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Abstract We consider parabolic operators of the form
o+ L, L:=—divA(X, 1)V,

in R’frz ={(X,t) = (x,xp41,1) € R" x Rx R : x,41 > 0}, n > 1. We assume that
Aisa (n+ 1) x (n + 1)-dimensional matrix which is bounded, measurable, uniformly
elliptic and complex, and we assume, in addition, that the entries of A are independent of the
spatial coordinate x, as well as of the time coordinate 7. We prove that the boundedness
of associated single layer potentials, with data in L, can be reduced to two crucial estimates
(Theorem 1.1), one being a square function estimate involving the single layer potential. By
establishing a local parabolic Tb-theorem for square functions we are then able to verify
the two crucial estimates in the case of real, symmetric operators (Theorem 1.2). As part
of this argument we establish a scale-invariant reverse Holder inequality for the parabolic
Poisson kernel (Theorem 1.3). Our results are important when addressing the solvability of
the classical Dirichlet, Neumann and Regularity problems for the operator 9; + £ in RTZ,
with L2-data on R"*! = 8R’1+2, and by way of layer potentials.
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1 Introduction and statement of main results

In this paper we establish certain estimates related to the solvability of the Dirichlet, Neumann
and Regularity problems with data in L?, in the following these problems are referred to as
(D2), (N2) and (R2), by way of layer potentials and for second order parabolic equations
of the form

Hu = (0; + L)u =0, (1.1)
where
n+1
L= —div AX, )V = = > 0, (Aij (X, )dy,)
ij=1

is defined in R"*2 = {(X,1) = (x1, ..., %ps1,0) € ‘' xR, n > 1. A = A(X, 1) =
{A; (X, t)}l'.';.il is assumed to be a (n + 1) x (n 4+ 1)-dimensional matrix with complex
coefficients satisfying the uniform ellipticity condition

n+1
() ATNEP <Re [ D A (X nEE ),
i,j=1
(i) A€ -¢] < Algllg], (12)

forsome A, 1 < A < oo, and forall &, ¢ € C"!, (X, 1) e R"2. Here u-v = ujvi +- -+
Up+1Vn+1, U denotes the complex conjugate of u# and u - v is the (standard) inner product on
C"*! In addition, we consistently assume that

A(X1, ..., Xp41,1) = A(x1, ..., Xx,), 1e., Aisindependentof x,y; andt. (1.3)

The solvability of (D2), (N2) and (R2) for the operator H in RTQ = {(x, xp4+1,1) €
R" x R xR : x,41 > 0}, with data prescribed on R = BRT'Q = {(x, xy41,1) €
R" xR xR : x,41 = 0} and by way of layer potentials, can roughly be decomposed into two
steps: boundedness of layer potentials and invertibility of layer potentials. In this paper we first
prove, in the case of equations of the form (1.1), satisfying (1.2) and (1.3) and the De Giorgi—
Moser—Nash estimates stated in (2.6) and (2.7) below, that a set of key boundedness estimates
for associated single layer potentials can be reduced to two crucial estimates (Theorem 1.1),
one being a square function estimate involving the single layer potential. By establishing a
local parabolic Tb-theorem for square functions, and by establishing a version of the main
resultin [15] for equations of the form (1.1), assuming in addition that A is real and symmetric,
we are then subsequently able to verify the two crucial estimates in the case of real, symmetric
operators (1.1) satisfying (1.2) and (1.3) (Theorem 1.2). As part of this argument we establish,
and this is of independent interest, a scale-invariant reverse Holder inequality for the parabolic
Poisson kernel (Theorem 1.3). The invertibility of layer potentials, and hence the solvability
of the Dirichlet, Neumann and Regularity problems L2-data, is addressed in [33].

Jointly, this paper and [33] yield solvability for (D2), (N2) and (R2), by way of layer
potentials, when the coefficient matrix is either

(1) asmall complex perturbation of a constant (complex) matrix, or
(ii) areal and symmetric matrix, or

(iii) a small complex perturbation of a real and symmetric matrix.

@ Springer



Boundedness of single layer potentials associated to divergence... Page 3 0f49 124

In all cases the unique solutions can be represented in terms of layer potentials. We claim
that the results established in this paper and in [33], and the tools developed, pave the way
for important developments in the area of parabolic PDEs. In particular, it is interesting to
generalize the present paper and [33] to the context of L? and relevant endpoint spaces, and
to challenge the assumption in (1.3).

The main results of this paper and [33] can jointly be seen as a parabolic analogue of
the elliptic results established in [3] and we recall that in [3] the authors establish results
concerning the solvability of the Dirichlet, Neumann and Regularity problems with data in
L% ie., (D2), (N2) and (R2), by way of layer potentials and for elliptic operators of the
form —div A(X)V, in ]R’fl ={X = (x,xp+1) € R" xR : x,41 > 0}, n > 2, assuming
that Aisa (n + 1) x (n + 1)-dimensional matrix which is bounded, measurable, uniformly
elliptic and complex, and assuming, in addition, that the entries of A are independent of the
spatial coordinate x,,1. Moreover, if A is real and symmetric, (D2), (N2) and (R2) were
solved in [27-29], but the major achievement in [3] is that the authors prove that the solutions
can be represented by way of layer potentials. In [24] a version of [3], but in the context of
L? and relevant endpoint spaces, was developed and in [26] the structural assumption that
A is independent of the spatial coordinate x,4; is challenged. The core of the impressive
arguments and estimates in [3] is based on the fine and elaborated techniques developed in
the context of the proof of the Kato conjecture, see [4,5,20].

1.1 Notation

Based on (1.3) we let . = x,41, and when using the symbol A we will write the point
(X,t) = (X1, ..., Xn, Xpt1,1) as (x, ¢, A) = (x1, ..., Xpn, t, ). Using this notation,
R = {(x,7,A) eR" xRx R: A > 0},
and
R = 9RT? = {(x,1,4) e R" x R x R: A =0}.

We write V := (V)|, 9,) where V|| := (0x, ..., x,). Welet L2(R"*1, C) denote the Hilbert
space of functions f : R**! — C which are square integrable and we let || f||> denote the
norm of f. We also introduce

o0 dxdtdi\""?
011 = (/ / P ) . (14)
0 Rn+1 )\.

Given (x,t) € R” x R we let ||(x, t)|| be the unique positive solution p to the equation

2 n 2
1t X;
7"‘2 ;=L

P i=1

Then ||(yx, yzt)ll =y|l(x, )|,y > 0, and we call ||(x, )| the parabolic norm of (x, t). We
define the parabolic first order differential operator D through the relation

DAHE, ) = IE DIFE ),

where (ﬁ\f) and f denote the Fourier transform of D f and f, respectively. We define the
fractional (in time) differentiation operators D] 2 through the relation

(D}, D) = t]2 f (& 7).
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We let H; denote a Hilbert transform in the ¢-variable defined through the multiplier isgn(7).
We make the construction so that

& = Dy H, Dy
By applying Plancherel’s theorem we have
IDfll2 2 V) fll2 + 1H: DY jp fll2 2 IV fll2 + 11D o f 2

with constants depending only on .

1.2 Non-tangential maximal functions

Given (xg, ty) € R**! and B > 0, we define the cone
P (xo, 0) == {(x,1, 1) € RYP? 1 [|(x = x0, 7 = 10)|| < BA).
Consider a function U defined on IR'errz. The non-tangential maximal operator Nf is defined

NP W) (xo.10) :=  sup U(x,t, 0.
(x,t,l)el’ﬂ(xo,to)

Given (x,1) € R"1 1 > 0, we let
030, 1) = {(y,8) : |xi —yil <A, |t —s] < 2%}
denote the parabolic cube on R*T! with center (x, t) and side length 1. We let
Wilx, 1) == {(y,s,0): (y,8) € Qi(x,1),A/2 <0 <31/2}
be an associated Whitney type set. Using this notation we also introduce
- 1/2
NEW)(xo,10) = sup (7[ IU(y,s,0) dydsdo) :
(x,t,0M)elB (xo,10) Wi (x,1)
We let
T'(x0. 1) == T (x0. 0). Ni(U) := NJ(U), Ny (U) := N} (V).

Furthermore, in many estimates it is necessary to increase the 8 in I'? as the estimate pro-
gresses. We will use the convention, when the exact 8 is not important, that N, (U), Nk ),
equal Nf ), Nf (U), for some 8 > 1. In fact, the L”-norms of N, and Nf are equivalent,
for any g > 0 (see for example [16, Lemma 1, p. 166]).

1.3 Single layer potentials

Consider H = 9; + £L = 9, —div AV and H* := —9, + L*, where £* is the hermitian adjoint
of L, i.e., L* = —div A*V. Assume that H, H*, satisfy (1.2) and (1.3). Then £ = —div AV
defines, recall that A is independent of 7, a maximal accretive operator on L2(R"*!, C) and
— L generates a contraction semigroup on LZ(R”'H, ©), e 'L fort > 0, see p-28in [6]. Let
K, (X, Y) denote the distributional or Schwartz kernel of e*£. In the statement of our main
results, and hence throughout the paper, we will assume, in addition to (1.2) and (1.3), that
H, H*, both satisfy De Giorgi-Moser—Nash estimates stated in (2.6) and (2.7) below. This
assumption implies, in particular, that K;(X, Y) is, for each r > 0, Holder continuous in X
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and Y and that K, (X, Y) satisfies the Gaussian (pointwise) estimates stated in Definition 2
on p. 29 in [6]. Under these assumptions we introduce

C(x,t, A, y,5,0) =T X,1,Y,s) == K,—s(X,Y) = K;_(x, 1, y,0)

whenever t —s > 0 and we put I'(x, 7, A, y, s, 0) = 0 whenever t — s < 0. Based on (1.3)
we in the following let

Cax,t,y,8) =T (x,1,4,y,s,0),
Li(y,s,x,1):=T"(,s,0,x,1,A),

and we introduce associated single layer potentials
STFn = [ Tty £ dyds,
S fn = /R L THG s 2,0 f (v, ) dyds.
1.4 Statement of main results

The following are our main results.

Theorem 1.1 Consider H = 9, — div AV. Assume that H, H*, satisfy (1.2) and (1.3) as
well as the De Giorgi-Moser—Nash estimates stated in (2.6) and (2.7) below. Assume that
there exists a constant C such that

() sup 1:STE £ 112 + sup |, £1l2 < ClIf 2.
A>0 A>0

(i) [IAOZSTEFI+ 11202S7E FIll < ClIflla,s (1.5)

whenever [ € Lz(]R"+1 , C). Then there exists a constant c, depending at most on n, A, the
De Giorgi-Moser—Nash constants and C, such that

() 1IN@B.STE N2 + [IN@.STE 2 < el fllas
(i) sup |IDST £]l + sup |IDST £1la < cl| ]2
A>0 A>0

(i) [NV STEOI2 4+ 1IN (VSTE Dl < el flla,
(V) [|Nw(H, D} o ST )\l + IN#(H; D}, ST )l < cll fllas (1.6)

whenever f € L2[R"*!, C).

Theorem 1.2 Consider H = 0; — div AV. Assume that H satisfies (1.2) and (1.3). Assume
in addition that A is real and symmetric. Then there exists a constant C, depending at most
onn, A, such that (1.5) holds with this C. In particular, the estimates in (1.6) all hold, with
constants depending only on n, A, C, in the case when A is real, symmetric and satisfies
(1.2) and (1.3).

Theorem 1.3 Assume that H = 0; — div AV satisfies (1.2) and (1.3). Suppose in addition
that A is real and symmetric. Then the parabolic measure associated to H, in Rfﬁ'z, is
absolutely continuous with respect to the measure dxdt on R'! = BRTFZ. Moreover, let
0cC R**! pe a parabolic cube and let K (Ao, y, s) be the to 'H associated Poisson kernel at
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Ag = (x0,1(Q), tg) where (xg, tg) is the center of the cube Q and [(Q) defines its size.
Then there exists ¢ > 1, depending only on n and A, such that

/|K<AQ,y,s)|2dydssc|Q|*1.
[¢]

Remark 1.4 Note that (1.5) (i) is a uniform (in 1) L2-estimate involving the first order partial
derivative, in the A-coordinate, of single layer potentials, while (1.5) (ii) is a square function
estimate involving the second order partial derivatives, in the A-coordinate, of single layer
potentials. A relevant question is naturally in what generality the estimates in (1.5) can be
expected to hold. In [33] it is proved, under additional assumptions, that these estimates are
stable under small complex perturbations of the coefficient matrix. However, in the elliptic
case and after [3] appeared, it was proved in [34], see [17] for an alternative proof, that if
—div A(X)V satisfies the basic assumptions imposed in [3], then the elliptic version of (1.5)
(ii) always holds. In fact, the approach in [34], which is based on functional calculus, even
dispenses of the De Giorgi—Moser—Nash estimates underlying [3]. Furthermore, in the elliptic
case (1.5) (ii) can be seen to imply (1.5) (i) by the results of [2]. Hence, in the elliptic case,
and under the assumptions of [3], the elliptic version of (1.5) always holds. Based on this it
is fair to pose the question whether or not a similar line of development can be anticipated
in the parabolic case. Based on [32], this paper and [33], we anticipated that a parabolic
version of [17] can be developed, To develop a parabolic version of [2] is a very interesting
and potentially challenging project.

Theorem 1.3 is used in the proof of Theorem 1.2 and to our knowledge Theorems 1.1,
1.2 and 1.3 are all new. To put these results in the context of the current literature devoted to
parabolic layer potentials and parabolic singular integrals, in C' -regular or Lipschitz regular
cylinders, it is fair to first mention [12—14] where a theory of singular integral operators with
mixed homogeneity was developed and Theorem 1.1 (i)—(iv) were proved in the context of the
heat operator and in the context of time-independent C'-cylinders. These results were then
extended in [7,8], still in the context of the heat operator, to the setting of time-independent
Lipschitz domains. The more challenging setting of time-dependent Lipschitz type domains
was considered in [18,21,30], see also [22]. In particular, in these papers the correct notion of
time-dependent Lipschitz type domains, from the perspective of parabolic singular integral
operators and parabolic layer potentials, was found. One major contribution of these papers,
see [18,21,22] in particular, is the proof of Theorem 1.1 in the context of the heat operator
in time-dependent Lipschitz type domains. Beyond these results the literature only contains
modest contributions to the study of parabolic layer potentials associated to second order
parabolic operators (in divergence form) with variable, bounded, measurable, uniformly
elliptic (and complex) coefficients. Based on this we believe that our results will pave the
way for important developments in the area of parabolic PDEs.

