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Abstract A class of sequential estimation procedures is considered in the case when
relevant data may become available only at random times. The exact distributions of
the optimal stopping time and the number of observations at the moment of stopping
are derived in some sequential procedures. The results obtained in an explicit form
are applied to derive the expected time of observing the process, the average number
of observations and the expected loss of sequential estimation procedures based on
delayed observations. The use of the results is illustrated in a special model of nor-
mally distributed observations and the Weibull distributed lifetimes. The probabilistic
characteristics are also derived for an adaptive sequential procedures and the behav-
ior of the adaptive procedure is compared with the corresponding optimal sequential
procedure.

Keywords Stopping time · Optimal stopping · Bayes sequential estimation ·
Distribution of a stopping time · Boundary crossing probability

1 Introduction

In many practical problems, for example in reliability or in clinical research, data are
available only at random times. Namely, it is assumed that we observe simultaneously
n objects which, for example, undergo failure at random times. In these random times
we observe the realizations of random variables from a distribution Pϑ ∈ P, where
P is a given parametric family of distributions. It is also assumed that the distribution
Pϑ is independent of a distribution of failures. For example in papers of Starr et al.
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618 A. Jokiel-Rokita, R. Magiera

(1976), Magiera (1982), Jokiel-Rokita and Magiera (1999, 2010) and Jokiel-Rokita
(2006) a class of problems of estimating the unknown parameter ϑ in some statistical
models is considered on the basis of such data which are called delayed observations.
In the papers mentioned above it is assumed that if observation is stopped at time t ,
the loss incurred is given by

Lt (ϑ, d) = L (ϑ, d) + cA K (t) + c(t), (1)

where the function L (ϑ, d) denotes the loss associated with the estimation error, when
ϑ is the true value of the parameter and d is the chosen estimate. The function c(t)
represents the cost of observing the process up to time t, cA ≥ 0 is the cost of taking
one observations and K (t) is the number of observations which have been made by
time t . In the papers mentioned above the sequential procedures (τ, d(τ )), where τ is
the optimal stopping time and d(τ ) is the corresponding terminal decision (estimator)
are derived in two cases:

1. when the distribution of the random variables which determine the moments of
recording the observations is exactly known (papers of Starr et al. 1976; Magiera
1982; Jokiel-Rokita and Magiera 1999, 2010; Jokiel-Rokita 2006);

2. when the distribution of the random variables which determine the moments of
obtaining the observations is exponential with an unknown parameter (papers
of Starr et al. 1976; Jokiel-Rokita and Magiera 1999; Jokiel-Rokita 2006) or it
belongs to a time transformed exponential family with an unknown parameter
(paper Jokiel-Rokita and Magiera 2010).

In the papers of Starr et al. (1976) and Jokiel-Rokita and Magiera (1999) adap-
tive strategies are also proposed which require knowledge of neither n nor F . These
strategies perform nearly as well as it is possible when n is large for large class of F .

For the first time the problem of estimation from delayed observations was con-
sidered by Starr et al. (1976). They derived, among others, the sequential procedures
(Bayes and minimax) in the problem of estimating a mean of a normal distribution
with known variance under quadratic loss and linear cost for observation time. How-
ever in their paper, as in the other papers concerning the problem of estimation from
delayed observations, the distributions of the optimal stopping times in the obtained
procedures were not derived. Although in the papers mentioned above the problems
of estimation of an unknown parameter were considered in different statistical mod-
els, the optimal sequential procedures obtained are determined by the stopping times
which can be given in the following form

τ0 = inf
{

t ≥ 0 : [n − K (t)][h(K (t)) − h(K (t) + 1)] ≤ c′(t)
ρ(t)

}
, (2)

where the function h(k) depends on the model considered, ρ(t) is a failure rate of the
random variables which determine the moment of recording the observations.

In the statistical literature the problems of deriving distributions of stopping times
were considered mainly in the context of estimation of the unknown parameter under so
called purely sequential sampling scheme. The determination of the stopping time for
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Distributions of stopping times 619

