
CEJOR (2011) 19:467–493
DOI 10.1007/s10100-010-0137-8

ORIGINAL PAPER

A tabu search tutorial based on a real-world
scheduling problem

Ulrike Schneider

Published online: 6 March 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We apply a tabu search method to a scheduling problem of a company
producing cables for cars: the task is to determine on what machines and in which order
the cable jobs should be produced in order to save production costs. First, the problem
is modeled as a combinatorial optimization problem. We then employ a tabu search
algorithm as an approach to solve the specific problem of the company, adapt various
intensification as well as diversification strategies within the algorithm, and demon-
strate how these different implementations improve the results. Moreover, we show
how the computational cost in each iteration of the algorithm can be reduced drastically
from O(n3) (naive implementation) to O(n) (smart implementation) by exploiting the
specific structure of the problem (n refers to the number of cable orders).

Keywords Combinatorial optimization · Scheduling · Metaheuristics · Tabu search

1 Introduction

This article is about adapting and implementing the metaheuristic optimization algo-
rithm tabu search to a concrete real-world scheduling application. While the research
presented here was conducted for a particular problem, we point out that our work
can be useful from a tutorial point of view in different or more general settings of
combinatorial optimization problems, or where the corresponding objective function
has a similar structure as in our model. The two main points in this regard are the
tailoring of the tabu search algorithm involving the employment and adaptation of
various tabu search strategies within the search, and the treatment of computational

U. Schneider (B)
Institute for Mathematical Stochastics, University of Göttingen,
Goldschmidtstr.7, 37077 Göttingen, Germany
e-mail: ulrike.schneider@math.uni-goettingen.de

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191659331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

468 U. Schneider

cost issues involving the structure of storing and updating the objective function in the
implementation, both presented in Sect. 4.

The paper is organized as follows. Section 2 describes the problem and its formu-
lation as a combinatorial optimization problem. In Sect. 3, we briefly motivate why
we chose to apply a tabu search algorithm, describe the main ideas of this method,
and define its basic concepts within the context of our scheduling problem. Different
implementations of the algorithm are presented and compared in Sect. 4 where we
examine beneficial as well as unprofitable features of the search and also address com-
putational cost. Moreover, Sect. 4 contains a table summarizing all results. Finally, we
recapitulate and conclude in Sect. 5, and discuss potential future research.

2 Problem formulation and modeling

This work started with the request of a company producing so-called single core
cables for cars to optimize their production procedures. The production process basi-
cally amounts to encasing wire with a layer of insulation. The company gets daily
orders for specific cables differing in length, diameter and type of wire, insulation
material, color and other specifics such as the color of a marker to be placed at the end
of the cable. After the order is complete, the different cable jobs are assigned to dif-
ferent machines “by hand” using common sense and experience with the objective to
minimize “change-over costs” which occur by switching the production on a machine
from one specific cable to another. These costs arise for instance if the color of the
insulation material has to be changed, entailing associated cleaning costs, material
consumption and idle times of the machine. Moreover, certain kinds of cables can
be produced on specific machines only. Typically, about 300 cable jobs have to be
assigned to approximately 10 machines. The company would like to automate this
process by employing a computer program that, given a list of cable orders as input,
can output the “optimal” machine allocation.

2.1 Search space

More concretely, we call this list of cable orders the job list, coded J = {1, . . . , n}.
Assume that we have M different machines, labeled 1, . . . , M . With a given job list
J , a feasible solution is an assignment of the elements of J to an array

s(m, k), k = 1, . . . , nm; m = 1, . . . , M,

M∑

m=1

nm = n, (1)

where it has been taken into account that certain jobs can only be assigned to certain
machines (see Fig. 1). We denote by S(J) the search or solution space, i.e. the set of
all feasible solutions for a given job list J . For formal reasons, we define s(m, 0) := 0
for m = 1, . . . , M .

We denote a solution s(m, k) with k = 1, . . . , nm ; m = 1, . . . , M .

123

A tabu search tutorial based on a scheduling problem 469

Fig. 1 A machine assignment

Fig. 2 The 3 time components of a job. vmax denotes the (maximum) speed at which job j can be produced
on machine m

2.2 Objective function

The cost of a feasible machine assignment s is the sum of the cost of a job, taken
over all given jobs. The cost of a specific job is composed of three different parts.
First, there is the cost associated with the re-tool time ti , when the machine is idle and
has to be set up for the specific job characteristics. The second cost occurs during the
ramp-up time tr , when the machine is run at low speed until the produced cable has the
desired quality. Finally, the third component is the cost arising during the production
time tp when the actual cable is produced. ti and tr depend on the machine m, the
characteristics of the job j to be produced, as well as on the specifics of the job jp

produced before job j . tp depends on m and j only. We model the cost of j linear in
time in the following sense.

jobcost (m, jp, j) = ci (m)ti (m, jp, j) + cr (m)tr (m, jp, j) + cp(m)tp(m, j),

where ci (m), cr (m), and cp(m) denote the cost arising during one time unit of ti , tr ,
and tp, respectively. These costs are constant on each machine m. The re-tool cost
ci involves cost of labor, the ramp-up cost reflects the cost of material having to
be discarded, and the production cost is based on the cost of running the machine.
Figure 2 illustrates these three components, showing the speed v of machine m during
the production of job j versus time.