While Theorems 1.1 and 1.2 coincide, in the stationary case, with the set up and the
corresponding results established in [3] for elliptic equations, we claim that our results,
Theorem 1.1 in particular, are not, for at least two reasons, straightforward generalizations of
the corresponding results in [3]. First, our result rely on [32] where certain square function
estimates are established for second order parabolic operators of the form H, and where, in
particular, a parabolic version of the technology in [4] is developed. Second, in general the
presence of the (first order) time-derivative forces one to consider fractional time-derivatives
leading, as in [18,21,30], see also [22], to rather elaborate additional estimates. Theorem 1.3
gives a parabolic version of an elliptic result due to Jerison and Kenig [27] and a version of
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the main result in [15] for equations of the form (1.1), assuming in addition that A is real and
symmetric.

1.5 Proofs and organization of the paper

In general we will only supply the proof of our statements for S, := SZ{. The corresponding
results for S} := SZ"* then follow readily by analogy. In Sect. 2, which is of preliminary
nature, we introduce notation, weak solutions, state the De Giorgi—-Moser—Nash estimates
referred to in Theorem 1.1, we prove energy estimates, and we state/prove a few fact from
Littlewood—Paley theory. In Sect. 3 we prove a set of important preliminary estimates related
to the boundedness of single layer potentials: off-diagonal estimates and uniform (in 1) L2-
estimates. Section 4 is devoted to the proof of two important lemmas: Lemmas 4.1 and 4.2.
To briefly describe these results we introduce @ ( f) where

O(f) = Su%lla,\Sxfllz-I—||I?~3A25,\f|||~ (L.7)
A>

Lemma 4.1 concerns estimates of non-tangential maximal functions and in this lemma we
establish bounds of || N« (3,,Sx f)Il2, [N« (VS5 f)Il2 and ||N*(H,D{/2$,\f)||2 in terms of a
constant times

S(f) + 111112 +iUP0||D$AfII2.

In Lemma 4.2 we establish square function estimates of the form,

() ATV, LS, FlIl < e(@(F) + 11£11),
(i) (A28, TS, £l < e(@ () + 11 f112),

whenever f € L>®R"™! C), and form > —1,1 > —1. Using Lemma 4.1, the proof of
Theorem 1.1 boils down to proving the estimate

iU}())IIDSAfIIz < (@) +11f112)- (1.8)

The estimate in (1.8), which is rather demanding, uses Lemma 4.2 and make extensive use
of recent results concerning resolvents, square functions and Carleson measures, established
in [32]. In Sect. 5 we collect the material from [32] needed in the proof of (1.8). In [32] a
parabolic version of the main and hard estimate in [4] is established. In subsection 5.3, we also
seize the opportunity to clarify some statements made in [32] concerning the Kato square
root problem for parabolic operators. The conclusion is that in [32] the Kato square root
problem for parabolic operators, with merely bounded and measurable coefficients, is solved
for the first time in the literature. In Sect. 6 we prove (1.8) as a consequence of Lemmas 6.1,
6.2, and 6.3 stated below. For clarity, the final proof of Theorem 1.1, based on the estimates
established in the previous sections, is summarized in Sect. 7. In Sect. 8 we prove Theorem
1.2 by first establishing a local parabolic Tb-theorem for square functions, see Theorem 8.1,
and then by establishing Theorem 1.3. We believe that our proof of Theorem 1.3 adds to the
clarity of the corresponding argument in [15].

2 Preliminaries

Letx = (x1, ..., x0), X = (x, Xp41), (X, )=(X1, ., X0, 1), (X, 1) = (X1, .., Xn, Xnge1, 1)
Given (X, 1) = (x, xp4+1,1), r > 0, we let O, (x, r) and O, (X, t) denote, respectively, the
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parabolic cubes in R**! and R"*2, centered at (x, t) and (X, 1), and of size r. By Q, Q we
denote any such parabolic cubes and we let [(Q), [(Q), (xg, tp), (X o tQ) denote their sizes

and centers, respectively. Given y > 0, we let y Q, y QO be the cubes which have the same
centers as Q and Q, respectively, but with sizes defined by y/(Q) and y/(Q). Given a set
E C R""! welet | E| denote its Lebesgue measure and by 1 we denote the indicator function
for E. Finally, by || -||2(g) we mean || - 1g||2. Furthermore, as mentioned and based on (1.3),
we will frequently also use a different convention concerning the labeling of the coordinates:
we let A = x,,41 and when using the symbol A, the point (X, t) = (x, x,41, ) will be written
as (x,1,A) = (x1,...,x,,t,A). We write V. = (V)|, 93) where V|| = (3, ..., dy,). The
notation Lz(R"“, Ol 2, Gy DI, D, D{/Q, H;, was introduced in Sect. 1.1 above. In the
following we will, in addition to D and Di Jo0 at instances also use the parabolic half-order
time derivative

T

Dyi1 /(€ 1) = (&, 7).
it i@ ol
We let H := H(R"T!, C) be the closure of C§°(R"*!, C) with respect to
1 llm := 1D fl2. 2.1

By applying Plancherel’s theorem we have
O N fllw = 1V fll2 + 1H Dy fll2 = 1V fll2 + 1D] 2 f 2,
(i) IDps1fll2 < clDjjpfl2, 2.2)

with constants depending only on n. Furthermore, we let H := H(R"*2, C) be the closure of
CS° (R"F2, C) with respect to

0 1/2
IFllg = (/ / (18, F* + |DF?) dxdzd)\) .
—00 n+1

Similarly, we let H, := M, (R’fz, ©) be the closure of C3° (RT’Z, C) with respect to the
expression in the last display but with integration over the interval (—oo, c0) replaced by
integration over the interval (0, 0o).

2.1 Weak solutions

Let @ C {X = (x,x,+1) € R" x Ry} be a domain and let, given —co < f; < f < 09,
Qi =R x (11, 12). We let WwL2(Q, C) be the Sobolev space of complex valued functions
v, defined on 2, such that v and Vv are in L2(Q, C). L(11, t, WH2(2, ©)) is the space of
functions u : Q;, ;, — C such that

" s 1/2
||M||L2(t1,t2,W1’2(Q»C)) = (/ ||M(, t)”Wl'z(Q’(C) dt) < Q.
n

We say that u € L2(t1, 1o, W2(Q2, ©)) is a weak solution to the equation
Hu = (0; + L)yu =0, 2.3)

in Q. if

/ (AVu -V —ud,¢) dXdt =0, (2.4)
errQ
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whenever ¢ € C§°(82,,1,, C). Similarly, we say that u is a weak solution to (2.3) in R’fz
if up € L*(—00, 00, WH2(R" x Ry, C)) whenever ¢ € C°(RT2, C) and if (5.2) holds
whenever ¢ € Cgo (]RT’Z, C). Assuming that H satisfies (1.2) and (1.3) as well as the De
Giorgi—-Moser—Nash estimates stated in (2.6) and (2.7) below, it follows that any weak solu-
tion is smooth as a function of ¢ and in this case

/ (AVu - V¢ + du¢) dXdt =0,
RrJlr+2
holds whenever ¢ € C{°(2,.1,, C). Furthermore, if u is globally defined in R’f’z, and if
D} puH; D] 19 is integrable in R’fz, whenever ¢ € C§° (Riﬂ, C), then
Bi(u,¢) =0 whenever ¢ € CSO(R'J'FH, ©), 2.5)

where the sesquilinear form B (-, -) is defined on T, x H, as
o0 - —
By, @) = /O /R (AVu- Y — DT D] 9) dxdids.

In particular, whenever u is a weak solution to (2.3) in RT‘Z such that u € ]ﬁl.h then (2.5)
holds. From now on, whenever we write that Hu = 0 in a bounded domain £2;, ;,, then we
mean that (5.2) holds whenever ¢ € C;°(2, 1,, C), and when we write that Hu = 0 in R’fz,
then we mean that (5.2) holds whenever ¢ € C§° (R'fﬁz, C).

2.2 De Giorgi-Moser-Nash estimates

We say that solutions to Hu = 0 satisfy De Giorgi-Moser-Nash estimates if there exist,
fgr each 1 < p < oo fixed, constants ¢ and @ € (0, 1) such ~that the following is true. Let
QCR'*?bea parabolic cube and assume that Hu = 0 in 2Q. Then

1/p
sup|u|5c(7[~|u|f’) , 2.6)
o 20
. Nx =X, =o'y Vp
u(X,t) —uX,t)| <cf —— ][_|u|p s 2.7
r 2Q

whenever (X, 1), (}N(, 1) e Q ro= Z(Q). The constant ¢ and « will be referred to as the
De Giorgi—-Moser—Nash constants. It is well known that if (2.6) and (2.7) hold for one p,
1 < p < oo, then these estimates hold for all p in this range.

and

2.3 Energy estimates

Lemma 2.1 Assume that 'H satisfies (1.2) and (1.3). Let Q~C R"2 pe apara?olic cube and
let B > 1 be a fixed constant. Assume that Hu = 0 in BQ. Let ¢ € C5°(BQ) be a cut-off

function for Q suchthat0 < ¢ < 1,¢ = 1lon Q Then there exists a constant c = c(n, A, B),
1 < ¢ < oo, such that

/ V(X DX, 1) dXdi < ¢ / (X, DAV X, D2 + ¢ (X, D] d (X, D)) dXdr.
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Proof The lemma is a standard energy estimate. Indeed,
/ (AVu - V(ap*) — ud; (ip?)) dXdt =0,
by the definition of weak solutions. Hence,
/|Vu|2¢2dxdt < c/ > (Vo1 + ¢l0:¢]) dXdt. -
Lemma 2.2 Assume that H satisfies (1.2) and (1.3). Let Q C R be a parabolic cube,
Ao € R, andlet By > 1, Br € (0, 1] be fixed constants. Let I = (Ao — B2l(Q), Ao + B2L(Q)),

yI = o—yBl(Q), 2o+ yB2L(Q)) fory € (0, 1). Assume that Hu = 0 in ,B%Q X 1. Then
there exists a constant c = c(n, A, B1, B2), 1 < c < oo, such that

) ][ |Vu(x, 1, Ao)|> dxdt §c][ IVu(X,0)|>dXdt,
0 BrOx}I

(i) ][ [Vute. 1. 20)? ddr < ¢ 27/ lu(X, 0 dxdr.
0 (Q)" J p2oxii

Proof 1t suffices to prove the lemma with ; = 2, 8, = 1. Furthermore, we only prove (i)
as (ii) follows from (i) and Lemma 2.1. For Ao € R fixed, and with y I as above, we let

/,
(1,

2 172
dxdt s

Ji: Vu(x,t,ko)—][l Vu(x,t,A)dAr

161

172

7[1 Vu(x,t, ) dr| dxdt
I

16

Then

1/2
(7[ |Vu(x,t,xo)|2dxdr) < i + ).
0

Using the Holder inequality

1/2
h<c 7[ IVu(X, t)|> dXdt )
20x 41

Using the fundamental theorem of calculus and the Holder inequality,

Ji = Cl(Q)(j[
Q

Using that 9, u is a solution to the same equation as u it follows from Lemma 2.1 that

Ji < C(][
§Q><1

3 Oxgl

12
IVou(X, )| dXxdt | .
X161
12
(X, 1) dth) .
Hence the estimate in (i) follows. ]
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Lemma 2.3 Assume that H satisfies (1.2) and (1.3). Let Q~C R"t2 be a parabolic cube
and let B > 1 be a fixed constant. Assume that Hu = 0 in B Q. Then there exists a constant
c=c(n, A, B), 1 <c < oo, such that

][_ (X, 2 dXdt < — ][_|M(X,t)|2dth.
0 HQ)* o

Proof Let ¢ € C3°(B Q) be a cut-off function for Q suchthat 0 < ¢ < 1,¢ = 1 on Q,
IVo| < c/1(Q), 9] < c/I1(Q)*. Let

Ji ::/la,u|2¢>4dth,
and
b :=/|Vu|2¢2dth, J3 :=/|V8,u|2¢6dth.
As 0;u is a solution to the same equation as u,
/ (AVdu - V(iag*) — d,ud, (ap*)) dXdt = 0.
Hence,
Ji = / ((AVdu - Viyp* + 4(AVdu - Vo)iip® — 4(B,ud, p)id®) dXdt,
and
@) g+ O ux o2 axar

1027 10)* ] 5o

where € is a degree of freedom. Again using that d;u is a solution to the same equation as u,
and essentially Lemma 2.1, we see that

Ji <1(0)*els +

k:sc/ﬁauﬁ¢4UV¢F+w@¢ndXdrs < .
1(0)?

Combining the above estimates, and again using Lemma 2.1, the lemma follows. O

2.4 Littlewood—Paley theory

We define a parabolic approximation of the identity, which will be fixed throughout the
paper, as follows. Let P € C3°(Q1(0)), P > 0 be real-valued, dexdt = 1, where
Q1(0) is the unit parabolic cube in R"*! centered at 0. At instances we will also assume
that [ x;P(x,t)dxdt = 0 foralli € {1,...,n}. We set Py(x,1) = A" 2P(A"1x, A7%1)
whenever A > 0. We let P, denote the convolution operator

Puf (. 1) =.A;Hd7a<x-—y,r-—s)f«y,s)dyd&

Similarly, by 9, we denote a generic approximation to the zero operator, not necessarily the
same at each instance, but chosen from a finite set of such operators depending only on our
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original choice of P, . In particular, Q; (x, t) = AT"20( " x, A 72f) where Q € CO(R" D),
f Qdxdt = 0. In addition we will, following [21], assume that Q, satisfies the conditions
104, 1)] < <
X, < ——————,
’ G+ TG D3

clix =y, 1 = 92
OIS GG piye

|Qx(x, 1) —

where the latter estimate holds for some « € (0, 1) whenever 2||(x — y, t — s)|| < [|(x, 1)]].
Under these assumptions it is well known that

o0 dxdtd
/ / 10 fI? < c/ | £12 dxdt, 2.8)
0 Jrr+! A Rn+l

for all f € L?>(R"*!, C). In the following we collect a number of elementary observations
used in the forthcoming sections.

