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Abstract We consider parabolic operators of the form

∂t + L, L := −div A(X, t)∇,

in R
n+2+ := {(X, t) = (x, xn+1, t) ∈ R

n × R × R : xn+1 > 0}, n ≥ 1. We assume that
A is a (n + 1) × (n + 1)-dimensional matrix which is bounded, measurable, uniformly
elliptic and complex, and we assume, in addition, that the entries of A are independent of the
spatial coordinate xn+1 as well as of the time coordinate t . We prove that the boundedness
of associated single layer potentials, with data in L2, can be reduced to two crucial estimates
(Theorem 1.1), one being a square function estimate involving the single layer potential. By
establishing a local parabolic Tb-theorem for square functions we are then able to verify
the two crucial estimates in the case of real, symmetric operators (Theorem 1.2). As part
of this argument we establish a scale-invariant reverse Hölder inequality for the parabolic
Poisson kernel (Theorem 1.3). Our results are important when addressing the solvability of
the classical Dirichlet, Neumann and Regularity problems for the operator ∂t + L in R

n+2+ ,
with L2-data on R

n+1 = ∂R
n+2+ , and by way of layer potentials.
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1 Introduction and statement of main results

In this paper we establish certain estimates related to the solvability of the Dirichlet, Neumann
and Regularity problems with data in L2, in the following these problems are referred to as
(D2), (N2) and (R2), by way of layer potentials and for second order parabolic equations
of the form

Hu := (∂t + L)u = 0, (1.1)

where

L := −div A(X, t)∇ = −
n+1∑

i, j=1

∂xi (Ai, j (X, t)∂x j )

is defined in R
n+2 = {(X, t) = (x1, . . . , xn+1, t) ∈ R

n+1 × R}, n ≥ 1. A = A(X, t) =
{Ai, j (X, t)}n+1

i, j=1 is assumed to be a (n + 1) × (n + 1)-dimensional matrix with complex
coefficients satisfying the uniform ellipticity condition

(i) �−1|ξ |2 ≤ Re

⎛

⎝
n+1∑

i, j=1

Ai, j (X, t)ξi ξ̄ j

⎞

⎠ ,

(ii) |Aξ · ζ | ≤ �|ξ ||ζ |, (1.2)

for some �, 1 ≤ � < ∞, and for all ξ, ζ ∈ C
n+1, (X, t) ∈ R

n+2. Here u · v = u1v1 + · · · +
un+1vn+1, ū denotes the complex conjugate of u and u · v̄ is the (standard) inner product on
C

n+1. In addition, we consistently assume that

A(x1, . . . , xn+1, t) = A(x1, . . . , xn), i.e., A is independent of xn+1 and t. (1.3)

The solvability of (D2), (N2) and (R2) for the operator H in R
n+2+ = {(x, xn+1, t) ∈

R
n × R × R : xn+1 > 0}, with data prescribed on R

n+1 = ∂R
n+2+ = {(x, xn+1, t) ∈

R
n ×R×R : xn+1 = 0} and by way of layer potentials, can roughly be decomposed into two

steps: boundedness of layer potentials and invertibility of layer potentials. In this paper we first
prove, in the case of equations of the form (1.1), satisfying (1.2) and (1.3) and the De Giorgi–
Moser–Nash estimates stated in (2.6) and (2.7) below, that a set of key boundedness estimates
for associated single layer potentials can be reduced to two crucial estimates (Theorem 1.1),
one being a square function estimate involving the single layer potential. By establishing a
local parabolic Tb-theorem for square functions, and by establishing a version of the main
result in [15] for equations of the form (1.1), assuming in addition that A is real and symmetric,
we are then subsequently able to verify the two crucial estimates in the case of real, symmetric
operators (1.1) satisfying (1.2) and (1.3) (Theorem 1.2). As part of this argument we establish,
and this is of independent interest, a scale-invariant reverse Hölder inequality for the parabolic
Poisson kernel (Theorem 1.3). The invertibility of layer potentials, and hence the solvability
of the Dirichlet, Neumann and Regularity problems L2-data, is addressed in [33].

Jointly, this paper and [33] yield solvability for (D2), (N2) and (R2), by way of layer
potentials, when the coefficient matrix is either

(i) a small complex perturbation of a constant (complex) matrix, or

(ii) a real and symmetric matrix, or

(iii) a small complex perturbation of a real and symmetric matrix.
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Boundedness of single layer potentials associated to divergence… Page 3 of 49 124

In all cases the unique solutions can be represented in terms of layer potentials. We claim
that the results established in this paper and in [33], and the tools developed, pave the way
for important developments in the area of parabolic PDEs. In particular, it is interesting to
generalize the present paper and [33] to the context of L p and relevant endpoint spaces, and
to challenge the assumption in (1.3).

The main results of this paper and [33] can jointly be seen as a parabolic analogue of
the elliptic results established in [3] and we recall that in [3] the authors establish results
concerning the solvability of the Dirichlet, Neumann and Regularity problems with data in
L2, i.e., (D2), (N2) and (R2), by way of layer potentials and for elliptic operators of the
form −div A(X)∇, in R

n+1+ := {X = (x, xn+1) ∈ R
n × R : xn+1 > 0}, n ≥ 2, assuming

that A is a (n + 1) × (n + 1)-dimensional matrix which is bounded, measurable, uniformly
elliptic and complex, and assuming, in addition, that the entries of A are independent of the
spatial coordinate xn+1. Moreover, if A is real and symmetric, (D2), (N2) and (R2) were
solved in [27–29], but the major achievement in [3] is that the authors prove that the solutions
can be represented by way of layer potentials. In [24] a version of [3], but in the context of
L p and relevant endpoint spaces, was developed and in [26] the structural assumption that
A is independent of the spatial coordinate xn+1 is challenged. The core of the impressive
arguments and estimates in [3] is based on the fine and elaborated techniques developed in
the context of the proof of the Kato conjecture, see [4,5,20].

1.1 Notation

Based on (1.3) we let λ = xn+1, and when using the symbol λ we will write the point
(X, t) = (x1, . . . , xn, xn+1, t) as (x, t, λ) = (x1, . . . , xn, t, λ). Using this notation,

R
n+2+ = {(x, t, λ) ∈ R

n × R × R : λ > 0},
and

R
n+1 = ∂R

n+2+ = {(x, t, λ) ∈ R
n × R × R : λ = 0}.

We write ∇ := (∇||, ∂λ) where ∇|| := (∂x1 , . . . , ∂xn ). We let L2(Rn+1, C) denote the Hilbert
space of functions f : R

n+1 → C which are square integrable and we let || f ||2 denote the
norm of f . We also introduce

||| · ||| :=
(∫ ∞

0

∫

Rn+1
| · |2 dxdtdλ

λ

)1/2

. (1.4)

Given (x, t) ∈ R
n × R we let ‖(x, t)‖ be the unique positive solution ρ to the equation

t2

ρ4 +
n∑

i=1

x2
i

ρ2 = 1.

Then ‖(γ x, γ 2t)‖ = γ ‖(x, t)‖, γ > 0, and we call ‖(x, t)‖ the parabolic norm of (x, t). We
define the parabolic first order differential operator D through the relation

(̂D f )(ξ, τ ) := ‖(ξ, τ )‖ f̂ (ξ, τ ),

where (̂D f ) and f̂ denote the Fourier transform of D f and f , respectively. We define the
fractional (in time) differentiation operators Dt

1/2 through the relation

̂(Dt
1/2 f )(ξ, τ ) := |τ |1/2 f̂ (ξ, τ ).
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We let Ht denote a Hilbert transform in the t-variable defined through the multiplier isgn(τ ).
We make the construction so that

∂t = Dt
1/2 Ht Dt

1/2.

By applying Plancherel’s theorem we have

‖D f ‖2 ≈ ‖∇|| f ‖2 + ‖Ht Dt
1/2 f ‖2 ≈ ‖∇|| f ‖2 + ‖Dt

1/2 f ‖2,

with constants depending only on n.

1.2 Non-tangential maximal functions

Given (x0, t0) ∈ R
n+1, and β > 0, we define the cone

�β(x0, t0) := {(x, t, λ) ∈ R
n+2+ : ||(x − x0, t − t0)|| < βλ}.

Consider a function U defined on R
n+2+ . The non-tangential maximal operator Nβ∗ is defined

Nβ∗ (U )(x0, t0) := sup
(x,t,λ)∈�β(x0,t0)

|U (x, t, λ)|.

Given (x, t) ∈ R
n+1, λ > 0, we let

Qλ(x, t) := {(y, s) : |xi − yi | < λ, |t − s| < λ2}
denote the parabolic cube on R

n+1, with center (x, t) and side length λ. We let

Wλ(x, t) := {(y, s, σ ) : (y, s) ∈ Qλ(x, t), λ/2 < σ < 3λ/2}
be an associated Whitney type set. Using this notation we also introduce

Ñβ∗ (U )(x0, t0) := sup
(x,t,λ)∈�β(x0,t0)

(∫
−

Wλ(x,t)
|U (y, s, σ )|2 dydsdσ

)1/2

.

We let

�(x0, t0) := �1(x0, t0), N∗(U ) := N 1∗ (U ), Ñ∗(U ) := Ñ 1∗ (U ).

Furthermore, in many estimates it is necessary to increase the β in �β as the estimate pro-
gresses. We will use the convention, when the exact β is not important, that N∗∗(U ), Ñ∗∗(U ),
equal Nβ∗ (U ), Ñβ∗ (U ), for some β > 1. In fact, the L p-norms of N∗ and Nβ∗ are equivalent,
for any β > 0 (see for example [16, Lemma 1, p. 166]).

1.3 Single layer potentials

Consider H = ∂t +L = ∂t −div A∇ and H∗ := −∂t +L∗, where L∗ is the hermitian adjoint
of L, i.e., L∗ = − div A∗∇. Assume that H, H∗, satisfy (1.2) and (1.3). Then L = − div A∇
defines, recall that A is independent of t , a maximal accretive operator on L2(Rn+1, C) and
−L generates a contraction semigroup on L2(Rn+1, C), e−tL, for t > 0, see p. 28 in [6]. Let
Kt (X, Y ) denote the distributional or Schwartz kernel of e−tL. In the statement of our main
results, and hence throughout the paper, we will assume, in addition to (1.2) and (1.3), that
H, H∗, both satisfy De Giorgi–Moser–Nash estimates stated in (2.6) and (2.7) below. This
assumption implies, in particular, that Kt (X, Y ) is, for each t > 0, Hölder continuous in X
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and Y and that Kt (X, Y ) satisfies the Gaussian (pointwise) estimates stated in Definition 2
on p. 29 in [6]. Under these assumptions we introduce

�(x, t, λ, y, s, σ ) := �H(X, t, Y, s) := Kt−s(X, Y ) = Kt−s(x, λ, y, σ )

whenever t − s > 0 and we put �(x, t, λ, y, s, σ ) = 0 whenever t − s < 0. Based on (1.3)
we in the following let

�λ(x, t, y, s) := �(x, t, λ, y, s, 0),

�∗
λ(y, s, x, t) := �∗(y, s, 0, x, t, λ),

and we introduce associated single layer potentials

SH
λ f (x, t) :=

∫

Rn+1
�λ(x, t, y, s) f (y, s) dyds,

SH∗
λ f (x, t) :=

∫

Rn+1
�∗

λ(y, s, x, t) f (y, s) dyds.

1.4 Statement of main results

The following are our main results.

Theorem 1.1 Consider H = ∂t − div A∇. Assume that H, H∗, satisfy (1.2) and (1.3) as
well as the De Giorgi–Moser–Nash estimates stated in (2.6) and (2.7) below. Assume that
there exists a constant C such that

(i) sup
λ>0

||∂λSH
λ f ||2 + sup

λ>0
||∂λSH∗

λ f ||2 ≤ C || f ||2,

(ii) |||λ∂2
λSH

λ f ||| + |||λ∂2
λSH∗

λ f ||| ≤ C || f ||2, (1.5)

whenever f ∈ L2(Rn+1, C). Then there exists a constant c, depending at most on n, �, the
De Giorgi–Moser–Nash constants and C, such that

(i) ||N∗(∂λSH
λ f )||2 + ||N∗(∂λSH∗

λ f )||2 ≤ c|| f ||2,
(ii) sup

λ>0
||DSH

λ f ||2 + sup
λ>0

||DSH∗
λ f ||2 ≤ c|| f ||2,

(iii) ||Ñ∗(∇||SH
λ f )||2 + ||Ñ∗(∇||SH∗

λ f )||2 ≤ c|| f ||2,
(iv) ||Ñ∗(Ht Dt

1/2S
H
λ f )||2 + ||Ñ∗(Ht Dt

1/2S
H∗
λ f )||2 ≤ c|| f ||2, (1.6)

whenever f ∈ L2(Rn+1, C).

Theorem 1.2 Consider H = ∂t − div A∇. Assume that H satisfies (1.2) and (1.3). Assume
in addition that A is real and symmetric. Then there exists a constant C, depending at most
on n, �, such that (1.5) holds with this C. In particular, the estimates in (1.6) all hold, with
constants depending only on n, �, C, in the case when A is real, symmetric and satisfies
(1.2) and (1.3).

Theorem 1.3 Assume that H = ∂t − div A∇ satisfies (1.2) and (1.3). Suppose in addition
that A is real and symmetric. Then the parabolic measure associated to H, in R

n+2+ , is
absolutely continuous with respect to the measure dxdt on R

n+1 = ∂R
n+2+ . Moreover, let

Q ⊂ R
n+1 be a parabolic cube and let K (AQ, y, s) be the to H associated Poisson kernel at

123



124 Page 6 of 49 A. J. Castro et al.

AQ := (xQ, l(Q), tQ) where (xQ, tQ) is the center of the cube Q and l(Q) defines its size.
Then there exists c ≥ 1, depending only on n and �, such that

∫

Q
|K (AQ, y, s)|2 dyds ≤ c|Q|−1.

Remark 1.4 Note that (1.5) (i) is a uniform (in λ) L2-estimate involving the first order partial
derivative, in the λ-coordinate, of single layer potentials, while (1.5) (ii) is a square function
estimate involving the second order partial derivatives, in the λ-coordinate, of single layer
potentials. A relevant question is naturally in what generality the estimates in (1.5) can be
expected to hold. In [33] it is proved, under additional assumptions, that these estimates are
stable under small complex perturbations of the coefficient matrix. However, in the elliptic
case and after [3] appeared, it was proved in [34], see [17] for an alternative proof, that if
−div A(X)∇ satisfies the basic assumptions imposed in [3], then the elliptic version of (1.5)
(ii) always holds. In fact, the approach in [34], which is based on functional calculus, even
dispenses of the De Giorgi–Moser–Nash estimates underlying [3]. Furthermore, in the elliptic
case (1.5) (ii) can be seen to imply (1.5) (i) by the results of [2]. Hence, in the elliptic case,
and under the assumptions of [3], the elliptic version of (1.5) always holds. Based on this it
is fair to pose the question whether or not a similar line of development can be anticipated
in the parabolic case. Based on [32], this paper and [33], we anticipated that a parabolic
version of [17] can be developed, To develop a parabolic version of [2] is a very interesting
and potentially challenging project.

Theorem 1.3 is used in the proof of Theorem 1.2 and to our knowledge Theorems 1.1,
1.2 and 1.3 are all new. To put these results in the context of the current literature devoted to
parabolic layer potentials and parabolic singular integrals, in C1-regular or Lipschitz regular
cylinders, it is fair to first mention [12–14] where a theory of singular integral operators with
mixed homogeneity was developed and Theorem 1.1 (i)–(iv) were proved in the context of the
heat operator and in the context of time-independent C1-cylinders. These results were then
extended in [7,8], still in the context of the heat operator, to the setting of time-independent
Lipschitz domains. The more challenging setting of time-dependent Lipschitz type domains
was considered in [18,21,30], see also [22]. In particular, in these papers the correct notion of
time-dependent Lipschitz type domains, from the perspective of parabolic singular integral
operators and parabolic layer potentials, was found. One major contribution of these papers,
see [18,21,22] in particular, is the proof of Theorem 1.1 in the context of the heat operator
in time-dependent Lipschitz type domains. Beyond these results the literature only contains
modest contributions to the study of parabolic layer potentials associated to second order
parabolic operators (in divergence form) with variable, bounded, measurable, uniformly
elliptic (and complex) coefficients. Based on this we believe that our results will pave the
way for important developments in the area of parabolic PDEs.

While Theorems 1.1 and 1.2 coincide, in the stationary case, with the set up and the
corresponding results established in [3] for elliptic equations, we claim that our results,
Theorem 1.1 in particular, are not, for at least two reasons, straightforward generalizations of
the corresponding results in [3]. First, our result rely on [32] where certain square function
estimates are established for second order parabolic operators of the form H, and where, in
particular, a parabolic version of the technology in [4] is developed. Second, in general the
presence of the (first order) time-derivative forces one to consider fractional time-derivatives
leading, as in [18,21,30], see also [22], to rather elaborate additional estimates. Theorem 1.3
gives a parabolic version of an elliptic result due to Jerison and Kenig [27] and a version of
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the main result in [15] for equations of the form (1.1), assuming in addition that A is real and
symmetric.