123

470 U. Schneider

As implied by the above, the cost of a specific job is determined by the machine
on which it is to be produced and by the specifics of the job that has been assigned to
the slot before that job. Note that we defined s(m, 0) := 0, and that jobcost (m, 0, j)
denotes the cost of job j assigned to the first slot on machine m.

The objective function f : S(J) → R therefore, has the following structure.

f (s) =
M∑

m=1

nm∑

k=1

jobcost (m, s(m, k − 1), s(m, k)) (2)

The above structure of f will be key for efficient updates of f within the tabu
search algorithm, see Sect. 4.2.

2.3 The problem

The problem can now be stated as follows.

For a given job list J, find s0 ∈ S(J) such that f (s0) = min
s∈S(J)

f (s). (3)

2.4 A note on the complexity

We touch upon the subject of computational complexity here by noting the following
considerations. Assume that M = 1, that is, we assign all jobs to one machine only.
Let J = {1, . . . , n} be the job list and define the (n + 1) × (n + 1) matrix D = (di j)

by

di j =
{

jobcost (1, i, j) j �= 0
0 j = 0

for i, j = 0, . . . , n. We can now interpret the machine scheduling problem as a trav-
eling salesman problem with cities {0, 1, . . . , n} and (asymmetric) distance matrix D.
A tour (j0, j1, . . . , jn) can be interpreted as a machine assignment by taking the city
(job) ji+1 after city (dummy job) ji = 0 to be assigned to the first slot on machine m,

s(m = 1, .) := (0, ji+1, ji+2, . . . , jn, j0, . . . , ji−1).

The traveling salesman problem is very well known to be NP-hard.

2.5 Classification

Due to its complexity, our optimization problem does not directly fit into the “regular”
framework of classifying scheduling problems. For such a framework see, for exam-
ple, Brucker (2007) who introduces a scheme based on Graham et al. (1979), where
problems are classified by machine environment, job characteristics, and optimality

123

A tabu search tutorial based on a scheduling problem 471

criterion, the latter one including objective functions such as bottleneck and make-
span. We note, however, that in the context of this framework, the job characteristics
of our model are specified by so-called s-batching (see Sect. 3) and that the machine
environment corresponds to unrelated multi-purpose machines.

3 Using tabu search

The problem, as stated in (3) is a combinatorial optimization problem and these types
of problems are often tackled with metaheuristic search methods.

Metaheuristic search methods are local search or neighborhood search algorithms
which are iterative procedures that start with an initial solution s0 ∈ S and then
browse through the search space, picking up better solutions on the way. They use
the concept of a neighborhood structure, that is, a function N : S → 2S assign-
ing to each solution s ∈ S a neighborhood N (s) ⊆ S of solutions that are in some
sense “close” to s. As a convention, we assume that s /∈ N (s). With the notion of
neighborhood, it is natural to define a local minimum as an element s ∈ S that satisfies
f (s) ≤ f (s′) for all s′ ∈ N (s). The basic framework of such a local search algorithm
can be formulated as a generic descent method in Algorithm 1.

Algorithm 1 A generic descent method
1. Initialize: find an initial solution s0 ∈ S and set s = s0, f = f (s0), s∗ = s, f ∗ = f .
2. Neighborhood search step: find s′ ∈ N (s) such that f (s′) ≤ f and set s = s′, f = f (s′). Additionally,

f f < f ∗, set s∗ = s, f ∗ = f .
3. Stop if no such s′ exists or some other stopping rule applies. Otherwise, go to 2.

The “answer” of the algorithm is the solution s∗ with objective function value f ∗.
If in step 2, s′ is found in such a way so that f (s′) < f (s′′) for all s′′ ∈ N (s), the
algorithm is called a steepest descent method.

Obviously, the algorithms described above get trapped in the first local minimum
they encounter whereas metaheuristic methods are local search methods that have
strategies to go beyond local optima. They can constitute a favorable compromise
between expensive exact methods and the mere local pretense.

All metaheuristic search methods use a basic neighborhood search as their foun-
dation and can formally be brought into the framework of Algorithm 1 where the
construction of the neighborhood, say N ∗(s), can dynamically vary during the search
process. Among those methods are tabu search, simulated annealing, genetic algo-
rithms, neural networks, scatter search, and ant colony optimization. The difference
in these methods can be seen as a difference in the way the neighborhood N ∗(s) is
defined and altered. For a more comprehensive treatment of metaheuristic techniques,
see, for example, Reeves and Beasley (1993), Aarts and Lenstra (1997) and Blum and
Roli (2003).