Lemma 2.4 Let Py be as above. Then
AV I+ 11228, Pa £+ NIADPs £ < cll £l
forall f € L>(R"!, ©).

Proof This lemma essentially follows immediately from (2.8). For slightly more details we
refer to the proof of Lemma 2.30 in [32]. m]

Consider a cube Q C R"*!. In the following we let A)\Q denote the dyadic averaging

operator induced by Q, i.e., if Q 1(x, 1) is the minimal dyadic cube (with respect to the grid
induced by Q) containing (x, ), with side length at least A, then

AL f(x,1) = ][ ~ fdyds, 2.9)
0 (x,1)

is the average of f over QA;L(x, t).

Lemma 2.5 Let A)? and P;, be as above. Then

* dxdtdi
/ / A2 — P > 2228 < c/ | £ dxdt,
0 JRntl A R+l

forall f € LXR"!, C).

Proof The lemma follows by orthogonality estimates and we here include a sketch of the
proof for completion. Let F € Cg° (Rf'ﬁz, C) be such that ||| F||| = 1. It suffices to prove
that

dxdtdk

// Flx.t, A2 — Py f (. <clifla.
]Rn-H

for all f e LZ@®R™!,C). To prove this we first note that I(A? — Pu) f(xo, t0)] <
cM(f)(xo, to) whenever (xg, f9) € Rt and where M is the parabolic Hardy—Littlewood
maximal function. Hence,

sup [[(A2 — Py)ll—2 < c.
A>0
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Let Q, be an approximation of the zero operator defined based on a function Q so normalized
that Q;, is a resolution of the identity, i.e.,

dk
/ Qfg -
whenever g € C5°(R"™!, C). Then
A2 = P Qs 12 < emin{(h/0)?, (a/M)°}, (2.10)

for some § > 0. Indeed, let R, (x, ¢, y, s) be the kernel associated to Ag — Py, l.e.,
Ra(x, 1, v, 5) L s = Palr =yt — )
A X, 0, Y, 8) = ——— 15 Y,8) — X =y, 1 —95).
105 (x, 1) &0
Then R, 1 = 0 and it is easily seen that

1) |Ralx,t,y,8)] < )\’3()\' + [l(x, t)||)_”_2_5,

(i) / sup IRy (x,t,z,w) — Ry(x,t,y,s)|dyds < c(a/)»)‘s,
R

"z w): 1=y, w=s)l|<0}

whenever (x,t) € R"!1 0 < o < A < 0o and with § = 1. Note that there is an unfortunate
statement in the corresponding proof in [32]: there (ii) was stated in a pointwise sense which
can, obviously, not hold as the indicator function 1, ., is not Holder continuous. Using
(i), (ii), one can, arguing as in the proof of display (3. 7) ‘and Remark 3.11 in [25], conclude
the validity of (2.10). Let (X, o) := min{(A/0)?, (o/1)®}. We write

F(x,t, )\)(A — P f(x,1)

dxdtdk‘

R”‘H

F(x, 1, )(A2 —P)Q2 f(x, 1) dxdr’

Rn+l

Hence, using Cauchy—Schwarz we see that

F(x, 1, (A =P f(x, 1)

dxdtdx ’ < 111/2]21/2’
A

R+l

co oo d\do
I :=/ / / \F(x, 1, M) 2hs (A, o) dxdi ==
o Jo Jrett o

d\ do

12:=/ // (AL = P2 Fx 0P hs (o)) vt =2
0 0 Rr+1 ag

where

Integrating with respect to o in /1 we see that I; < c¢. Furthermore, using (2.10) we see that

Y dr do
/ / / 1Q f(x, 1)*hs (2, a)dxdt—f
0 0 n+1 o

* 2 do 2
C/ / Qo f(x, D" dxdt— = c|| fll3.
0 Rn+l1 o

I

IA

IA

This completes the proof of the lemma. See also the proof of Lemma 4.3 in [25]. O
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3 Off-diagonal and uniform L2-estimates for single layer potentials

We here establish a number of elementary and preliminary estimates for single layer poten-
tials. We will consistently only formulate and prove results for S := 81" and for A > 0,
where H = 9, — div AV is assumed to satisfy (1.2) and (1.3) as well as (2.6) and (2.7). The
corresponding results for S} := SZ{* follow by analogy. Here we will also use the notation
divy = V-, D; = 0y, fori e {I,...,n+ 1}. We let

(SA,Dj)f(x’t) ::/ 41 ayjr}m(x7tay!s)f(y7s)dyds’ 1 S -] S n’
R~

(S Dpat) f(x, 1) = / BTy, 5.0) om0 f (7. 5) dyds.
Rn

We set
(E1V) = ((SxD1), - - ., (SiDn), (SaDn1)),
n+1
(S VI =D (8.D)) fi.
j=1
whenever f = (f1, ..., fu+1) and we note that

SV -ty = =Su(div f)), (SaDny1) fur1 = =Sy furt,

whenever f = (), f,11) € C§° (R™1, ¢"*1) and by the translation invariance in the A-

variable. Given a function f € L*(R"*!,C), and h = (hy,..., hyy1) € R'L, we let

M"Y, 1) = fx1+h1, .oy Xn+hp t +hag1) — f(x,1). Givenm > —1,1 > —1 we let
Kna(xot,y08) = 9 T 1, y,9),

K1 (x.1,y.8) = oy 9 T 1y, ), (3.1

and we introduce
do(x,t,y,8) = |x — y| + |t — 5|2+ A.

Lemma 3.1 Consider m > —1, 1 > —1. Then there exists constants ¢y, and a € (0, 1),
depending at most on n, A, the De Giorgi—-Moser—Nash constants, m, [, such that

@) |Kmiax,t,y,8)] <cmi(di(x,t,y, §))nm=2U=4
Q) @ K15 Coon y ) 0] < el B (o (x, 1, y, ) "2 =472
i) (D" Ko 1506, 1,5 ) 9] < el B (i (x, 1, y,5)) 7274
whenever 2||h|| < ||[(x — y,t —s)|| or 2]|h]| < A

Proof Assume first that/ = —1. Then K, ; , = Ky,,.. In the case m = —1 the estimates in
(i)—(iii) follow from (2.6) and (2.7), see also [1] and Section 1.4 in [6]. In the cases m > 0,
the corresponding estimates follow by induction using (2.6), (2.7), Lemmas 2.1 and 2.2. This
establishes the estimates in (i)—(iii) for K,,,,—1,» whenever m > —1. We next consider the case
of Kiia,l > 0.Fix (y,s5) € R*H andletu = u(x, 1, 1) = Kmi(x,t,y,s)forsomel > 0.
Given (x,t, 1) € R’f’z, let Q C R"*2 be the largest parabolic cube centered at (x, ¢, A) such
that 16Q - RTFZ and such Hu = 0 in 16Q. Then l(Q) ~ min{A, ||(x — y,t —s)||}, and

1/2
|8zu(x,t,k)|5c(][ |a,u|2dth) ,
20
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by (2.6) as d;u is a solution to the same equation as u. Using Lemma 2.3 we can therefore
conclude that

e, 1, V> < —= (7[ ZdXd).
[0;u(x, t,\)| <l(Q)4 8Qlul t

Using this and induction, the estimate in (i) follows for K, ; 5 (x, ¢, y, s) whenever [ > —1.
Using (2.7), the estimates in (ii) and (iii) are proved similarly. ]

Lemma 3.2 Consider m > —1,1 > —1 and p > 1. Then there exist a constant cy, |,
depending at most on n, A, the De Giorgi-Moser—Nash constants, m, 1, and a constant
Cm.1,p» depending in addition on p, such that

(i) /2 1 guarg | 1@V K135, 1,3, 9)Pyds < enma RO,

(ii) /2 , O™ P3NV Ko 15, (x, 1, y, $)Pdyds < e, p(1(0) "2,
ifi(Q)/p <X <pl(Q),

whenever Q C R g a parabolic cube, k > 1 is an integer and (x,t) € Q.
Proof Fix (x,t) € Q and let

v(y,s,A) 1= Ky (x, £, y,8).

Then v is a solution to the adjoint equation. The lemma now follows from Lemma 2.2 (ii),
applied to the adjoint equation, and Lemma 3.1 (i). Indeed, it is easy to see that Lemma 2.2
also is valid in when Q is replaced by the annular region 2k+1 Q\21‘ 0. ]

Lemma 3.3 Consider m > —1,1 > —1 and p > 1. Then there exist a constant ¢y, |,
depending at most on n, A, the De Giorgi—-Moser—Nash constants, m, I, and a constant
Cm,1,p, depending in addition on p, such that
. I+1 qm+1 2
@ 1197707 (V) Ly g\t )2 g
< ema2 RN ORI k1 gt )

@) 1197707 SV E 120172 ) < emtp U@ " ORI 5
if1(Q)/p = A < pl(Q),
(i) 119/ SO Mgkt gk gy < €ma2” "k

QL) 1 1 ook o)
@) 1977191 SO 120117200y < et s W@ "I fll 7200,
ifl(Q)/p < % < pl(Q),

whenever Q C R s a parabolic cube, k > 1 is an integer, f € Lz(]R”“, C"), and
f e L2®R"! C).
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Proof Let (x,t) € Q. To prove (i) we note that

187105 (S1 V)1 ) |l ps1 g\ gk ) (s D
2

/ Vy Kt (6,1, 3,5) - £y, 5) dyds
2k+1 Q\2kQ

IA

2 2
||V)‘Km,l,k(x; ta Y, S)||L2(2k+l Q\Zk 0) | |f| |L2(2k+1 Q\2k 0)
< ema U)oty

A

by Lemma 3.2 (i). Hence, integrating with respect to (x, t) we see that

1
107107 (S V) |l g2k )12
< @)@ i g g

< emi2 "R T i g2t )
This completes the proof of (i). The proof of (ii) is similar. To prove (iii) we again consider
(x,1) € Q. Then

101N (S (f kst ook ) (. DI
2

/ Kon (6.1, 3. ) £ (3. ) dyds
2k+1Q\2kQ

< 1K 1.5.06, 1,372 0601 912 0y 1 117 20041 012 )
< ama@UO)TON F11 T et ok

We can now proceed as above to complete the proof of (iii). The proof of (iv) is
similar. O

Lemma 3.4 Assume m > —1,1 > —1, m 4+ 21 > —2, Then there exists a constant cp, |,
depending at mostonn, A, the De Giorgi—Moser—Nash constants, m, [, such that the following
holds. Let £ € L2(R"*!, C") and f € L2 (R"*!, C). Then

(i) supo||Am+2’+3a,’“a;"+‘(&vu-)fnz < cmllfll2,
A>

(i) sup [[A" T39S P2 < cmall £l
A>0

Furthermore, if m + 21l > —1 then

(i) sup |[A"FHHE2HH9MTL(S, )l < cmall fl2.
A>0

Proof We first note that to prove (ii) it suffices to only prove (i), as, by duality, (ii) follows
from (i) applied to ;. To prove (i), fix A > 0 and consider m > —1,1 > —1. Then

(A G (5, g | < Z/ A GG (5,7 g e, 1) P dxd,
0
o
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where the sum runs over the dyadic grid of parabolic cubes with [(Q) ~ A. With Q fixed we
see that

/ |3 I g m AL (S V) (x, 1) | dxdt
0
< / |3 I am L (S, V) ) (o) (x, )| dxdt
0

+ Z/ 23 L gL (8,911 (B Lyksn ook ) (x, 1) dxdlt
0
k>1

< C)\,2m+4l+6(l(Q))_2m_4[_6||f| |i2(2Q)

+ Z 027(n+2)k)\.2m+4l+6(zkl(Q))72m74176| |f| |i2(
k>1

2k+1 Q\Zk 0)

<c ||f||%2(2Q) + Z2_(Vl+2)k2—(2m+4[+6)k||f||iz(2k+lQ\ZkQ) ,
k>1

by Lemma 3.3 (i) and (ii), as /(Q) =~ A. Hence,
||)»"’+21+3811+18;"+1(SAV|\')f||iz(R»:+1)

< clfl[5 4 > 2T Dk CmHROk g7
0 k>1

2k+1 Q\Zk 0)° (32)

To complete the proof of (i) we now note that there exists, given a point (x, t), at most
cn2@ Dk cubes O such that (x, ) € 25t! Q\Zk Q. Hence, using this, and the estimate in
(3.2), we see that

A2 G L (5, v 2, < c[If||3 + ¢ D27 GOk ) 3

(Rn-H) =
k>1

IA

2
clIfllz,

as long as m + 2/ > —3. This completes the proof of (i). Using Lemma 3.3 (iii) and (iv), the
proof of (iii) is similar. We omit further details. O

Lemma 3.5 Let f € CO(R"™!, C) and Ao > 0. Then S, f € H(R"!,C) N L2(R"F!, ©).

