of unsatisfiable queries as well as
minor variants which are satisfiable are given in Fig-
ure 8. The reader is encouraged to reason about their
satisfiability.

In the rest of this section, we consider acyclic
(DAG) schema. Extensions to cyclic schemas will ap-
pear in the full paper.

4.1 TPQs without VBCs

*

site

category

text

Q1

~~$1   $2

category

description

$1

description

$2

Q3

~~$1    $2

text

categories

description parlist

text

Q4

$1 $2 ~~$1    $2

site

asia africa

text text

Q5

$1 $2

*

1

1

site

categories

asia

regions

category

item

description

text

1 1

+

*
1

1
africa

1

1

parlist

DTD

1

Q2

*

site

cateogryitem

Figure 8: Examples in the Presence of Schema

When no VBCs are present, for a query to be sat-
isfiable with respect to a schema, its structural con-
straints need to be consistent with the schema. An
embedding of a query into a schema, defined below,
precisely captures this consistency.

Definition 4.1 [Embedding] An embedding of a
query Q into a schema 4 is a function f : Q → 4
satisfying the following conditions: (i) f maps each
tagged node to a node with the same tag; (ii) whenever
(x, y) is a pc-edge (ad-edge) in Q, there is an edge
(path) from f(x) to f(y) in ∆.

Consider query Q4 in Figure 8, but without the
join condition. The reader can verify the existence of
an embedding into the schema in Figure 8. In the
absence of wildcards, the testing the existence of an
embedding reduces to testing for each edge (x, y) in Q
with tag(x) = a, tag(y) = b (say), whether an edge
or path from a to be exists in ∆, which can be easily
tested.

The following result is straightforward:

Proposition 4.1 Let 4 be a schema and let Q be a
tree pattern query with no wildcards or VBCs. Then Q
is satisfiable with respect to 4 iff there is an embedding
f from Q into 4.

4.1.1 With Wildcards

Consider the examples in Figure 9. Query Q1 is not
satisfiable because no valid instance of the schema can
have a path from a to e of length 2. On the other
hand, query Q2 is satisfiable because there exists a
valid instance of the schema which has a path of length
at least 2 from a to e. For each of the queries, the
possible schema nodes it could embed to are illustrated
as a set, right next to the node in Figure 9. For the
node $3 in query Q1, the set of schema nodes it can
embed to is empty. Note that if the query contains only
wildcard nodes, checking satisfiability trivially reduces
to checking if the schema is of a given depth.

{d}

Schema

*

a

cb

d

1 1

1

+

e

a

*

e

Q1

*

Q2

{}

{b,c,d,e}

a

* *

e

{b,c,d,e}

{e}

{a}
{a}

{e}

$1

$2

$3

$4

$1

$2 $3

$4

Figure 9: Queries with Wildcards

When wildcards are present, semantically we can
assign any tags to the wildcards and check for the
existence of an embedding. This approach takes ex-
ponential time. What we need is merely confirm the
existence of an embedding. This can be accomplished
by associating with each query node x a label set L(x).
For each tagged node x, we initialize L(x) to be the
unique schema node with that tag. For a wildcard
node x, we initialize L(x) to be the set of all tags in
the schema 4 . We next prune L(x) as follows. First,
in a bottom-up phase, we mark all leaves. Whenever
all children y1, ..., yk of a node x are marked, we delete
a tag t from L(x) provided for some yi, r(x, yi) holds
according to the query Q, where r is pc or ad, but
there is no tag u ∈ L(yi) such that 4 contains an
edge or path to verify r(t, u). Then mark node x. If at
any stage any label set becomes empty, we know the
query is unsatisfiable. Once the root is marked, we do
a top-down sweep as follows. First unmark the root.
For any node x whose parent y is unmarked, delete
from L(x) any tag t if there is no tag u ∈ L(y) such
that r(y, x) according to Q, and 4 contains an edge
or path verifying this. Then unmark x. The proce-
dure terminates when an empty label set is detected
or when all nodes are unmarked. The pseudocode for
this algorithm is shown in Figure 10. We can show:

Theorem 4.1 (Labeling) : Let Q be a TPQ con-
taining wildcards but no VBCs and no NICs. Then Q
is satisfiable with respect to a schema 4 iff for each
x ∈ Q, L(x) 6= ∅, where L(x) is the set of schema labels
computed by the procedure in Figure 10.