sequential estimation in a frequentist context was first considered by Robbins (1959).
He obtained the exact distribution of the stopping time in a problem of estimating
the mean of a normal population with an unknown variance, but for a “two-item at
a time” sampling plan with a recurrence relation for its probabilities. In the purely
sequential sampling scheme the optimal stopping time of a procedure frequently turns
out to be the smallest positive integer k for which the sum Sk = X1 +· · ·+ Xk crosses
a boundary f (k), where X1, X2, . . . is a sequence of independent and identically
distributed random variables with finite variance. In the asymptotic theory of sequential
analysis instead of a fixed boundary f (k), we have a set of boundaries fc(k) indexed
by a parameter c tending to 0. Siegmund (1968) developed asymptotic distributions
of one-sided stopping times. In sequential analysis the famous Anscombe’s random
central limit theorem (Anscombe 1952) also gives a tool for obtaining asymptotic
distributions for appropriately standarized stopping times (see, Mukhopadhyay and
Chattopadhyay 2012; Gut 2012). In the paper of Bhattacharya and Mallik (1973) the
asymptotic distribution of the stopping time of the procedure due to Robbins (1959)
is shown to be normal. Their result was generalized very substantially in a paper
of Ghosh and Mukhopadhyay (1975). In the paper of Woodroofe (1977) the second
order approximations are obtained for the expected sample size and the risk of some
sequential estimation procedures, for example, the sequential procedures proposed by
Robbins (1959), Chow and Robbins (1965), Starr (1966a,b) and Starr and Woodroofe
(1972). Pham-Gia (1998) presented a method for computing the distribution of the
stopping time for the Bayesian sequential one step look-ahead procedure in the problem
of estimating the parameter of a Bernoulli experiment under a squared error loss.
Also under purely sequential sampling schemes, the problems of exact determination
of the distributions of stopping rules and risks of some sequential procedures were
considered in papers of Zacks and Mukhopadhyay (2006, 2007), Mukhopadhyay and
Zacks (2007) and Zacks (2005, 2009).

In this paper, we derive the exact distribution of the optimal stopping time τ0,
given by (2), and of the number of observations K(τ0) at the moment of stopping. We
then apply our results to obtain exact formulas for the expected time of observing the
process, for the average number of observations at the moment of stopping and for
the expected loss (risk) of some sequential procedures. We also compare the risks of
the optimal strategies with the risks of an adaptive strategy in estimation problems in
a special model.

2 The model

Let us assume that the observations Y1, . . . , Yn , where n is fixed and known, are
obtained at random times t1, . . . , tn , which are the order statistics of positive, indepen-
dent and identically distributed random variables T1, . . . , Tn which are independent
of the observations Y1, . . . , Yn . The random variables T1, . . . , Tn can be interpreted
as the lifetimes of n objects. We assume that the random variables T1, . . . , Tn have a
known distribution function F and the random variables Y1, . . . , Yn are independent
and have a common distribution Pϑ with unknown parameter ϑ . The aim is to find
a sequential procedure (τ, d(τ )), where τ is a stopping time and d(τ ) is a terminal
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620 A. Jokiel-Rokita, R. Magiera

decision function, in the problem of estimating the unknown parameter ϑ under a loss
function given by (1), where

K (t) =
n∑

i=1

1[0,t](Ti ), t ≥ 0,

is the number of observations which have been made by time t ≥ 0. Usually the form
of the terminal decision function, for example the Bayes decision function, can be
easily given. Then the problem reduces to determining the optimal stopping time. Let

Ft = σ {K (s), s ≤ t, Y (1), . . . , Y (K (t))},

be the information which is available at time t . We assume that if we observe the process
for t units of time, then the loss incurred by time t is determine by the conditional
expected loss, given Fs, s ≤ t , having the following form

Lh(t) = h(K (t)) + c(t), (3)

where h be a given real valued function on EN = {0, 1, . . . , N }, and such that
0 ≤ h(k) < ∞ for each k ∈ EN . The function c(t) is assumed to be a differentiable
and non-decreasing function with c(0) = 0. The function Lh(t) can be interpreted
as the total loss incurred if the process is stopped at time t . For example, the condi-
tional expected losses of Bayes or minimax estimators in the statistical models con-
sidered in the papers of Starr et al. (1976), Magiera (1982), Jokiel-Rokita and Magiera
(1999, 2010) and Jokiel-Rokita (2006) are of the form given by (3). By the optimal
stopping time τ0 with respect to Ft , t ≥ 0, we mean the random variable which
minimizes

Vh(τ ) = E[Lh(τ )] = E[h(K (τ )) + c(τ )],

over all stopping times τ with respect to Fs, s ≤ t .
Suppose that the distribution function F satisfies the following conditions: F(0) =

0; F(t) > 0 for t > 0; F is absolutely continuous with density f ; and f is the
right hand derivative of F on (0,∞). The class of such F will be denoted by G . Let
ζ = sup{t : F(t) < 1}, and ρ(t) = f (t)[1 − F(t)]−1, 0 ≤ t < ζ, denote the failure
rate. The process K (t), 0 ≤ t ≤ ζ , is a non-stationary Markov chain with respect to
Ft , 0 ≤ t ≤ ζ , and its infinitesimal operator is

At h(k) = (n − k)[h(k + 1) − h(k)]ρ(t),

for k ∈ En = {0, 1, . . . , n} and all real valued functions h on En (see, for instance
Starr et al. 1976, p. 104).