1.5 Proofs and organization of the paper

In general we will only supply the proof of our statements for Sλ := SH
λ . The corresponding

results for S∗
λ := SH∗

λ then follow readily by analogy. In Sect. 2, which is of preliminary
nature, we introduce notation, weak solutions, state the De Giorgi–Moser–Nash estimates
referred to in Theorem 1.1, we prove energy estimates, and we state/prove a few fact from
Littlewood–Paley theory. In Sect. 3 we prove a set of important preliminary estimates related
to the boundedness of single layer potentials: off-diagonal estimates and uniform (in λ) L2-
estimates. Section 4 is devoted to the proof of two important lemmas: Lemmas 4.1 and 4.2.
To briefly describe these results we introduce ( f ) where

( f ) := sup
λ>0

||∂λSλ f ||2 + |||λ∂2
λSλ f |||. (1.7)

Lemma 4.1 concerns estimates of non-tangential maximal functions and in this lemma we
establish bounds of ||N∗(∂λSλ f )||2, ||Ñ∗(∇||Sλ f )||2 and ||Ñ∗(Ht Dt

1/2Sλ f )||2 in terms of a
constant times

( f ) + || f ||2 + sup
λ>0

||DSλ f ||2.

In Lemma 4.2 we establish square function estimates of the form,

(i) |||λm+2l+4∇∂λ∂
l+1
t ∂m+1

λ Sλ f ||| ≤ c(( f ) + || f ||2),
(ii) |||λm+2l+4∂t∂

l+1
t ∂m+1

λ Sλ f ||| ≤ c(( f ) + || f ||2),
whenever f ∈ L2(Rn+1, C), and for m ≥ −1, l ≥ −1. Using Lemma 4.1, the proof of
Theorem 1.1 boils down to proving the estimate

sup
λ>0

||DSλ f ||2 ≤ c(( f ) + || f ||2). (1.8)

The estimate in (1.8), which is rather demanding, uses Lemma 4.2 and make extensive use
of recent results concerning resolvents, square functions and Carleson measures, established
in [32]. In Sect. 5 we collect the material from [32] needed in the proof of (1.8). In [32] a
parabolic version of the main and hard estimate in [4] is established. In subsection 5.3, we also
seize the opportunity to clarify some statements made in [32] concerning the Kato square
root problem for parabolic operators. The conclusion is that in [32] the Kato square root
problem for parabolic operators, with merely bounded and measurable coefficients, is solved
for the first time in the literature. In Sect. 6 we prove (1.8) as a consequence of Lemmas 6.1,
6.2, and 6.3 stated below. For clarity, the final proof of Theorem 1.1, based on the estimates
established in the previous sections, is summarized in Sect. 7. In Sect. 8 we prove Theorem
1.2 by first establishing a local parabolic Tb-theorem for square functions, see Theorem 8.1,
and then by establishing Theorem 1.3. We believe that our proof of Theorem 1.3 adds to the
clarity of the corresponding argument in [15].

2 Preliminaries

Let x = (x1, . . . , xn), X = (x, xn+1), (x, t)=(x1, . . . , xn, t), (X, t) = (x1, . . . , xn, xn+1, t).
Given (X, t) = (x, xn+1, t), r > 0, we let Qr (x, t) and Q̃r (X, t) denote, respectively, the
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parabolic cubes in R
n+1 and R

n+2, centered at (x, t) and (X, t), and of size r . By Q, Q̃ we
denote any such parabolic cubes and we let l(Q), l(Q̃), (xQ, tQ), (X Q̃, tQ̃) denote their sizes

and centers, respectively. Given γ > 0, we let γ Q, γ Q̃ be the cubes which have the same
centers as Q and Q̃, respectively, but with sizes defined by γ l(Q) and γ l(Q̃). Given a set
E ⊂ R

n+1 we let |E | denote its Lebesgue measure and by 1E we denote the indicator function
for E . Finally, by || · ||L2(E) we mean || ·1E ||2. Furthermore, as mentioned and based on (1.3),
we will frequently also use a different convention concerning the labeling of the coordinates:
we let λ = xn+1 and when using the symbol λ, the point (X, t) = (x, xn+1, t) will be written
as (x, t, λ) = (x1, . . . , xn, t, λ). We write ∇ = (∇||, ∂λ) where ∇|| = (∂x1 , . . . , ∂xn ). The
notation L2(Rn+1, C), || · ||2, ‖(·, ·)‖, D, Dt

1/2, Ht , was introduced in Sect. 1.1 above. In the
following we will, in addition to D and Dt

1/2, at instances also use the parabolic half-order
time derivative

D̂n+1 f (ξ, τ ) := τ

‖(ξ, τ )‖ f̂ (ξ, τ ).

We let H := H(Rn+1, C) be the closure of C∞
0 (Rn+1, C) with respect to

‖ f ‖H := ‖D f ‖2. (2.1)

By applying Plancherel’s theorem we have

(i) ‖ f ‖H ≈ ‖∇|| f ‖2 + ‖Ht Dt
1/2 f ‖2 ≈ ‖∇|| f ‖2 + ‖Dt

1/2 f ‖2,

(ii) ‖Dn+1 f ‖2 ≤ c‖Dt
1/2 f ‖2, (2.2)

with constants depending only on n. Furthermore, we let H̃ := H̃(Rn+2, C) be the closure of
C∞

0 (Rn+2, C) with respect to

‖F‖
H̃

:=
(∫ ∞

−∞

∫

Rn+1

(|∂λF |2 + |DF |2) dxdtdλ

)1/2

.

Similarly, we let H̃+ := H̃+(Rn+2+ , C) be the closure of C∞
0 (Rn+2+ , C) with respect to the

expression in the last display but with integration over the interval (−∞,∞) replaced by
integration over the interval (0,∞).

2.1 Weak solutions

Let � ⊂ {X = (x, xn+1) ∈ R
n × R+} be a domain and let, given −∞ < t1 < t2 < ∞,

�t1,t2 = � × (t1, t2). We let W 1,2(�, C) be the Sobolev space of complex valued functions
v, defined on �, such that v and ∇v are in L2(�, C). L2(t1, t2, W 1,2(�, C)) is the space of
functions u : �t1,t2 → C such that

||u||L2(t1,t2,W 1,2(�,C)) :=
(∫ t2

t1
||u(·, t)||2W 1,2(�,C)

dt

)1/2

< ∞.

We say that u ∈ L2(t1, t2, W 1,2(�, C)) is a weak solution to the equation

Hu = (∂t + L)u = 0, (2.3)

in �t1,t2 , if ∫

R
n+2+

(
A∇u · ∇φ̄ − u∂t φ̄

)
d Xdt = 0, (2.4)
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whenever φ ∈ C∞
0 (�t1,t2 , C). Similarly, we say that u is a weak solution to (2.3) in R

n+2+
if uφ ∈ L2(−∞,∞, W 1,2(Rn × R+, C)) whenever φ ∈ C∞

0 (Rn+2+ , C) and if (5.2) holds
whenever φ ∈ C∞

0 (Rn+2+ , C). Assuming that H satisfies (1.2) and (1.3) as well as the De
Giorgi–Moser–Nash estimates stated in (2.6) and (2.7) below, it follows that any weak solu-
tion is smooth as a function of t and in this case

∫

R
n+2+

(
A∇u · ∇φ̄ + ∂t uφ̄

)
d Xdt = 0,

holds whenever φ ∈ C∞
0 (�t1,t2 , C). Furthermore, if u is globally defined in R

n+2+ , and if

Dt
1/2u Ht Dt

1/2φ is integrable in R
n+2+ , whenever φ ∈ C∞

0 (Rn+2+ , C), then

B+(u, φ) = 0 whenever φ ∈ C∞
0 (Rn+2+ , C), (2.5)

where the sesquilinear form B+(·, ·) is defined on H̃+ × H̃+ as

B+(u, φ) :=
∫ ∞

0

∫

Rn+1

(
A∇u · ∇φ̄ − Dt

1/2u Ht Dt
1/2φ

)
dxdtdλ.

In particular, whenever u is a weak solution to (2.3) in R
n+2+ such that u ∈ H̃+, then (2.5)

holds. From now on, whenever we write that Hu = 0 in a bounded domain �t1,t2 , then we
mean that (5.2) holds whenever φ ∈ C∞

0 (�t1,t2 , C), and when we write that Hu = 0 in R
n+2+ ,

then we mean that (5.2) holds whenever φ ∈ C∞
0 (Rn+2+ , C).

2.2 De Giorgi–Moser–Nash estimates

We say that solutions to Hu = 0 satisfy De Giorgi–Moser–Nash estimates if there exist,
for each 1 ≤ p < ∞ fixed, constants c and α ∈ (0, 1) such that the following is true. Let
Q̃ ⊂ R

n+2 be a parabolic cube and assume that Hu = 0 in 2Q̃. Then

sup
Q̃

|u| ≤ c

(∫
−

2Q̃
|u|p

)1/p

, (2.6)

and

|u(X, t) − u(X̃ , t̃)| ≤ c

(
||(X − X̃ , t − t̃)||

r

)α (∫
−

2Q̃
|u|p

)1/p

, (2.7)

whenever (X, t), (X̃ , t̃) ∈ Q̃, r := l(Q̃). The constant c and α will be referred to as the
De Giorgi–Moser–Nash constants. It is well known that if (2.6) and (2.7) hold for one p,
1 ≤ p < ∞, then these estimates hold for all p in this range.

2.3 Energy estimates

Lemma 2.1 Assume that H satisfies (1.2) and (1.3). Let Q̃ ⊂ R
n+2 be a parabolic cube and

let β > 1 be a fixed constant. Assume that Hu = 0 in β Q̃. Let φ ∈ C∞
0 (β Q̃) be a cut-off

function for Q̃ such that 0 ≤ φ ≤ 1, φ = 1 on Q̃. Then there exists a constant c = c(n,�, β),
1 ≤ c < ∞, such that
∫

|∇u(X, t)|2(φ(X, t))2 d Xdt ≤ c
∫

|u(X, t)|2(|∇φ(X, t)|2 + φ(X, t)|∂tφ(X, t)|) d Xdt.
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Proof The lemma is a standard energy estimate. Indeed,
∫ (

A∇u · ∇(ūφ2) − u∂t (ūφ2)
)

d Xdt = 0,

by the definition of weak solutions. Hence,
∫

|∇u|2φ2 dxdt ≤ c
∫

|u|2(|∇φ|2 + φ|∂tφ|) d Xdt. �

Lemma 2.2 Assume that H satisfies (1.2) and (1.3). Let Q ⊂ R
n+1 be a parabolic cube,

λ0 ∈ R, and let β1 > 1, β2 ∈ (0, 1] be fixed constants. Let I = (λ0 −β2l(Q), λ0 +β2l(Q)),
γ I = (λ0 −γβ2l(Q), λ0 +γβ2l(Q)) for γ ∈ (0, 1). Assume that Hu = 0 in β2

1 Q × I . Then
there exists a constant c = c(n,�, β1, β2), 1 ≤ c < ∞, such that

(i)
∫
−

Q
|∇u(x, t, λ0)|2 dxdt ≤ c

∫
−

β1 Q× 1
4 I

|∇u(X, t)|2 d Xdt,

(ii)
∫
−

Q
|∇u(x, t, λ0)|2 dxdt ≤ c

l(Q)2

∫
−

β2
1 Q× 1

2 I
|u(X, t)|2 d Xdt.

Proof It suffices to prove the lemma with β1 = 2, β2 = 1. Furthermore, we only prove (i)
as (ii) follows from (i) and Lemma 2.1. For λ0 ∈ R fixed, and with γ I as above, we let

J1 :=
⎛

⎝
∫
−

Q

∣∣∣∣∣∇u(x, t, λ0) −
∫
−

1
16 I

∇u(x, t, λ) dλ

∣∣∣∣∣

2

dxdt

⎞

⎠
1/2

,

J2 :=
⎛

⎝
∫
−

Q

∣∣∣∣∣

∫
−

1
16 I

∇u(x, t, λ) dλ

∣∣∣∣∣

2

dxdt

⎞

⎠
1/2

.

Then
(∫
−

Q
|∇u(x, t, λ0)|2 dxdt

)1/2

≤ J1 + J2.

Using the Hölder inequality

J2 ≤ c

(∫
−

2Q× 1
8 I

|∇u(X, t)|2 d Xdt

)1/2

.

Using the fundamental theorem of calculus and the Hölder inequality,

J1 ≤ cl(Q)

(∫
−

Q× 1
16 I

|∇∂λu(X, t)|2 d Xdt

)1/2

.

Using that ∂λu is a solution to the same equation as u it follows from Lemma 2.1 that

J1 ≤ c

(∫
−

3
2 Q× 1

8 I
|∂λu(X, t)|2 d Xdt

)1/2

.

Hence the estimate in (i) follows. �
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Lemma 2.3 Assume that H satisfies (1.2) and (1.3). Let Q̃ ⊂ R
n+2 be a parabolic cube

and let β > 1 be a fixed constant. Assume that Hu = 0 in β Q̃. Then there exists a constant
c = c(n,�, β), 1 ≤ c < ∞, such that

∫
−

Q̃
|∂t u(X, t)|2 d Xdt ≤ c

l(Q̃)4

∫
−

β Q̃
|u(X, t)|2 d Xdt.

Proof Let φ ∈ C∞
0 (β Q̃) be a cut-off function for Q̃ such that 0 ≤ φ ≤ 1, φ = 1 on Q̃,

|∇φ| ≤ c/ l(Q̃), |∂tφ| ≤ c/ l(Q̃)2. Let

J1 :=
∫

|∂t u|2φ4 d Xdt,

and

J2 :=
∫

|∇u|2φ2 d Xdt, J3 :=
∫

|∇∂t u|2φ6 d Xdt.

As ∂t u is a solution to the same equation as u,
∫ (

A∇∂t u · ∇(ūφ4) − ∂t u∂t (ūφ4)
)

d Xdt = 0.

Hence,

J1 =
∫ (

(A∇∂t u · ∇ū)φ4 + 4(A∇∂t u · ∇φ)ūφ3 − 4(∂t u∂tφ)ūφ3) d Xdt,

and

J1 ≤ l(Q̃)2ε J3 + c(ε)

l(Q̃)2
J2 + c(ε)

l(Q̃)4

∫
−

β Q̃
|u(X, t)|2 d Xdt

where ε is a degree of freedom. Again using that ∂t u is a solution to the same equation as u,
and essentially Lemma 2.1, we see that

J3 ≤ c
∫

|∂t u|2φ4(|∇φ|2 + |∂tφ|) d Xdt ≤ c

l(Q̃)2
J1.

Combining the above estimates, and again using Lemma 2.1, the lemma follows. �
2.4 Littlewood–Paley theory

We define a parabolic approximation of the identity, which will be fixed throughout the
paper, as follows. Let P ∈ C∞

0 (Q1(0)), P ≥ 0 be real-valued,
∫
P dxdt = 1, where

Q1(0) is the unit parabolic cube in R
n+1 centered at 0. At instances we will also assume

that
∫

xiP(x, t) dxdt = 0 for all i ∈ {1, . . . , n}. We set Pλ(x, t) = λ−n−2P(λ−1x, λ−2t)
whenever λ > 0. We let Pλ denote the convolution operator

Pλ f (x, t) =
∫

Rn+1
Pλ(x − y, t − s) f (y, s) dyds.

Similarly, by Qλ we denote a generic approximation to the zero operator, not necessarily the
same at each instance, but chosen from a finite set of such operators depending only on our
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original choice ofPλ. In particular,Qλ(x, t) = λ−n−2Q(λ−1x, λ−2t)whereQ ∈ C∞(Rn+1),∫
Q dxdt = 0. In addition we will, following [21], assume that Qλ satisfies the conditions

|Qλ(x, t)| ≤ cλ

(λ + ||(x, t)||)n+3 ,

|Qλ(x, t) − Qλ(y, s)| ≤ c||(x − y, t − s)||α
(λ + ||(x, t)||)n+2+α

,

where the latter estimate holds for some α ∈ (0, 1) whenever 2||(x − y, t − s)|| ≤ ||(x, t)||.
Under these assumptions it is well known that

∫ ∞

0

∫

Rn+1
|Qλ f |2 dxdtdλ

λ
≤ c

∫

Rn+1
| f |2 dxdt, (2.8)

for all f ∈ L2(Rn+1, C). In the following we collect a number of elementary observations
used in the forthcoming sections.

Lemma 2.4 Let Pλ be as above. Then

|||λ∇Pλ f ||| + |||λ2∂tPλ f ||| + |||λDPλ f ||| ≤ c|| f ||2,
for all f ∈ L2(Rn+1, C).

Proof This lemma essentially follows immediately from (2.8). For slightly more details we
refer to the proof of Lemma 2.30 in [32]. �

Consider a cube Q ⊂ R
n+1. In the following we let AQ

λ denote the dyadic averaging
operator induced by Q, i.e., if Q̂λ(x, t) is the minimal dyadic cube (with respect to the grid
induced by Q) containing (x, t), with side length at least λ, then

AQ
λ f (x, t) :=

∫
−

Q̂λ(x,t)
f dyds, (2.9)

is the average of f over Q̂λ(x, t).

Lemma 2.5 Let AQ
λ and Pλ be as above. Then

∫ ∞

0

∫

Rn+1
|(AQ

λ − Pλ) f |2 dxdtdλ

λ
≤ c

∫

Rn+1
| f |2 dxdt,

for all f ∈ L2(Rn+1, C).