By precomputing reachability on 4, given t, t ′, we
can test if 4 verifies r(t, t ′), where r ∈ {pc, ad}, in
constant time. We visit each query node and each
query edge at most twice. During each visit, we may

126



CheckLabel(Q,4)
For each node x tagged t in Q, L(x) = {t}
For each wildcard leaf l in Q, L(l) = {tags of 4}
Mark all leaf nodes. Let r ∈ {pc, ad}
Repeat { // Bottom-up Phase
∀ nodes x ∈ Q whose children y1, . . . yk are all marked

For each child yi of x {
Initialize Si = {};
For each u ∈ L(yi) {

Si = Si ∪ {t ′ | r(t ′, u) ∈ 4}; }
L(x) =

⋂k

i=1
Si; }

Mark x;
If L(x) is empty, return(Q is not SAT); }

Until all nodes are marked.
Unmark the root;
Repeat { // Top-down Phase

For each x whose query parent y is unmarked {
For each u ∈ L(x) {

If 6 ∃t ′ ∈ L(y) s.t. r(t ′, u) ∈ 4
remove u from L(x); }

Unmark x; if L(x) is empty, return(Q is not SAT); }
Until all nodes are unmarked.
return(Q is SAT)

Figure 10: Check Wildcard Embedding

need to compare all pairs of tags in the label sets of
the two nodes in the edge. Thus, the worst-case time
complexity is O(m3 +n×m2), where m is the number
of nodes in 4 and n is the number of nodes in Q.

4.2 Reasoning in the presence of Node Iden-
tity Constraints

Let us consider the class of TPQs that contain no
wildcards but may contain NICs (≈, 6≈), and VBCs
(without disjunctions). Apart from the interaction be-
tween structural predicates and VBCs, there is inter-
action between schema and the structural constraints
imposed by the query.

Example 4.1 [Impact of Schema]
Consider the examples in Figure 11. Query Q1 is sat-
isfiable with respect to the schema. The reasoning be-
hind this is as follows. Since nodes $4 and $5 are iden-
tical, nodes $2 and $3 must lie on the same path. From
the schema, we can then conclude that $2 is an ances-
tor of $3. Indeed, an instance can be obtained from
the chased constraint graph that satisfies the query.

Query Q2 is not satisfiable with respect to the
schema. Here is why. From the schema, every oc-
currence of d necessarily has a grandchild f, which is
unique. The query asks for two distinct descendents
of d tagged f, one as a grandchild and one as any de-
scendent. However, from the schema, we can conclude
that nodes $4 and $5 are identical i.e., $4≈$5 which
contradicts the query constraint $46≈$5.

The example illustrates several points. 1. The
query contains no wildcards. Thus, for two nodes if
either sad or OTSP predicate holds, then from the
schema, it is possible to conclude a strict pc or ad re-
lationship between them. Hence, the predicates sad
and OTSP which we used in the absence of schema,
now become redundant. 2. We can use the schema to
determine when two query nodes are identical. In the
schema of Figure 11, there is a unique path from node

d to f, with all edge labels either ‘1 ′ or ‘? ′. Hence
any two descendents f of a d in the instance should
be identical. 3. Following the same argument, using
the schema it is also possible to infer that two nodes
must be cousins, by determining when the nodes lie
on distinct paths.

$5

~~
~~

Schema

+

a

cb

d

+ *

1

*

e

a

e

Q1 $1

$2
$3

$5

b d

$4 e

Q2 $1

d

a

e

1

f

f

f

$2

$3
$4

Figure 11: Inference from Schema

Determining satisfiability of a query works as fol-
lows. We use the schema to infer structural predicates
between any pair of query nodes (which are tagged).
We use inference rules to compute the closure of struc-
tural predicates and check the resulting set for viola-
tions. The query is satisfiable iff the resulting set is
violation-free. As before, we use a constraint graph
and a set of inference rules to compute the closure,
with some differences in the inference rules used.
Inference Rules and Chase: The set of inference
rules are adapted from those developed for the schema-
less case. Rules involving sad or OTSP are dropped,
since the schema allows us to derive an unambiguous
ad relationship whenever sad or OTSP holds. Addi-
tionally, we need to infer relationships between element
types from the schema. The schema can tell us that
two tags t, t ′ are related by a pc-/ad-relationship, or
that two query nodes must be identical or that they
must be cousins. This static analysis of the schema
can be performed using the rules shown in Figure 12,
explained next. The complete set of inference rules
can be found in [11].