To solve our scheduling problem, we apply the metaheuristic technique tabu search.
Tabu search has been successfully applied to a wide range of applications, and seems
to be unrivaled in efficacy for a variety of scheduling problems. See, for example

123

472 U. Schneider

Nowicki and Smutnicki (1996) and Grabowski and Wodecki (2004). For other meta-
heuristic approaches in scheduling problems we refer the reader to Tan et al. (2007),
for example, and the references therein. Abdullah et al. (2007) contains a nice literature
overview on these kinds of problems including algorithms with more than one neigh-
borhood structure. A comprehensive overview on scheduling problems and solution
approaches can be found in Leung (2004).

We now discuss the basic concepts involved in tabu search. A number of foundation
ideas were first introduced in Glover (1977), with a more detailed and comprehensive
description provided in Glover (1989, 1990). A general and extensive treatment can
be found in Glover and Laguna (1997). The most important feature of tabu search is
its emphasis on the use of adaptive memory—the dynamic adaption and update of the
neighborhood structure guided by information gained throughout the search process.
Such memory can either be explicit where entire solutions are stored, or it can record
only certain attributes of solutions that have been visited. Usually four different struc-
tures are distinguished. Frequency memory stores information about how often chosen
solutions exhibit a certain attribute, whereas recency memory keeps track of how lately
this has been the case. Quality memory saves information on how “good” a particular
attribute has proven to be, and with influence memory we retain evidence how solu-
tions with a certain attribute have influenced the search process. Generally, frequency
memory is employed as a long term memory concept in the sense that the information
recorded throughout the search process. Recency memory falls under the use of short
term memory which only stores what has happened in recent iterations. Depending on
their use, quality and influence memory can fall under either category. These memory
concepts are usually employed for either intensification purposes, that is to encourage
the search to explore certain regions in more detail, or for diversification reasons with
the goal of guiding the algorithm to previously unexplored areas of the search space.
So-called candidate lists of “promising” neighbors can be used if exploring the entire
neighborhood in each iteration becomes too computationally expensive.

3.1 Adapting basic tabu search elements

We describe the use of the very basic tabu search elements within the context of our
machine scheduling problem: the program to carry out the optimization process is
implemented in the C programming language and executes the following steps.

1. Read-in of job list J
2. “Batch” jobs with same specifics
3. Generate an initial solution
4. Tabu search phase
5. Output of relevant data

Clearly, the tabu search phase (4) constitutes the main part of the program and is treated
in detail in Sect. 4 where the basic elements introduced in this section are developed
to become more advanced throughout the different versions of the program.

123

A tabu search tutorial based on a scheduling problem 473

Input and internal storage

First, the program reads in a text file with a list of the current cable orders. The input
file contains the specifics of each cable, including length, type of wire, color of insu-
lation material, and so on. Internally, the jobs are numbered 1, . . . , n and stored in an
object (array) joblist that contains the relevant data for each job j .

Batching and initial solution

After reading in the current list of cable orders, jobs with exactly the same specifics
except for length are batched into one job, since it is clear that these jobs should be
produced consecutively. Afterwards, an initial solution is generated in the following
way. The jobs are split into two lists L1 and L2, where L1 contains the jobs which
have to be produced on specific machines, and L2 the remaining ones which can be
assigned to any machine. Each list is then sorted by color of insulation material before
the jobs from L1 are allocated to admissible machines and the jobs from L2 are put on
the “remaining” spots (in the sense that in the initial solution the first n − M	n/M

machines contain 	n/M
 + 1 jobs and the other ones contain 	n/M
 jobs each). This
way each machine should have about the same job load (neglecting unlikely cases
where L1 contains so many jobs that such a uniform assignment is not possible.)

This type of initial solution mimics the process in which cable jobs are manually
assigned to the machines by the employees of the company.

In the following, we shall refer to a machine assignment or solution by s = s(m, k)

as introduced in (1) in Sect. 2.1.

Cost function

A routine jobcost has been implemented to compute the corresponding element of
the cost function f in the notation of (2) in Sect. 2.2. To ensure that the computation
of f is well defined in the sense that the same machine assignment always leads to
the same value of the cost function, the routine jobcost is integer-valued in order to
avoid rounding issues. This is important since the value of the objective function of
a particular solution will be calculated or updated in different ways with the routine
jobcost representing the smallest unit in these calculations.

Neighborhood structure

The neighborhood of a feasible solution s ∈ S(J) are all solutions s′ ∈ S(J) which
can be reached by exchanging two jobs in s. We call such an exchange a swap move μ

and represent it by a 4-tuple μ = (m1, k1, m2, k2) where μ causes to switch s(m1, k1)

with s(m2, k2). We write s′ = μ[s] to emphasize that a move is acting on a solution
s. Without loss of generality we assume m1 ≤ m2. Additionally, if m1 = m2, we
let k1 < k2. Observe that once an initial solution is generated, the structure of all
subsequent solutions is locked-in in the sense that the number nm of jobs on machine
m does not change anymore. (This entails that if the initial solution exhibits a uniform
workload it will be kept in subsequent solutions.) Later on, we will introduce another

123

474 U. Schneider

representation, as well as an additional neighborhood structure defined by a different
type of move.