Proof The lemma follows by orthogonality estimates and we here include a sketch of the
proof for completion. Let F ∈ C∞

0 (Rn+2+ , C) be such that |||F ||| = 1. It suffices to prove
that

∫ ∞

0

∫

Rn+1
F(x, t, λ)(AQ

λ − Pλ) f (x, t)
dxdtdλ

λ
≤ c|| f ||2,

for all f ∈ L2(Rn+1, C). To prove this we first note that |(AQ
λ − Pλ) f (x0, t0)| ≤

cM( f )(x0, t0) whenever (x0, t0) ∈ R
n+1 and where M is the parabolic Hardy–Littlewood

maximal function. Hence,

sup
λ>0

||(AQ
λ − Pλ)||2→2 ≤ c.
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Let Qλ be an approximation of the zero operator defined based on a functionQ so normalized
that Qλ is a resolution of the identity, i.e.,

∫ ∞

0
Q2

λg
dλ

λ
= g,

whenever g ∈ C∞
0 (Rn+1, C). Then

||(AQ
λ − Pλ)Qσ ||2→2 ≤ c min{(λ/σ)δ, (σ/λ)δ}, (2.10)

for some δ > 0. Indeed, let Rλ(x, t, y, s) be the kernel associated to AQ
λ − Pλ, i.e.,

Rλ(x, t, y, s) = 1

|Q̂λ(x, t)|1Q̂λ(x,t)(y, s) − Pλ(x − y, t − s).

Then Rλ1 = 0 and it is easily seen that

(i) |Rλ(x, t, y, s)| ≤ λδ(λ + ||(x, t)||)−n−2−δ,

(ii)
∫

Rn+1
sup

{(z,w): ||(z−y,w−s)||≤σ }
|Rλ(x, t, z, w) − Rλ(x, t, y, s)| dyds ≤ c(σ/λ)δ,

whenever (x, t) ∈ R
n+1, 0 < σ ≤ λ < ∞ and with δ = 1. Note that there is an unfortunate

statement in the corresponding proof in [32]: there (ii) was stated in a pointwise sense which
can, obviously, not hold as the indicator function 1Q̂λ(x,t) is not Hölder continuous. Using
(i), (ii), one can, arguing as in the proof of display (3.7) and Remark 3.11 in [25], conclude
the validity of (2.10). Let hδ(λ, σ ) := min{(λ/σ)δ, (σ/λ)δ}. We write

∣∣∣∣
∫ ∞

0

∫

Rn+1
F(x, t, λ)(AQ

λ − Pλ) f (x, t)
dxdtdλ

λ

∣∣∣∣

=
∣∣∣∣
∫ ∞

0

∫ ∞

0

∫

Rn+1
F(x, t, λ)(AQ

λ − Pλ)Q2
σ f (x, t) dxdt

dλ

λ

dσ

σ

∣∣∣∣ ,

Hence, using Cauchy–Schwarz we see that
∣∣∣∣
∫ ∞

0

∫

Rn+1
F(x, t, λ)(AQ

λ − Pλ) f (x, t)
dxdtdλ

λ

∣∣∣∣ ≤ I 1/2
1 I 1/2

2 ,

where

I1 :=
∫ ∞

0

∫ ∞

0

∫

Rn+1
|F(x, t, λ)|2hδ(λ, σ ) dxdt

dλ

λ

dσ

σ
,

I2 :=
∫ ∞

0

∫ ∞

0

∫

Rn+1
|(AQ

λ − Pλ)Q2
σ f (x, t)|2(hδ(λ, σ ))−1 dxdt

dλ

λ

dσ

σ
.

Integrating with respect to σ in I1 we see that I1 ≤ c. Furthermore, using (2.10) we see that

I2 ≤
∫ ∞

0

∫ ∞

0

∫

Rn+1
|Qσ f (x, t)|2hδ(λ, σ ) dxdt

dλ

λ

dσ

σ

≤ c
∫ ∞

0

∫

Rn+1
|Qσ f (x, t)|2 dxdt

dσ

σ
≤ c|| f ||22.

This completes the proof of the lemma. See also the proof of Lemma 4.3 in [25]. �
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3 Off-diagonal and uniform L2-estimates for single layer potentials

We here establish a number of elementary and preliminary estimates for single layer poten-
tials. We will consistently only formulate and prove results for Sλ := SH

λ and for λ > 0,
where H = ∂t − div A∇ is assumed to satisfy (1.2) and (1.3) as well as (2.6) and (2.7). The
corresponding results for S∗

λ := SH∗
λ follow by analogy. Here we will also use the notation

div|| = ∇||·, Di = ∂xi for i ∈ {1, . . . , n + 1}. We let

(Sλ D j ) f (x, t) :=
∫

Rn+1
∂y j �λ(x, t, y, s) f (y, s) dyds, 1 ≤ j ≤ n,

(Sλ Dn+1) f (x, t) :=
∫

Rn+1
∂σ �(x, t, λ, y, s, σ )|σ=0 f (y, s) dyds.

We set

(Sλ∇) := ((Sλ D1), . . . , (Sλ Dn), (Sλ Dn+1)),

(Sλ∇·)f :=
n+1∑

j=1

(Sλ D j ) f j ,

whenever f = ( f1, . . . , fn+1) and we note that

(Sλ∇||) · f|| = −Sλ(div|| f||), (Sλ Dn+1) fn+1 = −∂λSλ fn+1,

whenever f = (f||, fn+1) ∈ C∞
0 (Rn+1, C

n+1) and by the translation invariance in the λ-
variable. Given a function f ∈ L2(Rn+1, C), and h = (h1, . . . , hn+1) ∈ R

n+1, we let
(Dh f )(x, t) = f (x1 + h1, . . . , xn + hn, t + hn+1)− f (x, t). Given m ≥ −1, l ≥ −1 we let

Km,λ(x, t, y, s) := ∂m+1
λ �λ(x, t, y, s),

Km,l,λ(x, t, y, s) := ∂ l+1
t ∂m+1

λ �λ(x, t, y, s), (3.1)

and we introduce

dλ(x, t, y, s) := |x − y| + |t − s|1/2 + λ.

Lemma 3.1 Consider m ≥ −1, l ≥ −1. Then there exists constants cm,l and α ∈ (0, 1),
depending at most on n, �, the De Giorgi–Moser–Nash constants, m, l, such that

(i) |Km,l,λ(x, t, y, s)| ≤ cm,l(dλ(x, t, y, s))−n−m−2l−4,

(ii) |(Dh Km,l,λ(·, ·, y, s))(x, t)| ≤ cm,l ||h||α(dλ(x, t, y, s))−n−m−2l−4−α,

(iii) |(Dh Km,l,λ(x, t, ·, ·))(y, s)| ≤ cm,l ||h||α(dλ(x, t, y, s))−n−m−2l−4−α,

whenever 2||h|| ≤ ||(x − y, t − s)|| or 2||h|| ≤ λ.

Proof Assume first that l = −1. Then Km,l,λ = Km,λ. In the case m = −1 the estimates in
(i)–(iii) follow from (2.6) and (2.7), see also [1] and Section 1.4 in [6]. In the cases m ≥ 0,
the corresponding estimates follow by induction using (2.6), (2.7), Lemmas 2.1 and 2.2. This
establishes the estimates in (i)–(iii) for Km,−1,λ whenever m ≥ −1. We next consider the case
of Km,l,λ, l ≥ 0. Fix (y, s) ∈ R

n+1 and let u = u(x, t, λ) = Km,l,λ(x, t, y, s) for some l ≥ 0.
Given (x, t, λ) ∈ R

n+2+ , let Q̃ ⊂ R
n+2 be the largest parabolic cube centered at (x, t, λ) such

that 16Q̃ ⊂ R
n+2+ and such Hu = 0 in 16Q̃. Then l(Q̃) ≈ min{λ, ||(x − y, t − s)||}, and

|∂t u(x, t, λ)| ≤ c

(∫
−

2Q̃
|∂t u|2 d Xdt

)1/2

,
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by (2.6) as ∂t u is a solution to the same equation as u. Using Lemma 2.3 we can therefore
conclude that

|∂t u(x, t, λ)|2 ≤ c

l(Q̃)4

(∫
−

8Q̃
|u|2 d Xdt

)
.

Using this and induction, the estimate in (i) follows for Km,l,λ(x, t, y, s) whenever l ≥ −1.
Using (2.7), the estimates in (ii) and (iii) are proved similarly. �

Lemma 3.2 Consider m ≥ −1, l ≥ −1 and ρ > 1. Then there exist a constant cm,l ,
depending at most on n, �, the De Giorgi–Moser–Nash constants, m, l, and a constant
cm,l,ρ , depending in addition on ρ, such that

(i)
∫

2k+1 Q\2k Q
|(2kl(Q))m+2l+3∇y Km,l,λ(x, t, y, s)|2dyds ≤ cm,l(2

kl(Q))−n−2,

(ii)
∫

2Q
|(l(Q))m+2l+3∇y Km,l,λ(x, t, y, s)|2dyds ≤ cm,l,ρ(l(Q))−n−2,

i f l(Q)/ρ ≤ λ ≤ ρl(Q),

whenever Q ⊂ R
n+1 is a parabolic cube, k ≥ 1 is an integer and (x, t) ∈ Q.

Proof Fix (x, t) ∈ Q and let

v(y, s, λ) := Km,l,λ(x, t, y, s).

Then v is a solution to the adjoint equation. The lemma now follows from Lemma 2.2 (ii),
applied to the adjoint equation, and Lemma 3.1 (i). Indeed, it is easy to see that Lemma 2.2
also is valid in when Q is replaced by the annular region 2k+1 Q\2k Q. �

Lemma 3.3 Consider m ≥ −1, l ≥ −1 and ρ > 1. Then there exist a constant cm,l ,
depending at most on n, �, the De Giorgi–Moser–Nash constants, m, l, and a constant
cm,l,ρ , depending in addition on ρ, such that

(i) ||∂ l+1
t ∂m+1

λ (Sλ∇||·)(f12k+1 Q\2k Q)||2L2(Q)

≤ cm,l2
−(n+2)k(2kl(Q))−2m−4l−6||f||2L2(2k+1 Q\2k Q)

,

(ii) ||∂ l+1
t ∂m+1

λ (Sλ∇||·)(f12Q)||2L2(Q)
≤ cm,l,ρ(l(Q))−2m−4l−6||f||2L2(2Q)

,

if l(Q)/ρ ≤ λ ≤ ρl(Q),

(iii) ||∂ l+1
t ∂m+1

λ (Sλ)( f 12k+1 Q\2k Q)||2L2(Q)
≤ cm,l2

−(n+2)k

(2kl(Q))−2m−4l−4|| f ||2L2(2k+1 Q\2k Q)
,

(iv) ||∂ l+1
t ∂m+1

λ (Sλ)( f 12Q)||2L2(Q)
≤ cm,l,ρ(l(Q))−2m−4l−4|| f ||2L2(2Q)

,

if l(Q)/ρ ≤ λ ≤ ρl(Q),

whenever Q ⊂ R
n+1 is a parabolic cube, k ≥ 1 is an integer, f ∈ L2(Rn+1, C

n), and
f ∈ L2(Rn+1, C).
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Proof Let (x, t) ∈ Q. To prove (i) we note that

|∂ l+1
t ∂m+1

λ (Sλ∇||·)(f12k+1 Q\2k Q)(x, t)|2

=
∣∣∣∣
∫

2k+1 Q\2k Q
∇y Km,l,λ(x, t, y, s) · f(y, s) dyds

∣∣∣∣
2

≤ ||∇y Km,l,λ(x, t, y, s)||2L2(2k+1 Q\2k Q)
||f||2L2(2k+1 Q\2k Q)

≤ cm,l(2
kl(Q))−n−2m−4l−8||f||2L2(2k+1 Q\2k Q)

,

by Lemma 3.2 (i). Hence, integrating with respect to (x, t) we see that

||∂ l+1
t ∂m+1

λ (Sλ∇||·)(f12k+1 Q\2k Q)||2L2(Q)

≤ cm,l(l(Q))n+2(2kl(Q))−n−2m−4l−8||f||2L2(2k+1 Q\2k Q)

≤ cm,l2
−(n+2)k(2kl(Q))−2m−4l−6||f||2L2(2k+1 Q\2k Q)

.

This completes the proof of (i). The proof of (ii) is similar. To prove (iii) we again consider
(x, t) ∈ Q. Then

|∂ l+1
t ∂m+1

λ (Sλ)( f 12k+1 Q\2k Q)(x, t)|2

=
∣∣∣∣
∫

2k+1 Q\2k Q
Km,l,λ(x, t, y, s) f (y, s) dyds

∣∣∣∣
2

≤ ||Km,l,λ(x, t, y, s)||2L2(2k+1 Q\2k Q)
|| f ||2L2(2k+1 Q\2k Q)

≤ cm,l(2
kl(Q))−n−2m−4l−6|| f ||2L2(2k+1 Q\2k Q)

.

We can now proceed as above to complete the proof of (iii). The proof of (iv) is
similar. �

Lemma 3.4 Assume m ≥ −1, l ≥ −1, m + 2l ≥ −2, Then there exists a constant cm,l ,
depending at most on n, �, the De Giorgi–Moser–Nash constants, m, l, such that the following
holds. Let f ∈ L2(Rn+1, C

n) and f ∈ L2(Rn+1, C). Then

(i) sup
λ>0

||λm+2l+3∂ l+1
t ∂m+1

λ (Sλ∇||·)f||2 ≤ cm,l ||f||2,

(ii) sup
λ>0

||λm+2l+3∂ l+1
t ∂m+1

λ (∇||Sλ f )||2 ≤ cm,l || f ||2.

Furthermore, if m + 2l ≥ −1 then

(iii) sup
λ>0

||λm+2l+2∂ l+1
t ∂m+1

λ (Sλ f )||2 ≤ cm,l || f ||2.

Proof We first note that to prove (ii) it suffices to only prove (i), as, by duality, (ii) follows
from (i) applied to S∗

λ . To prove (i), fix λ > 0 and consider m ≥ −1, l ≥ −1. Then

||λm+2l+3∂ l+1
t ∂m+1

λ (Sλ∇||·)f||22 ≤
∑

Q

∫

Q
|λm+2l+3∂ l+1

t ∂m+1
λ (Sλ∇||·)f(x, t)|2 dxdt,
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where the sum runs over the dyadic grid of parabolic cubes with l(Q) ≈ λ. With Q fixed we
see that

∫

Q
|λm+2l+3∂ l+1

t ∂m+1
λ (Sλ∇||·)f(x, t)|2 dxdt

≤
∫

Q
|λm+2l+3∂ l+1

t ∂m+1
λ (Sλ∇||·)(f12Q)(x, t)|2 dxdt

+
∑

k≥1

∫

Q
|λm+2l+3∂ l+1

t ∂m+1
λ (Sλ∇||·)(f12k+1 Q\2k Q)(x, t)|2 dxdt

≤ cλ2m+4l+6(l(Q))−2m−4l−6||f||2L2(2Q)

+
∑

k≥1

c2−(n+2)kλ2m+4l+6(2kl(Q))−2m−4l−6||f||2L2(2k+1 Q\2k Q)

≤ c

⎛

⎝||f||2L2(2Q)
+

∑

k≥1

2−(n+2)k2−(2m+4l+6)k ||f||2L2(2k+1 Q\2k Q)

⎞

⎠ ,

by Lemma 3.3 (i) and (ii), as l(Q) ≈ λ. Hence,

||λm+2l+3∂ l+1
t ∂m+1

λ (Sλ∇||·)f||2L2(Rn+1)

≤ c||f||22 + c
∑

Q

∑

k≥1

2−(n+2)k2−(2m+4l+6)k ||f||2L2(2k+1 Q\2k Q)
. (3.2)

To complete the proof of (i) we now note that there exists, given a point (x, t), at most
cn2(n+2)k cubes Q such that (x, t) ∈ 2k+1 Q\2k Q. Hence, using this, and the estimate in
(3.2), we see that

||λm+2l+3∂ l+1
t ∂m+1

λ (Sλ∇||·)f||2L2(Rn+1)
≤ c||f||22 + c

∑

k≥1

2−(2m+4l+6)k ||f||22

≤ c||f||22,
as long as m + 2l > −3. This completes the proof of (i). Using Lemma 3.3 (iii) and (iv), the
proof of (iii) is similar. We omit further details. �
Lemma 3.5 Let f ∈ C∞

0 (Rn+1, C) and λ0 > 0. Then Sλ0 f ∈ H(Rn+1, C) ∩ L2(Rn+1, C).

Proof Given f ∈ C∞
0 (Rn+1, C) we let Q ⊂ R

n+1 be a parabolic cube, centered at (0, 0),
such that the support of f is contained in Q. Let λ0 > 0 be fixed. We have to prove that
||∇||Sλ0 f ||2 < ∞, ||Ht Dt

1/2Sλ0 f ||2 < ∞, and that ||Sλ0 f ||2 < ∞. To estimate ||∇||Sλ0 f ||2
we see, by duality, that it suffices to bound

∫

Q
|(S∗

λ0
∇||·)f(x, t)|2 dxdt ≤

∫

Q
|(S∗

λ0
∇||·)(f12Q)(x, t)|2 dxdt

+
∑

k≥1

∫

Q
|(S∗

λ0
∇||·)(f12k+1 Q\2k Q)(x, t)|2 dxdt,

where f ∈ C∞
0 (Rn+1, C

n), ||f||2 = 1. However, now using the adjoint version of Lemma 3.3
(i), (ii) with l = −1 = m, we immediately see that

∫

Q
|(S∗

λ0
∇||·)f(x, t)|2 dxdt ≤ c(n,�, λ0) < ∞,
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whenever f ∈ C∞
0 (Rn+1, C

n), ||f||2 = 1. To estimate ||Ht Dt
1/2Sλ0 f ||2 we first note that

||Ht Dt
1/2Sλ0 f ||22 ≤ ||∂tSλ0 f ||2||Sλ0 f ||2.