Rule 1 corresponds to “disjoint” nodes. Let x, y be
any nodes in a query Q and suppose z is their least
common ancestor in Q. Let 4 be a given schema.
Suppose (z, u1, ..., uk, x) and (z, v1, ..., vm, y) are the
paths in Q from z to x and y respectively. We call
these paths the query context of x and y. Note that all
nodes are tagged in Q. For simplicity, denote the tag of
each node by its primed version, i.e., node x has tag x ′.
Suppose there is no path in 4 that passes through all
the nodes z ′, u ′

1, ..., u ′
k, v ′1, ..., v ′m, x ′, y ′ and in an or-

der compatible with the query contexts above, which
respects any pc-relationships present in the query con-
texts. Then we can conclude that x and y must be
cousins in every valid instance of 4, which satisfies
Q. When this condition holds, we say x ′ and y ′ are
disjoint.

As an example, consider query Q4 in Figure 8,
without the dashed line added. Then query nodes
$1 and $2 (with tag text) are necessarily cousins.
This is because there is no path in the schema that
passes through categories, description, parlist,
and text in any compatible order, such that there is

127



1. whenever x, y are disjoint, infer COUS(x, y).
2. whenever z is lca(x, y), x and y are unique w.r.t. z,

the path from z ′ to x ′ that satisfies the query
context of x is identical to the path from z ′ to y ′

that satisfies the query context of y,
tag(x) = tag(y), infer ≈(x, y)

3. whenever z is the lca(x, y), x and y are unique w.r.t.
z, the unique path from z ′ to y ′ that satisfies the query
of x and y contains edge (x ′, y ′), tag(x) 6= tag(y),
infer pc(x, y)

4. whenever ad(x, z), ad(y, z), 4: exactly one path from
x ′ to y ′ and that path is an edge, infer pc(x, y)

Figure 12: Selected Inference Rules(with Schema)

a direct edge from description to text, so $1 ′ and
$2 ′ are disjoint. However, if the edge is relaxed to an
ad-edge (i.e., dashed line is added), such a path exists
in the schema, so $1 ′ and $2 ′ are not disjoint, hence
$1 and $2 are not necessarily cousins. Disjointness
can be checked efficiently using a variant of merge sort
and in time linear in the sum of sizes of the two query
contexts.

Rules 2-3 correspond to “unique” nodes. Let Q be
a query and x and y be the nodes in Q, such that
ad(y, x) ∈ G. Let 4 be a schema. Then x is unique
with regard to y whenever 4 has exactly one path
from y’ to x’ satisfying the query context of x and y,
and no edge on this path is labeled * or +. The
intuition behind rule 2 is that the query paths from
z to x as well as from z to y will both be mapped
necessarily to one path in every valid instance of 4.
So, if x and y have the same tag, they must map to
the same instance node. Rule 3 has a similar intuition.

Rule 4 says whenever ad(x, z), ad(y, z) holds,
clearly one of x, y must be a parent/ancestor of the
other (when x and y have different tags). This is de-
termined by the schema.

Finally, the chase procedure for TPQs (with NICs
but no wildcards) in the presence of a schema is as
follows.

• First, construct the constraint graph G of Q as
for the schemaless case.

• Next, using static analysis of the schema, infer all
COUS,≈, pc, ad relationships and add them to
G.

• Chase G using the inference rules identified above
until saturation or violation detection.

We can show:

Theorem 4.2 (Chase Completeness with
Schema) : Let 4 be an acylic schema without
choice and Q a tree pattern query with NICs but no
wildcards. Then Q is satisfiable w.r.t. 4 iff there
is an embedding of Q into 4 and no violation is
detected when the constraint graph of Q is chased.