In this work, we only consider transition moves that operate on a given solution, but
it should be noted that the metaheuristic framework also encompasses constructive
(and destructive) moves in which solutions can be generated “from scratch”, as noted
in Chapter 1.9.1 in Glover and Laguna (1997).

Guaranteeing feasibility

As described in Sect. 2, certain cable jobs can only be produced on certain machines.
In view of this, given a solution s, we call a swap move μ = (m1, k1, m2, k2) a feasible
move if it leads to another feasible machine assignment. The feasibility of μ therefore
depends on whether it is possible to produce job s(m1, k1) on machine m2 and job
s(m2, k2) on machine m1. We denote by M(s) the collection of all feasible swap
moves for s to define the neighborhood N (s) as

N (s) := {s′ = μ[s] | μ ∈ M(s)},

therefore, assuring that N (s) ⊆ S(J). In all versions of the program presented in
Sect. 4, a move under consideration is first checked for feasibility (i.e. whether it
entails moving a job to a machine where it cannot be produced). If this is the case, the
particular move is not considered in the current iteration. In this way, we never need
to establish feasibility for an entire solution “from beginning to end”.

Tabu strategy

To avoid the search from cycling, the last T moves (not the explicit solutions) during
the search process are set “tabu” and a tabu list contains the last T moves made. T is
called the tabu tenure. If we are currently in iteration i in the search process and label
the moves conducted so far by μ1, . . . , μi , then the tabu list T (i) in iteration i can by
written as

T (i) = {μi , μi−1, . . . , μmax(i−T +1,1)}.

T constitutes an example of recency memory used for diversification purposes.

Aspiration criterion

To avoid excluding obviously good solutions from the search by the tabu strategy, we
use the standard aspiration function (improved-best). Given the current solution s, this
criterion induces a set of “aspired” moves from the tabu list, denoted A(s, i) ⊆ T (i)
with

A(s, i) = {μ ∈ T (i) | f (μ[s]) < f ∗}

which is used in all following versions of the program.

123

A tabu search tutorial based on a scheduling problem 475

The actual neighborhood

With the notation introduced above, the actual neighborhood used in iteration i in the
basic tabu search algorithm can be written as

N ∗(s, i) := {s′ ∈ N (s) | μ ∈ (M(s) \ T (i)) ∪ A(s, i)}.

In the following, we will drop the iteration i in the notation and simply write N ∗(s).

Neighborhood search step

In each iteration of the algorithm, a “best” neighbor s′ is chosen as the current solution
for the next iteration. If s denotes the current solution, a new solution s′ is chosen such
that

f (s′) = min
s′′ ∈N ∗(s)

f (s′′)

Clearly, the minimizer above does not need to be unique. We simply chose the first
neighbor encountered in that iteration with minimal objective value.

Stopping criterion

The algorithm stops after a fixed number of iterations, say, N .

Output

In addition to the best machine assignment found, the program outputs certain param-
eters that describe the search process which are summarized in Tables 1 and 2 in
Sect. 4.8.

4 The different versions

We now discuss different implementations of the tabu search algorithm to our machine
scheduling problem. The versions are presented in the chronological order of their
development where each version addresses particular problems of its predecessor.
The last version is by no means “ultimate”, yet each program outperforms the previ-
ous one and we briefly list all implementations to examine the elements that improved
the search. A summary of effective and not so useful elements is given in Sect. 5.

Additionally, we discuss the computational cost for calculating the objective func-
tion and show how to take advantage of the specific structure of our problem. We
include patches of the program in pseudo-code manner where we believe them to
benefit the presentation.

The results of the different versions can be found in Table 1 in Sect. 4.8, details
of the search process are listed in Table 2 in the same section. We refer the reader to
these tables when discussing the outcome of the various programs in the following.

123

476 U. Schneider

Table 1 Overview and results of all versions

ts1 ts2 ts3 ts4 ts5 ts6 ts7

f (s0) 152,587 152,587 152,587 152,587 152,587 152,587 152,587

f (s∗) 142,736 142,503 142,420 139,500 139,190 139,021 138,856

Found in iteration 85 97 639 89 701 899 979

Impr. rel. to f (s0) 6.46% 6.61% 6.66% 8.58% 8.78% 8.89% 9.00%

Impr. rel. to prev. vers. – 0.15% 0.06% 1.92% 0.2% 0.11% 0.11%

Real improvements 85 97 109 89 188 231 165

With swap moves 85 97 109 – 99 142 72

With insert moves – – – 89 89 89 93

Diversification No No Yes No Yes Yes Yes

For swap moves No No Yes – Yes Yes Yes

For insert moves – – – No No No Yes

Intensification No No No No No Yes Yes

For swap moves No No No – No Yes Yes

For insert moves – – – No No No No

Function calls 5.9 · 109 4.0 · 106 5.4 · 106 7.2 · 106 8.4 · 106 8.1 · 106 4.3 · 106

Reduced to – 0.07% 0.09% 0.12% 0.14% 0.14% 0.07%

Run time approx. 11 h 40 s 40 s 40 s 40 s 40 s 20 s

All versions were run with a real-life instance job list of n = 300 jobs representing a
typical daily workload (we found analogous results for other input lists) to be assigned
to the M = 11 machines the company has available.