Proof Given f € C{° (R"!,C) we let 0 C R"*! be a parabolic cube, centered at (0, 0),
such that the support of f is contained in Q. Let Ag > 0 be fixed. We have to prove that
IV||Sxo fll2 < 00, ||H,D’1/28,\0f||2 < oo, and that ||Sy, f |2 < oo. Toestimate || V|| Sy, fll2
we see, by duality, that it suffices to bound

/Q|($;‘OVH~)f(x,t)|2dxdt5/Q|($;‘0V|‘~)(f12Q)(x,t)|2dxdt

+ Z/ (S5, Vi) E Lgest ook ) (e, )] dxdt,
k=172

where f € Ci° (R, ™), |If||» = 1. However, now using the adjoint version of Lemma 3.3
(i), (ii) with [ = —1 = m, we immediately see that

/ (S5, ViE(xe, O dxdt < c(n, A, Ao) < 00,
0
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whenever f € C(‘)’O(R”“, C™), ||f]|2 = 1. To estimate ||H,Di/28x0f||2 we first note that

|H; D} 13830 115 < 118:Siq £ 112110 £ 112-

Using Lemma 3.4 (iii) we see that [|3;Sy, fll2 < c(n, A, 2o)||fll2 < oo. To estimate
[1So f |2 we write

/ (Sp f (. D dxdi < / (Spo f (. P dxdt
Rn+! 20

+Z/2

S f (x, )% dxdr.
kZl k+1Q\2kQ

Using this and Lemma 3.1 (i) we deduce that
/ ISso f (x, 1) > dxdt < c(n, A, L) < 0.
RnJrl

This completes the proof of the lemma. O

4 Estimates of non-tangential maximal functions and square functions
Consider S, = S;\H, for A > 0, where H = 9, — div AV is assumed to satisfy (1.2) and (1.3)
as well as (2.6) and (2.7). Recall the notation ||| - |||, ®(f), introduced in (1.4), (1.7). This

section is devoted to the proof of the following two lemmas.

Lemma 4.1 Then there exists a constant c, depending at most on n, A, and the De Giorgi—
Moser—Nash constants, such that

@) 1Nl < ¢ (iggnaxsuu% = 1) £z,
(i) 1NV Sl < c (Ilfllz +50p 1983 f112 + IIN**(a,xSxf)llz) ,
(i) [1N+(H: D} 1283 )ll2 5C(Ilfllz+ili%||HzDﬁ/25Af||2)
+ ¢ (I8 (DSl + [ INe @512

whenever f € L2(R"!, C).

Lemma 4.2 Assume m > —1,1 > —1. Let ®(f) be defined as in (1.7). Assume that
O(f) < 0o whenever f € L>(R"t!, C). Then there exists a constant c, depending at most
onn, A, the De Giorgi—-Moser—Nash constants, and m, l, such that

() AT, 0 8m LS, FlIl < c(@(F) + 11 £112),
(i) A" 248,08 HLS, FlIL < (@ () + 11 £112),

whenever [ € L2 (R"!, C).

@ Springer



Boundedness of single layer potentials associated to divergence... Page 19 of 49 124

4.1 Proof of Lemma 4.1

Throughout the proof we can, without loss of generality, assume that f € C§° R™1, C).
We let Q ¢ R*t! be the (smallest) cube centered at (0, 0) such that the support of f is
contained in %Q. Let § > 0 be small and let 1,75 denote the indicator function for the set
{A: XA >28} CR.

Proof of Lemma 4.1 (i) We let (xg,t)) € Rt Recall that the kernel of 8,S) is
Ko (x,t,y,s)introduced in (3.1). Ko, (x, 1, y, s) is a (parabolic) Calderon—Zygmund ker-
nel satisfying the Calderon—Zygmund type estimates stated in Lemma 3.1. Given (xo, #9) €
R™*! we consider (x, 7, 1) € T'(xg, o). Then

S5 ) = 95 (f) (For 1)
< /]R Ko (6. 1, v ) — Ko (0. f0, v, )| £ (v )| dyds
M(f)(xo. 10).

IA

by Lemma 3.1 and where M is the parabolic Hardy—Littlewood maximal function. Hence

Ny (155250, ) (x0, o) < ASH% 10,8 (f)(x0, 10)] + cM(f)(x0, t0),

and we intend to estimate |9, Sy (f)(xo, tp)| for A > 26. To do this we fix A > 2§ and we
decompose 95 Sy (f)(xo, fp) as

/ (Ko,1(x0, 10, y,8) — Ko s(x0, 0, ¥, ) f (v, s) dyds
[[(xo—y,t0—5)||>5x

+ KO,A(-x()vtOsy’s)f(yvs)dyds
[l(xo—y.t0—$)[| <54

/ Ko,5(x0, 10, y,5) f (v, s)dyds
A<|l(xo—y,t0—5)||<5Ar

+ / Ko.5(x0. 10, v, $) £ (v, ) dyds
[[(xo=y,t0—s)||>2
=: I} (x0, to, A) + I3 (x0, o, ») + I3 (x0, 10, 1) + I (x0, t0, 1).
Using Lemma 3.1 we see that

|1 (x0, 10, 2) + I3 (x0. 10, ) + I3 (x0, f0, 1| < M (f)(x0, o).

Furthermore,
|1 (x0. t0. )| < T2 f (x0. to),
where
T f (x0. 10) = sup |7 f (x0. o)
€>28
and
T2 f(x0, 10) = / Ko,5(x0,t0,y,8) f(y,s)dyds.
[[(xo—y,to—s)||>€
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We have to prove that 7 : L2(R"*!, C) — L?(R"*!, C) and we have to estimate || 7.2 ||>—>.
To do this we carry out an argument similar to the proof of Cotlar’s inequality for Calderon—
Zygmund operators. With € > 0 fixed, we let Q. be the the largest parabolic cube, centered
at (xo, f0), which satisfies that 2Q, N {(y, s) € R (xg — v, 19— s)|| > €} = @. Then
[(Qe) ~ €. Write f = flag, + flge+iyo0, - Then

172 f (x0, 10)]

10255 (f 1gn+1\20,) (X0, 20) ]
cM(f)(x0, 10) + 10,85 f (x, )] + 19S5 (f 120.) (x, D),

whenever (x, ) € Q. and where have used Lemma 3.1 once again. Let r € (0, 1). Taking a
L" average in the last display with respect to (x, 1), we see that

|7;8f(x07 f0)| 5 CM(f)(-XO, t()) + (M(|a;\85f|r)(_x0, t()))l/r
1/r
- (]fQ 10455 120,01 dxdt) .

IA

Hence,
172 f (x0, 0)| < cM(f)(x0, o) + (M (13:S5 £1") (x0, 10))'/" + M (18,85 £1) (x0, 10).

Furthermore, using an equality attributed to Kolmogorov, see Lemma 10 on p. 35 in [11] for
example, and that the support of f is contained in Q, we see that

(M (10,85 £1") (xo. o))" < cl18:Ss11 110y L1 (50)) M () (x0. o),

where L1>°(5Q) is weak-L!. Using that 3,S; is a Calderon—Zygmund operator one can
deduce, by retracing, and localizing, the proof of weak estimates in Calderon—Zygmund
theory based on L? estimates, that

132851110y L0y < €(1 + 1182851120y 12Rr+1))

where ¢ depends on the kernel Ky through the constants appearing in Lemma 3.1. For a
detailed account of the dependence of the constant c, see [31]. Hence

T (w0, 10) < c(1+ 11885111200y L2en 1)) M () (xo. 10) + M (13385 £ 1) (xo. 10)

and retracing the estimates we can conclude that we have proved that
Ny (1522585 ) (x0, 10) < (1 + (102851 2—2) M (f) (x0. 10) + M (13,85 f 1) (x0, o)

whenever (xg, fy) € R"! and § > 0. Hence,
[N« (13528083 ll2 < ¢ (1 + SUP||3ASA||2—>2) [ f1l2,
>0

whenever f € C(‘)>o (]R”‘H, C) and for a constant ¢, depending at most on n, A, and the De
Giorgi—Moser—Nash constants, in particular ¢ is independent of §. Letting § — 0 completes
the proof of Lemma 4.1 (i). ]

Proof of Lemma 4.1 (ii)) We let (xo, t9) € R**!. To estimate 1(/*(1X>25V|‘Skf)(xo, to) it
suffices to bound

172
(7[ |VH5af(y,s)|2dydsda) ,
Wi (xo0,0)
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where
Wi(x,t) :={(y,s,0): (y,5) € On(x,1),A/2 <0 < 31/2}

and for A > 44/3 which we from now on assume. In the following we let, for m €
{0,1,...,4}

2M"Wo(x, 1) = {(y,5,0): (y,5) € Qunp(x, 1), A/2 —mr2~'0 <o < 3x/2 +ma2710).

Then 2° Wi (x,t) = Wy (x, t). Using this notation and energy estimates, Lemma 2.1, we see
that

7[ 19180 £ (v, )2 dydsdo < 5 1, £ (3, 5) — AP dydsdo,
Wi (x0.10) A% S 2w (xo.t0)

where A is a constant which in the following is a degree of freedom. Furthermore, using (2.6)
with p = 1 we see that

172
(7[ IV |So f (v, S)Izdydsdo) < E][ |Ss f(y,s) — Aldydsdo.
Wi (x0,10) A J 22w, (x0.10)

We write

1
*f |Ss f(y,s) — Aldydsdo
A J 22w, (xo,10)

1

SISO = S SO dydsdo
22W.(x0,10)

1

4 77[ (S0 £ (v, 10) — Al dydsdo
A J 2w, (x0.10)

=: 11 + Db,.

By the fundamental theorem of calculus we have
I < ][ |L0; Sy f (v, s)|dydsdo.
23Wj (x0,10)

Let Q C R*™ ! bea parabolic cube centered at (xg, 7o) and with side length 8A. Then I is
bounded by

/ / A20,5, (Flag) (v, )| dydsdo
2/8
+C/A / A" 2 3t8 (FAgnr1\00) (v, $) — Sy (flR"H\zQ)(xOJO)) |dydsdo

+ C/ [0: S5 (f 1gnt1\20) (X0, f0)| do
1/8
=: I11 + o + L13.
Using Lemma 3.1 we see that

Ity + Iy < eM(f)(xo, to),
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where M is the parabolic Hardy-Littlewood maximal function. Furthermore,

I3

IA

0 2%
eS| 10k (Fli o). )l do
k=1"72/3

IA

3@ [ sl dyds < (o)
2k+1Q

k=1
Hence, we can conclude that
I < cM(f)(xo, 10)- 4.1

Focusing on I, we see that

1
L < *7[ ISs f (v, t0) — Ssyaf (v, 10)| dydsdo
A J 2w (xo.10)
1
+ *f |Ss/af (v, t0) — Aldydsdo
A J 22W; (xo.10)

=: b1 + I»n.
By the fundamental theorem of calculus

1
mssf AN 3:5,f (. 10) () dydsdo

A J 23W; (x0,10)
M* (N, (S f (-, 10)) () (x0),
where M" is the Hardy-Littlewood maximal function in x only and Ny, is an elliptic non
tangential maximal function on a fixed time slice. Finally, let A be the average of S5;4 f (v, 1),
with respect to y, on an spatial surface cube around x¢ with sidelength A. Then, using the
L'-Poincare inequality we deduce that

Dy < cM™ (V) Ssa f (-, 1)) (x0).
Retracing the argument we can conclude that

Ni(1225 V)83 f) (x0, 10) < ¢(M(f)(x0, 10) + M (N, (0,83 f (-, 10)) () (x0)
+ M* (V)i Ss/4 f (-, 10))(x0)).

IA

Hence
N (=25 VS NIIZ < (1113 + 1Y) Ssa £113)
o0
+/ / IN2 (3,85 f (-, 1)) (x)|* dxdr.
—00 RYI
However,

N (.Sx f (-, 10))(x0) < Nux (3,8 ) (x0, t0)

and we can conclude that
N (=26 VIS 2 < ¢ (||f||2 +sup ||V Su fll2 + IIN**(axSxf)llz) .
1>0

This completes the proof of Lemma 4.1 (ii). O
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Proof of Lemma 4.1 (iii) We again fix (xg, #p) € R"*! and we note that to estimate
Ni(L225 Hi D} ). f) (X0, fo)

it suffices to bound

1/2
(][ |H,Di/280f(y, s)|2 dydsdo) , A >45/3.
Wi (x0,10)

Consider (y, s, o) € W, (xo, ), A > 44/3, and let K > 1 be a degree of freedom to be
chosen. Then

H,D} )5(Se f)(y.5) = lim %(&;fﬂy ) di

€0 Je<is—r|<1/e |

lim NG 1) (5 F) .y d
= 11 —_— y
=0 Je<|s—1|<(Ko)2 |S—f|3/2
. sgn(s — 1)
+ lim ————7 (S )y, 1) dt
=0 J(koy2<ps—r<1/e |s — 132

=:g1(y,s,0) + g(y,s,0).
Let

83(xo0, 0, 0) 1= sup sup [0:(Se )y, D).
{y: ly—xo0l<do} {r: |t—19|<(4K0)?}

Then, using the oddness about s of the kernel in the definition of g,
Ig1(y, s, 0)| < cKAg3(xo, o, 0),

whenever (y, s, 0) € W, (xo, tp). Hence,

21
(][ lg1(y, s, (r)|2 dydsda) < c}\z/ |g3(x0, 0, 0)|2d0.
Wi (x0,t0) ’/8

To estimate the right hand side in the last display, let (y, t) be such that |y — xo| < 40,
It — o] < (4Ko)2 Let Q Cc R" M bea parabolic cube centered at (xg, 7o) and with side
length 16K . Then, for K large enough we see that

(207 (So f)(y, D) = A8:S6 (f120)(y, T)]
+ A0S (f1rn+1y20) (¥, T) = 0:So (f Ignt1y20) (X0, 10)]
+A10: S5 (fan+1\2Q)(X0, 10)].
Basically repeating the proof of (4.1) we see that

12
(7[ e o)|2dydsda) < eM(f)(xo 10).
Wi (x0,t0)

To estimate g2(y, s, ), whenever (y, s, o) € W, (xo, tp), we introduce the function
84(5.5.0) = lim S D) (5500115, 1 .
=0 ) (koy2<i—51<1/e 1§ —1]3/?
Now
lg2(y, s, 0) — ga(xo, 10, 0)| < |g2(y,5,0) — ga(x0, 5, 0)|
+182(x0, 5, 0) — g2(x0. 10, 0)
+182(x0, 10, 0) — ga(x0, 10, o).
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In particular,