Lemma 1 (Jokiel-Rokita and Magiera 2010, Lemma 1) Suppose that h(k)−h(k +1)

is non-increasing for k ≤ n − 1 and that F ∈ G . Moreover, assume that the function
c′(t)/ρ(t) is non-decreasing. Then the stopping time
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Distributions of stopping times 621

τ0 = inf{t ≥ 0 : At h(K (t)) + c′(t) ≥ 0}
= inf{t ≥ 0 : [n − K (t)][h(K (t)) − h(K (t) + 1)] ≤ c′(t)/ρ(t)},

minimizes Vh(τ ).

Remark 1 Under the assumptions concerning the functions h(k) and c′(t)/ρ(t) the
so-called monotone case holds: once the infinitesimal prospect of the loss Lh for the
future becomes bad (greater than zero), it remains bad. If the loss Lh is in the monotone
case, the optimality of τ0 is obtained by applying Dynkin’s identity to the loss function
Lh(t), and it gives the formula

E[Lh(τ )] − h(0) = E

⎧⎨
⎩

τ∫

0

[
At h(K (t)) + c′(t)

]
dt

⎫⎬
⎭,

for any stopping time τ .

Remark 2 If the function h(·) is convex, then h(k) − h(k + 1) is non-increasing.

The main goal of this paper is to determine the exact distribution of the optimal
stopping time τ0 and of the number of observations K(τ0) at the moment of stopping
in the sequential procedures considered.

3 The distribution and the expectation of the optimal stopping time

Under the assumption of Lemma 1 one can show the following lemma.

Lemma 2 If the functions h and c′(t)/ρ(t) satisfy the assumptions of Lemma 1, then
the optimal stopping time τ0 can be presented in the following form

τ0 = inf
{
t ≥ 0 : (K (t) ≥ b(t)) ∨ (K (t) = n)

}
, (4)

where the stopping boundary b(t) is a non-increasing and right continuous function.
Moreover, if c′(t)/ρ(t) = const then b(t) = const.

In the sequel we will only consider the case b(0) > 0, because b(0) ≤ 0 implies
P(τ0 = 0) = 1.

Let us notice that the stopping time given by (4) can be viewed as the time of the first
meeting (crossing) of the sample process K (t), t ≥ 0, with upper (usually non-linear)
boundary b(t).

Denote

bi =
{

inf{t ≥ 0 : b(t) ≤ i}, when b(t0) ≤ i for some t0 ≥ 0,

∞, when b(t) > i for t ≥ 0,
(5)

i = 0, 1, . . . , n. The function b(t) is non-increasing and hence we have b0 ≥ b1 ≥
· · · ≥ bn . If there exists i0 ∈ {1, . . . , n} such that i0 − 1 < b(t) ≤ i0 for each t ≥ 0,
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622 A. Jokiel-Rokita, R. Magiera

then we put b0 = ∞, b1 = ∞, . . . , bi0−1 = ∞, bi0 = 0, . . . , bn = 0. In the case
when b(t) > n for each t ≥ 0, we put b0 = b1 = · · · = bn = ∞. In the case
b(t) > n − 1 for each t ≥ 0, and bn �= 0, we put b0 = b1 = · · · = bn−1 = ∞.

Denote

D = {bk0 , . . . , bl0},

where

k0 = max{0 ≤ i ≤ n − 1 : bi �= 0},

and

l0 = min{0 ≤ i ≤ n − 1 : bi �= ∞}.

Let us notice that if there exists i0 ∈ {1, . . . , n} such that i0 − 1 < b(t) ≤ i0 for each
t ≥ 0, or b(t) > n − 1 for each t ≥ 0, then D = ∅.

Theorem 1 In the case when D �= ∅, the distribution function Fτ0(t) of the stopping
time τ0 given by (4) is of the form

Fτ0(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n

j=k0+1

(
n
j

)
F j (t)[1 − F(t)]n− j , t < bk0 ,

∑n

j=i

(
n
j

)
F j (t)[1 − F(t)]n− j ,

t ∈ [bi , bi−1), i = k0, k0 − 1, . . . , l0 + 1,

∑n

j=l0

(
n
j

)
F j (t)[1 − F(t)]n− j , t ≥ bl0 ,

(6)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n!
k0!(n − k0 − 1)!

∫ F(t)

0
xk0(1 − x)n−k0−1dx, t < bk0 ,

n!
(i − 1)!(n − i)!

∫ F(t)

0
xi−1(1 − x)n−i dx, t ∈ [bi , bi−1),

i = k0, k0 − 1, . . . , l0 + 1,

n!
(l0 − 1)!(n − l0)!

∫ F(t)

0
xl0−1(1 − x)n−l0 dx, t ≥ bl0 .