The construction of the initial solution described in Sect. 3.1 follows the spirit of
the company’s manual approach for which only verbal descriptions but no hard data
exists. As a basis for comparison between the solutions suggested by procedure and

123

A tabu search tutorial based on a scheduling problem 477

Table 2 Details about the search process of all versions

ts1 ts2 ts3 ts4 ts5 ts6 ts7

Swap moves 1,000 1,000 1,000 – 500 500 790

insert moves – – – 1,000 500 500 210

Switches betw. nbhds – – – – 9 9 4

0-cost moves 915 903 889 911 812 323 96

Uphill moves 0 0 0 0 0 0 62

Downhill moves 0 0 1 0 0 221 362

Tabu moves 0 0 0 0 0 0 62

Pen. record active – – 879 – 299 149 19

With swap moves – – 879 – 299 149 0

With insert moves – – – – – – 19

what is currently done by the company, we looked at the improvement in the objective
function between the initial solution of the algorithm (representing the company’s
behavior) and the best solution found by the procedure (representing our suggestion).

We used a total number of N =1,000 iterations and a tabu tenure of T = 40. The
choice of other search parameters is also listed within the discussion as well as in
Table 3 in Sect. 4.8. If not noted otherwise, parameters are kept at the values same for
subsequent versions. The results of the algorithm appeared to be robust with respect to
similar values of these variables. The CPU times shown in Table 1 result from execut-
ing the program on a AMD Athlon(tm) 64 X2 Dual Core Processor with 3,000 MHz
and 1,024 KB cache size. They are listed to give a general idea. The C code was
compiled using gcc, the GNU C compiler.

4.1 ts1—The basic version

The basic version, ts1, is mainly implemented to serve as a starting point for the
improved versions and for comparison and illustration purposes. In this version, a
basic tabu search algorithm is carried out with the definitions from Sect. 3 as demon-
strated in Algorithm 2 below. The tabu list is the only relevant array that needs to be
initialized and updated in line 2 and line 14 in Algorithm 2.

123

478 U. Schneider

Table 3 Parameter settings and versions they have been used in

Value ts1 ts2 ts3 ts4 ts5 ts6 ts7

Number of iterations N 1,000 × × × × × × ×
Tabu tenure T 40 × × × × × × ×
Pfac (see Sect. 4.3) 5 × × × ×
Pstart (see Sect. 4.3) 70 × × × ×
nmax (see Sect. 4.4) 100 × × × ×
Plev (see Sect. 4.6) 2 × ×
Pgap (see Sect. 4.6) 2 × ×
Cmax (see Sect. 4.6) 5 × ×
Ctot (see Sect. 4.6) N/2 × ×
Tstart (see Sect. 4.6) 2/3 · N × ×
Tsup (see Sect. 4.6) 2 × ×
Nfac (see Sect. 4.7) 0.2 ×
Nprop (see Sect. 4.7) 0.1 ×

Algorithm 2 Tabu search algorithm ts1

1. Generate an s0 ∈ S and set s = s0, f = f (s0), s∗ = s, f ∗ = f , f ∗
nb = 109.

2. Initialize relevant arrays.
3. for i = 1 : N do
4. for all feasible moves μ ∈ M(s) do
5. f ′ = f (μ[s])
6. if (f ′ < f ∗

nb) and ((μ is not tabu) or (f ′ < f ∗)) do
7. μ∗

nb = μ, f ∗
nb = f ′

8. end (if)
9. end (for)

10. s = μ∗
nb[s], f = f ∗

nb , f ∗
nb = 109

11. if f < f ∗ do
12. s∗ = s, f ∗ = f
13. end (if)
14. Update relevant arrays.
15. end (for)

We start our discussion by looking at the computational cost and the evaluation of
the cost function.

Computational cost

In each iteration with current solution s, the objective function is evaluated for each
point s′ ∈ N ∗(s). In the general form of the objective function as shown in (2) in
Sect. 2.2, the function jobcost that computes the cost of a specific job constitutes the
smallest unit of f in a rather general sense and we therefore, use the number of func-
tion calls to this routine to assess the computational effort. We wish to emphasize that
by this measure of computational cost, we do not refer to the concept of computational

123

A tabu search tutorial based on a scheduling problem 479

complexity in view of NP-hardness—we merely discuss the cost of each iteration of
our algorithm (and not the number of steps required to find an optimal solution).

Pseudo-code 1 illustrates the naive evaluation of the objective function for a given
solution s′ as needed in line 5 of Algorithm 2.