S 1) =S t
1820, 5. 0) — 84(x0. 10, 0| 5/ S0 f (. 1) = So f(x0. DI .
(Ko)2<|s—|

It — 532

|So f(x0, & +5) — So f(x0,& + 10)|
d
" /(Ka)2§\€| |§13/2 :

dt

n / |Se f (x0, ) — Ssya.f (x0,1)]
(Ko)2<l|t—to| |tg — 1]3/2

=: hi(y,s,0) + ha(y, s, o) + ha(xo, to, 0).
‘We note that
Ny (0;S, , t
ha(y,s,0) < caz/ « (0 cf)gxg &+ 1) dt
(Ko)2<&| &3/

M :
< cU/ Mtﬁ < cM'(M(f)(x0, ) (o),
(Ko <[] &1

where M' is the Hardy-Littlewood maximal operator in the ¢-variable, as we see by arguing
as above. Similarly,

h3(y,s,0) < cM" (N4 (8,55 f)(x0, ) (t0).
We therefore focus on /1 (y, s, o). Let

~ |So f(y, 1) — So f (x0, 1)
iy, o) :=/ oS00 =5 L0y,
A2<|t—10] [t — 10|

If K is large enough, then 2 (y, s, 0) < cﬁl(y, o), whenever (y, s, 0) € W, (xo, fo). Hence
we only have to estimate

1/2
7[A ﬁf dydo = sup 7[ legdyda
0. (x0) X I, 2 () 0. (x0) X I, y2(A)

where Q 1(x0) C R" now is a (non-parabolic) cube with side length A and center xo, I /2 (1)
is the interval (A/2, 31/2), and where the sup is taken with respect to all g € C§° (R"! R)

such that
1/2
][ ) g dydo =1. (4.2)
O (x0)x L j2(2)

E = 7[A ﬁlgdyda.
05 (x0)x 1 /2(1)

b

Given g as in (4.2) we let

Then
Sof(y.H)—S§ N
Ezf (/ |So f(y, 1) ;{(XO )|dt)g(y,a)dyd0
00 x 32 () \J32<ii—1] |t — 10/
> .
< cZ(Azzf)*ﬂ]ﬂ So f (v, 1) — So f(x0, D] dt | (v, o) dydo,
=0 O (xo)x D) \/ 1
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where I; = {r : %2/ < |t — 19| < A*2/!}. Let n € (—4%/100, 47/100) be a degree of
freedom. Given any integer i € (7=t ..., 21"'3} we let tjii = 19 £ i)\, N; = (2”'3 —
2/=1 4 1). Given nwelet/;; (zfl. + 7, 22) be the interval centered at tfl. + n and of length
222. Then {Ij,i(tj.’:i +n, 12)}; is, for each n e (—A2/100, A2/100), a covering of /; and
{1j,i(tj;i +n, 22/10%) is a disjoint collection. Using this we see that | E| can be bounded
from above by

00 Nj
2 2~j\—3/2 —
A > (h727) Z][W . 1S:f(.0 = 85 fxo. Dllg(y. o) dydida
j=0 i=1 )L(XOJI',"‘"I)

. Nj
< o Y (W)Y N (VS ) (o, 15 + )
= i=1

This estimate holds uniformly with respect to € (—A2/100, A2/100). In particular, taking
the average with respect to  we see that

o0
El=ay o) [ N9 )0, D
=0 (t: A2202<|t—1| <122/ +4}
< M (Nox (V) S3.) (0, -)) (f0).

Putting the estimates together we can conclude, for A > 4§/3, that

172
(7[ |H, D' )3S5 f (v, )1 dydsdo)
Wi (x0,10)
is bounded by

M (N (V)13 f) (x0, D) (10) + M (M (f)(x0, ) (t0) + M (N+(3:S f)(x0, -)) (t0)

12
+ (][ | g4 (x0, 0, o) dydsda) .
W; (x0,0)

where M' is the Hardy—Littlewood maximal operator in the ¢-variable and M is the parabolic
Hardy-Littlewood maximal function. Hence, letting

Y (xo, fo) := sup |g4(xo, f0, 0)]

>0

we see that

IN«(Ls25 Hi D} S Pl < el fll2 4 (1N (ViSi Ol + [ Nax (0253 N]l2) + cllv |l

where the constant ¢ is independent of §. Hence, to complete the proof of (iii) it remains to
estimate ||v/||2. To do this we first recall that f € Cj° (R"*!, C). Hence, using Lemma 3.5
we know that Ss/4 f € H(R"!, C) N L?(R"T!, C). Using this it follows that

Ssjaf(x,1) = cl{ (D} nSsyaf)(x, 1) = clf ph(x, 1),

where / f P is the (fractional) Riesz operator in ¢ defined on the Fourier transform side through
the multiplier 7|~ Y2 and h(x,t) := (Di/2$3/4f) (x, t). Using this we see that

¥ (x0, 10) = csup |Veh(xo, 10)] =: ¢Vih(xo, 10),

>0
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where V. is defined on functions k € L?(R, R) by

sgn(t — )1 k(s)
Vek(t):/ BT g,
{s—1]>€} ls — )3/

and Véh(x, t) = Vch(x, -) evaluated at . However, using this notation we can apply Lemma
2.27 in [21] and conclude that

W12 < cllhll2 = clID} )pSs/a fll2 < Ciul())lleDﬁ/ZSxfllz~
>

This completes the proof of Lemma 4.1 (iii). O

4.2 Proof of Lemma 4.2

We first note, using Lemmas 2.1, 2.3 and induction, that it suffices to prove

@) NIAVHSfII = c@(f) +cll fll2,
(i) A3SifIIl < c@(f) +cll fll,

whenever f € L2(R"t!, C). To prove (i) it suffices to estimate ||| V|3,S, f1]|. Given e > 0
we let

1 1/e
Ap = —7/ / V7S f - V18,50 f A2dxdtd),
2 € Rn+l1

1 1/e -
Ay = _7/ / V9.8 f - V828, f A2dxdtd),
2 Je Rntl

)

Az = / VS f - VoS f Adxdt
Rn+l r=l1/e

Ay = / V0,80 f - V)ouSa f A2dxdt
R+l

A=e€

Using partial integration with respect to A,

1/e
/ / V)01 Sa f - V10,8 f Adxdtdh = Ay + Ay + Az + Ay,
€ Rn+!1

Furthermore, using Lemma 3.4 (ii),
|AL| + [A2| + |A3] + |Ad] < c|[IA2V) 8385 FII1> + cll £113,

with ¢ independent of €. Hence

1/e
AV 8,80 f1I1> = lim/ / N V0xSi f - V)9S5 f Adxdtdh
€ R"

e—0

IA

IRV a8 FIIP + el f113. (4.3)
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(") now follows from an application of Lemma 2.1. To prove (ii') we first introduce, for
€ >0,

1 1/6

B = | / / 00,8, f3 S F A 2dxdtdn,
2 Je Rr+1
1 1/€

By = —— / / S, [0,0,.8, f A2dxdida,
2 € R+l

)

B3 := / 38y f0: S f Adxdt
Rn+l r=1/e

By = — / Sy 0,8, f A2dxdt
Rn+l1

A=e

Then, using Lemma 3.4 (iii)
|Bi| + |Bal + | B3| + |Bal < cl|1228,0, 85 fIII* + cll £113,

with ¢ independent of €. Hence, again by integration by parts with respect to A,

148,85 £111>

1/€
lim / %Sy, f0,S, f Adxdtdh
n+1

e—0 /¢

A28, S0 fIII + Il £113. 4.4

IA

Furthermore, repeating the above argument it also follows that
112%0:2 8, f 1117 < elllA*8, 9383 f1I1 + ell £113-
Finally, using Lemma 2.3 we can combine the above estimates and conclude that

H20: Sy fUIl = c®(f) +cll fll2.

This completes the proof of (ii’) and hence the proof of Lemma 4.2.

5 Resolvents, square functions and Carleson measures

In the following we collect some of the main results from [32] to be used in the proof of our
main results. Throughout the section we assume that H, H* satisfy (1.2) and (1.3). We let

Ly = —div AV,

where div|| is the divergence operator in the variables (dy,, ..., dy,). A is the n X n-

dimensional sub matrix of A defined by {4; ;}} j=1- We also let
H =0+ Ly, Hﬁ = —0; +£T|.

Using this notation the equation Hu = 0 can be written, formally, as

n+1 n

Hjju = D Ant1jDu1Dju — D Di(Aj i1 Dyyru) = 0. (5.1)
j=1 i=1

In the proof of Lemma 6.1 below we will use that (5.1) holds in an appropriate weak sense
on cross sections A = constant. Indeed, let A € (a, b) and let ¢ < min(A — a, b — A). Set
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Ye(0) = e’lgp(o/e) where ¢ € C°(—1/2,1/2),0 < go,fgoda =1.Weletg, ¢(x,t,0) =
Y (x, t)pe (o) where ¥ € Ci° (R"+!, C). Then, by the notion of weak solutions we have

/ (AUCOViur, 1. 0) - Vi Gt 0) — ulx, 1, )0 c(x. 1, 0) ) dxdido

Rn+2
n+1 -

- Z/ L, Ant 1) 0u(x, 1, 0) e (x, 1, 0) dxdtdo
N Rll
j=1

n
- Z/ Ain1(X)u(x, 1, 0)05, P2 (X, 1, 0) dxdido. (52)
o Rn+2

Hence, if
Vu, Vosu € LEZ®R™!, "D, (5.3)

uniformly in A € (a, b), with norms depending continuously on A € (a, b), then we can
conclude, by letting € — 0 in (5.2), that

/ (A”(x)VHu(x, LAV (e, ) —ulx, t, Ao (x, t)) dxdt

R+l
n+1

= E /+1 AnH,j(x)axja)Lu(x,t,k)l//(x,t)dxdt
- R?
Jj=1

n
_ Z/ » Aiy,,_‘_l(x)a,\u(x,z,k)axiW(x,t) dxdt. 5.4)
i=1 /R

In this sense, and under these assumptions, (5.1) holds on cross sections A = constant.

5.1 Resolvents and a parabolic Hodge decomposition associated to 7,

Recall the function space H = H(R"*!, C) introduced in (2.1). In the following we will
consider, to ensure a Hilbertian structure, that this space is equipped with the equivalent semi
norm stated on the right hand side in (2.2) (i). We let H* = H*(R"*!, C) be the space dual
to H., with norm || - ||p+, and we let (-, -)p= : H* x H — C denote the duality pairing. We let
H = H(R"t!, C) be the closure of Ce (R"*!, C) with respect to the norm

I fllg = 11 Nl 4 L2

We let_IFH* = H*(R"T!, C) be the space dual to H, with norm || - I+, and we let (-, -}z« :
H* x H — C denote the duality pairing. Let B : H x H — R be defined as

B(u, ¢) = /]RnJrl (AHVHM . VHJ) — Di/2quDi/2¢) dxdt, (5.5)
and let, for § € (0, 1), Bs : H x H — R be defined as

Bs(u, ¢) = / 1 A Vju- V(I +5H)¢dxdt
R+

_/R+1 D! ,uH, DY, (I + 5 Hy) dxd. (5.6)
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Definition 5.1 Let F € H*(R"!, C). We say that a function u € H(R"T!, C) is a (weak)
solution to the equation Hju = F, in R+ if

B(u, ¢) = (F, ¢)m~,
whenever ¢ € H(R"t!, C).

Definition 5.2 Let A > 0 be given. Let F € H*(R"*!, C). We say that a function u €
H(R"*!, C) is a (weak) solution to the equation u + A>Hju = F,in R"*! if

/ ud dxdt + 3*B(u, ¢) = (F, ¢) g,
Rn+!

whenever ¢ € H(R"t!, C).

Lemma 5.3 Consider the operator H)| = d; —div|| A|| V| and assume that A satisfies (1.2),
(1.3). Let F € H* (R”'H, ©). Then there exists a weak solution to the equation H|ju = F, in
R+ in the sense of Definition 5.1. Furthermore,

Hullw < cllFllux,
for some constant ¢ depending only on n and A. The solution is unique up to a constant.

Proof This is essentially Lemma 2.6 in [32]. Let ¢5 := (I + §Hy)¢p, ¢ € H(R"H, ©),
8 € (0,1). Then

I(F, ¢s)m+| < cl[F|lm+[|p]|m.

Consider the sesquilinear form Bs(-, -) introduced in (5.6). If § = §(n, A) is small enough,
then B;s(-, -) is a sesquilinear, bounded, coercive form on H x H. Hence, using the Lax—
Milgram theorem we see that there exists a unique u# € H such that

B(u, ¢s) = Bs(u, ¢) = (F, ¢s)m+,

for all ¢ € H. Using that (I + § H;) is invertible on H, if 0 < § < 1 is small enough, we can
conclude that

B(u,y) = (F, ¥)m,

whenever ¥ € H. The bound ||u||y < c||F||u= follows readily. This completes the existence
and quantitative part of the lemma. The statement concerning uniqueness follows immedi-
ately. O

Lemma 5.4 Let A > 0 be given. Consider the operator H)| = 9; — div)| A||V|| and assume
that A satisfies (1.2), (1.3). Let F € H* (R"HY, C). Then there exists a weak solution to the
equation u + A2H||u = F, inR"T!, in the sense of Definition 5.2. Furthermore,

llwll2 + 1AVyull2 + IAD] jpull2 < cl| Fllgs,
for some constant ¢ depending only on n and A. The solution is unique.
Proof See the proof of Lemma 2.7 in [32]. O
Remark 5.5 Definitions 5.1, 5.2, Lemmas 5.3, and 5.4, all have analogous formulations for

the operator Hﬁ.