To understand the implications of Theorem 4.2 for
the complexity of checking satisfiability of a tree pat-
tern query w.r.t. a given acyclic schema without

choice, we consider this problem at two levels. Firstly,
let 4 be any schema. Then we define the language
SAT4={Q | Q is a query & Q is satisfiable w.r.t. 4}.
We call the complexity of checking this membership
query complexity, by analogy with the notion of data
complexity in [22]. Secondly, we define the language
SAT to be SAT={(4, Q) | 4 is a schema & Q is a
query & Q is satisfiable w.r.t 4}. We call the com-
plexity of checking this membership the combined com-
plexity of satisfiability checking, by analogy to the well-
known notion of combined complexity[22].

We have the following results.

Theorem 4.3 (Query Complexity) : The query
complexity of satisfiability checking in the presence of
acyclic schema without choice is PTIME.

The idea is that we can apply the inference rules
to saturation or until a violation is detected, which
is a process that takes polynomial time in the size of
query. We can also test whether there is an embedding
from the query to the schema in PTIME. This yields
a polynomial time algorithm for testing satisfiability
in the presence of schema. Efficient implementation,
similar to that discussed in Section 3.2.1, is possible.
The details are omitted. A final note is that VBCs can
be easily incorporated in the same way they were for
the schemaless case. Thus, we can test satisfiability in
polynomial time in the presence of schema and VBCs.

Theorem 4.4 (Combined Complexity) : The
combined complexity of satisfiability in the presence
of acylic schema without choice is co-NP-complete.

The complexity comes not directly from the chase,
but from violation checking. Figure 13 illustrates the
violation checking procedure.

A

B C

D

E

1

1 1

? ?

DTD Q

E($2)

A

E($1) E($3)

~ ~ ~$1 ~  $2,  $2 ~  $3, $3 ~  $1

Figure 13: Violation Detection Example

The query Q in Figure 13 is not satisfiable because
it asserts there must exist at least three different Es
under A. However, there are only two paths from A
to E in the DTD, all of whose edges are labeled 1/?.
Thus there exist at most two Es under A in any valid
instance.

The proof of Theorem 4.4 is by reduction from Max-
imal Clique. The details can be found in [11]. While
the combined complexity is high, in practice, we will
often want to check the satisfiability of many queries
against a fixed schema, illustrating the significance of
query complexity and of Theorem 4.3.

128



4.2.1 Node Identity Constraints and Wild-
cards

In the presence of a schema, testing satisfiability of
a tree pattern query with wildcards and NICs is NP-
complete. Similarly, when there are no wildcards but
the query contains value-based disjunctive selection
constraints, again the problem is NP-complete.

Theorem 4.5 (Hardness results) : Let 4 be a
schema and Q tree pattern query. Then satisfiability
of Q w.r.t. 4 is NP-complete in the following cases:
(1) Q contains wildcards and NICs.
(2) Q contains disjunctive VBCs (and no NICs).

The first result is by reduction of 3-colorability and
the proof only uses 6≈ constraints. The second result
is by reduction of 3SAT. Both proofs only make use of
tree schemas and only pc-edges in Q.

The complexity results for the schema case are sum-
marized in Figure 14. All results shown correspond to
query complexity.

Disjunction NICs/join constraints Wildcards Complexity

X PTIME
X PTIME
X X NP-complete

X NP-complete

Figure 14: Complexity of checking Satisfiability with
schema.

5 Experimental Results

To study the effectiveness of testing satisfiability, we
systematically ran a range of experiments to measure
the impact of various parameters. In addition to mea-
suring savings and overhead, we also measured how
satisfiability checking time varies as a function of the
number and kinds of constraints.

We ran our experiments on the XMark benchmark
dataset [24] and Biomedical dataset [25] from the
National Biomedical Research Foundation. For each
dataset we constructed the documents of various size
using the IBM XMLGenerator [26].

We used Wutka DTDparser [27] to parse the
DTD, which is needed for static analysis of schema.
For query evaluation, we used an XQuery engine
XQEngine [28] for convenience and flexibility. Both
tools are open source, developed in Java. We imple-
mented our satisfiability tests in Java.
Setup: We ran our experiments on a sparc worksta-
tion running SunOS version 5.9 with 8 processors each
having a speed of 900MHz and 32GB of RAM. All val-
ues reported are the average of 5 trials after dropping
the maximum and minimum, observed during different
workloads.
Query Set: All queries chosen for experimentation
correspond to classes of tree pattern queries studied
in this paper. Please note that when multiple node
equalities are present in a TPQ, we need to use XQuery
for its implementation.