Pseudo-code 1 Naive evaluation of the objective function
f ′ = 0
for m = 1 to M do

for k = 1 to nm do
j = s′(m, k), j_prev = s′(m, k − 1)

f ′ = f ′ + jobcost (m, j_prev, j)
end (for)

end (for)

Clearly, for each evaluation of the objective function f for a given solution s, the
routine jobcost is called n1 + · · · + nm = n times. In each iteration, the objective
function is evaluated for every point s′ ∈ N (s) (due to the aspiration criterion, we
also have to evaluate the solutions reached by tabu moves). Disregarding the number
of infeasible moves, this amounts to having to compute f for the 1/2 ·n(n −1) neigh-
bors of s and thus yielding a computational effort of O(n3) function calls to the basic
routine jobcost in each iteration.

Results

The results in Table 1 show that after generating the initial solution, in the first 85
steps the algorithm finds 85 new best solutions or real improvements, meaning solu-
tions with lowest cost compared to all previously encountered solutions. The algorithm
only finds neighbors with no change in the objective function in the remaining iter-
ations. The total improvement in the objective function was 6.46% compared to the
initial solution. The algorithm took more than 11 h.

4.2 ts2—Smart update

The output of ts1 shows that the search in its current form should not be viewed as
metaheuristic since it gets stuck in the first local minimum it encounters. Before going
further into this issue, we wish to address the computational cost of the algorithm to
make the search amendable to testing different features.

Clearly, the comprehensive evaluation of the objective function as implemented
in ts1 is unnecessary since the transition from one solution to another only results in
minor changes of the current machine assignment. Instead of associating the cost f (s′)
with each neighbor s′ of s, we assign a cost value c(s, μ) to each move μ ∈ M(s),
defined as the change in the objective function occurring by μ,

c(s, μ) := f (s′) − f (s) for s′ = μ[s].

123

480 U. Schneider

Notation

For the sake of simplicity, we now label the position p of jobs on the machines from
1 to n, instead of using the coordinates (m, k) as before. Note that once an initial
solution s0 ∈ S is generated, nm , the number of jobs on machine m does not change
in subsequent solutions, so that the coordinates of a position are fixed throughout the
search. Using this notation, we now represent a move μ by a tuple (p, q) with p < q,
indicating the exchange of the job with position p with the job on position q. This
labeling of positions will prove very useful in storing and updating the cost of moves.

If not noted otherwise, by j1 and j2, we denote the corresponding jobs of the move
(p, q), and write (m1, k1) and (m2, k2) for the respective coordinates of j1 and j2.
We declare an n × n array of integers swap_cost[p][q] to store the cost of swap
moves in a given iteration. If a move is infeasible, we assign a very large value to the
corresponding entry in swap_cost.

As mentioned above, a neighbor s′ ∈ N (s) differs “only slightly” from s, and
therefore, the cost value of most moves does not change either from one iteration to
another. If, for instance n = 300, 98% remain the same. More concretely, between 4
and 8 jobs are affected in each iteration, each of which is involved in n − 1 moves.
For each of these moves, we need to update (not recalculate!) c(s, μ) with at most 8
function calls to jobcost, as is described in detail below.

A new tabu strategy

The basic purpose of a tabu strategy is to prevent revisiting the same or similar solu-
tions to those that have been looked at before. In view of this, the previous strategy
unnecessarily prohibited certain moves, since a move could in later iterations involve
different jobs than it originally did. Moreover, the tabu concept could not impede jobs
from being moved back to a previously occupied position by a different move. In
addition, to establish the tabu status of a move, it had to be compared with all moves
stored in the tabu list.

Based on these considerations, we employ a new strategy using an n × n array
swap_tabu[j][p], which stores the iteration until which job j must not be brought
back into position p. With this idea, the determination of tabu status as well as its
update is quite easy. If we have chosen the move μ = (p, q) in the iteration i , we
simply put

swap_tabu[j1][p] = i + T
swap_tabu[j2][q] = i + T

In this sense, each neighbor s′ = μ[s] under consideration has two possible tabu
attributes, one for each job j1 and j2 that is moved under μ = (p, q). We set μ to be
tabu, if both corresponding attributes are tabu-active, that is, if

swap_tabu[j1][p] >= i and
swap_tabu[j2][q] >= i

123

A tabu search tutorial based on a scheduling problem 481

Algorithm

In each iteration we choose the move μ = (p, q) such that swap_cost[p][q] is min-
imized (over all (p, q) with p, q = 1, . . . , n and p < q). For a move μ = (p, q) in
Algorithm 2, we replace line 5 by the following.

5′ f ′ = f + swap_cost[p][q]
We note that also both arrays swap_cost and swap_tabu need to be initialized

and updated in line 2 and line 14 of the algorithm, respectively. The fast update of
swap_cost is described in the following.

From O(n3) to O(n)

In each iteration, the routine jobcost has to be called between 4 and 8 times (as described
below) for each of 4(n − 1) to 8(n − 1) affected moves, resulting in a computational
cost of at most 64(n − 1) = O(n) function calls to the routine jobcost.