@ Springer



124 Page 30 of 49 A.]. Castro et al.

Remark 5.6 Let 1 > 0 be given. Consider the operator H; = 9, — div)| 4|V|. Let F €
H*(R"*!, C). By Lemma 5.4 the equation u + )\.2HHM = F has a unique weak solution
u € H. From now on we will denote this solution by &, F. In the case of the operator
Hﬁ we denote the corresponding solution by & F. In this sense £, = (I + )LZHH)‘I and

& =U+1¥HH™"
Consider A > 0 fixed, let |z| < A and consider F € TH* (]R”'H, C). By definition,
/Rm ErinFodxdt + L+ h)?B(EsnF, d) = (F, ),
/}Rn+1 EFpdxdt + 3 B(EF, ¢) = (F, ¢) g, (5.7
for all ¢ € H(R"T!, C). We let D} F := &4 F — &, F. (5.7) implies
DI F¢s dxdt +  \>B(DIF, ¢5) = —hQ2Ax + h)B(E 41 F, ds) (5.8)

Rn+l1

for all € H(R"!, C), ¢s := (I + 8 H,)¢. Again, arguing as in the proof of Lemma 5.4 we
see, if § = 8(n, A), 0 < & < 11is small enough and as Di‘F € H(]R"“‘l, C), that

1D} Fll2 + 1AV D} Fll2 + 1IAD} , D} Fll2 < clhll|En Fll2 < clhllIFllg., (5.9)

where ¢ is independent of /. Hence

lim D/ F = lim (&40 F — EF) =0 5.10
o hl—rﬂ)( ph +F) 610
in the sense that

1D} Flla + 1AV D} Fll2 + [IAD] ;D) Fllz — 0 as h — 0. (5.11)

Similarly,
/ h='DIFgs dxdt + 2> Bh™'DIF, ¢5) = —Qh + ) B(En F, ds)  (5.12)
R+l
and hence
k=" DEF |2 + IRV (k" DEF)l2 + |IAD] ), (B ' DY F)ll2 < cl| Fllge,  (5.13)
where ¢ is independent of /. Using (5.13), (5.12) and (5.11) we see, as X is fixed, that
Ain}) h~'DIF =: G, F weakly in H(R"'!, C), (5.14)

that (5.13) holds with 2! Dﬁ F replaced by G, F and that

Gy Fédxdt + A\>B(GyF, ) = —2AB(ELF, ¢) = —2M(H|ELF, $)g=  (5.15)

R+l
whenever ¢ € H(R"*!, C). We define

WEVF =G F (5.16)
and hence

RELF = —20EH | ELF (5.17)
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in the sense of (5.15). Furthermore, if F = f € H(R" L, C) then
(Hyé. f O — EHI S D)= = (HyExfs D) — (H S ExdD)
= B(&.f. ¢) — B(f, &) =0, (5.18)

and hence )| and &, commute in this sense. Furthermore, as A is independent of ¢ we can,
by arguing similarly, conclude that if f € H(R"*!, C), then

(&S, Phige — (0 f, Py = 0 = (L) E0 ], D= — (E1LY\ S D) (5.19)

and hence 0; and &, and £} and &, commute in this sense. In particular, if F = f €
H(R™*!, C) then

WES = —20EH) f (5.20)
in the sense of (5.15).

5.2 Estimates of resolvents

We here collect a set of the estimates for &, f and £ f to be used in the next section.

Lemma 5.7 Let A > 0 be given. Consider the operator H|| = 9; — div|| A||V|| and assume
that A satisfies (1.2), (1.3). Let ©,_denote any of the operators

&1 AV Ex, MDY pExs
or
MDY 1y, K2V ELDY 1y, A2 DY nE,DY s,
and let ®; denote any of the operators
A&y divy, A2V &, divyj, A2 D] ,&; divyy.

Then there exist ¢, depending only on n, A, such that
() / O3 f (x, 0)* dxdt < C/ |f(x, 0)|* dxdt,
Rn+l Rn+!

(ii) / |(:)Af(x,t)|2dxdt§c/ I£(x, 1) dxdt,
R+l Rn+l1

whenever f € L>(R"!, C), f e L2(R"*!, CM).
Proof This is Lemma 2.11 in [32]. ]

Lemma 5.8 Let A > 0 be given. Consider the operator H|| = 9; — div|| A||V|| and assume
that A satisfies (1.2), (1.3). Let Al | i= (A1 i1, ... Apnt1),

n
Z/{)L = )»5)L diV”,
and let
R =W Al — @Al )P,

where P, is a parabolic approximation of the identity. Then there exists a constant c, depend-
ing only on n, A, such that

IRx 12 < eIV fll2 + 11270, £112),

whenever f € CS°(R"*1, C).
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Proof The lemma is a consequence of Lemma 2.27 in [32]. o
Lemma 5.9 Let ) > 0 be given. Consider the operator H|| = 0; — div|| A|V|| and assume
that A satisfies (1.2), (1.3). Let A‘nlJrl = (Al n+1s - o5 Annsl),

Z/{)L = )»5)L diV”,

and consider U, AIU +1- Then there exists a constant ¢, depending only on n, A, such that

1o | odxdtdh
U Ay | =clQl,
0 0 A

for all cubes Q C R™ 1,
Proof This is Lemma 3.1 in [32]. ]

Remark 5.10 For the details of the proof of Lemmas 5.8 and 5.9 we refer to [32]. We here
simply note that for A fixed, (UAAE +1) (and R, 1) exists as an element in Lfoc (R ©).
Indeed, let Qg be the parabolic cube on R**! with center at (0, 0) and with size determined
by R. Writing

L{,\AL‘H = u)VA;‘zl+l lagg + M)LAIn‘+11R”+1\2QRv

and using Lemma 5.7 we see that

||UA(A‘,1|+1 Lo logll2 < C||A||ooR(n+2)/2.

Furthermore, by the off-diagonal estimates for U, proved in Lemma 2.17 in [32] it follows
that also

U (A1 Lo Lol < cllAllo R D1,

Theorem 5.11 Consider the operators H)| = 9; + L) = 9; —div| A||V);, Hﬁ = —0; +£ﬁ =
—d; — divy Aﬁ V), and assume that A satisfies (1.2), (1.3). Then there exists a constant c,
1 < ¢ < o0, depending only on n, A, such that

HAELH FI] + AELH fII < clDf] 2, (5:2D)

and

@ MauE SN+ NHEfI = clIDf]l2,

(i) MAE SN+ 111205 f1Il < clIDf ]2,

(i) |AEL) I+ NAELT I < clDf 12,

@) AL ESI+ NIALEE FII < clIDf ]2, (5.22)

whenever f € H(R"!, C).

Proof (5.24) is Theorem 1.17 in [32], (5.22) (i)—(iv) is Corollary 1.18 in [32]. However, as
the proof of Corollary 1.18 in [32] is presented in a slightly formal manner we here include
the proof of the inequalities in (5.22) clarifying details. We only supply the proof in the case
of H);. To prove (i) we note that 9, &) f is defined as in (5.16) and that we have, using (5.20),
. f = —ZAEfHHf in the sense of (5.15). Hence (i) follows from (5.24). To prove (ii) we
note that 9, and &, commute in the sense discussed above, see (5.19), and that

A f = AEVH f — AEL) ]

@ Springer



Boundedness of single layer potentials associated to divergence... Page 33 0of 49 124

Hence, using (5.24) we see that

A E FII < clIDf 12 + NAELL) FIII-

Therefore, to prove (ii) it suffices to prove (iii). To prove (iii), we let f € H(R"*!, C) and
put g = AV} f. Using Lemma 5.3 we then see that there exists a weak solution u to the
equation

div)|(g) = Hjju such that ||u||m < c|lIgl|2. (5.23)
In particular,
ALY f = AEH u. (5.24)
Hence, again using Theorem 5.11 we see that
HAELFII < clDul. (5.25)

(iii) now follows by combining (5.23) and (5.25). To prove (iv) we simply note that £ and
&, commute in the sense of (5.19), and hence (iv) follows from the argument in (iii). This
completes the proof of (5.22) (i)-(iv). O

5.3 Remark on the Kato problem for parabolic equations

In Section 5 in [32] implications of two of the results proved in [32], Theorem 1.17 and
Theorem 1.19 in [32], for Kato square root problems related to the operator 9, + £ (in
[32] this operator is denoted 9, + L), as well as generalizations of these results to operators
d; — div A(x, 1)V, i.e., to operators with time-dependent coefficients, are discussed. The
discussion in the section is essentially flawless but the author neglects to properly state that
the Kato square root problem for the operator 9, + £ is in fact solved in [32]. Indeed, the
core of the approach in [32] is the observation that 9, + £)| can be realized as an operator
H — H* via the sesquilinear form B(u, ¥) introduced in (5.5):

(B + LyDu, ¥) := B, V), u, ¢y € H.

By the arguments in [32] it follows, see also Lemma 5.4 above, that if 6 € C withRe 6 > 0,
then

0+ 0, + Ly DO+ L)) — LZ(RnJrls (6]

is bijective and the resolvent satisfies the estimate

_ 1
16 + @ + L)~ fll2 < @Ilfllz-

In particular, 9, + £, with maximal domain D(9; + L)) = {u € H: 3 + Lypu €
L2(R"!, ©)} in L2(R"H!, €), is maximal accretive and, see also the discussion in Section
5in [32], d; 4+ L is sectorial and there is a square root ,/d; + L) abstractly defined by
functional calculus. Furthermore, 9, + £ has a bounded H° calculus. This is an other way
of formulating the discussion in Section 5 in [32] up to display (5.4) in [32]. Furthermore,
the inequality

INCEY c/o /R I+ 32y + L))" 2y + L) f12

does hold for all f € Cg° (R"*!, C). In particular, the inequality in display (5.5) in [32] is
valid and this was the only point left open in [32]. Based on this we can conclude, using the

dxdtdx
A

. (5.26)
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main result proved in [32], that there exists a constant ¢, | < ¢ < 0o, depending only on 7,
A, such that

cHID 12 < 1V + £ f1l2 < clIDf 12, (5.27)

whenever f e H.

6 Estimates in parabolic Sobolev spaces

Throughout this section we assume that H, H* satisfy (1.2) and (1.3) as well as (2.6) and
(2.7). Using the estimates established and stated in Sects. 4 and 5 we in this section prove
the following three lemmas.

Lemma 6.1 Let ®(f) be defined as in (1.7). Assume that ®(f) < oo whenever f €
L2(R™, C). Then there exists a constant ¢, depending at most on n, A, and the De Giorgi—
Moser—Nash constants, such that

V) Sio Fll2 < (@) + 11 f112 + [[Nasx (3280 )] 12)
whenever f € LE@®R"™, ©), A9 > 0.

Lemma 6.2 Let ®(f) be defined as in (1.7). Assume that ®(f) < oo whenever f €
L2(R™*1, C). Then there exists a constant ¢, depending at most on n, A, and the De Giorgi—
Moser—Nash constants, such that

IDnt1Sa0 F113 < (@) + 11 £112),
whenever f € LXR"t, C), A9 > 0.

Lemma 6.3 There exists a constant ¢, depending at most on n, such that
1H: D} ;S50 fll2 < e(IDn41850 fll2 + 11V S f112),
whenever f € LAR" ©), Ao > 0.
The proofs of Lemmas 6.1-6.3 are given below.

6.1 Proof of Lemma 6.1

Throughout the proof we can, without loss of generality, assume that f € Cg° (R"F!,C). Let
Ao > 0 be fixed. To prove the lemma it suffices to estimate

1 ::/ gV Sy, fdxdt,
Rn+l1

where g € C(‘)’O(]R”“, C") and ||g||>» = 1. Given f € C(()’O(R”“, C), we note, see Lemma
3.5, that Sy, f € H(R"*!,C) N L?>(R"*!, C). Hence, using Lemma 5.3,

1:/ AHVHS,\Of-dedt—i—/ H; D} (S5 [) D] ) (v) dxdt,
Rn+! Rn+!

for a function v € H = H(R"t!, C) which satisfies

vl < cligll2,
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for some constant ¢ depending only on n and A. Let

L ::/ AV Sa, f - Vvdxdt,
R+l

I = /Rn+1 HzDi/z(ngf)Di/g(U) dxdt.

As Cgo (R”'H, C) is dense in H(R" !, C) we can in the following also assume, without loss
of generality, that v € C§° (R™*1, C). This reduction allows us to handle several boundary
terms which appear when we integrate by parts.