(7)

In the case when there exists i0 ∈ {1, . . . , n} such that i0 − 1 < b(t) ≤ i0 for each
t ≥ 0, the distribution function Fτ0(t) of the stopping time τ0 is of the form

Fτ0(t) =
n∑

j=i0

(
n
j

)
F j (t)[1 − F(t)]n− j

= n!
(i0 − 1)!(n − i0)!

F(t)∫

0

xi0−1(1 − x)n−i0 dx,
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Distributions of stopping times 623

and the density function fτ0(t) of the stopping time τ0 is

fτ0(t) = n!
(i0 − 1)!(n − i0)! [F(t)]i0−1[1 − F(t)]n−i0 f (t).

In the case when b(t) > n − 1 for each t ≥ 0, the distribution function Fτ0(t) of the
stopping time τ0 is of the form

Fτ0(t) = [F(t)]n,

and the density function fτ0(t) of the stopping time τ0 is

fτ0(t) = n[F(t)]n−1 f (t).

Proof For t < bk0 we have b(t) > k0. Hence

P(τ0 ≤ t) = P(K (t) ≥ k0 + 1) = P(X(k0+1):n ≤ t).

For t ∈ [bi , bi−1), i = k0, k0 − 1, . . . , l0 + 1, it holds P(τ0 ≤ t) = P(Xi :n ≤ t).
For t ≥ bl0 , we have P(τ0 ≤ t) = P(Xl0:n ≤ t). Using the known formula for the
distribution function of the appropriate order statistics, we obtain (6) and (7). 
�
Remark 3 If D = ∅ then the stopping time τ0 is a continuous type random variable;
otherwise it is a mixed type random variable and D is the set of discontinuities of

the distribution function Fτ0 . Moreover, for bi ∈ D, P(τ0 = bi ) =
(

n
i

)
Fi (bi )[1 −

F(bi )]n−i .

Corollary 1 In the case when D �= ∅, the expected value of the stopping time τ0 is
given by

E(τ0) =
k0∑

j=0

(
n
j

) bk0∫

0

F j (t)[1 − F(t)]n− j dt

+
l0+1∑
i=k0

i−1∑
j=0

(
n
j

) bi−1∫

bi

F j (t)[1 − F(t)]n− j dt

+
l0−1∑
j=0

(
n
j

) ∞∫

bl0

F j (t)[1 − F(t)]n− j dt

=
bk0∫

0

⎧⎨
⎩1 − n!

k0!(n − k0 − 1)!

F(t)∫

0

xk0(1 − x)n−k0−1

⎫⎬
⎭ dx
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+
l0+1∑
i=k0

bi−1∫

bi

⎧⎨
⎩1 − n!

(i − 1)!(n − i)!

F(t)∫

0

xi−1(1 − x)n−i

⎫⎬
⎭ dx

+
∞∫

bl0

⎧⎨
⎩1 − n!

(l0 − 1)!(n − l0)!

F(t)∫

0

xl0−1(1 − x)n−l0

⎫⎬
⎭ dx . (8)

Using the decomposition of the mixed type distribution of the optimal stopping time
τ0 in this case on the discrete part and on the continuous part, the expected value of
the stopping time τ0 can be written in the following form

E(τ0) =
l0∑

i=k0

bi

(
n
i

)
Fi (bi )[1 − F(bi )]n−i

+ n!
k0!(n − k0 − 1)!

bk0∫

0

t f (t)Fk0(t)[1 − F(t)]n−k0−1dt

+
l0∑

i=k0

n!
(i − 1)!(n − i)!

bi−1∫

bi

t f (t)Fi−1(t)[1 − F(t)]n−i dt .

In the case when there exists i0 ∈ {1, . . . , n} such that i0 − 1 < b(t) ≤ i0 for each
t ≥ 0

E(τ0) = n!
(i0 − 1)!(n − i0)!

∞∫

0

t f (t)Fi0−1(t)[1 − F(t)]n−i0 dt .

In the case when b(t) > n − 1 for each t ≥ 0

E(τ0) = n

∞∫

0

t f (t)Fn−1(t)dt .