In Pseudo-code 2 we describe the update of a single entry swap_cost[p][q] in the
cost array for which up to 8 function calls to the routine jobcost are necessary. We
assume that (p, q) represents a “typical” swap move, where neither p nor q refers to a
position at the end of a machine. (In that case, less calls to jobcost are involved.) The
routine swap_coord(s, p) computes the coordinates (m, k) of the job on position p
on the machine assignment s.

Pseudo-code 2 Fast update of swap move costs

(m1, k1) = swap_coord(p)

j1 prev = s(m1, k1 − 1)

j1cur = s(m1, k1)

j1next = s(m1, k1 + 1)

(m2, k2) = swap_coord(q)

j2 prev = s(m2, k2 − 1)

j2cur = s(m2, k2)

j2next = s(m2, k2 + 1)

old_cost = jobcost (m1, j1 prev, j1cur) + jobcost (m1, j1cur, j1next) +
jobcost (m2, j2 prev, j2cur) + jobcost (m2, j2cur, j2next)

new_cost = jobcost (m1, j1 prev, j2cur) + jobcost (m1, j2cur, j1next) +
jobcost (m2, j2 prev, j1cur) + jobcost (m2, j1cur, j2next)

swap_cost[p][q] = new_cost − old_cost

Results

When comparing ts1 and ts2, certainly the most obvious difference lies in the run
time together with the fact that ts2 only needs 0.07% of the function calls of ts1 as a

123

482 U. Schneider

consequence of the more effective evaluation or update of the objective function. The
slightly better result in terms of solution quality is due to the new tabu strategy.

Note that the fast search has the merit of being able to easily search the entire
neighborhood, making the use of elements such as candidate lists unnecessary.

4.3 ts3—With diversification

As mentioned before, ts1 as well as ts2 exhibit the problem of only choosing so-called
zero-cost moves (moves that lead to no change in the objective function) after a series
of real improvements. To remedy this, we implement a diversification strategy in this
version to advance the search into new regions of the search space.

Diversification

The following strategy is based on the assumption that new (good) solutions can be
found by choosing moves whose corresponding jobs have rarely been exchanged pre-
viously. The selection of such neighbors is encouraged by penalizing moves which
switch jobs that have frequently been moved before. This is accomplished by declaring
an array pen_rec[j] of size n that indicates how many times job j has been moved
before. To update this array after an iteration, we simply need to add 1 to the two
corresponding entries of the selected move. The cost of a move μ = (p, q) acting on
jobs j1 and j2 is modified in the following way.

swap_cost[p][q] + Pfac ∗ (pen_rec[j1] + pen_rec[j2])

We maintain pen_rec during the entire search, but only use the penalty terms after
a certain number of iterations, say Pstart = 70 with no improvement in f . Pfac was set
to 2. In order not to disturb the search when “things are going well”, the terms are
deactivated as soon as a neighbor with a lower value of f than the current solution is
found. They are employed again after a non-improving move.

Algorithm

For ts3, line 5 of Algorithm 2 needs to be replaced by the following lines. Clearly, in
addition to the move costs and the tabu array, the penalty record has to be initialized
and updated in line 2 and line 14 of the algorithm, respectively. We also initialize the
variable gap to be zero and pen_active to be false in line 2 of Algorithm 2.

5′ (m1, k1) = swap_coord(p), (m2, k2) = swap_coord(q)

j1 = s(m1, k1), j2 = s(m2, k2), pen = 0
if (gap ≥ Pstart) or ((pen_active) and (gap ≥ 1)) do

pen_active = true
pen = Pfac ∗ (pen_rec[j1] + pen_rec[j2])

end (if)
f ′ = f + swap_cost[p][q] + pen

123

A tabu search tutorial based on a scheduling problem 483

Fig. 3 An insert move

The variable gap needs to be updated in line 14 of Algorithm 2 in the following manner.

if (f ′ ≥ f) do gap = gap + 1 end (if)
else do gap = 0 end (else)

Results

Unfortunately, ts3 it only brought a minor improvement in the results. The slightly
longer run time can be attributed to the using pen_rec. However, it should be noted
that the search was also forced to move “uphill” which is essential in advancing to
unexplored regions of S.

4.4 ts4—A new neighborhood

Since the diversification strategy from Sect. 4.3 did not bring the desired effect, we
revert to another concept of “diversification” by introducing a new and more dynamic
neighborhood that allows the algorithm to search along completely different paths
in S. As a first step, we consider this new neighborhood ‘exclusively’ without the
previous swap moves.

New neighbors

The new neighborhood is defined by a different class of moves, the so-called insert
moves. An insert move causes a job to be deleted from a certain position and to be
inserted on another one as illustrated in Fig. 3. For computational simplification which
should become apparent later on, we only consider moves that insert jobs on a machine
different to the one from where it was deleted. This is done under the assumption that
jobs within a machine can be sufficiently mixed by swap moves in later versions.

We represent an insert move ν by a tuple (j1, j2) where ν causes job j1 to be deleted
from its current position and to be inserted before job j2.