We first estimate /7. Recall the resolvents, &, = (I + )»27-[”) 'and E=U+ AZH ) N
introduced in Sect. 5. To start the estimate of /1 we first note, applying Lemma 5.7, that

/ " AVESitio f - V1 EFvdxdt

C
< ﬁllsxﬂofllzllvllz- (6.1)

Hence, using that

Ao
Seirof — S f = / 005, f do, 6.2)
A0

the fact that ®(f) < oo, Lemma 3.5 and that f,v € C(‘)’o(R”“, C), we can use (6.1) to
conclude that

|/ . AHVHS)\SAJ,_)LOf . VHS;Cdedt —> 0 as A — oo. (6.3)
R}’l

Hence,
00 [
11 = —/ 3)L (/ AHVHEV)LS;\_HLO‘}C . V”S;‘:v dxdt) dh. (6.4)
0 R+l
Consider A > 0, Ao > 0 fixed, let |#]| < min{Ag, A}. Then
/ Al\v\lgk+h$A+Ao+hf V||€A+hvdxdz
/ ANV ESisae f - VI Ef yvdxdt =T + T} + T, (6.5)
where
/ AHV” Enth — 5A)S)L+)L0f VHE)L_'_hvdxdt
= / AVIESisao |- VII(Ef v — Efv) dxdt,
T3h = /Rn+l AV Ein ($A+A0+hf — S)\+)Lof) . VHE;CJrhv dxdt. (6.6)
Using (5.7)-(5.16) we see that
lim AT = / AV03ESitae [ - V) Efvdudt,
h—0 Rn+1
lim 217 = / AVESitae f - V81 E v dxdt,
h—0 Rn+l1

lim A~ 7! _/ AVE.8:.Sitao [ - V) Efvdxdt. 6.7)
h—0 N Rn+l1
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Using these deductions we can conclude that

o0
ho= _/ / (ANVIBES) 130 f) - ViiEfv) dxdid
0 Rn
o —
_/ / . (A V)1 E:Sagao f) - V)0 Efv) dxdtd
0 Rn

o —
_/ / +1((A\|v\|5)»aksk+kof) - V) Efv) dxdtd
0 Rn
=: 111+ Io + 13,

and we emphasize that by our assumptions, and (5.7)—(5.16), I11 — I3 are well defined. To
proceed we first note that

o0 o0
I = —/ (L[| Ev, 06,8t [ AN = —/ (EX L, 3. E3Satag [ A,
0 0

o0

o0
I = —/ (LYESrtng [r NE VY dA = —/ (3L Srgng [r NEL VY d A,
0 0

by (5.19). Let

@]
J::// |E3L) St f|* Adxdrd).
0 Rn+1

Then, using (5.17) , the L?%-boundedness of &, and &), Lemma 5.7, and the square function
estimates , Theorem 5.11, we see that

11|+ 112l < c(1128iSaga £l 4+ TP 0]
< (@) + I1f1l + TD) ]|,

where we on the last line have used Lemma 4.2. Next, referring to (5.4) we have

n+1

L)Satr f = ZAn+1,an+1Dj8x+,\of
j=1

n
+ Z D;i (A n1Dpt1Spia0 f) + 0:Sptag f

i=1

in a weak sense for almost every A. Using this, and the L?-boundedness of &,, Lemma 5.7,
we see that

J < c(IAV3Sitag FIIF + A8 Sasag FIIIF + ),

5 00
0 R+l

In particular, again using Lemma 4.2 we see that

where
2

n
€D DiAins18iSitso f)| Adxdrdi.
i=1

T < e @)+ 11 fll+ ).

@ Springer



Boundedness of single layer potentials associated to divergence... Page 37 of 49

124

To estimate J, let A‘nlJrl = (A1n+1, - -+ An.nt1). Then

o0
I= / / 6V (A9, /I Adxdid
R~

/ /RH] |Z/{A(An+13x3k+lof)|

where U, 1= A& div)|. We write

2 dxdidi

w Al = Al — Al P Al )P =R+ anal, )P
Then
J<Ji+ D,
where

00 , dxdtd
= R0, x40 [ ——
0 Rn+l A

, dxdtd

o
7 Il
= A P
J /0 /R”+1 (U A, DPLOASA 120 ) .

Using Lemmas 5.8, and 4.2, we see that

o0
J < c/ / V3,812 f|* Adxdrd
0 n+1

o0
+c / / 18,35, S3430 f | A3 dxdrdr
0 n+1

< (@D +IIA1D.
Furthermore, by the Carleson measure estimate in Lemma 5.9 we have
2 < clINPL@3:S. )3
Finally, we note that

[N« (P850 D2 < clIM (Niex (1S3 SN2 = ¢l Nss (3255 )] |2

where M is the parabolic Hardy—Littlewood maximal function. Putting all these estimates

together we can conclude that

[Tl + 2] < (@) + 11112 + [N (0285 H)l12) v [,

which completes the estimate of |711]| + |712]|. We next estimate /3. Integrating by parts with

respect to & we deduce, by repeating the argument above, that

o0 S —
Iz = —/ / H(AHVHS,\G)\SHAO]‘-V||£;‘v) dxdtd
0 n

oo [
/ / o (A||V|‘€A8ASA+AOf . VHS)TU) Adxdtdx
0 Rn+l
o0 S —
= / / " ((A|\V\|3)L5A3)L$A+Aof) . Vﬂc‘ffv) Adxdtd
]Rfl

o —_—
+/ / (VD Siri 1) - V119, E[v) Adxdid
0o Jre
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o0
+/ / +l((Ananxa%Smof) -V 1EFv) Adxdtd)
0 Rn
=: I131 + I132 + L133.

By repeating the estimates above used to control |111]| + |/12], we see that
o
(I31] + [h32)? < c/ / N V028120 f 1> A2 dxdrdn,
0 Jrr
o0
+c / / 18,03 S3130 f | A2 dxdrdr
0 n+1

o0
+c/ /+1 180285120 f 12 X2dxdtdn + c|| Ny (Py. (10285 )13
0 n

Furthermore,
0 S —
hisz = / / N (AHVHE)\a)%S)LJr)\Uf - V)1 Efv) Adxdidh
Rn
/ / 5A3ASA+A0f5*£*U rdxdtd,
Rn+l

by previous arguments Using the L?-boundedness of £;, Lemma 5.7 and the square function
estimate for & * H’ Theorem 5.11, we can conclude that

00 12
I < c ( / / |3f$/\+,\of|2>\dxdtdk) o]
0 Rﬂ+l

Hence, again using Lemma 4.2 we see that
113] < c (@) + 11 £1l2 + | INe(PL.(R3Z S0 )]12) [Vl e,
Again
INw (PO S3 )2 < M (Nuse B35 S5 f )12 < ¢l Nex (10385 )2
and using (2.6) and Lemma 2.1 we see that
| Nex 13383 P12 < €l INwi 0283 )2

after a slight redefinition of the non-tangential maximal function on the right hand side. This
completes the proof of /.

We next estimate /. To start the estimate of /, we first deduce, by arguing along the lines
of (6.3)—(6.7), that

143

w —
_/ /Rm 0 (Hi D} pE1Sitag f - DY pEiv) dxdtdi

/ / » (HID]/ZB)Lg)\S)\+)L0f) D 25*11 dxdtd
Rn

—/ / » (H[Dtl/zg)LS)LJr)\Of) . Di/za,\é’;‘v dxdtd
Rn

/ / (H,DI/ZE,\BAS,\HOf) Dl/zé’*v dxdtd
Rn+!
=: Dy + I + Iz3.
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Using the L2?-boundedness of &, and &Y, Lemma 5.7, and the square function estimates,
Theorem 5.11, that H|; commutes with &;, Di /2 and H,Di /2 and that Hﬁ commutes with

Sf, D{ /20 and H, D’1 /20 in both cases in the sense described above, we can as in the estimate
of [I11]| + |12 deduce that

22| < cllIA0;Sasag [l V] < (@) + I f1IDNv]]E- (6.8)

At the final step of this deduction we have also used Lemma 4.2. Integrating by parts with
respect to A in /3, and repeating the arguments used in the estimates of |I21| and |12, it is
easily seen, using Lemma 4.2, that

13| < (@) + 11 F 1)l + 3],

where
- oo 2
!
I3 = /O /R M((H,Dl 1268581130 f) - DY pE5v) Adxdrd.

However, again using Lemma 5.7 and Theorem 5.11

D3l < WA Ss420 LI A ES VI < c@ (0]l

This completes the proof of the lemma.

6.2 Proof of Lemma 6.2
To prove Lemma 6.2 it suffices to estimate
[ @S ngdxar
R+l

when f, g € C§° (R™1,C), ||g|l2 = 1. Let in the following P, be a parabolic approximation
of the identity. Then, using (2.2) (ii) we see that

‘ / (D 1S1120 PG ddt
Rn+l

< clID} 2Sa420 FI1211P22 112

Cc
= Sz 19 FlI201Sor0 fl2-

Again using (6.2), Holder’s inequality, the fact that ®(f) < oo, Lemmas 3.4 and 3.5 we
deduce that

‘/ (Dy418x+420 f)Prgdxdt| — 0 as A — oo.
Rn+l1

Hence,
oo
_/R,I+,(D"+1S*0f)é_’ dxdt = /0 /n+1 0 (D 41Sn420 f)PrE) dxdtdi
o0
= / / (D 1100Satao f)Prg dxdtd
0 R+l

o0
+/ / +1(Dn+13A+A0f)8)\(PAg) dxdtd
0o Jre
=:1+1.
Note that D, | = iD™'9, and that 9, P; = DQ; where Q; is an approximation of the zero

operator. To prove this one can use that the kernel of 9, P, has not only zero mean but also
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first order vanishing moments if P is an even function (see also [21, p. 366]). Using this we
see that

11>

" (0:Srtno [) Q1&g dxdtdi

oo
o [T 10Sia S P addrdr < @) + 7o)
0 R

by (2.8) and Lemma 4.2. To handle / we again integrate by parts with respect to A,
o0
1= [ [ s HPgidxdna
0 Rn+l1

o0
+ / / O Sui0 FI0(PLD) rdxdid
0 71
=11+ I.

Arguing as above we immediately see that

o0
L SC/ / N 19:83Ssa f1> A3dxdtdn < c(@(f) + |1 £112)%.
0 R7

Focusing on [;, Lemma 2.4 implies
1111 < 11207 Saing LI TADn1Paglll < ell1A07 St f1I] IIADPrgll] < c®(f),

and the proof of the lemma is complete.

6.3 Proof of Lemma 6.3

Let K > 2 be a degree of freedom and let ¢ € C5°(R) be an even function with ¢ = 1 on
(=3/2,-2/K) U (2/K, 3/2) and with support in (-2, —1/K) U (1/K, 2). Recall that the
multiplier defining D} 2 is |7|1/2. We write

[T = 21" 2p (/11 DI + 212 - ¢><r/||<s,r>||2)

= sgn(r)"ﬁl/i”m /116 DI

II(E 2l

- |r|1/2%(1 — ) (@/IIE DIP)iE;.
j=1

Hence, introducing the multipliers

miE 1) = sgu”ﬁl/;”m /I DIP),

ma (€. T) = —|r|‘/2&(1 — O E/NEOIP),

for j € {1,. n} we can conclude the existence of kernels Ly, L ;, corresponding to m,
my,j, such that

n

Di,=Li*Dyy +cZL2,j*axj,
j=1
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where * denotes convolution. Choosing K = K (n) large enough we see that the multipliers
my and m; ; are bounded, and hence L and L; ; are bounded operators on LZ(R”‘H, QC).
This completes the proof of Lemma 6.3.

7 Proof of Theorem 1.1

Assume that H, H*, satisfy (1.2) and (1.3) as well as the De Giorgi—-Moser—Nash estimates
stated in (2.6) and (2.7). Assume also that there exists a constant C such that (1.5) holds
whenever f € L?(R"*!, C). To prove Theorem 1.1 we need to prove that there exists a
constant ¢, depending at most on n, A, the De Giorgi-Moser—Nash constants and C, such
that the inequalities in (1.6) (i)—(iv) hold. Again, we only have to prove (1.6) (i)—(iv) for Sf
as the corresponding results for SZ{* follow by analogy. To start the proof, we first note that
(1.6) (i) is an immediate consequence of Lemma 4.1 (i) and the assumption in (1.5) (i). Using
Lemmas 6.1, 6.2, and 6.3, we see that (1.6) (i) and the assumptions in (1.5) imply that

sup [IDS] f1I> < cllf 1l
A>0

This proves (1.6) (ii). (1.6) (iii), (iv), now follows immediately form these estimates and
Lemma 4.1.

8 Proof of Theorems 1.2 and 1.3

Assume that H = 9, — div AV satisfies (1.2) and (1.3). Assume in addition that A is real
and symmetric. Then (2.6) and (2.7) hold. To prove Theorem 1.2 we have to prove that there
exists a constant C, depending at most on n, A, such that (1.5) holds with this C. We first
focus on the estimate in (1.5) (ii). Consider

Ya(x,t,y,s) = AKy(x, 1, y,5) = AafF;L(x, t,y,s). 8.1
Then, using Lemma 3.1 we see that v, (x, ¢, y, s) satisfies the Calderon—Zygmund bounds
W (es 1,y )] < elAl(dx, 1y, 9) 7", (8.2)
and

IR (ds (x, 2, y, 5)) "3

D" (Y G, -, 3, ) (x, )] <
< c|lh||*(dy(x, t, y,5) "7, (8.3)

for some @ > 0, whenever 2||h|| < (Ix — y| + |t — s|'/?) or 2||A|| < |A|. Our proof of
Theorem 1.2 is based on the following two theorems proved below.

Theorem 8.1 Assume that v, satisfies (8.2) and (8.3). Let
O f(x,1) 2=/ » Ya(x, 1, y,8) f(y,s)dyds,
R’l

whenever f € L2(R"T!, C). Suppose that there exists a system {bg} of functions, by :
R — C, index by parabolic cubes Q € R"*, and a constant ¢, independent of Q, such
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that for each cube Q the following is true.

<i>/ Ibo(x, D dxdt < c|Ql.
Rll+1

.. 1@ 5 dxdtd
(i1) 16bg (x, 1) <c|Ql,
0 0 A

(i) ¢ 1 Q| < Re / bo(x,t)dxdt. (8.4)
0

Then there exists a constant ¢ such that

% dxdtdi\'"?
|||9Af|||=(/ / 16 f (x, 1) xa ) <cllfll2, (8.5)
0 R+l )\

whenever f € L*>(R"1, C).