Remark 4 The expected value E(τ0) rarely can be written in the closed form. But if
F(t) = 1 − exp{−βt}, i.e. when T1, . . . , Tn are exponentially distributed and if exists
i0 ∈ {1, . . . , n} such that i0 − 1 < b(t) ≤ i0 for each t ≥ 0, or b(t) > n − 1 for each
t ≥ 0, then applying the Renyi’s representation (see for example Govindarajulu 2007,
Corollary 2.6.2.1) we obtain

E(τ0) =

⎧⎪⎪⎨
⎪⎪⎩

β−1∑n
i=1

1

n − i + 1
, when b(t) > n − 1 for each t ≥ 0,

β−1∑i0
i=1

1

n − i + 1
, when i0 − 1 < b(t) ≤ i0 for each t ≥ 0.
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Distributions of stopping times 625

4 The distribution and the expected value of the number of observations
at the moment of the optimal stopping

Theorem 2 In the case when D �= ∅, the distribution of the number of observations
at the moment of the optimal stopping time τ0 is of the form

P(K(τ0) = i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n

j=k0+1

(
n
j

)
F j (bk0)[1 − F(bk0)]n− j , i = k0 + 1,

(
n
i

){
Fi (bi )[1 − F(bi )]n−i

+ i
∫ bi−1

bi

f (t)Fi−1(t)[1 − F(t)]n−i dt
}
, i = k0, . . . , l0 �= 0,

(1 − F(bl0))
n, i = l0 = 0,

0, otherwise.

(9)

In the case when there exists i0 ∈ {1, . . . , n} such that i0 − 1 < b(t) ≤ i0 for each
t ≥ 0, P(K(τ0) = i0) = 1.

In the case when b(t) > n − 1 for each t ≥ 0, P(K(τ0) = n) = 1.

Proof Observe that P(K(τ0) = k0 + 1) = P(X(k0+1):n < bk0) and

P(K(τ0) = i) = P(bi ≤ τ0 < bi−1) = P((Xi :n < bi :n) ∧ (X(i+1):n > bi :n))

+P(bi ≤ Xi :n < bi−1:n)

for i = k0, . . . , l0 �= 0. Note also that P(K(τ0) = l0 = 0) = P(X1:n > bl0).

Using the known formula for the density function of the appropriate order statistics
or formulas (6), (7), we obtain (9). 
�
Corollary 2 In the case when D �= ∅, the expected value of the number of observa-
tions at the moment of the optimal stopping time is of the form

E(K(τ0)) = (k0 + 1)

n∑
j=k0+1

(
n
j

)
F j (bk0)[1 − F(bk0)]n− j

+
l0∑

i=k0

i

(
n
i

){
Fi (bi )[1 − F(bi )]n−i

+ i

bi−1∫

bi

f (t)Fi−1(t)[1 − F(t)]n−i dt
}
. (10)

In the case when there exists i0 ∈ {1, . . . , n} such that i0 − 1 < b(t) ≤ i0 for each
t ≥ 0, then

E(K(τ0)) = i0.

In the case b(t) > n − 1 for each t ≥ 0, we have E(K(τ0)) = n.
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5 The value of the risk of the optimal sequential procedures

Taking into account Theorems 1 and 2 we obtain the following corollary.

Corollary 3 In the case when D �= ∅, the risk Vh(τ0) of the sequential procedures
considered is of the form

Vh(τ0) = h(k0 + 1)

n∑
j=k0+1

(
n
j

)
F j (bk0)[1 − F(bk0)]n− j

+
l0+1∑
i=k0

h(i)

(
n
i

){
Fi (bi )[1 − F(bi )]n−i

+ i

bi−1∫

bi

f (t)Fi−1(t)[1 − F(t)]n−i f (t)dt
}

+ 1{l0>0}h(l0)

(
n
l0

){
Fl0(bl0)[1 − F(bl0)]n−l0

+ l0

∞∫

bl0

f (t)Fl0−1(t)[1 − F(t)]n−l0 dt
}+ 1{l0=0}h(0)[1 − F(b0)]n

+
l0∑

i=k0

c(bi )

(
n
i

)
Fi (bi )[1 − F(bi )]n−i

+ n!
k0!(n − k0 − 1)!

bk0∫

0

c(t) f (t)Fk0(t)[1 − F(t)]n−k0−1dt

+
l0∑

i=k0

n!
(i − 1)!(n − i)!

bi+1∫

bi

c(t) f (t)Fi−1(t)[1 − F(t)]n−i dt . (11)

In the case when there exists i0 ∈ {1, . . . , n} such that i0 − 1 < b(t) ≤ i0 for each
t ≥ 0, then

Vh(τ0) = h(i0) + n!
(i0 − 1)!(n − i0)!

∞∫

0

c(t) f (t)Fi0−1(t)[1 − F(t)]n−i0 dt .