For satisfiability testing without schema and with
schema cases, we used Q1-Q3 in Figure 8. Although

Q1:
1 for $A in doc(‘‘auction.xml’’)//category,
2 $B1 in $A//description,
3 $C in $A//parlist,
4 $B2 in $A//description
5 where $B1//text is $C//text and $B2//parlist is $C
6 return $A
Q2:
7 for $A in doc(‘‘auction.xml’’)//description,
8 $B in $A/parlist,
9 $C in $A//listitem,
10 $D in $A//text
11 where $B//bold is $C//bold and $D//keyword is $C//keyword
12 return $A
Q3:
13 for $A in doc(‘‘auction.xml’’)//categories
14 where $A/description/text is $A//parlist//text
15 return $A

Figure 15: Examples for Schemaless case

we use the same set of queries, we use different analysis
for “no schema” mode and “schema” mode seperately.

We also experimentsed with the Biomedical
dataset but we did not include the details for space
limitations. The details can be found in the full ver-
sion of this paper.
Saving&Overhead Ratio: Let c be the time taken
to determine the satisfiability of a query Q and let e be
the time it takes to evaluate the query over the doc-
ument (without using satisfiability check). The sav-
ings ratio SQ obtained by using satisfiability check on
unsatisfiable queries is defined as SQ = e−c

e and the
overhead ratio incurred by doing satisfiability check on
satisfiable queries is defined as OQ = c+e

e . Intuitively,
the closer to 1 the two ratios are the better.
Saving Ratio: Not surprisingly, on unsatisfiable
queries, satisfiability check leads to phenomenal sav-
ings. Our saving ratio is close to 1 (usually between
about 0.8 and 0.9) whether the schema is present or
not. We omit these results for brevity.
Overhead Ratio: Figures 16 and 17 show the varia-
tion of savings ratio with document size for the three
satisfiable queries Q1 − Q3 in Figure 8 (with schema)
and Q1 − Q3 in Figure 15 (without schema). We ex-
pect the overhead ratio to decrease as the document
size increases.

SA T  - N o  D T D

0.0

0.2

0.4

0.6

0.8

1 .0

1 .2

1 .4

1 k 1 0k 1 00k 1 m

D o c u m e n t Siz e  (b y te )

O
ve

rh
ea

d 
R

at
io

Q 1 '
Q 2 '
Q 3 '

Figure 16: Overhead Ratio - Without Schema

129



SA T  - a u c tio n .d td

0.0

0.2

0.4

0.6

0.8

1 .0

1 .2

1 .4

1 k 1 0k 1 00k 1 m 1 0m

D o c u m e n t Siz e (b y te )

O
ve

rh
ea

d 
R

at
io

 

Q 1 '
Q 2 '
Q 3 '

Figure 17: Overhead Ratio - With Schema

Indeed, this behavior can be observed from the fig-
ures. Overall, our results show that the overhead is a
negligible fraction of the evaluation time.

In addition, we also tested the impact of number of
constraints on satisfiability check time. For satisfiable
queries, as expected the time increases, while for un-
satisfiable queries, it decreases as violations are found
faster. We also varied the structure of resulting OTSP
sets by adding constraints and studied their effect on
satisfiability check time. We found a few large OTSP
sets increase the testing time more than several small
OTSP sets.

The same conclusions were also obtained from the
experiments on the Biomedical dataset.

6 Related Work

Containment: There has been much work on query
processsing, containment and minimization of various
XPath fragments [18, 7, 15, 12, 13, 1, 23]. Kuper et
al. [9] study expressive power and closure properties
of various XPath fragments and tree pattern queries.
Levy et al. [8] studied query equivalence and satisfia-
bility for datalog extensions. Satisfiability can be re-
duced to containment: query Q is unsatisfiable iff Q is
contained in a (fixed) unsatisfiable query Q ′. However,
our results on satisfiability in this paper cannot be ob-
tained from known results on containment. Specifi-
cally, we showed satisfiability can be tested in poly-
nomial time for the following classes of tree pattern
queries queries: (i) TP/,//,[],∗ and (ii) TP/,//,[],NIC,
both in the absence of a schema and in the presence of
an acyclic DTD without disjunction. In the absence of
a schema, containment for the former class is co-NP-
complete [12] while for the latter it is Π

p
2 -complete [18].