The proofs of Theorems 1.3 and 8.1 are given below. We here use Theorems 1.3 and 8.1
to complete the proof of Theorem 1.2.
Proof of (1.5) (ii) We simply have to produce, using Theorem 8.1 and for 6, defined using
the kernel in (8.1), a system {b} of functions satisfying (8.4) (i)—(iii). To do this we let

bo(y, ) :=1Ql1gK (A, y,s),

whenever (y,s) € R"*! where 1o is the indicator function for the cube Q and where
Ie_(Aé, v, s) is the to H* = —0, 4+ L associated Poisson kernel, at Aé = (xg, —1(Q), tp),
defined with respect to R"*2. Theorem 1.3 applies to K_ (Aé, -, -) modulo trivial modi-

fications. To verify that by satisfies (8.4) (i)—(iii), we first note that (i) is an immediate
consequence of Theorem 1.3. Furthermore,

~Ap _
[ botrsrdvas =101"(0) = <0
Rn
A
by elementary estimates and where @_° is the associated parabolic measure at Aé and

defined with respect to R"*2. Hence (iii) follows and it only remains to establish (ii). Let
(x,1) € Q, X € (0,1(Q)) and note that

G3bo(x, 1) :/ AT (x, 1, y, $)bo(y, s) dyds
Rn+l

ZAIQI/ 0;T(x, 1,7, )K-(Ag, y,s) dyds
Q

=0l (3T (x, 1, 1, x0, 10, —1(Q)))

by the definition of Aé, E_(Aé, v, s), and as afr(x, t,A,xg,tg, —1(Q)) solves H*u =0
in R"2. Using this, and (8.2), we see that (ii) follows by elementary manipulations. Hence,
using Theorem 8.1 we can conclude the validity of (1.5) (ii). O
Proof of (1.5) (i) We first note, that we can throughout the proof assume, without loss of
generality, that f € Cg° (R™!, R). Second, using Theorem 1.3 and the fact that if H =
d; — div AV satisfies (1.2) and (1.3), and if A is real and symmetric, then the estimates of
the non-tangential maximal function by the square function established in [9] for the heat
equation, remain valid for solutions to Hu = 0. In particular, let f € Cgo (]R”‘H, R) and
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consider A > 0 fixed. We let R and r be such that A < r < R and such that the support of
f is contained in Qg/4(0, 0). Then, using Theorem 1.3 and [9] we see that

10282 /) 10,0013 < clllAVEHSfIII* + R 2[3:5r/2f (0. O,
for a constant ¢ depending only on n, A. However,
R"™ 219, 8r2 £ (0, 0))> < RT"2[| fI[}.

Hence, first letting R — oo and then letting » — oo we can conclude that

HxSa fll2 = clllAV3. Sy f1II. (8.6)

Using (4.3) we see that
NAV®HS Il < cllAdFSi f1ll +cll fll2. (8.7)
(8.6), (8.7) and (1.5) (ii) now prove (1.5) (i). |

This completes the proof of Theorem 1.2 modulo Theorems 8.1 and 1.3.

8.1 Proof of Theorem 8.1

Though there are several references for this type of argument, see [10,19,25] and the refer-
ences therein, we will, for completion, include a sketch/proof of the argument in our context.
To start with, as v, satisfies (8.2) and (8.3) it is well-known, see [10], that to prove (8.5) it
suffices to prove the Carleson measure estimate

1 o dxdtdi
sup —/ /|9A1|2 et (8.8)
QCR"+1 |Q| 0 Q A

Using assumption (iii) in the statement of Theorem 8.1, and a by now well-known stopping
time argument, see [19], one can conclude that

1 [ dxdtd 1 o dxdtdx
sup  —— 1611 a <c sup — 16, 1) A%y a ,
2P0
QCRn+! 101 Jo 0 A QCRntl 101 Jo o A

where A,\Q denotes the dyadic averaging operator induced by Q and introduced in (2.9).
Hence, to prove (8.8) it suffices to prove that

Q) dxdtd
/0 /Q I(Oxl)AbeI <c|Q], (8.9

py
forall Q c R**!. We write
6140 =R bo + R b + 6:1bo,
where
Rbg = 6 1)(AL — A2Py)bo,
RPbg = (6,1)ALP; —6,)bg,

and where P, is a parabolic approximation of the identity. Using assumption (ii) in the
statement of Theorem 8.1 we see that the contribution from the term 6, b¢ to the Carleson
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measure in (8.9) is controlled. Hence we focus on the contributions from R(Al) bg and R;z) bo.
Note that

R = @12 — A2Py) = 6D A2 (AL —Py).
Using (8.2), (8.3), and a version of Schur’s lemma, we see that
1@ DAL o2 < c.

Thus, by Lemma 2.5,

1(Q) dxdtdi o0 dxdtdi
/ / R Vb (x, . Lddr c/ / (AL — Poybg x, )2 L2414
0 Q )\ 0 ]Rnﬂ )\

<c [ Ibot.Pdxdr =il
R+l

It remains to estimate
(o dxdtd
2 X
/ / IRPbg(x, 1> ———=.
0 0 A

However, using (8.2), (8.3), and that R;z)l = 0, it follows by a well known orthogonality
argument, and assumption (i) in the statement of Theorem 8.1, that

Q) dxdtdx
/ /mf)bg(x,oﬁ a 5/ lbo(x, )|* dxdt < c|Q|.
0 0 A Rn+1

This completes the proof of Theorem 8.1.

8.2 Proof of Theorem 1.3
Under the assumptions of Theorem 1.3 there exists a Green’s function G = G(X,t,7Y,s)
toH =0 +L =09 —divAV in RT’Q, and corresponding measures o (-), @XD(.),
(X,1) € R’i” such that
¢(X,t) = /(AVyG(X, t,Y,s)-Vo(Y,s)+ G(X,t,7Y,5)0s¢ (Y, s)) dYds
+/¢(y,0, $)do™ ) (y, 5),
(X, 1) = /(AVYG(Y,s, X,1)-Vo(Y,s) — G(Y,s5, X, 1)0,¢(Y,s))dYds

+/¢(y, 0,5)dd*"(y,s), (8.10)

whenever ¢ € C(C)’O(R”"'z) and where (X, 1) = (x, xy41, 1), (Y, 8) = (¥, Yn+1, s). In partic-
ular,

(0 +Lx)G(X,t,Y,5) =80,0(X =Y, t—y5),
and

(=05 +Lys)G(X, 1, Y,5) = 5(0,0)(X —Y,t—s). (8.11)
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Furthermore, in this setting G has a number of well-known properties, see for example display
(3.7) on p. 11 in [23], and given f € C(R"+1) N L®R"H1),

u(X, 1) = /R Lo dw™®D(y, s),

gives the solution to the continuous Dirichlet problem Hu = (3; +L)u = (3, —div AV)u =0
in R'fﬁz, u e C(R"! x [0, 00)), and u(x, 0, 1) = f(x, t) whenever (x, t) € R {oXD .
(X,1) € R’fz} and (X0 : (X,1) € R’fz} are families of regular Borel measures on
R"*+! which we call H-caloric, or ‘H-parabolic measures, and H*-caloric, or H*-parabolic
measures, respectively.

Given H = 9; —div AV, satistying (1.2) and (1.3) with constant A, A real and symmetric,
let Ac, 0 < € < 1, be a smooth (n + 1) x (n + 1)-matrix valued function, A, real and
symmetric, such that H¢ = 9; — div AV satisfies (1.2) and (1.3), with constants depending
at most on n and A, and such that |[A. — A| < e on R™*2. Letas above G (X, 1, Y, s), wéx‘t),
d)éx"), be the Green’s function and boundary measures associated to H, = 9; — div AV,
H¥ = —0; — div Ac V. Extending G¢ and G to all of R"*2 by putting Gc = 0 = G on R"+2
one can prove, by for instance following the argument in Lemma 3.37 in [23], that

/(AGVYGE(X, 1,Y,8) VoY, 5)+Ge(X,1,Y,5)0¢(Y,s))dYds
— /(AVyG(X, t,Y,8) VoY, s)+G(X,t,Y,5)0¢(Y, s)) dYds (8.12)
and
/(AGVyGe(Y, 5. X, 1) -Vo(Y,s) — Ge(Y, 5, X, 1)05¢(Y, 5)) dYds
— /(AVyG(Y, s, X,t)-Vo((Y,s) —G(,s, X,t)os¢p (Y, s)) dYds, (8.13)
as € — 0, whenever (X,t) € R'f'z and ¢ € C8°(K) where K is a compact subset of
R”*z\{(X, t)}. Hence, using (8.10), (8.12), (8.13) we can conclude that
) (8.14)

weakly as Radon measures on R"*! as € — 0.

Based on the above outline it follows that it suffices to prove Theorem 1.3 assuming that
A is smooth. Indeed, consider, for € > 0 small, A and assume that the parabolic measure
associated to H,, in R'jr”, is absolutely continuous with respect to the measure dxdt on
Rt = BR’fZ, let 0 C R""! be a parabolic cube and let K.(Ag, y,s) be the to H,
associated Poisson kernel at A := (xg, [(Q), tp) where (x¢, tp) is the center of the cube
Q and [(Q) defines its size. Furthermore, assume that there exists ¢ > 1, depending only on
n and A, such that

/Q|K€<AQ,y,s)|2dyds <clo™".
Then Kc(Ag, y,s) - K(Ag, y,s) weakly on Q as € — 0 and

/ IK(Ag, y,s)>dyds < c|Q|™".
(9]
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Furthermore,

/ P(y.$)dwe(y.s) = lim / By, )dwl®(y, s)

lim [ 0. 5)Kc(Ao. v.5)dvds = [ 609K (A, 3. dyds
(8.15)

whenever ¢ € C5°(Q x (=1(Q)/2,1(Q)/2) and Theorem 1.3 follows.
In the following we prove Theorem 1.3 assuming that A is smooth. If A is smooth it
follows that the solution to the Dirichlet problem Hu = 0 in R'J’FH, u = f onR"*!, equals

u(X,t) :/ K(X,t,y,s)f(y,s)dyds,
Rn+l
where

K(X.1,y.5) = (VyG(X.1, Y. 8), AV )ens 1)y, 1120 = n 101 (0)dy,
G(X,1,Y, )y, =0-

Using (1.2) we see that a,41,,+1 is uniformly bounded from below. Let O C R"*! be a
parabolic cube and let Ap = (X, tp) = (x0, l(Q) to), where (xg, tp) is the center of

the cube and /(Q) defines its size. We write Q = Q x (tg — 1(0)? /2,to + 1(0)? /2) where
QCR'isa (elliptic) cube in the space variables only. Then

tQ-H(Q) /2
/(K(AQ,y,s))zdyds =/ /A(K(XQ,IQ,y,s))Zdyds
0 19-1(0)2/2

1(Q)*/2
/ /(K(XQ 0,y, s)) dyds
1(0)%/2

1(0)?/2
/ /(K(XQ 0,y, —s))? dyds, (8.16)
1(0)2/2

by the translation invariance in the time-variable due to (1.3). Using the Harnack inequality
we see that

(K(X0,0,y,—s)? < cK(X0,0,y, —)K(Xg, 161(Q)%, y, ), (8.17)
whenever (y, s) € O x [—1(0)%/2,1(0)?/2]. Let
¢ € CSO(R”“\({(XQ, 0} U{(Xo, 16l(Q)2)})

be such that

Oy, Yut1,5) =1, (8.18)
whenever (v, yut1,5) € Q x [—1(0)/16,1(Q)/16] x [-1(0)?/2,1(Q)?/2], and
&y, Yn+1,5) =0, (8.19)

whenever (v, yut1,5) € R"*2\ (20 x [~1(Q)/8,1(Q) /81 x[~1(Q)?, [(Q)?]). Furthermore,
we choose ¢ so that

IVyp(Y, )| <), 19,9(Y,9)] < cl(Q) 72, (8.20)
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whenever (Y, s) € R"T2. Let W(Y, s) := ¢ (¥, )0y, v(Y, s), where

v(Y, ) == G(Xp,0,Y, —s),

and let

Using

3(Y,s) == G(Xg, 161(Q)%, Y, 5).
(8.11) we see that

o:/ +l(( s + Ly,5)G(X g, 161(Q)*, Y, $))W (Y, s)dYds
Rn

=/ (=85 + Ly )B(Y, $))W(Y,s)dYds.
R1+2

Using this identity, and integrating by parts, we see that

1 ::/ . W (Y, )y, =0K(Xg, l6l(Q)2,y,s)dyds
Rn

=/ (B + Ly )WY, $)(Y, 5)dYds.
R'rd

We will now use the identity in (8.21) to prove Theorem 1.3. Indeed,

(05 + Ly )V = 0, ¥ — div(AVy W)
= 0y, v05¢ — div((9y,,,vV)AVyd) — AVydy, v - Vyd
+ (0D, v — div(AVy Dy, v)).

The key observation is, as A is independent of y,, 1, that

350y, U — dlv(Avyay”Hv)_aM( — div(AVyv))
Ay (05 + Ly)G)(X 0,0, Y, —5)) =0,

(8.21)

on the support of ¢. This is due to the presence of the minus sign in front of s in
G(Xp, 0,7, —s). Hence, using (8.21) and elementary manipulations, we see that

where

I=5L+ 1L —1Is.

I ;=/ 33,1 G(X 0, 0,7, —5) (@0 (Y, $))G(X g, 161(Q)?, Y, 5) dY ds,
R

b ;=/ 3y,,,G(X0,0,Y, —5)(AVy¢) - VyG(X o, 161(Q)%, Y, 5) dY ds,
R

+

I :=/ L(AVyd,, G(X0.0,Y, —s) - Vy)G(X . 16/(Q)°. Y, 5) dYds.
Ry

Recall that ¢ satisfies (8.18)—(8.20) and let E = R’jfz N{,s): ¢(Y,s) # 0}. Using this,

Ihl = Cl(Q)_z/ 10y,,1G(X0,0,Y,=9)[IG(Xg, 161(Q)*, ¥, s)| dYds,
E

12| < Cl(Q)fl/ 10y,,,G(X0,0,Y, =9)[IVyG(X g, 161(Q)*, ¥, s)| dVds,
E

113] < Cl(Q)*l/ IVydy,,,G(X0,0,Y, =)[|G(Xg, 16/(Q)*, Y, s)| dYds.
E
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Hence, using energy estimates and Gaussian bounds for the fundamental solution we deduce
111 <111l + Bl +|15] < clQ] ™.
Using this and (8.21) we see that
10)*/2

/ K(X0,0, v, —5)K (Xg. 161(Q)%. . 5)dyds < c|Q[".
—1(@)2/2J0

Hence, using (8.16) and (8.17) we can conclude that
/(K(Ag,y,s)>2dyds <clol™, (8.22)
9]

whenever Q C R"*! is a parabolic cube, for a constant ¢ > 1, depending only on n and A.
Put together Theorem 1.3 follows.
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