In the case b(t) > n − 1 for each t ≥ 0, we have

Vh(τ0) = h(n) + n

∞∫

0

c(t) f (t)Fn−1(t)dt .
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6 A special case—estimating the mean of a normal distribution
with known variance

In this section we give the distribution of the optimal stopping time and of the number of
observations at the moment of stopping in the Bayes sequential procedure considered
by Starr, Wardrop and Woodroofe (Starr et al. 1976). We also compare the risk of
the optimal strategy with the risk of the adaptive strategy proposed in the paper of
Starr et al. (1976). In Sect. 4 of Starr et al. (1976) the problem of estimating the
mean ϑ of a normal distribution when the observations become available at random
times is considered. A Bayesian approach by placing a prior distribution over ϑ is
applied. The normal prior distribution with mean m0 and variance σ 2

0 is assumed.
Thus, conditionally, given ϑ, Y1, . . . , Yn are independent normally distributed random
variables with unknown mean ϑ and known variance σ 2. The random variable Yi is
observed at time ti , i = 1, . . . n, where t1, . . . , tn are the order statistics of random
variables T1, . . . , Tn which are independent of Y1, . . . , Yn . They assumed that if the
process of observation is stopped at time t and an estimator d is used then the loss
incurred is

Lt (ϑ, d) = (d − ϑ)2 + ct,

where c > 0. Thus, it is of the form given by (1) with L (ϑ, d) = (d − ϑ)2, cA = 0,
and c(t) = ct. In the case of the squared error loss, for any stopping time t , the Bayes
estimator of the unknown parameter ϑ is the mean of the posterior distribution, i.e. in
the case considered it is given by

d(t) =
⎛
⎝σ−2

0 m0 + σ−2
K (t)∑
i=1

Yi

⎞
⎠ /

[
σ−2

0 + K (t)σ−2
]

(see Starr et al. 1976, Lemma 4.1). The conditional expected loss, given Fs, s ≤ t ,
associated with the Bayes decision d is of the form

σ 2[ε + K (t)]−1 + ct,

where ε = σ 2/σ 2
0 , i.e. it is of the form (3) with h(K (t)) = σ 2[ε + K (t)]−1. The

function h satisfies the assumption of Lemma 1, and if the function c/ρ(t) is non-
decreasing, then one can show that the optimal stopping time τ0 has the form of (4)
with

b(t) = 1

2

[
− 2ε − 1 − σ 2ρ(t)/c

+
√

(2ε + 1 + σ 2ρ(t)/c)2 + 4nσ 2ρ(t)/c − 4ε(ε + 1)
]
. (12)

The distributions of the optimal stopping time τ0 and the number of observations K(τ0)

at the moment of stopping can be obtained from Theorems 1 and 2, respectively.
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Let T1, . . . , Tn be distributed according to the Weibull distribution W (α, β1/α),

with density function

f (t) = αβtα−1 exp{−βtα}1(0,∞)(t),

where 0 < α ≤ 1, β > 0, and the corresponding failure rate rate function

ρ(t) = αβtα−1. (13)

In this model, the function c/ρ(t) is non-decreasing, and b(t) is defined by (12) with
ρ(t) given by (13).

When α = 1, i.e. T1, . . . , Tn are distributed according to the exponential distribu-
tion, then

b(t) = 1

2

[
− 2ε − 1 − σ 2β/c +

√
(2ε + 1 + σ 2β/c)2 + 4nσ 2β/c − 4ε(ε + 1)

]

and is independent of t.
Applying Corollaries 1, 2 and 3 one can easily obtain, respectively, the expected

value of the stopping time τ0, the expected value of the number of observations at the
moment of stopping and the risk of the procedure considered.

In the subsequent part of this section we will formulate the result on the exact distri-
bution (Theorem 3) of the adaptive stopping time determining the adaptive sequential
procedure considered by Starr et al. (1976). We also give the explicit formulas for
expectation of the adaptive stopping time, for the distribution of the number of obser-
vations at the moment of stopping and for the sequential risk corresponding to the
adaptive procedure (Corollary 4, Theorem 4 and Corollary 6, respectively). Then,
using the formulas derived we compare numerically in Table 1 the behavior of the
adaptive sequential procedure with the optimal sequential procedure.

Let δ = (τ, d(τ )) be a sequential procedure for which τ ≥ t1 and

d(τ ) =
K (τ )∑
i=1

Yi/K (τ ). (14)

The conditional expected loss Lh(τ ) associated with the decision function d(τ ) given
by (14) is of the form

Lh(τ ) = σ 2

K (τ )
+ cτ,

i.e. it is of the form of (3) with h(K (t)) = σ 2/K (t). By Lemmas 1 and 2 the optimal
stopping time is defined by

τ0 = inf{t ≥ 0 : σ 2[n − K (t)]/K (t)[K (t) + 1] ≤ c/ρ(t)}
= inf{t ≥ 0 : (K (t) ≥ b(t)

) ∨ (K (t) = n)},
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Table 1 Comparisons of the values V1 versus the values V0 with respect to the number n of devices

n No. α β σ E(τ0) E(τ1) E(K (τ0)) E(K (τ1)) V0 V1 re(V1)