Using Lemma 3.4 (iii) we see that ||∂tSλ0 f ||2 ≤ c(n,�, λ0)|| f ||2 < ∞. To estimate
||Sλ0 f ||2 we write

∫

Rn+1
|Sλ0 f (x, t)|2 dxdt ≤

∫

2Q
|Sλ0 f (x, t)|2 dxdt

+
∑

k≥1

∫

2k+1 Q\2k Q
|Sλ0 f (x, t)|2 dxdt.

Using this and Lemma 3.1 (i) we deduce that

∫

Rn+1
|Sλ0 f (x, t)|2 dxdt ≤ c(n,�, λ0) < ∞.

This completes the proof of the lemma. �

4 Estimates of non-tangential maximal functions and square functions

Consider Sλ = SH
λ , for λ > 0, where H = ∂t − div A∇ is assumed to satisfy (1.2) and (1.3)

as well as (2.6) and (2.7). Recall the notation ||| · |||, ( f ), introduced in (1.4), (1.7). This
section is devoted to the proof of the following two lemmas.

Lemma 4.1 Then there exists a constant c, depending at most on n, �, and the De Giorgi–
Moser–Nash constants, such that

(i) ||N∗(∂λSλ f )||2 ≤ c

(
sup
λ>0

||∂λSλ||2→2 + 1

)
|| f ||2,

(ii) ||Ñ∗(∇||Sλ f )||2 ≤ c

(
|| f ||2 + sup

λ>0
||∇||Sλ f ||2 + ||N∗∗(∂λSλ f )||2

)
,

(iii) ||Ñ∗(Ht Dt
1/2Sλ f )||2 ≤ c

(
|| f ||2 + sup

λ>0
||Ht Dt

1/2Sλ f ||2
)

+ c
(
||Ñ∗∗(∇||Sλ f )||2 + ||N∗∗(∂λSλ f )||2

)
,

whenever f ∈ L2(Rn+1, C).

Lemma 4.2 Assume m ≥ −1, l ≥ −1. Let ( f ) be defined as in (1.7). Assume that
( f ) < ∞ whenever f ∈ L2(Rn+1, C). Then there exists a constant c, depending at most
on n, �, the De Giorgi–Moser–Nash constants, and m, l, such that

(i) |||λm+2l+4∇∂λ∂
l+1
t ∂m+1

λ Sλ f ||| ≤ c(( f ) + || f ||2),
(ii) |||λm+2l+4∂t∂

l+1
t ∂m+1

λ Sλ f ||| ≤ c(( f ) + || f ||2),
whenever f ∈ L2(Rn+1, C).
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4.1 Proof of Lemma 4.1

Throughout the proof we can, without loss of generality, assume that f ∈ C∞
0 (Rn+1, C).

We let Q ⊂ R
n+1 be the (smallest) cube centered at (0, 0) such that the support of f is

contained in 1
2 Q. Let δ > 0 be small and let 1λ>2δ denote the indicator function for the set

{λ : λ > 2δ} ⊂ R.

Proof of Lemma 4.1 (i) We let (x0, t0) ∈ R
n+1. Recall that the kernel of ∂λSλ is

K0,λ(x, t, y, s) introduced in (3.1). K0,λ(x, t, y, s) is a (parabolic) Calderon–Zygmund ker-
nel satisfying the Calderon–Zygmund type estimates stated in Lemma 3.1. Given (x0, t0) ∈
R

n+1 we consider (x, t, λ) ∈ �(x0, t0). Then

|∂λSλ( f )(x, t) − ∂λSλ( f )(x0, t0)|
≤

∫

Rn+1
|K0,λ(x, t, y, s) − K0,λ(x0, t0, y, s)|| f (y, s)| dyds

≤ cM( f )(x0, t0),

by Lemma 3.1 and where M is the parabolic Hardy–Littlewood maximal function. Hence

N∗(1λ>2δ∂λSλ f )(x0, t0) ≤ sup
λ>2δ

|∂λSλ( f )(x0, t0)| + cM( f )(x0, t0),

and we intend to estimate |∂λSλ( f )(x0, t0)| for λ > 2δ. To do this we fix λ > 2δ and we
decompose ∂λSλ( f )(x0, t0) as

∫

||(x0−y,t0−s)||>5λ

(K0,λ(x0, t0, y, s) − K0,δ(x0, t0, y, s)) f (y, s) dyds

+
∫

||(x0−y,t0−s)||≤5λ

K0,λ(x0, t0, y, s) f (y, s) dyds

−
∫

λ<||(x0−y,t0−s)||<5λ

K0,δ(x0, t0, y, s) f (y, s) dyds

+
∫

||(x0−y,t0−s)||>λ

K0,δ(x0, t0, y, s) f (y, s) dyds

=: I δ
1 (x0, t0, λ) + I δ

2 (x0, t0, λ) + I δ
3 (x0, t0, λ) + I δ

4 (x0, t0, λ).

Using Lemma 3.1 we see that

|I δ
1 (x0, t0, λ) + I δ

2 (x0, t0, λ) + I δ
3 (x0, t0, λ)| ≤ cM( f )(x0, t0).

Furthermore,

|I δ
4 (x0, t0, λ)| ≤ T δ∗ f (x0, t0),

where

T δ∗ f (x0, t0) = sup
ε>2δ

|T δ
ε f (x0, t0)|

and

T δ
ε f (x0, t0) =

∫

||(x0−y,t0−s)||>ε

K0,δ(x0, t0, y, s) f (y, s) dyds.
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We have to prove that T δ∗ : L2(Rn+1, C) → L2(Rn+1, C) and we have to estimate ||T δ∗ ||2→2.
To do this we carry out an argument similar to the proof of Cotlar’s inequality for Calderon–
Zygmund operators. With ε > 0 fixed, we let Qε be the the largest parabolic cube, centered
at (x0, t0), which satisfies that 2Qε ∩ {(y, s) ∈ R

n+1 : ||(x0 − y, t0 − s)|| > ε} = ∅. Then
l(Qε) ≈ ε. Write f = f 12Qε + f 1Rn+1\2Qε

. Then

|T δ
ε f (x0, t0)| = |∂λSδ( f 1Rn+1\2Qε

)(x0, t0)|
≤ cM( f )(x0, t0) + |∂λSδ f (x, t)| + |∂λSδ( f 12Qε )(x, t)|,

whenever (x, t) ∈ Qε and where have used Lemma 3.1 once again. Let r ∈ (0, 1). Taking a
Lr average in the last display with respect to (x, t), we see that

|T δ
ε f (x0, t0)| ≤ cM( f )(x0, t0) + (M(|∂λSδ f |r )(x0, t0))

1/r

+
(∫
−

Qε

|∂λSδ( f 12Qε )|r dxdt

)1/r

.

Hence,

|T δ
ε f (x0, t0)| ≤ cM( f )(x0, t0) + (M(|∂λSδ f |r )(x0, t0))

1/r + M(|∂λSδ f |)(x0, t0).

Furthermore, using an equality attributed to Kolmogorov, see Lemma 10 on p. 35 in [11] for
example, and that the support of f is contained in Q, we see that

(M(|∂λSδ f |r )(x0, t0))
1/r ≤ c||∂λSδ||L1(Q)→L1,∞(5Q)

)
M( f )(x0, t0),

where L1,∞(5Q) is weak-L1. Using that ∂λSδ is a Calderon–Zygmund operator one can
deduce, by retracing, and localizing, the proof of weak estimates in Calderon–Zygmund
theory based on L2 estimates, that

||∂λSδ||L1(Q)→L1,∞(5Q) ≤ c
(
1 + ||∂λSδ||L2(Q)→L2(Rn+1)

)
,

where c depends on the kernel K0,λ through the constants appearing in Lemma 3.1. For a
detailed account of the dependence of the constant c, see [31]. Hence

T δ∗ f (x0, t0) ≤ c
(
1 + ||∂λSδ||L2(Q)→L2(Rn+1)

)
M( f )(x0, t0) + M(|∂λSδ f |)(x0, t0)

and retracing the estimates we can conclude that we have proved that

N∗(1λ>2δ∂λSλ f )(x0, t0) ≤ c
(
1 + ||∂λSδ||2→2

)
M( f )(x0, t0) + M(|∂λSδ f |)(x0, t0)

whenever (x0, t0) ∈ R
n+1 and δ > 0. Hence,

||N∗(1λ>2δ∂λSλ f )||2 ≤ c

(
1 + sup

λ>0
||∂λSλ||2→2

)
|| f ||2,

whenever f ∈ C∞
0 (Rn+1, C) and for a constant c, depending at most on n, �, and the De

Giorgi–Moser–Nash constants, in particular c is independent of δ. Letting δ → 0 completes
the proof of Lemma 4.1 (i). �
Proof of Lemma 4.1 (ii) We let (x0, t0) ∈ R

n+1. To estimate Ñ∗(1λ>2δ∇||Sλ f )(x0, t0) it
suffices to bound

(∫
−

Wλ(x0,t0)

|∇||Sσ f (y, s)|2 dydsdσ

)1/2

,
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where

Wλ(x, t) := {(y, s, σ ) : (y, s) ∈ Qλ(x, t), λ/2 < σ < 3λ/2}
and for λ > 4δ/3 which we from now on assume. In the following we let, for m ∈
{0, 1, . . . , 4}
2m Wλ(x, t) := {(y, s, σ ) : (y, s) ∈ Q2mλ(x, t), λ/2 − mλ2−10 < σ < 3λ/2 + mλ2−10}.
Then 20Wλ(x, t) = Wλ(x, t). Using this notation and energy estimates, Lemma 2.1, we see
that

∫
−

Wλ(x0,t0)

|∇||Sσ f (y, s)|2 dydsdσ ≤ c

λ2

∫
−

2Wλ(x0,t0)

|Sσ f (y, s) − A|2 dydsdσ,

where A is a constant which in the following is a degree of freedom. Furthermore, using (2.6)
with p = 1 we see that

(∫
−

Wλ(x0,t0)

|∇||Sσ f (y, s)|2 dydsdσ

)1/2

≤ c

λ

∫
−

22Wλ(x0,t0)

|Sσ f (y, s) − A| dydsdσ.

We write

1

λ

∫
−

22Wλ(x0,t0)

|Sσ f (y, s) − A| dydsdσ

≤ 1

λ

∫
−

22Wλ(x0,t0)

|Sσ f (y, s) − Sσ f (y, t0)| dydsdσ

+ 1

λ

∫
−

22Wλ(x0,t0)

|Sσ f (y, t0) − A| dydsdσ

=: I1 + I2.

By the fundamental theorem of calculus we have

I1 ≤
∫
−

23Wλ(x0,t0)

|λ∂tSσ f (y, s)| dydsdσ.

Let Q ⊂ R
n+1 be a parabolic cube centered at (x0, t0) and with side length 8λ. Then I1 is

bounded by

c
∫ 2λ

λ/8

∫

Q
|λ−n−2∂tSσ ( f 12Q)(y, s)| dydsdσ

+ c
∫ 2λ

λ/8

∫

Q
|λ−n−2 (

∂tSσ ( f 1Rn+1\2Q)(y, s) − ∂tSσ ( f 1Rn+1\2Q)(x0, t0)
) | dydsdσ

+ c
∫ 2λ

λ/8
|∂tSσ ( f 1Rn+1\2Q)(x0, t0)| dσ

=: I11 + I12 + I13.

Using Lemma 3.1 we see that

I11 + I12 ≤ cM( f )(x0, t0),
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where M is the parabolic Hardy–Littlewood maximal function. Furthermore,

I13 ≤ c
∞∑

k=1

∫ 2λ

λ/8
|∂tSσ ( f 12k+1 Q\2k Q)(x0, t0)| dσ

≤ cλ
∞∑

k=1

(2kλ)−n−3
∫

2k+1 Q
| f (y, s)| dyds ≤ cM( f )(x0, t0).

Hence, we can conclude that

I1 ≤ cM( f )(x0, t0). (4.1)

Focusing on I2 we see that

I2 ≤ 1

λ

∫
−

22Wλ(x0,t0)

|Sσ f (y, t0) − Sδ/4 f (y, t0)| dydsdσ

+ 1

λ

∫
−

22Wλ(x0,t0)

|Sδ/4 f (y, t0) − A| dydsdσ

=: I21 + I22.

By the fundamental theorem of calculus

I21 ≤ 1

λ

∫
−

23Wλ(x0,t0)

λ|N x∗∗(∂λSλ f (·, t0))(y)| dydsdσ

≤ Mx (N x∗∗(∂λSλ f (·, t0))(·))(x0),

where Mx is the Hardy–Littlewood maximal function in x only and N x∗∗ is an elliptic non
tangential maximal function on a fixed time slice. Finally, let A be the average ofSδ/4 f (y, t0),
with respect to y, on an spatial surface cube around x0 with sidelength λ. Then, using the
L1-Poincare inequality we deduce that

I22 ≤ cMx (∇||Sδ/4 f (·, t0))(x0).

Retracing the argument we can conclude that

Ñ∗(1λ>2δ∇||Sλ f )(x0, t0) ≤ c
(
M( f )(x0, t0) + Mx (N x∗∗(∂λSλ f (·, t0))(·))(x0)

+ Mx (∇||Sδ/4 f (·, t0))(x0)
)
.

Hence

||Ñ∗(1λ>2δ∇||Sλ f )||22 ≤ c
(|| f ||22 + ||∇||Sδ/4 f ||22

)

+
∫ ∞

−∞

∫

Rn
|N x∗∗(∂λSλ f (·, t))(x)|2 dxdt.

However,

N x∗∗(∂λSλ f (·, t0))(x0) ≤ N∗∗(∂λSλ f )(x0, t0)

and we can conclude that

||Ñ∗(1λ>2δ∇||Sλ f )||2 ≤ c

(
|| f ||2 + sup

λ>0
||∇||Sλ f ||2 + ||N∗∗(∂λSλ f )||2

)
.

This completes the proof of Lemma 4.1 (ii). �
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Proof of Lemma 4.1 (iii) We again fix (x0, t0) ∈ R
n+1 and we note that to estimate

Ñ∗(1λ>2δ Ht Dt
1/2Sλ f )(x0, t0)

it suffices to bound
(∫
−

Wλ(x0,t0)

|Ht Dt
1/2Sσ f (y, s)|2 dydsdσ

)1/2

, λ > 4δ/3.

Consider (y, s, σ ) ∈ Wλ(x0, t0), λ > 4δ/3, and let K � 1 be a degree of freedom to be
chosen. Then

Ht Dt
1/2(Sσ f )(y, s) = lim

ε→0

∫

ε≤|s−t |<1/ε

sgn(s − t)

|s − t |3/2 (Sσ f )(y, t) dt

= lim
ε→0

∫

ε≤|s−t |<(Kσ)2

sgn(s − t)

|s − t |3/2 (Sσ f )(y, t) dt

+ lim
ε→0

∫

(Kσ)2≤|s−t |<1/ε

sgn(s − t)

|s − t |3/2 (Sσ f )(y, t) dt

=: g1(y, s, σ ) + g2(y, s, σ ).

Let

g3(x0, t0, σ ) := sup
{y: |y−x0|≤4σ }

sup
{τ : |τ−t0|≤(4Kσ)2}

|∂τ (Sσ f )(y, τ )|.

Then, using the oddness about s of the kernel in the definition of g1,

|g1(y, s, σ )| ≤ cKλg3(x0, t0, σ ),

whenever (y, s, σ ) ∈ Wλ(x0, t0). Hence,
(∫
−

Wλ(x0,t0)

|g1(y, s, σ )|2 dydsdσ

)
≤ cλ2

∫ 2λ

λ/8
|g3(x0, t0, σ )|2 dσ.

To estimate the right hand side in the last display, let (y, τ ) be such that |y − x0| ≤ 4σ ,
|τ − t0| ≤ (4Kσ)2. Let Q ⊂ R

n+1 be a parabolic cube centered at (x0, t0) and with side
length 16Kσ . Then, for K large enough we see that

|λ∂τ (Sσ f )(y, τ )| ≤ λ|∂τSσ ( f 12Q)(y, τ )|
+ λ|∂τSσ ( f 1Rn+1\2Q)(y, τ ) − ∂τSσ ( f 1Rn+1\2Q)(x0, t0)|
+ λ|∂τSσ ( f 1Rn+1\2Q)(x0, t0)|.

Basically repeating the proof of (4.1) we see that
(∫
−

Wλ(x0,t0)

|g1(y, s, σ )|2 dydsdσ

)1/2

≤ cM( f )(x0, t0).

To estimate g2(y, s, σ ), whenever (y, s, σ ) ∈ Wλ(x0, t0), we introduce the function

g4(ȳ, s̄, σ ) := lim
ε→0

∫

(Kσ)2≤|t−s̄|<1/ε

sgn(s̄ − t)

|s̄ − t |3/2 (Sδ/4 f )(ȳ, t) dt.

Now

|g2(y, s, σ ) − g4(x0, t0, σ )| ≤ |g2(y, s, σ ) − g2(x0, s, σ )|
+ |g2(x0, s, σ ) − g2(x0, t0, σ )|
+ |g2(x0, t0, σ ) − g4(x0, t0, σ )|.
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In particular,

|g2(y, s, σ ) − g4(x0, t0, σ )| ≤
∫

(Kσ)2≤|s−t |
|Sσ f (y, t) − Sσ f (x0, t)|

|t − s|3/2 dt

+
∫

(Kσ)2≤|ξ |
|Sσ f (x0, ξ + s) − Sσ f (x0, ξ + t0)|

|ξ |3/2 dξ

+
∫

(Kσ)2≤|t−t0|
|Sσ f (x0, t) − Sδ/4 f (x0, t)|

|t0 − t |3/2 dt

=: h1(y, s, σ ) + h2(y, s, σ ) + h3(x0, t0, σ ).