While [18] considered containment in the presence of
integrity constraints, as pointed out by the authors,
they do not capture a DTD completely. Containment
for TP/,//,[],∗ w.r.t. a DTD was shown to be EXP-
TIME complete [13], but it should be noted that the
DTD is allowed to contain choice and cycles. Com-
plexity of containment when the DTD is acyclic and/or
choice-free is open. Finally, complexity of containment
for TP/,//,[],NIC w.r.t. a DTD is open, although [13]

showed that containment for TP/,[] and TP//,[] w.r.t. a
DTD is co-NP-hard, when the DTD is allowed to con-
tain choice and cycles. In sum, our PTIME results for
satisfiability cannot be obtained from known results
on containment.

Containment can be reduced to satisfiability: given
queries Q,Q ′, Q is contained in Q ′ iff Q−Q ′ is unsat-
isfiable. But this cannot be used to derive the hardness
results in this paper since Q − Q ′ does not belong to
the class of tree pattern queries studied in this paper.

Satisfiability: The closest work is Hidders [5],
where he considers the complexity of satisfiability test-
ing for XPath fragments in the absence of schema.
However, there are important differences in the con-
tributions of the two papers, as we explain in de-
tail below. The main contribution of [5] was show-
ing that testing satisfiability of XPath expressions is
NP-complete for various XPath fragments: (i) XPath
with child and self-or-descendant and intersection, (ii)
parent, union, and branching, (iii) root, branching,
child, parent, self-or-ancestor. All these results de-
pend on wildcard being present in the query. Secondly,
he showed that when only branching (and all forward
and backward axes as well as order) are present, sat-
isfiability can be tested in polynomial time. For this,
he uses a “tree description graph”, which is similar to
our constraint graph, except VBCs are not considered.
The procedure he adopts for satisfiability testing has
a flavor similar to our chase, but the “inference rules”
are considerably simpler. The main reason is when set
operations (union, intersection) are absent, one cannot
express equality. In this case, the inferences become
much simpler. He also showed that when all the axes
and root are present, but none of the set operations or
branching are allowed, again satisfiabilty can be tested
in polynomial time. A similar comment applies to in-
ferences in this case.

By contrast, all our PTIME results allow branch-
ing. In particular, when the query contains no wild-
cards but contains VBCs and NICs, we give an efficient
polynomial time test for satisfiability. This result does
not follow from the results of [5]. Besides, we have
extended the techniques and results for testing satisfi-
ability in the presence of schema. To the best of our
knowledge, this has not been addressed before. Fi-
nally, our NP-completeness results are orthogonal to
those in [5]. One exception is Theorem 3.3, which as
we mentioned, is an easy corollary of a result in [5].

Testing satisfiability of tree descriptions, based on
partial tree descriptions is of considerable interest
in computational linguistics [10, 2, 16]. Constraint
graphs are one kind of partial tree description. Kutz
and Brodirsky [10] recently presented an efficient algo-
rithm that checks the satisfiability of pure dominance
constraints, which describe unlabeled rooted trees us-
ing a partial order. For arbitrary pairs of nodes they
specify sets of admissible relative positions in a tree.
However, the (pure) dominance constraints are a sub-
set of the structure constraints studied in this paper.
Besides, relationships such as OTSP and COUS are not
considered there, nor is reasoning in the presence of a

130



schema.
There are also other work related to satisfiability

problem. Papakonstantinou et al.[14] studied the in-
ference of DTDs for views of XML data. This paper
proposed two extensions that enhance DTD’s descrip-
tive power. It mentioned that satisifiability for the
views produced by the selective queries in the con-
text of the extended DTD can be checked in PTIME.
However, the selective queries are only a subset of the
TPQs we discussed in our paper; they didn’t allow ei-
ther wildcards or node equality. Thus the problem of
checking the satisfiability of selective queries is equiva-
lent of finding the embedding of the query in our paper.