10 1 0.6 2 2 0.97189 4.03823 8.92768 19.92640 0.54568 0.80711 0.47910

2 0.6 1.5 1 0.54243 1.23559 6.64962 18.08730 0.20551 0.24561 0.19510

3 0.6 0.8 0.5 0.36508 0.60682 3.56333 5.31706 0.10821 0.11883 0.09817

4 0.8 1.5 1 0.69008 1.21705 6.99505 18.43171 0.21198 0.24166 0.13998

5 0.8 1 1 0.83433 1.39427 6.00794 17.29956 0.24991 0.27600 0.10440

6 0.8 0.5 1 1.36679 1.85946 4.89965 12.50963 0.34170 0.36565 0.07009

50 1 0.6 2 2 0.38454 0.93800 34.00451 92.82936 0.15615 0.18742 0.20020

2 0.6 1.5 1 0.20409 0.36206 22.01281 72.11303 0.06591 0.07222 0.09573

3 0.6 0.8 0.5 0.13110 0.19828 10.45786 13.10988 0.03714 0.03938 0.06006

4 0.8 1.5 1 0.28404 0.39560 21.22672 75.47273 0.07554 0.07884 0.04372

5 0.8 1 1 0.35915 0.47731 17.91782 67.10003 0.09176 0.09503 0.03561

6 0.8 0.5 1 0.53131 0.67220 13.05305 21.24129 0.12980 0.13352 0.02860

100 1 0.6 2 2 0.25565 0.53611 58.76521 174.87552 0.09366 0.10714 0.14394

2 0.6 1.5 1 0.13301 0.22136 36.07010 123.25676 0.04106 0.04420 0.07649

3 0.6 0.8 0.5 0.08445 0.12488 16.51022 20.53721 0.02364 0.02486 0.05181

4 0.8 1.5 1 0.19488 0.25508 33.41304 138.86232 0.04943 0.05089 0.02966

5 0.8 1 1 0.24502 0.31117 27.77191 116.09244 0.06053 0.06204 0.02502

6 0.8 0.5 1 0.36192 0.44353 19.89749 24.35918 0.08648 0.08829 0.02094

The value re(V1) denotes the relative error of V1 with respect to V0

with the stopping boundary

b(t) = 1

2

[− (1 + σ 2ρ(t)/c) +
√

(1 + σ 2ρ(t)/c)2 + 4nσ 2ρ(t)/c
]

> 0. (15)

The adaptive stopping time proposed in the paper of Starr et al. (1976) is of the form

τ1 = inf{t ≥ 0 : t K (t) ≥ σ 2/c} = inf{t ≥ 0 : K (t) ≥ σ 2/ct}. (16)

Let us notice that the stopping time τ1 requires knowledge of neither n nor F for its
implementation.

Figure 1 contains plots of the boundaries b(t) given by (15) with ρ(t) defined by
(13) for some values of α, β, σ, c, and n = 10. Figure 2 shows three sample paths of
the process stopped at the boundary b(t; n, α, β, σ, c) for n = 10, α = 0.6, β = 2,

σ = 0.2, c = 0.1.
Denote

V0(n, F) = E(σ 2/K(τ0) + cτ0),

and

V1(n, F) = E(σ 2/K (τ1) + cτ1),
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Fig. 1 Plots of boundaries for some values of the model parameters
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Fig. 2 Three sample paths of the process stopped at the boundary b(t; n, α, β, σ, c) for n = 10, α =
0.6, β = 2, σ = 0.2, c = 0.1. The value Ê(τ0) denotes the estimate of the expectation value of the
stopping time τ0

where the expected values are calculated under the assumption that T1, . . . , Tn are
distributed according to the distribution function F.

In the paper of Starr et al. (1976) it has been shown that V1(n, F) ∼ V0(n, F) as
n → ∞, provided that the following additional condition is satisfied: for some m ≥ 1,

∞∫

0

[1 − F(t)]mdt < ∞. (17)

Of course, if (17) fails for all m, then V0(n, F) = ∞ for all n.
We will compare V1(n, F) with V0(n, F) for some values of n and Weibull

W (α, β1/α) distribution functions F with some 0 < α < 1 and β > 0.
The value V0(n, F) is the risk of the optimal sequential procedure (τ0, d(τ0)),

and can be obtained applying Corollary 3. By formula (12), and the definition of
bi , i = 0, . . . , n, given by (5), in the case considered we have bn = 0, b0 = ∞, and
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bi =
[

ci(i + 1)

αβσ 2(n − i)

]1/(α−1)

, i = 1, . . . , n − 1.