We note that

h2(y, s, σ ) ≤ cσ 2
∫

(Kσ)2≤|ξ |
N∗(∂tSσ f )(x0, ξ + t0)

|ξ |3/2 dξ

≤ cσ
∫

(Kσ)2≤|ξ |
M( f )(x0, ξ + t0)

|ξ |3/2 dξ ≤ cMt (M( f )(x0, ·))(t0),

where Mt is the Hardy–Littlewood maximal operator in the t-variable, as we see by arguing
as above. Similarly,

h3(y, s, σ ) ≤ cMt (N∗(∂λSσ f )(x0, ·))(t0).
We therefore focus on h1(y, s, σ ). Let

h̃1(y, σ ) :=
∫

λ2≤|t−t0|
|Sσ f (y, t) − Sσ f (x0, t)|

|t − t0|3/2 dt.

If K is large enough, then h1(y, s, σ ) ≤ ch̃1(y, σ ), whenever (y, s, σ ) ∈ Wλ(x0, t0). Hence
we only have to estimate

(∫
−

Q̂λ(x0)×Iλ/2(λ)

h̃2
1 dydσ

)1/2

= sup

∣∣∣∣∣

∫
−

Q̂λ(x0)×Iλ/2(λ)

h̃1g dydσ

∣∣∣∣∣ ,

where Q̂λ(x0) ⊂ R
n now is a (non-parabolic) cube with side length λ and center x0, Iλ/2(λ)

is the interval (λ/2, 3λ/2), and where the sup is taken with respect to all g ∈ C∞
0 (Rn+1, R)

such that
(∫

−
Q̂λ(x0)×Iλ/2(λ)

g2 dydσ

)1/2

= 1. (4.2)

Given g as in (4.2) we let

E :=
∫
−

Q̂λ(x0)×Iλ/2(λ)

h̃1g dydσ.

Then

E =
∫
−

Q̂λ(x0)×Iλ/2(λ)

(∫

λ2≤|t−t0|
|Sσ f (y, t) − Sσ f (x0, t)|

|t − t0|3/2 dt

)
g(y, σ ) dydσ

≤ c
∞∑

j=0

(λ22 j )−3/2
∫
−

Q̂λ(x0)×Iλ/2(λ)

(∫

I j

|Sσ f (y, t) − Sσ f (x0, t)| dt

)
g(y, σ ) dydσ,
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where I j = {t : λ22 j ≤ |t − t0| < λ22 j+1}. Let η ∈ (−λ2/100, λ2/100) be a degree of
freedom. Given any integer i ∈ {2 j−1, . . . , 2 j+3} we let t±j,i = t0 ± iλ2, N j = (2 j+3 −
2 j−1 + 1). Given η we let I j,i (t

±
j,i + η, λ2) be the interval centered at t±j,i + η and of length

2λ2. Then {I j,i (t
±
j,i + η, λ2)}i is, for each η ∈ (−λ2/100, λ2/100), a covering of I j and

{I j,i (t j,i + η, λ2/104)} is a disjoint collection. Using this we see that |E | can be bounded
from above by

cλ2
∞∑

j=0

(λ22 j )−3/2
N j∑

i=1

∫
−

Wλ(x0,t±j,i +η)

|Sσ f (y, t) − Sσ f (x0, t)||g(y, σ )| dydtdσ

≤ cλ3
∞∑

j=0

(λ22 j )−3/2
N j∑

i=1

Ñ∗∗(∇||Sλ f )(x0, t±j,i + η).

This estimate holds uniformly with respect to η ∈ (−λ2/100, λ2/100). In particular, taking
the average with respect to η we see that

|E | ≤ cλ
∞∑

j=0

(λ22 j )−3/2
∫

{t : λ22 j−2≤|t−t0|<λ22 j+4}
Ñ∗∗(∇||Sλ f )(x0, t) dt

≤ cMt (Ñ∗∗(∇||Sλ f )(x0, ·))(t0).
Putting the estimates together we can conclude, for λ > 4δ/3, that

(∫
−

Wλ(x0,t0)

|Ht Dt
1/2Sσ f (y, s)|2 dydsdσ

)1/2

is bounded by

cMt (Ñ∗∗(∇||Sλ f )(x0, ·))(t0) + cMt (M( f )(x0, ·))(t0) + cMt (N∗(∂λSσ f )(x0, ·))(t0)

+
(∫
−

Wλ(x0,t0)

|g4(x0, t0, σ )|2 dydsdσ

)1/2

,

where Mt is the Hardy–Littlewood maximal operator in the t-variable and M is the parabolic
Hardy–Littlewood maximal function. Hence, letting

ψ(x0, t0) := sup
σ>0

|g4(x0, t0, σ )|

we see that

||Ñ∗(1λ>2δ Ht Dt
1/2Sλ f )||2 ≤ c|| f ||2 + c

(||Ñ∗∗(∇||Sλ f )||2 + ||N∗∗(∂λSλ f )||2
) + c||ψ ||2

where the constant c is independent of δ. Hence, to complete the proof of (iii) it remains to
estimate ||ψ ||2. To do this we first recall that f ∈ C∞

0 (Rn+1, C). Hence, using Lemma 3.5
we know that Sδ/4 f ∈ H(Rn+1, C) ∩ L2(Rn+1, C). Using this it follows that

Sδ/4 f (x, t) = cI t
1/2(Dt

1/2Sδ/4 f )(x, t) = cI t
1/2h(x, t),

where I t
1/2 is the (fractional) Riesz operator in t defined on the Fourier transform side through

the multiplier |τ |−1/2 and h(x, t) := (Dt
1/2Sδ/4 f )(x, t). Using this we see that

ψ(x0, t0) = c sup
ε>0

|Ṽεh(x0, t0)| =: cṼ∗h(x0, t0),
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where Vε is defined on functions k ∈ L2(R, R) by

Vεk(t) =
∫

{|s−t |>ε}

sgn(t − s)I t
1/2k(s)

|s − t |3/2 ds,

and Ṽεh(x, t) = Vεh(x, ·) evaluated at t . However, using this notation we can apply Lemma
2.27 in [21] and conclude that

||ψ ||2 ≤ c||h||2 = c||Dt
1/2Sδ/4 f ||2 ≤ c sup

λ>0
||Ht Dt

1/2Sλ f ||2.

This completes the proof of Lemma 4.1 (iii). �
4.2 Proof of Lemma 4.2

We first note, using Lemmas 2.1, 2.3 and induction, that it suffices to prove

(i′) |||λ∇∂λSλ f ||| ≤ c( f ) + c|| f ||2,
(ii′) |||λ∂tSλ f ||| ≤ c( f ) + c|| f ||2,

whenever f ∈ L2(Rn+1, C). To prove (i′) it suffices to estimate |||λ∇||∂λSλ f |||. Given ε > 0
we let

A1 := −1

2

∫ 1/ε

ε

∫

Rn+1
∇||∂2

λSλ f · ∇||∂λSλ f λ2dxdtdλ,

A2 := −1

2

∫ 1/ε

ε

∫

Rn+1
∇||∂λSλ f · ∇||∂2

λSλ f λ2dxdtdλ,

A3 :=
∫

Rn+1
∇||∂λSλ f · ∇||∂λSλ f λ2dxdt

∣∣∣∣
λ=1/ε

,

A4 :=
∫

Rn+1
∇||∂λSλ f · ∇||∂λSλ f λ2dxdt

∣∣∣∣
λ=ε

.

Using partial integration with respect to λ,

∫ 1/ε

ε

∫

Rn+1
∇||∂λSλ f · ∇||∂λSλ f λdxdtdλ = A1 + A2 + A3 + A4.

Furthermore, using Lemma 3.4 (ii),

|A1| + |A2| + |A3| + |A4| ≤ c|||λ2∇||∂2
λSλ f |||2 + c|| f ||22,

with c independent of ε. Hence

|||λ∇||∂λSλ f |||2 = lim
ε→0

∫ 1/ε

ε

∫

Rn+1
∇||∂λSλ f · ∇||∂λSλ f λdxdtdλ

≤ c|||λ2∇||∂2
λSλ f |||2 + c|| f ||22. (4.3)
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(i′) now follows from an application of Lemma 2.1. To prove (ii′) we first introduce, for
ε > 0,

B1 := −1

2

∫ 1/ε

ε

∫

Rn+1
∂t∂λSλ f ∂tSλ f λ2dxdtdλ,

B2 := −1

2

∫ 1/ε

ε

∫

Rn+1
∂tSλ f ∂t∂λSλ f λ2dxdtdλ,

B3 :=
∫

Rn+1
∂tSλ f ∂tSλ f λ2dxdt

∣∣∣∣
λ=1/ε

,

B4 := −
∫

Rn+1
∂tSλ f ∂tSλ f λ2dxdt

∣∣∣∣
λ=ε

.

Then, using Lemma 3.4 (iii)

|B1| + |B2| + |B3| + |B4| ≤ c|||λ2∂t∂λSλ f |||2 + c|| f ||22,
with c independent of ε. Hence, again by integration by parts with respect to λ,

|||λ∂tSλ f |||2 = lim
ε→0

∫ 1/ε

ε

∫

Rn+1
∂tSλ f ∂tSλ f λdxdtdλ

≤ c|||λ2∂t∂λSλ f |||2 + c|| f ||22. (4.4)

Furthermore, repeating the above argument it also follows that

|||λ2∂t∂λSλ f |||2 ≤ c|||λ3∂t∂
2
λSλ f |||2 + c|| f ||22.

Finally, using Lemma 2.3 we can combine the above estimates and conclude that

|||λ∂tSλ f ||| ≤ c( f ) + c|| f ||2.
This completes the proof of (ii′) and hence the proof of Lemma 4.2.

5 Resolvents, square functions and Carleson measures

In the following we collect some of the main results from [32] to be used in the proof of our
main results. Throughout the section we assume that H, H∗ satisfy (1.2) and (1.3). We let

L|| := − div|| A||∇||,

where div|| is the divergence operator in the variables (∂x1 , . . . , ∂xn ). A|| is the n × n-
dimensional sub matrix of A defined by {Ai, j }n

i, j=1. We also let

H|| := ∂t + L||, H∗|| := −∂t + L∗||.

Using this notation the equation Hu = 0 can be written, formally, as

H||u −
n+1∑

j=1

An+1, j Dn+1 D j u −
n∑

i=1

Di (Ai,n+1 Dn+1u) = 0. (5.1)

In the proof of Lemma 6.1 below we will use that (5.1) holds in an appropriate weak sense
on cross sections λ = constant. Indeed, let λ ∈ (a, b) and let ε < min(λ − a, b − λ). Set
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ϕε(σ ) = ε−1ϕ(σ/ε) where ϕ ∈ C∞
0 (−1/2, 1/2), 0 ≤ ϕ,

∫
ϕ dσ = 1. We let φλ,ε(x, t, σ ) =

ψ(x, t)ϕε(σ ) where ψ ∈ C∞
0 (Rn+1, C). Then, by the notion of weak solutions we have

∫

Rn+2

(
A||(x)∇||u(x, t, σ ) · ∇||φλ,ε(x, t, σ ) − u(x, t, σ )∂tφλ,ε(x, t, σ )

)
dxdtdσ

=
n+1∑

j=1

∫

Rn+2
An+1, j (x)∂x j ∂λu(x, t, σ )φλ,ε(x, t, σ ) dxdtdσ

−
n∑

i=1

∫

Rn+2
Ai,n+1(x)∂λu(x, t, σ )∂xi φλ,ε(x, t, σ ) dxdtdσ. (5.2)

Hence, if

∇u, ∇∂λu ∈ L2(Rn+1, C
n+1), (5.3)

uniformly in λ ∈ (a, b), with norms depending continuously on λ ∈ (a, b), then we can
conclude, by letting ε → 0 in (5.2), that

∫

Rn+1

(
A||(x)∇||u(x, t, λ) · ∇||ψ(x, t) − u(x, t, λ)∂tψ(x, t)

)
dxdt

=
n+1∑

j=1

∫

Rn+1
An+1, j (x)∂x j ∂λu(x, t, λ)ψ(x, t) dxdt

−
n∑

i=1

∫

Rn+1
Ai,n+1(x)∂λu(x, t, λ)∂xi ψ(x, t) dxdt. (5.4)

In this sense, and under these assumptions, (5.1) holds on cross sections λ = constant.

5.1 Resolvents and a parabolic Hodge decomposition associated toH||

Recall the function space H = H(Rn+1, C) introduced in (2.1). In the following we will
consider, to ensure a Hilbertian structure, that this space is equipped with the equivalent semi
norm stated on the right hand side in (2.2) (i). We let H

∗ = H
∗(Rn+1, C) be the space dual

to H, with norm || · ||H∗ , and we let 〈·, ·〉H∗ : H
∗ × H → C denote the duality pairing. We let

H̄ = H̄(Rn+1, C) be the closure of C∞
0 (Rn+1, C) with respect to the norm

‖ f ‖
H̄

:= ‖ f ‖H + ‖ f ‖2.

We let H̄
∗ = H̄

∗(Rn+1, C) be the space dual to H̄, with norm || · ||
H̄∗ , and we let 〈·, ·〉

H̄∗ :
H̄

∗ × H̄ → C denote the duality pairing. Let B : H × H → R be defined as

B(u, φ) :=
∫

Rn+1
(A||∇||u · ∇||φ̄ − Dt

1/2u Ht Dt
1/2φ) dxdt, (5.5)

and let, for δ ∈ (0, 1), Bδ : H × H → R be defined as

Bδ(u, φ) :=
∫

Rn+1
A||∇||u · ∇||(I + δHt )φ dxdt

−
∫

Rn+1
Dt

1/2u Ht Dt
1/2(I + δHt )φ dxdt. (5.6)
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Definition 5.1 Let F ∈ H
∗(Rn+1, C). We say that a function u ∈ H(Rn+1, C) is a (weak)

solution to the equation H||u = F , in R
n+1, if

B(u, φ) = 〈F, φ〉H∗ ,

whenever φ ∈ H(Rn+1, C).

Definition 5.2 Let λ > 0 be given. Let F ∈ H̄
∗(Rn+1, C). We say that a function u ∈

H̄(Rn+1, C) is a (weak) solution to the equation u + λ2H||u = F , in R
n+1, if

∫

Rn+1
uφ̄ dxdt + λ2 B(u, φ) = 〈F, φ〉

H̄∗ ,

whenever φ ∈ H̄(Rn+1, C).

Lemma 5.3 Consider the operator H|| = ∂t − div|| A||∇|| and assume that A satisfies (1.2),
(1.3). Let F ∈ H

∗(Rn+1, C). Then there exists a weak solution to the equation H||u = F, in
R

n+1, in the sense of Definition 5.1. Furthermore,

||u||H ≤ c||F ||H∗ ,

for some constant c depending only on n and �. The solution is unique up to a constant.

Proof This is essentially Lemma 2.6 in [32]. Let φδ := (I + δHt )φ, φ ∈ H(Rn+1, C),
δ ∈ (0, 1). Then

|〈F, φδ〉H∗ | ≤ c||F ||H∗ ||φ||H.

Consider the sesquilinear form Bδ(·, ·) introduced in (5.6). If δ = δ(n,�) is small enough,
then Bδ(·, ·) is a sesquilinear, bounded, coercive form on H × H. Hence, using the Lax–
Milgram theorem we see that there exists a unique u ∈ H such that

B(u, φδ) = Bδ(u, φ) = 〈F, φδ〉H∗ ,

for all φ ∈ H. Using that (I + δHt ) is invertible on H, if 0 < δ � 1 is small enough, we can
conclude that

B(u, ψ) = 〈F, ψ〉H∗ ,

whenever ψ ∈ H. The bound ||u||H ≤ c||F ||H∗ follows readily. This completes the existence
and quantitative part of the lemma. The statement concerning uniqueness follows immedi-
ately. �
Lemma 5.4 Let λ > 0 be given. Consider the operator H|| = ∂t − div|| A||∇|| and assume
that A satisfies (1.2), (1.3). Let F ∈ H̄

∗(Rn+1, C). Then there exists a weak solution to the
equation u + λ2H||u = F, in R

n+1, in the sense of Definition 5.2. Furthermore,

||u||2 + ||λ∇||u||2 + ||λDt
1/2u||2 ≤ c||F ||

H̄∗ ,

for some constant c depending only on n and �. The solution is unique.

Proof See the proof of Lemma 2.7 in [32]. �
Remark 5.5 Definitions 5.1, 5.2, Lemmas 5.3, and 5.4, all have analogous formulations for
the operator H∗||.
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Remark 5.6 Let λ > 0 be given. Consider the operator H|| = ∂t − div|| A||∇||. Let F ∈
H̄

∗(Rn+1, C). By Lemma 5.4 the equation u + λ2H||u = F has a unique weak solution
u ∈ H̄. From now on we will denote this solution by EλF . In the case of the operator
H∗|| we denote the corresponding solution by E∗

λ F . In this sense Eλ = (I + λ2H||)−1 and

E∗
λ = (I + λ2H∗||)−1.