7 Summary

While there has been considerable work on contain-
ment and minimization for various XPath and tree
pattern query fragments, the related problem of sat-
isfiability has been largely ignored. We developed a
method for testing satisfiability of various classes of
tree pattern queries, which are known to be closely re-
lated to XPath and XQuery and to be of fundamental
importance [9]. We study this problem both with and
without a schema (acyclic and choic-free) and iden-
tify cases in which it is NP-complete and when it is
PTIME. For the latter case, we developed efficient al-
gorithms based on a chase procedure. We comple-
mented our analytical results with an extensive set
of experiments. While satisfiability checking can ef-
fect substantial savings in query evaluation, our re-
sults demonstrate that it incurs negligible overhead
over satisfiable queries.

Satisfiability, for larger query classes, in the pres-
ence of cycles and/or choice are interesting problems.
Satisfiability in the presence of XML schema is an im-
portant problem. Results on some of these problems
will appear in the full version of this paper.

References

[1] Sihem Amer-Yahia et al. Minimization of tree pattern
queries. In ACM SIGMOD Conference, 2001.

[2] T. Cornell. On determining the consistency of partial
descriptions of trees. In 32nd ACL Conference, 1994.

[3] D. Draper et. al. Xquery 1.0 and xpath 2.0 formal
semantics. Technical report, W3C, 2002.

[4] M. F. Fernandez et. al. Xquery 1.0 and xpath 2.0 data
model. Technical report, W3C, 2002.

[5] J. Hidders. Satisfiability of xpath expressions. In
DBPL 2003.

[6] H. V. Jagadish et. al. Timber: A native xml database.
VLDB Journal, 2002.

[7] C. Koch and G. Gottlob. Xpath query process-
ing. In 9th International Workshop on Database Pro-
gramming Languages (DBPL), Potsdam, Germany,
September 2003.

[8] A.Y. Levy et. al. Equivalence, query-reachability, and
satisfiability in datalog extensions. In ACM PODS
Conference, 1993.

[9] G. M. Kuper et al. Structural properties of xpath
fragments. In ICDT 2003.

[10] M. Kutz and M. Brodirsky. Pure dominance con-
straints. In STACS 2002.

[11] Laks V.S. Lakshmanan et al. On Testing Satisfiabil-
ity of Tree Pattern Queries. Tech. Report, Dept. of
Computer Science, UBC, March 2004. Available from
http://www.cs.ubc.ca/∼laks/papers.html.

[12] G. Miklau and D. Suciu. Containment and equivalent
for an xpath fragment. In PODS 2002.

[13] F. Neven and T. Sch. Xpath containment in the pres-
ence of disjunction, dtds and variables. ICDT 2003.

[14] Yannis Papakonstantinou et al. DTD Inferencefor
Views of XML Data In ACM PODS Conference 2000.

[15] R. Pichler et al. The complexity of xpath query eval-
uation. In ACM PODS Conference, 2003.

[16] J. Rogers and K. Vijay-Shanker. Reasoning with de-
scriptions of trees. In ACL Conference, 1992.

[17] J. Shanmugasundaram et.al. Relational databases for
querying xml documents: Limitations and opportuni-
ties. In VLDB Conference, 1999.

[18] V. Tannen and A. Deutsch. Containment and in-
tegrity constraints for xpath fragments. In 8th KRDB,
2001.

[19] I.Tatarinov et. al. Storing and querying ordered xml
using a relational database system. In ACM SIGMOD
Conference, 2002.

[20] R. Treinen et al. Dominance constraints: Algorithms
and complexity. In 3rd conference on Logical Aspects
of Computational Linguistics, 2001.

[21] Jeffrey D. Ullman. Principles of Database and
Knowledge-base Systems Volume II: The New Tech-
nologies. Computer Science Press, 1989.

[22] Moshe Vardi. The complexity of relational query lan-
guages. In ACM STOC, 1982,pp 137-146.

[23] Peter T. Wood. Containment for xpath fragments un-
der dtd constraints. icdt 2003.

[24] XMark: http://monetdb.cwi.nl/xml/.

[25] Biomedical database: http://www.cs.washington.edu/
research/xmldatasets/www/repository.html.

[26] IBM XML generator:
http://www.alphaworks.ibm.com/tech/xmlgenertor.

[27] Wutka DTD parser:http://www.wutka.com/dtdparser.html.

[28] XQuery: http://xqengine.sourceforge.net.

131