Therefore k0 = n − 1, l0 = 1, and

V0(n, F)=σ 2
n−1∑
i=1

(
n
i

)
⎧⎪⎨
⎪⎩

1

i
Fi (bi )[1−F(bi )]n−i +

bi−1∫

bi

Fi−1(t)[1−F(t)]n−i f (t)dt

⎫⎪⎬
⎪⎭

+σ 2

n
Fn(bn−1) + cE(τ0),

with F(t) = [1−exp(−βtα)]1(0,∞)(t), and E(τ0) given by (8). Additionally, applying
Corollary 1, we obtain that in the case considered

E(τ0) =
n−1∑
i=1

bi

(
n
i

)
Fi (bi )[1 − F(bi )]n−i + n

bn−1∫

0

t f (t)Fn−1(t)dt

+
n−1∑
i=1

n!
(i − 1)!(n − i)!

bi−1∫

bi

t f (t)Fi−1(t)[1 − F(t)]n−i dt,

and applying Corollary 2 we have

E(K(τ0)) = nFn(bn−1) +
n−1∑
i=1

i

(
n
i

){
Fi (bi )[1 − F(bi )]n−i

+ i

bi−1∫

bi

f (t)Fi−1(t)[1 − F(t)]n−i dt
}
.

To obtain V1(n, F) we have to derive the distributions of the stopping time τ1 and
the number of observations K (τ1) at the moment of stopping.

Denote

b̃i = σ 2

ci
, i = 1, . . . , n, (18)

and b̃0 = ∞.

Theorem 3 The distribution function Fτ1(t) of the adaptive stopping time τ1 given by
(16) is of the form

Fτ1(t)=

⎧⎪⎪⎨
⎪⎪⎩

0, t < b̃n,
∑n

j=i

(
n
j

)
F j (t)[1−F(t)]n− j = n!

(i −1)!(n−i)!
∫ F(t)

0
xi−1(1−x)n−i dx,

t ∈ [b̃i , b̃i−1), i = 1, . . . , n.
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Corollary 4 The expected value of the adaptive stopping time τ1 is given by

E(τ1) =
n∑

i=1

b̃i−1∫

b̃i

i−1∑
j=0

(
n
j

)
F j (t)[1 − F(t)]n− j dt

=
n∑

i=1

b̃i−1∫

b̃i

⎡
⎣1 − n!

(i − 1)!(n − i)!

F(t)∫

0

xi−1(1 − x)n−i dx

⎤
⎦ dt. (19)

Using the decomposition of the mixed type distribution of the adaptive stopping time
τ1 on the discrete part and on the continuous part, the expected value of the stopping
time τ1 can be written in the following form

E(τ1) =
n∑

i=1

b̃i

(
n
i

)
Fi (b̃i )[1 − F(b̃i )]n−i

+
n∑

i=1

n!
(i − 1)!(n − i)!

b̃i−1∫

b̃i

t f (t)Fi−1(t)[1 − F(t)]n−i dt .

Theorem 4 The distribution of the number of observations at the moment of the
adaptive stopping time τ1 is of the form

P(K (τ1) = i)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, i = 0,(
n
i

){
Fi (b̃i )[1 − F(b̃i )]n−i + i

∫ b̃i−1

b̃i

Fi−1(t)[1 − F(t)]n−i f (t)dt

}
,

i = 1, . . . , n.

Corollary 5 The expected value of the number of observations at the moment of the
adaptive stopping time τ1 is of the form

E(K (τ1)) =
n∑

i=1

i

(
n
i

){
Fi (b̃i )[1 − F(b̃i )]n−i

+ i

b̃i−1∫

b̃i

Fi−1(t)[1 − F(t)]n−i f (t)dt
}
. (20)
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Corollary 6 The risk V1(n, F) of the procedure (τ1, d(τ1)) is of the form

V1(n, F)=σ 2
n∑

i=1

(
n
i

)
⎧⎪⎨
⎪⎩

1

i
Fi (b̃i )[1−F(b̃i )]n−i +

b̃i−1∫

b̃i

Fi−1(t)[1−F(t)]n−i f (t)dt

⎫⎪⎬
⎪⎭

+ cE(τ1),

where E(τ1) is given by (19), and b̃i , i = 0, . . . , n, are given by (18).

Table 1 contains the comparisons of the values V1 versus the values V0 with respect
to the number n of devices, and the values of the relative errors of V1 with respect to
V0 for some values of α, β, σ and c = 0.1. The values of E(τ0), E(τ1), E(K(τ0)) and
E(K(τ1)) have been calculated using formulas (8), (19), (10) and (20), respectively. We
observe that for the same choice of the model parameters the relative errors re(V1) =
(V1 − V0)/V0 become significantly smaller as the number n of devices increases.
As mentioned above, it was shown by Starr et al. (1976) that, under condition (17),
V1 ∼ V0 as n → ∞.
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