Consider λ > 0 fixed, let |h| � λ and consider F ∈ H̄
∗(Rn+1, C). By definition,

∫

Rn+1
Eλ+h F φ̄ dxdt + (λ + h)2 B(Eλ+h F, φ) = 〈F, φ〉

H̄∗ ,
∫

Rn+1
EλF φ̄ dxdt + λ2 B(EλF, φ) = 〈F, φ〉

H̄∗ , (5.7)

for all φ ∈ H̄(Rn+1, C). We let Dh
λ F := Eλ+h F − EλF . (5.7) implies

∫

Rn+1
Dh

λ F φ̄δ dxdt + λ2 B(Dh
λ F, φδ) = −h(2λ + h)B(Eλ+h F, φδ) (5.8)

for all φ ∈ H̄(Rn+1, C), φδ := (I + δHt )φ. Again, arguing as in the proof of Lemma 5.4 we
see, if δ = δ(n,�), 0 < δ � 1 is small enough and as Dh

λ F ∈ H̄(Rn+1, C), that

||Dh
λ F ||2 + ||λ∇||Dh

λ F ||2 + ||λDt
1/2D

h
λ F ||2 ≤ c|h|||Eλ+h F ||2 ≤ c|h|||F ||

H̄∗ , (5.9)

where c is independent of h. Hence

lim
h→0

Dh
λ F = lim

h→0

(
Eλ+h F − EλF

) = 0 (5.10)

in the sense that

||Dh
λ F ||2 + ||λ∇||Dh

λ F ||2 + ||λDt
1/2D

h
λ F ||2 → 0 as h → 0. (5.11)

Similarly,
∫

Rn+1
h−1Dh

λ F φ̄δ dxdt + λ2 B(h−1Dh
λ F, φδ) = −(2λ + h)B(Eλ+h F, φδ) (5.12)

and hence

||h−1Dh
λ F ||2 + ||λ∇||(h−1Dh

λ F)||2 + ||λDt
1/2(h

−1Dh
λ F)||2 ≤ c||F ||

H̄∗ , (5.13)

where c is independent of h. Using (5.13), (5.12) and (5.11) we see, as λ is fixed, that

lim
h→0

h−1Dh
λ F =: GλF weakly in H̄(Rn+1, C), (5.14)

that (5.13) holds with h−1Dh
λ F replaced by GλF and that

∫

Rn+1
GλF φ̄ dxdt + λ2 B(GλF, φ) = −2λB(EλF, φ) = −2λ〈H||EλF, φ〉

H̄∗ (5.15)

whenever φ ∈ H̄(Rn+1, C). We define

∂λEλF := GλF (5.16)

and hence

∂λEλF = −2λEλH||EλF (5.17)
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in the sense of (5.15). Furthermore, if F = f ∈ H(Rn+1, C) then

〈H||Eλ f, φ〉
H̄∗ − 〈EλH|| f, φ〉

H̄∗ = 〈H||Eλ f, φ〉
H̄∗ − 〈H|| f, E∗

λφ〉
H̄∗

= B(Eλ f, φ) − B( f, E∗
λφ) = 0, (5.18)

and hence H|| and Eλ commute in this sense. Furthermore, as A is independent of t we can,
by arguing similarly, conclude that if f ∈ H(Rn+1, C), then

〈∂tEλ f, φ〉
H̄∗ − 〈Eλ∂t f, φ〉

H̄∗ = 0 = 〈L||Eλ f, φ〉
H̄∗ − 〈EλL|| f, φ〉

H̄∗ (5.19)

and hence ∂t and Eλ, and L|| and Eλ, commute in this sense. In particular, if F = f ∈
H(Rn+1, C) then

∂λEλ f = −2λE2
λH|| f (5.20)

in the sense of (5.15).

5.2 Estimates of resolvents

We here collect a set of the estimates for Eλ f and E∗
λ f to be used in the next section.

Lemma 5.7 Let λ > 0 be given. Consider the operator H|| = ∂t − div|| A||∇|| and assume
that A satisfies (1.2), (1.3). Let �λ denote any of the operators

Eλ, λ∇||Eλ, λDt
1/2Eλ,

or

λEλ Dt
1/2, λ

2∇||Eλ Dt
1/2, λ

2 Dt
1/2Eλ Dt

1/2,

and let �̃λ denote any of the operators

λEλ div||, λ2∇||Eλ div||, λ2 Dt
1/2Eλ div||.

Then there exist c, depending only on n,�, such that

(i)
∫

Rn+1
|�λ f (x, t)|2 dxdt ≤ c

∫

Rn+1
| f (x, t)|2 dxdt,

(ii)
∫

Rn+1
|�̃λf(x, t)|2 dxdt ≤ c

∫

Rn+1
|f(x, t)|2 dxdt,

whenever f ∈ L2(Rn+1, C), f ∈ L2(Rn+1, C
n).

Proof This is Lemma 2.11 in [32]. �
Lemma 5.8 Let λ > 0 be given. Consider the operator H|| = ∂t − div|| A||∇|| and assume

that A satisfies (1.2), (1.3). Let A||
n+1 := (A1,n+1, . . . , An,n+1),

Uλ := λEλ div||,

and let

Rλ := Uλ A||
n+1 − (Uλ A||

n+1)Pλ,

where Pλ is a parabolic approximation of the identity. Then there exists a constant c, depend-
ing only on n, �, such that

||Rλ f ||2 ≤ c(||λ∇ f ||2 + ||λ2∂t f ||2),
whenever f ∈ C∞

0 (Rn+1, C).
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Proof The lemma is a consequence of Lemma 2.27 in [32]. �
Lemma 5.9 Let λ > 0 be given. Consider the operator H|| = ∂t − div|| A||∇|| and assume

that A satisfies (1.2), (1.3). Let A||
n+1 := (A1,n+1, . . . , An,n+1),

Uλ := λEλ div||,

and consider Uλ A||
n+1. Then there exists a constant c, depending only on n, �, such that

∫ l(Q)

0

∫

Q
|Uλ A||

n+1|2
dxdtdλ

λ
≤ c|Q|,

for all cubes Q ⊂ R
n+1.

Proof This is Lemma 3.1 in [32]. �
Remark 5.10 For the details of the proof of Lemmas 5.8 and 5.9 we refer to [32]. We here
simply note that for λ fixed, (Uλ A||

n+1) (and Rλ1) exists as an element in L2
loc(Rn+1, C).

Indeed, let Q R be the parabolic cube on R
n+1 with center at (0, 0) and with size determined

by R. Writing

Uλ A||
n+1 = Uλ A||

n+112Q R + Uλ A||
n+11Rn+1\2Q R

,

and using Lemma 5.7 we see that

||Uλ(A||
n+112Q R )1Q R ||2 ≤ c||A||∞ R(n+2)/2.

Furthermore, by the off-diagonal estimates for Uλ proved in Lemma 2.17 in [32] it follows
that also

||Uλ(A||
n+11Rn+1\2Q R

)1Q R ||2 ≤ c||A||∞ R(n+2)/2.

Theorem 5.11 Consider the operators H|| = ∂t +L|| = ∂t −div|| A||∇||, H∗|| = −∂t +L∗|| =
−∂t − div|| A∗||∇||, and assume that A satisfies (1.2), (1.3). Then there exists a constant c,
1 ≤ c < ∞, depending only on n, �, such that

|||λEλH|| f ||| + |||λE∗
λH∗|| f ||| ≤ c||D f ||2, (5.21)

and

(i) |||∂λEλ f ||| + |||∂λE∗
λ f ||| ≤ c||D f ||2,

(ii) |||λ∂tEλ f ||| + |||λ∂tE∗
λ f ||| ≤ c||D f ||2,

(iii) |||λEλL|| f ||| + |||λE∗
λL∗|| f ||| ≤ c||D f ||2,

(iv) |||λL||Eλ f ||| + |||λL∗||E∗
λ f ||| ≤ c||D f ||2, (5.22)

whenever f ∈ H(Rn+1, C).

Proof (5.24) is Theorem 1.17 in [32], (5.22) (i)–(iv) is Corollary 1.18 in [32]. However, as
the proof of Corollary 1.18 in [32] is presented in a slightly formal manner we here include
the proof of the inequalities in (5.22) clarifying details. We only supply the proof in the case
of H||. To prove (i) we note that ∂λEλ f is defined as in (5.16) and that we have, using (5.20),
∂λEλ f = −2λE2

λH|| f in the sense of (5.15). Hence (i) follows from (5.24). To prove (ii) we
note that ∂t and Eλ commute in the sense discussed above, see (5.19), and that

λEλ∂t f = λEλH|| f − λEλL|| f.
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Hence, using (5.24) we see that

|||λ∂tEλ f ||| ≤ c||D f ||2 + |||λEλL|| f |||.
Therefore, to prove (ii) it suffices to prove (iii). To prove (iii), we let f ∈ H(Rn+1, C) and
put g = A||∇|| f . Using Lemma 5.3 we then see that there exists a weak solution u to the
equation

div||(g) = H||u such that ||u||H ≤ c||g||2. (5.23)

In particular,

λEλL|| f = λEλH||u. (5.24)

Hence, again using Theorem 5.11 we see that

|||λEλL|| f ||| ≤ c||Du||2. (5.25)

(iii) now follows by combining (5.23) and (5.25). To prove (iv) we simply note that L and
Eλ commute in the sense of (5.19), and hence (iv) follows from the argument in (iii). This
completes the proof of (5.22) (i)–(iv). �
5.3 Remark on the Kato problem for parabolic equations

In Section 5 in [32] implications of two of the results proved in [32], Theorem 1.17 and
Theorem 1.19 in [32], for Kato square root problems related to the operator ∂t + L|| (in
[32] this operator is denoted ∂t + L), as well as generalizations of these results to operators
∂t − div A(x, t)∇, i.e., to operators with time-dependent coefficients, are discussed. The
discussion in the section is essentially flawless but the author neglects to properly state that
the Kato square root problem for the operator ∂t + L|| is in fact solved in [32]. Indeed, the
core of the approach in [32] is the observation that ∂t + L|| can be realized as an operator
H̄ → H̄

∗ via the sesquilinear form B(u, ψ) introduced in (5.5):

〈(∂t + L||)u, ψ〉 := B(u, ψ), u, ψ ∈ H̄.

By the arguments in [32] it follows, see also Lemma 5.4 above, that if θ ∈ C with Re θ > 0,
then

θ + ∂t + L|| : D(∂t + L||) → L2(Rn+1, C)

is bijective and the resolvent satisfies the estimate

‖(θ + (∂t + L||))−1 f ‖2 ≤ 1

Re θ
‖ f ‖2.

In particular, ∂t + L||, with maximal domain D(∂t + L||) = {u ∈ H̄ : (∂t + L||)u ∈
L2(Rn+1, C)} in L2(Rn+1, C), is maximal accretive and, see also the discussion in Section
5 in [32], ∂t + L|| is sectorial and there is a square root

√
∂t + L|| abstractly defined by

functional calculus. Furthermore, ∂t +L|| has a bounded H∞ calculus. This is an other way
of formulating the discussion in Section 5 in [32] up to display (5.4) in [32]. Furthermore,
the inequality

||√∂t + L|| f ||22 ≤ c
∫ ∞

0

∫

Rn+1
|(I + λ2(∂t + L||))−1λ(∂t + L||) f |2 dxdtdλ

λ
, (5.26)

does hold for all f ∈ C∞
0 (Rn+1, C). In particular, the inequality in display (5.5) in [32] is

valid and this was the only point left open in [32]. Based on this we can conclude, using the
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main result proved in [32], that there exists a constant c, 1 ≤ c < ∞, depending only on n,
�, such that

c−1||D f ||2 ≤ ||√∂t + L|| f ||2 ≤ c||D f ||2, (5.27)

whenever f ∈ H̄.

6 Estimates in parabolic Sobolev spaces

Throughout this section we assume that H, H∗ satisfy (1.2) and (1.3) as well as (2.6) and
(2.7). Using the estimates established and stated in Sects. 4 and 5 we in this section prove
the following three lemmas.

Lemma 6.1 Let ( f ) be defined as in (1.7). Assume that ( f ) < ∞ whenever f ∈
L2(Rn+1, C). Then there exists a constant c, depending at most on n, �, and the De Giorgi–
Moser–Nash constants, such that

||∇||Sλ0 f ||2 ≤ c(( f ) + || f ||2 + ||N∗∗(∂λSλ f )||2),
whenever f ∈ L2(Rn+1, C), λ0 > 0.

Lemma 6.2 Let ( f ) be defined as in (1.7). Assume that ( f ) < ∞ whenever f ∈
L2(Rn+1, C). Then there exists a constant c, depending at most on n, �, and the De Giorgi–
Moser–Nash constants, such that

||Dn+1Sλ0 f ||22 ≤ c(( f ) + || f ||2),
whenever f ∈ L2(Rn+1, C), λ0 > 0.

Lemma 6.3 There exists a constant c, depending at most on n, such that

||Ht Dt
1/2Sλ0 f ||2 ≤ c(||Dn+1Sλ0 f ||2 + ||∇||Sλ0 f ||2),

whenever f ∈ L2(Rn+1, C), λ0 > 0.

The proofs of Lemmas 6.1–6.3 are given below.

6.1 Proof of Lemma 6.1

Throughout the proof we can, without loss of generality, assume that f ∈ C∞
0 (Rn+1, C). Let

λ0 > 0 be fixed. To prove the lemma it suffices to estimate

I :=
∫

Rn+1
ḡ · ∇||Sλ0 f dxdt,

where g ∈ C∞
0 (Rn+1, C

n) and ||g||2 = 1. Given f ∈ C∞
0 (Rn+1, C), we note, see Lemma

3.5, that Sλ0 f ∈ H(Rn+1, C) ∩ L2(Rn+1, C). Hence, using Lemma 5.3,

I =
∫

Rn+1
A||∇||Sλ0 f · ∇||v dxdt +

∫

Rn+1
Ht Dt

1/2(Sλ0 f )Dt
1/2(v) dxdt,

for a function v ∈ H = H(Rn+1, C) which satisfies

||v||H ≤ c||g||2,
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for some constant c depending only on n and �. Let

I1 :=
∫

Rn+1
A||∇||Sλ0 f · ∇||v dxdt,

I2 :=
∫

Rn+1
Ht Dt

1/2(Sλ0 f )Dt
1/2(v) dxdt.

As C∞
0 (Rn+1, C) is dense in H(Rn+1, C) we can in the following also assume, without loss

of generality, that v ∈ C∞
0 (Rn+1, C). This reduction allows us to handle several boundary

terms which appear when we integrate by parts.
We first estimate I1. Recall the resolvents, Eλ = (I + λ2H||)−1 and E∗

λ = (I + λ2H∗||)−1,
introduced in Sect. 5. To start the estimate of I1 we first note, applying Lemma 5.7, that

∣∣∣∣
∫

Rn+1
A||∇||EλSλ+λ0 f · ∇||E∗

λv dxdt

∣∣∣∣ ≤ c

λ2 ||Sλ+λ0 f ||2||v||2. (6.1)

Hence, using that

Sλ+λ0 f − Sλ0 f =
∫ λ+λ0

λ0

∂σSσ f dσ, (6.2)

the fact that ( f ) < ∞, Lemma 3.5 and that f, v ∈ C∞
0 (Rn+1, C), we can use (6.1) to

conclude that
∣∣∣∣
∫

Rn+1
A||∇||EλSλ+λ0 f · ∇||E∗

λv dxdt

∣∣∣∣ −→ 0 as λ → ∞. (6.3)

Hence,

I1 = −
∫ ∞

0
∂λ

(∫

Rn+1
A||∇||EλSλ+λ0 f · ∇||E∗

λv dxdt

)
dλ. (6.4)

Consider λ > 0, λ0 > 0 fixed, let |h| � min{λ0, λ}. Then
∫

Rn+1
A||∇||Eλ+hSλ+λ0+h f · ∇||E∗

λ+hv dxdt

−
∫

Rn+1
A||∇||EλSλ+λ0 f · ∇||E∗

λ+hv dxdt = T h
1 + T h

2 + T h
3 , (6.5)

where

T h
1 :=

∫

Rn+1
A||∇||

(
Eλ+h − Eλ

)
Sλ+λ0 f · ∇||E∗

λ+hv dxdt,

T h
2 :=

∫

Rn+1
A||∇||EλSλ+λ0 f · ∇||

(
E∗

λ+hv − E∗
λv

)
dxdt,

T h
3 :=

∫

Rn+1
A||∇||Eλ+h

(
Sλ+λ0+h f − Sλ+λ0 f

) · ∇||E∗
λ+hv dxdt. (6.6)

Using (5.7)–(5.16) we see that

lim
h→0

h−1T h
1 =

∫

Rn+1
A||∇||∂λEλSλ+λ0 f · ∇||E∗

λv dxdt,

lim
h→0

h−1T h
2 =

∫

Rn+1
A||∇||EλSλ+λ0 f · ∇||∂λE∗

λv dxdt,

lim
h→0

h−1T h
3 =

∫

Rn+1
A||∇||Eλ∂λSλ+λ0 f · ∇||E∗

λv dxdt. (6.7)
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Using these deductions we can conclude that

I1 = −
∫ ∞

0

∫

Rn+1

(
(A||∇||∂λEλSλ+λ0 f ) · ∇||E∗

λv
)

dxdtdλ

−
∫ ∞

0

∫

Rn+1

(
(A||∇||EλSλ+λ0 f ) · ∇||∂λE∗

λv
)

dxdtdλ

−
∫ ∞

0

∫

Rn+1

(
(A||∇||Eλ∂λSλ+λ0 f ) · ∇||E∗

λv
)

dxdtdλ

=: I11 + I12 + I13,

and we emphasize that by our assumptions, and (5.7)–(5.16), I11 − I13 are well defined. To
proceed we first note that

I11 = −
∫ ∞

0
〈L∗||E∗

λv, ∂λEλSλ+λ0 f 〉
H̄∗ dλ = −

∫ ∞

0
〈E∗

λL∗||v, ∂λEλSλ+λ0 f 〉
H̄∗ dλ,

I12 = −
∫ ∞

0
〈L||EλSλ+λ0 f, ∂λE∗

λv〉
H̄∗ dλ = −

∫ ∞

0
〈EλL||Sλ+λ0 f, ∂λE∗

λv〉
H̄∗ dλ,

by (5.19). Let

J :=
∫ ∞

0

∫

Rn+1
|EλL||Sλ+λ0 f |2 λdxdtdλ.

Then, using (5.17) , the L2-boundedness of Eλ and E∗
λ , Lemma 5.7, and the square function

estimates , Theorem 5.11, we see that

|I11| + |I12| ≤ c(|||λ∂tSλ+λ0 f ||| + J 1/2)||v||H
≤ c(( f ) + || f ||2 + J 1/2)||v||H,

where we on the last line have used Lemma 4.2. Next, referring to (5.4) we have

L||Sλ+λ0 f =
n+1∑

j=1

An+1, j Dn+1 D jSλ+λ0 f

+
n∑

i=1

Di (Ai,n+1 Dn+1Sλ+λ0 f ) + ∂tSλ+λ0 f

in a weak sense for almost every λ. Using this, and the L2-boundedness of Eλ, Lemma 5.7,
we see that

J ≤ c(|||λ∇∂λSλ+λ0 f |||2 + |||λ∂tSλ+λ0 f |||2 + J̃ ),

where

J̃ :=
∫ ∞

0

∫

Rn+1

∣∣∣∣∣Eλ

n∑

i=1

Di (Ai,n+1∂λSλ+λ0 f )

∣∣∣∣∣

2

λdxdtdλ.

In particular, again using Lemma 4.2 we see that

J ≤ c(( f ) + || f ||2 + J̃ ).
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To estimate J̃ , let A||
n+1 := (A1,n+1, . . . , An,n+1). Then

J̃ =
∫ ∞

0

∫

Rn+1
|Eλ div||(A||

n+1∂λSλ+λ0 f )|2 λdxdtdλ

=
∫ ∞

0

∫

Rn+1
|Uλ(A||

n+1∂λSλ+λ0 f )|2 dxdtdλ

λ
,

where Uλ := λEλ div||. We write

Uλ A||
n+1 = Uλ A||

n+1 − (Uλ A||
n+1)Pλ + (Uλ A||

n+1)Pλ =: Rλ + (Uλ A||
n+1)Pλ.

Then

J̃ ≤ J̃1 + J̃2,

where

J̃1 :=
∫ ∞

0

∫

Rn+1
|Rλ∂λSλ+λ0 f |2 dxdtdλ

λ
,

J̃2 :=
∫ ∞

0

∫

Rn+1
|(Uλ A||

n+1)Pλ(∂λSλ+λ0 f )|2 dxdtdλ

λ
.

Using Lemmas 5.8, and 4.2, we see that

J̃1 ≤ c
∫ ∞

0

∫

Rn+1
|∇∂λSλ+λ0 f |2 λdxdtdλ

+ c
∫ ∞

0

∫

Rn+1
|∂t∂λSλ+λ0 f |2 λ3dxdtdλ

≤ c(( f )2 + || f ||22).
Furthermore, by the Carleson measure estimate in Lemma 5.9 we have

J̃2 ≤ c||N∗(Pλ(∂λSλ f ))||22.
Finally, we note that

||N∗(Pλ(∂λSλ f ))||2 ≤ c||M(N∗∗(∂λSλ f ))||2 ≤ c||N∗∗(∂λSλ f )||2
where M is the parabolic Hardy–Littlewood maximal function. Putting all these estimates
together we can conclude that

|I11| + |I12| ≤ (
( f ) + || f ||2 + ||N∗∗(∂λSλ f )||2

)||v||H,

which completes the estimate of |I11|+ |I12|. We next estimate I13. Integrating by parts with
respect to λ we deduce, by repeating the argument above, that

I13 = −
∫ ∞

0

∫

Rn+1

(
A||∇||Eλ∂λSλ+λ0 f · ∇||E∗

λv
)

dxdtdλ

=
∫ ∞

0

∫

Rn+1
∂λ

(
A||∇||Eλ∂λSλ+λ0 f · ∇||E∗

λv
)
λdxdtdλ

=
∫ ∞

0

∫

Rn+1

(
(A||∇||∂λEλ∂λSλ+λ0 f ) · ∇||E∗

λv
)
λdxdtdλ

+
∫ ∞

0

∫

Rn+1

(
(A||∇||Eλ∂λSλ+λ0 f ) · ∇||∂λE∗

λv
)
λdxdtdλ

123



124 Page 38 of 49 A. J. Castro et al.

+
∫ ∞

0

∫

Rn+1

(
(A||∇||Eλ∂

2
λSλ+λ0 f ) · ∇||E∗

λv
)
λdxdtdλ

=: I131 + I132 + I133.

By repeating the estimates above used to control |I11| + |I12|, we see that

(|I131| + |I132|)2 ≤ c
∫ ∞

0

∫

Rn+1
|∇∂2

λSλ+λ0 f |2 λ3dxdtdλ,

+ c
∫ ∞

0

∫

Rn+1
|∂t∂λSλ+λ0 f |2 λ3dxdtdλ

+ c
∫ ∞

0

∫

Rn+1
|∂t∂

2
λSλ+λ0 f |2 λ5dxdtdλ + c||N∗(Pλ(λ∂2

λSλ f ))||22.

Furthermore,

I133 =
∫ ∞

0

∫

Rn+1

(
A||∇||Eλ∂

2
λSλ+λ0 f · ∇||E∗

λv
)
λdxdtdλ

= −
∫ ∞

0

∫

Rn+1
Eλ∂

2
λSλ+λ0 f E∗

λL∗||v λdxdtdλ,

by previous arguments. Using the L2-boundedness of Eλ, Lemma 5.7 and the square function
estimate for E∗

λL∗||, Theorem 5.11, we can conclude that

|I133| ≤ c

(∫ ∞

0

∫

Rn+1
|∂2

λSλ+λ0 f |2 λdxdtdλ

)1/2

||v||H.

Hence, again using Lemma 4.2 we see that

|I13| ≤ c
(
( f ) + || f ||2 + ||N∗(Pλ(λ∂2

λSλ f ))||2
) ||v||H,

Again

||N∗(Pλ(λ∂2
λSλ f ))||2 ≤ c||M(N∗∗(λ∂2

λSλ f ))||2 ≤ c||N∗∗(λ∂2
λSλ f )||2,

and using (2.6) and Lemma 2.1 we see that

||N∗∗(λ∂2
λSλ f )||2 ≤ c||N∗∗(∂λSλ f )||2,

after a slight redefinition of the non-tangential maximal function on the right hand side. This
completes the proof of I1.

We next estimate I2. To start the estimate of I2 we first deduce, by arguing along the lines
of (6.3)–(6.7), that

I2 = −
∫ ∞

0

∫

Rn+1
∂λ

(
Ht Dt

1/2EλSλ+λ0 f · Dt
1/2E∗

λv
)

dxdtdλ

= −
∫ ∞

0

∫

Rn+1
(Ht Dt

1/2∂λEλSλ+λ0 f ) · Dt
1/2E∗

λv dxdtdλ

−
∫ ∞

0

∫

Rn+1
(Ht Dt

1/2EλSλ+λ0 f ) · Dt
1/2∂λE∗

λv dxdtdλ

−
∫ ∞

0

∫

Rn+1
(Ht Dt

1/2Eλ∂λSλ+λ0 f ) · Dt
1/2E∗

λv dxdtdλ

=: I21 + I22 + I23.
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Using the L2-boundedness of Eλ and E∗
λ , Lemma 5.7, and the square function estimates,

Theorem 5.11, that H|| commutes with Eλ, Dt
1/2, and Ht Dt

1/2, and that H∗|| commutes with
E∗

λ , Dt
1/2, and Ht Dt

1/2, in both cases in the sense described above, we can as in the estimate
of |I11| + |I12| deduce that

|I22| ≤ c|||λ∂tSλ+λ0 f ||| ||v||H ≤ c(( f ) + || f ||2)||v||H. (6.8)

At the final step of this deduction we have also used Lemma 4.2. Integrating by parts with
respect to λ in I23, and repeating the arguments used in the estimates of |I21| and |I22|, it is
easily seen, using Lemma 4.2, that

|I23| ≤ c(( f ) + || f ||2)||v||H + | Ĩ23|,
where

Ĩ23 =
∫ ∞

0

∫

Rn+1

(
(Ht Dt

1/2Eλ∂
2
λSλ+λ0 f ) · Dt

1/2E∗
λv

)
λdxdtdλ.

However, again using Lemma 5.7 and Theorem 5.11

| Ĩ23| ≤ |||λ∂2
λSλ+λ0 f ||| |||λ∂tE∗

λv||| ≤ c( f )||v||H.

This completes the proof of the lemma.

6.2 Proof of Lemma 6.2

To prove Lemma 6.2 it suffices to estimate
∫

Rn+1
(Dn+1Sλ0 f )ḡ dxdt

when f, g ∈ C∞
0 (Rn+1, C), ||g||2 = 1. Let in the following Pλ be a parabolic approximation

of the identity. Then, using (2.2) (ii) we see that
∣∣∣∣
∫

Rn+1
(Dn+1Sλ+λ0 f )Pλḡ dxdt

∣∣∣∣ ≤ c||Dt
1/2Sλ+λ0 f ||2||Pλḡ||2

≤ c

λn/2+1 ‖∂tSλ+λ0 f ‖2‖Sλ+λ0 f ‖2.

Again using (6.2), Hölder’s inequality, the fact that ( f ) < ∞, Lemmas 3.4 and 3.5 we
deduce that

∣∣∣∣
∫

Rn+1
(Dn+1Sλ+λ0 f )Pλḡ dxdt

∣∣∣∣ −→ 0 as λ → ∞.

Hence,

−
∫

Rn+1
(Dn+1Sλ0 f )ḡ dxdt =

∫ ∞

0

∫

Rn+1
∂λ((Dn+1Sλ+λ0 f )Pλḡ) dxdtdλ

=
∫ ∞

0

∫

Rn+1
(Dn+1∂λSλ+λ0 f )Pλḡ dxdtdλ

+
∫ ∞

0

∫

Rn+1
(Dn+1Sλ+λ0 f )∂λ(Pλḡ) dxdtdλ

=: I + II.

Note that Dn+1 = iD−1∂t and that ∂λPλ = DQλ where Qλ is an approximation of the zero
operator. To prove this one can use that the kernel of ∂λPλ has not only zero mean but also
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first order vanishing moments if P is an even function (see also [21, p. 366]). Using this we
see that

|II|2 ≤
∣∣∣∣
∫ ∞

0

∫

Rn+1
(∂tSλ+λ0 f )Qλḡ dxdtdλ

∣∣∣∣
2

≤ c
∫ ∞

0

∫

Rn+1
|∂tSλ+λ0 f |2 λdxdtdλ ≤ c(( f ) + || f ||2)2,

by (2.8) and Lemma 4.2. To handle I we again integrate by parts with respect to λ,

−I =
∫ ∞

0

∫

Rn+1
(Dn+1∂

2
λSλ+λ0 f )Pλḡ λdxdtdλ

+
∫ ∞

0

∫

Rn+1
(Dn+1∂λSλ+λ0 f )∂λ(Pλḡ) λdxdtdλ

=: I1 + I2.

Arguing as above we immediately see that

|I2|2 ≤ c
∫ ∞

0

∫

Rn+1
|∂t∂λSλ+λ0 f |2 λ3dxdtdλ ≤ c(( f ) + || f ||2)2.

Focusing on I1, Lemma 2.4 implies

|I1| ≤ |||λ∂2
λSλ+λ0 f ||| |||λDn+1Pλg||| ≤ c|||λ∂2

λSλ+λ0 f ||| |||λDPλg||| ≤ c( f ),

and the proof of the lemma is complete.

6.3 Proof of Lemma 6.3

Let K � 2 be a degree of freedom and let φ ∈ C∞
0 (R) be an even function with φ = 1 on

(−3/2,−2/K ) ∪ (2/K , 3/2) and with support in (−2,−1/K ) ∪ (1/K , 2). Recall that the
multiplier defining Dt

1/2 is |τ |1/2. We write

|τ |1/2 = |τ |1/2φ(τ/||(ξ, τ )||2) + |τ |1/2(1 − φ)(τ/||(ξ, τ )||2)
= sgn(τ )

||(ξ, τ )||
|τ |1/2 φ(τ/||(ξ, τ )||2) τ

||(ξ, τ )||

−
n∑

j=1

|τ |1/2 iξ j

|ξ |2 (1 − φ)(τ/||(ξ, τ )||2)iξ j .

Hence, introducing the multipliers

m1(ξ, τ ) = sgn(τ )
||(ξ, τ )||
|τ |1/2 φ(τ/||(ξ, τ )||2),

m2, j (ξ, τ ) = −|τ |1/2 iξ j

|ξ |2 (1 − φ)(τ/||(ξ, τ )||2),

for j ∈ {1, . . . , n} we can conclude the existence of kernels L1, L2, j , corresponding to m1,
m2, j , such that

Dt
1/2 = L1 ∗ Dn+1 + c

n∑

j=1

L2, j ∗ ∂x j ,
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where ∗ denotes convolution. Choosing K = K (n) large enough we see that the multipliers
m1 and m2, j are bounded, and hence L1 and L2, j are bounded operators on L2(Rn+1, C).
This completes the proof of Lemma 6.3.

7 Proof of Theorem 1.1

Assume that H, H∗, satisfy (1.2) and (1.3) as well as the De Giorgi–Moser–Nash estimates
stated in (2.6) and (2.7). Assume also that there exists a constant C such that (1.5) holds
whenever f ∈ L2(Rn+1, C). To prove Theorem 1.1 we need to prove that there exists a
constant c, depending at most on n, �, the De Giorgi–Moser–Nash constants and C , such
that the inequalities in (1.6) (i)–(iv) hold. Again, we only have to prove (1.6) (i)–(iv) for SH

λ

as the corresponding results for SH∗
λ follow by analogy. To start the proof, we first note that

(1.6) (i) is an immediate consequence of Lemma 4.1 (i) and the assumption in (1.5) (i). Using
Lemmas 6.1, 6.2, and 6.3, we see that (1.6) (i) and the assumptions in (1.5) imply that

sup
λ>0

||DSH
λ f ||2 ≤ c|| f ||2.

This proves (1.6) (ii). (1.6) (iii), (iv), now follows immediately form these estimates and
Lemma 4.1.

8 Proof of Theorems 1.2 and 1.3

Assume that H = ∂t − div A∇ satisfies (1.2) and (1.3). Assume in addition that A is real
and symmetric. Then (2.6) and (2.7) hold. To prove Theorem 1.2 we have to prove that there
exists a constant C , depending at most on n, �, such that (1.5) holds with this C . We first
focus on the estimate in (1.5) (ii). Consider

ψλ(x, t, y, s) := λK1,λ(x, t, y, s) = λ∂2
λ�λ(x, t, y, s). (8.1)

Then, using Lemma 3.1 we see that ψλ(x, t, y, s) satisfies the Calderon–Zygmund bounds

|ψλ(x, t, y, s)| ≤ c|λ|(dλ(x, t, y, s))−n−3, (8.2)

and

|Dh(ψλ(·, ·, y, s))(x, t)| ≤ c|λ|||h||α(dλ(x, t, y, s))−n−3−α

≤ c||h||α(dλ(x, t, y, s))−n−2−α, (8.3)

for some α > 0, whenever 2||h|| ≤ (|x − y| + |t − s|1/2) or 2||h|| ≤ |λ|. Our proof of
Theorem 1.2 is based on the following two theorems proved below.

Theorem 8.1 Assume that ψλ satisfies (8.2) and (8.3). Let

θλ f (x, t) :=
∫

Rn+1
ψλ(x, t, y, s) f (y, s) dyds,

whenever f ∈ L2(Rn+1, C). Suppose that there exists a system {bQ} of functions, bQ :
R

n+1 → C, index by parabolic cubes Q ⊆ R
n+1, and a constant c, independent of Q, such
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that for each cube Q the following is true.

(i)
∫

Rn+1
|bQ(x, t)|2 dxdt ≤ c|Q|,

(ii)
∫ l(Q)

0

∫

Q
|θλbQ(x, t)|2 dxdtdλ

λ
≤ c|Q|,

(iii) c−1|Q| ≤ Re
∫

Q
bQ(x, t) dxdt. (8.4)

Then there exists a constant c such that

|||θλ f ||| =
(∫ ∞

0

∫

Rn+1
|θλ f (x, t)|2 dxdtdλ

λ

)1/2

≤ c|| f ||2, (8.5)

whenever f ∈ L2(Rn+1, C).

The proofs of Theorems 1.3 and 8.1 are given below. We here use Theorems 1.3 and 8.1
to complete the proof of Theorem 1.2.
Proof of (1.5) (ii) We simply have to produce, using Theorem 8.1 and for θλ defined using
the kernel in (8.1), a system {bQ} of functions satisfying (8.4) (i)–(iii). To do this we let

bQ(y, s) := |Q|1Q K̃−(A−
Q, y, s),

whenever (y, s) ∈ R
n+1, where 1Q is the indicator function for the cube Q and where

K̃−(A−
Q, y, s) is the to H∗ = −∂t +L associated Poisson kernel, at A−

Q := (xQ,−l(Q), tQ),

defined with respect to R
n+2− . Theorem 1.3 applies to K̃−(A−

Q, ·, ·) modulo trivial modi-
fications. To verify that bQ satisfies (8.4) (i)–(iii), we first note that (i) is an immediate
consequence of Theorem 1.3. Furthermore,

∫

Rn+1
bQ(y, s) dyds = |Q|ω̃A−

Q
− (Q) ≥ c−1|Q|,

by elementary estimates and where ω̃
A−

Q
− is the associated parabolic measure at A−

Q and

defined with respect to R
n+2− . Hence (iii) follows and it only remains to establish (ii). Let

(x, t) ∈ Q, λ ∈ (0, l(Q)) and note that

θλbQ(x, t) =
∫

Rn+1
λ∂2

λ�λ(x, t, y, s)bQ(y, s) dyds

= λ|Q|
∫

Q
∂2
λ�λ(x, t, y, s)K̃−(A−

Q, y, s) dyds

= λ|Q| (∂2
λ�(x, t, λ, xQ, tQ,−l(Q))

)
,

by the definition of A−
Q , K̃−(A−

Q, y, s), and as ∂2
λ�(x, t, λ, xQ, tQ,−l(Q)) solves H∗u = 0

in R
n+2− . Using this, and (8.2), we see that (ii) follows by elementary manipulations. Hence,

using Theorem 8.1 we can conclude the validity of (1.5) (ii). �
Proof of (1.5) (i) We first note, that we can throughout the proof assume, without loss of
generality, that f ∈ C∞

0 (Rn+1, R). Second, using Theorem 1.3 and the fact that if H =
∂t − div A∇ satisfies (1.2) and (1.3), and if A is real and symmetric, then the estimates of
the non-tangential maximal function by the square function established in [9] for the heat
equation, remain valid for solutions to Hu = 0. In particular, let f ∈ C∞

0 (Rn+1, R) and
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consider λ > 0 fixed. We let R and r be such that λ � r � R and such that the support of
f is contained in Q R/4(0, 0). Then, using Theorem 1.3 and [9] we see that

||(∂λSλ f )1Qr (0,0)||22 ≤ c|||λ∇∂λSλ f |||2 + cRn+2|∂λSR/2 f (0, 0)|2,
for a constant c depending only on n, �. However,

Rn+2|∂λSR/2 f (0, 0)|2 ≤ R−n−2|| f ||21.
Hence, first letting R → ∞ and then letting r → ∞ we can conclude that

||∂λSλ f ||2 ≤ c|||λ∇∂λSλ f |||. (8.6)

Using (4.3) we see that

|||λ∇∂λSλ f ||| ≤ c|||λ∂2
λSλ f ||| + c|| f ||2. (8.7)

(8.6), (8.7) and (1.5) (ii) now prove (1.5) (i). �
This completes the proof of Theorem 1.2 modulo Theorems 8.1 and 1.3.

8.1 Proof of Theorem 8.1

Though there are several references for this type of argument, see [10,19,25] and the refer-
ences therein, we will, for completion, include a sketch/proof of the argument in our context.
To start with, as ψλ satisfies (8.2) and (8.3) it is well-known, see [10], that to prove (8.5) it
suffices to prove the Carleson measure estimate

sup
Q⊂Rn+1

1

|Q|
∫ l(Q)

0

∫

Q
|θλ1|2 dxdtdλ

λ
≤ c. (8.8)

Using assumption (iii) in the statement of Theorem 8.1, and a by now well-known stopping
time argument, see [19], one can conclude that

sup
Q⊂Rn+1

1

|Q|
∫ l(Q)

0

∫

Q
|θλ1|2 dxdtdλ

λ
≤ c sup

Q⊂Rn+1

1

|Q|
∫ l(Q)

0

∫

Q
|(θλ1)AQ

λ bQ |dxdtdλ

λ
,

where AQ
λ denotes the dyadic averaging operator induced by Q and introduced in (2.9).

Hence, to prove (8.8) it suffices to prove that

∫ l(Q)

0

∫

Q
|(θλ1)AQ

λ bQ |dxdtdλ

λ
≤ c|Q|, (8.9)

for all Q ⊂ R
n+1. We write

(θλ1)AQ
λ bQ = R(1)

λ bQ + R(2)
λ bQ + θλbQ,

where

R(1)
λ bQ := (θλ1)(AQ

λ − AQ
λ Pλ)bQ,

R(2)
λ bQ := ((θλ1)AQ

λ Pλ − θλ)bQ,

and where Pλ is a parabolic approximation of the identity. Using assumption (ii) in the
statement of Theorem 8.1 we see that the contribution from the term θλbQ to the Carleson
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measure in (8.9) is controlled. Hence we focus on the contributions fromR(1)
λ bQ andR(2)

λ bQ .
Note that

R(1)
λ = (θλ1)(AQ

λ − AQ
λ Pλ) = (θλ1)AQ

λ (AQ
λ − Pλ).

Using (8.2), (8.3), and a version of Schur’s lemma, we see that

||(θλ1)AQ
λ ||2→2 ≤ c.

Thus, by Lemma 2.5,

∫ l(Q)

0

∫

Q
|R(1)

λ bQ(x, t)|2 dxdtdλ

λ
≤ c

∫ ∞

0

∫

Rn+1
|(AQ

λ − Pλ)bQ(x, t)|2 dxdtdλ

λ

≤ c
∫

Rn+1
|bQ(x, t)|2 dxdt ≤ c|Q|.

It remains to estimate
∫ l(Q)

0

∫

Q
|R(2)

λ bQ(x, t)|2 dxdtdλ

λ
.

However, using (8.2), (8.3), and that R(2)
λ 1 = 0, it follows by a well known orthogonality

argument, and assumption (i) in the statement of Theorem 8.1, that

∫ l(Q)

0

∫

Q
|R(2)

λ bQ(x, t)|2 dxdtdλ

λ
≤

∫

Rn+1
|bQ(x, t)|2 dxdt ≤ c|Q|.

This completes the proof of Theorem 8.1.

8.2 Proof of Theorem 1.3

Under the assumptions of Theorem 1.3 there exists a Green’s function G = G(X, t, Y, s)
to H = ∂t + L = ∂t − div A∇ in R

n+2+ , and corresponding measures ω(X,t)(·), ω̃(X,t)(·),
(X, t) ∈ R

n+2+ such that

φ(X, t) =
∫ (

A∇Y G(X, t, Y, s) · ∇φ(Y, s) + G(X, t, Y, s)∂sφ(Y, s)
)

dY ds

+
∫

φ(y, 0, s) dω(X,t)(y, s),

φ(X, t) =
∫ (

A∇Y G(Y, s, X, t) · ∇φ(Y, s) − G(Y, s, X, t)∂sφ(Y, s)
)

dY ds

+
∫

φ(y, 0, s) dω̃(X,t)(y, s), (8.10)

whenever φ ∈ C∞
0 (Rn+2) and where (X, t) = (x, xn+1, t), (Y, s) = (y, yn+1, s). In partic-

ular,

(∂t + LX,t )G(X, t, Y, s) = δ(0,0)(X − Y, t − s),

and

(−∂s + LY,s)G(X, t, Y, s) = δ(0,0)(X − Y, t − s). (8.11)
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Furthermore, in this setting G has a number of well-known properties, see for example display
(3.7) on p. 11 in [23], and given f ∈ C(Rn+1) ∩ L∞(Rn+1),

u(X, t) =
∫

Rn+1
f (y, s) dω(X,t)(y, s),

gives the solution to the continuous Dirichlet problemHu = (∂t +L)u = (∂t −div A∇)u = 0
in R

n+2+ , u ∈ C(Rn+1 × [0,∞)), and u(x, 0, t) = f (x, t) whenever (x, t) ∈ R
n+1. {ω(X,t) :

(X, t) ∈ R
n+2+ } and {ω̃(X,t) : (X, t) ∈ R

n+2+ } are families of regular Borel measures on
R

n+1 which we call H-caloric, or H-parabolic measures, and H∗-caloric, or H∗-parabolic
measures, respectively.

Given H = ∂t −div A∇, satisfying (1.2) and (1.3) with constant �, A real and symmetric,
let Aε , 0 < ε � 1, be a smooth (n + 1) × (n + 1)-matrix valued function, Aε real and
symmetric, such that Hε = ∂t − div Aε∇ satisfies (1.2) and (1.3), with constants depending
at most on n and �, and such that |Aε − A| ≤ ε on R

n+2. Let as above Gε(X, t, Y, s), ω(X,t)
ε ,

ω̃
(X,t)
ε , be the Green’s function and boundary measures associated to Hε = ∂t − div Aε∇,

H∗
ε = −∂t − div Aε∇. Extending Gε and G to all of R

n+2 by putting Gε ≡ 0 ≡ G on R
n+2−

one can prove, by for instance following the argument in Lemma 3.37 in [23], that
∫ (

Aε∇Y Gε(X, t, Y, s) · ∇φ(Y, s) + Gε(X, t, Y, s)∂sφ(Y, s)
)

dY ds

→
∫ (

A∇Y G(X, t, Y, s) · ∇φ(Y, s) + G(X, t, Y, s)∂sφ(Y, s)
)

dY ds (8.12)

and
∫ (

Aε∇Y Gε(Y, s, X, t) · ∇φ(Y, s) − Gε(Y, s, X, t)∂sφ(Y, s)
)

dY ds

→
∫ (

A∇Y G(Y, s, X, t) · ∇φ(Y, s) − G(Y, s, X, t)∂sφ(Y, s)
)

dY ds, (8.13)

as ε → 0, whenever (X, t) ∈ R
n+2+ and φ ∈ C∞

0 (K ) where K is a compact subset of
R

n+2\{(X, t)}. Hence, using (8.10), (8.12), (8.13) we can conclude that

ω(X,t)
ε → ω(X,t), ω̃(X,t)

ε → ω̃(X,t) (8.14)

weakly as Radon measures on R
n+1 as ε → 0.

Based on the above outline it follows that it suffices to prove Theorem 1.3 assuming that
A is smooth. Indeed, consider, for ε > 0 small, Aε and assume that the parabolic measure
associated to Hε , in R

n+2+ , is absolutely continuous with respect to the measure dxdt on
R

n+1 = ∂R
n+2+ , let Q ⊂ R

n+1 be a parabolic cube and let Kε(AQ, y, s) be the to Hε

associated Poisson kernel at AQ := (xQ, l(Q), tQ) where (xQ, tQ) is the center of the cube
Q and l(Q) defines its size. Furthermore, assume that there exists c ≥ 1, depending only on
n and �, such that

∫

Q
|Kε(AQ, y, s)|2 dyds ≤ c|Q|−1.

Then Kε(AQ, y, s) → K (AQ, y, s) weakly on Q as ε → 0 and
∫

Q
|K (AQ, y, s)|2 dyds ≤ c|Q|−1.
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Furthermore,
∫

φ(y, s)dωAQ (y, s) = lim
ε→0

∫
φ(y, s)dω

AQ
ε (y, s)

= lim
ε→0

∫
φ(y, s)Kε(AQ, y, s) dyds =

∫
φ(y, s)K (AQ, y, s) dyds,

(8.15)

whenever φ ∈ C∞
0 (Q × (−l(Q)/2, l(Q)/2) and Theorem 1.3 follows.

In the following we prove Theorem 1.3 assuming that A is smooth. If A is smooth it
follows that the solution to the Dirichlet problem Hu = 0 in R

n+2+ , u = f on R
n+1, equals

u(X, t) =
∫

Rn+1
K (X, t, y, s) f (y, s) dyds,

where

K (X, t, y, s) := 〈∇Y G(X, t, Y, s), A(Y )en+1〉|yn+1=0 = an+1,n+1(y)∂yn+1

G(X, t, Y, s)|yn+1=0.

Using (1.2) we see that an+1,n+1 is uniformly bounded from below. Let Q ⊂ R
n+1 be a

parabolic cube and let AQ := (X Q, tQ) := (xQ, l(Q), tQ), where (xQ, tQ) is the center of
the cube and l(Q) defines its size. We write Q = Q̂ × (tQ − l(Q)2/2, tQ + l(Q)2/2) where
Q̂ ⊂ R

n is a (elliptic) cube in the space variables only. Then

∫

Q
(K (AQ, y, s))2 dyds =

∫ tQ+l(Q)2/2

tQ−l(Q)2/2

∫

Q̂
(K (X Q, tQ, y, s))2 dyds

=
∫ l(Q)2/2

−l(Q)2/2

∫

Q̂
(K (X Q, 0, y, s))2 dyds

=
∫ l(Q)2/2

−l(Q)2/2

∫

Q̂
(K (X Q, 0, y,−s))2 dyds, (8.16)

by the translation invariance in the time-variable due to (1.3). Using the Harnack inequality
we see that

(K (X Q, 0, y,−s))2 ≤ cK (X Q, 0, y,−s)K (X Q, 16l(Q)2, y, s), (8.17)

whenever (y, s) ∈ Q̂ × [−l(Q)2/2, l(Q)2/2]. Let

φ ∈ C∞
0 (Rn+2\({(X Q, 0)} ∪ {(X Q, 16l(Q)2)})

be such that

φ(y, yn+1, s) = 1, (8.18)

whenever (y, yn+1, s) ∈ Q̂ × [−l(Q)/16, l(Q)/16] × [−l(Q)2/2, l(Q)2/2], and

φ(y, yn+1, s) = 0, (8.19)

whenever (y, yn+1, s) ∈ R
n+2\(2Q̂×[−l(Q)/8, l(Q)/8]×[−l(Q)2, l(Q)2]). Furthermore,

we choose φ so that

|∇Y φ(Y, s)| ≤ cl(Q)−1, |∂sφ(Y, s)| ≤ cl(Q)−2, (8.20)
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whenever (Y, s) ∈ R
n+2. Let �(Y, s) := φ(Y, s)∂yn+1v(Y, s), where

v(Y, s) := G(X Q, 0, Y,−s),

and let

ṽ(Y, s) := G(X Q, 16l(Q)2, Y, s).

Using (8.11) we see that

0 =
∫

R
n+21+

(
(−∂s + LY,s)G(X Q, 16l(Q)2, Y, s)

)
�(Y, s) dY ds

=
∫

R
n+2+

(
(−∂s + LY,s)ṽ(Y, s)

)
�(Y, s) dY ds.

Using this identity, and integrating by parts, we see that

I :=
∫

Rn+1
�(Y, s)|yn+1=0 K (X Q, 16l(Q)2, y, s) dyds

=
∫

R
n+2+

(
(∂s + LY,s)�(Y, s)

)
ṽ(Y, s) dY ds. (8.21)

We will now use the identity in (8.21) to prove Theorem 1.3. Indeed,

(∂s + LY,s)� = ∂s� − div(A∇Y �)

= ∂yn+1v∂sφ − div((∂yn+1v)A∇Y φ) − A∇Y ∂yn+1v · ∇Y φ

+φ(∂s∂yn+1v − div(A∇Y ∂yn+1v)).

The key observation is, as A is independent of yn+1, that

∂s∂yn+1v − div(A∇Y ∂yn+1v) = ∂yn+1

(
∂sv − div(A∇Y v)

)

= ∂yn+1

(
((−∂s + LY )G)(X Q, 0, Y,−s)

) = 0,

on the support of φ. This is due to the presence of the minus sign in front of s in
G(X Q, 0, Y,−s). Hence, using (8.21) and elementary manipulations, we see that

I = I1 + I2 − I3.

where

I1 :=
∫

R
n+2+

∂yn+1 G(X Q, 0, Y,−s)(∂sφ(Y, s))G(X Q, 16l(Q)2, Y, s) dY ds,

I2 :=
∫

R
n+2+

∂yn+1 G(X Q, 0, Y,−s)(A∇Y φ) · ∇Y G(X Q, 16l(Q)2, Y, s) dY ds,

I3 :=
∫

R
n+2+

(A∇Y ∂yn+1 G(X Q, 0, Y,−s) · ∇Y φ)G(X Q, 16l(Q)2, Y, s) dY ds.

Recall that φ satisfies (8.18)–(8.20) and let E = R
n+2+ ∩ {(Y, s) : φ(Y, s) �= 0}. Using this,

|I1| ≤ cl(Q)−2
∫

E
|∂yn+1 G(X Q, 0, Y,−s)||G(X Q, 16l(Q)2, Y, s)| dY ds,

|I2| ≤ cl(Q)−1
∫

E
|∂yn+1 G(X Q, 0, Y,−s)||∇Y G(X Q, 16l(Q)2, Y, s)| dY ds,

|I3| ≤ cl(Q)−1
∫

E
|∇Y ∂yn+1 G(X Q, 0, Y,−s)||G(X Q, 16l(Q)2, Y, s)| dY ds.
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Hence, using energy estimates and Gaussian bounds for the fundamental solution we deduce

|I | ≤ |I1| + |I2| + |I3| ≤ c|Q|−1.

Using this and (8.21) we see that
∫ l(Q)2/2

−l(Q)2/2

∫

Q̂
K (X Q, 0, y,−s)K (X Q, 16l(Q)2, y, s) dyds ≤ c|Q|−1.

Hence, using (8.16) and (8.17) we can conclude that
∫

Q
(K (AQ, y, s))2 dyds ≤ c|Q|−1, (8.22)

whenever Q ⊂ R
n+1 is a parabolic cube, for a constant c ≥ 1, depending only on n and �.

Put together Theorem 1.3 follows.
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