It should be noted that there are n delete positions from which a job can be removed,
but n+M insert positions where it can be pasted, since the job can also be inserted after
the last one on a machine. Since ν = (j1, j2) denotes that job j1 should be inserted
before j2, we define additional dummy jobs n +1, . . . , n + M where ν = (j1, j2) with
j2 = n + m indicates that job j1 should be inserted to be the last job on machine m.
Note that through insert moves, it is possible that machines are emptied completely.

123

484 U. Schneider

Fig. 4 The insert move ν = (j1, j2) acting on a machine assignment s

To ensure a somewhat uniform workload on each machine (which is favored in this
problem), we only allow for a maximum number, say, nmax of jobs per machine. The
extent of this restriction can be regulated by the parameter nmax, where nmax should be
determined depending on M . For the subsequent results, we had nmax set to 100. We
maintain this restriction simply by viewing a move infeasible that would shift a job to
a machine with a workload of already nmax jobs.

A tabu strategy for insert moves

Since insert moves shift many jobs without actually affecting them, the tabu strategy
from Sect. 4.2 does not make sense in this type of neighborhood. It is rather significant
for a job to which machine it is assigned and what job its predecessor is. Similar to
swap_tabu in Sect. 4.2, the M × n × n array ins_tabu[m][j_prev][j] that indicates
until which iteration j cannot be assigned to the slot after j_prev on machine m. The
move described in Fig. 4 would be set tabu in iteration i if

ins_tabu[m1][j1 prev][j1next] ≤ i or

ins_tabu[m2][j2 prev][j] ≤ i or

ins_tabu[m2][j][j2next] ≤ i

A neighbor reached by move ν therefore, has 3 tabu attributes and ν is set tabu if any
of them is tabu-active. The update works analogously to the update of swap_tabu
described in Sect. 4.2.

123

A tabu search tutorial based on a scheduling problem 485

Computing and updating the cost of insert moves

In the following, for the insert move ν = (j1, j2) we denote by (m1, k1) and (m2, k2)

the coordinates of job j1 and j2 on the current machine assignment s. The routine
ins_coord(s, j) can compute the coordinates of job j in the solution s. We want to
adapt a similar treatment of insert moves as was done for swap moves in Sect. 4.2.
Since insert moves allow for a more dynamic neighborhood, they also require more
thought on how to store and update their cost.

We first split the cost of an insert move ν = (j1, j2) into a deletion cost cdel and
an insertion cost cins which denote the change in cost occurring by deleting the cor-
responding job j1 and inserting j1 before j2, respectively. An essential observation is
that these two types of costs can be computed independently of each other since we
assumed that m1 �= m2. Moreover, we observe that cdel depends on j1, but not on j2.
We can therefore, write the cost of move ν = (j1, j2) as

c(s, ν) := f (s′) − f (s)

= cdel(s, j1) + cins(s, j1, j2),

where s′ = ν[s]. Similar to the swap moves μ, we store and update the cost of insert
moves ν in a given iteration for the current solution s throughout the search.

To this end, we define 3 arrays. One to store cdel, one to record cins, and one to keep
track of infeasible moves. We start with the n × 1 array c_del[j] which denotes the
cost of deleting job j from its current position. We also define the n × (n + M) array
c_ins[j1][j2] that stores the change in cost when inserting job j1 before job j2 in the
current solution s. Finally, we also introduce the n × (n + M) array infeas[j1][j2] to
indicate whether the move ν = (j1, j2) is infeasible by holding the very large value
INVALID or 0, respectively. Figure 4 illustrates the effect of an insert move in more
detail.

For a given solution s, the deletion and insertion cost of the move ν = (j1, j2) can
be calculated as shown in Pseudo-code 3.

Pseudo-code 3 Computation of the cost of an insert move

(m1, k1) = ins_coord(s, j1)

(m2, k2) = ins_coord(s, j2)

j1 prev = s(m1, k1−1)

j1next = s(m1, k1+1)

j2 prev = s(m2, k2−1)

c_del[j1] = − jobcost (m1, j1 prev, j1) } subtract cost of deleted job j1
− jobcost (m1, j1, j1next)

}
change in cost of job j1next+ jobcost (m1, j1 prev, j1next)

c_ins[j1][j2] = + jobcost (m2, j2 prev, j1) } add cost of inserted job j1
− jobcost (m2, j2 prev, j2)

}
change in cost of job j2+ jobcost (m2, j1, j2)

123

486 U. Schneider

To calculate the array infeas, we assess that a move ν = (j1, j2) can become infea-
sible if j1 “should not be put” on machine m2 which can be the case for three different
reasons. First, if m1 = m2, then we do not want to consider this move at all. Second,
if nm2 = nmax, then we do not want to put another (any other) job on m2. Third, it
might not be possible to produce job j1 on machine m2 due to its job characteristics.
Assume that initially, all entries of infeas have been set to 0. We can initialize the array
according to Pseudo-code 4.

Pseudo-code 4 Initializing the infeasibility array
for j1 = 1 to n do

(m1, k1) = ins_coord(s, j)
for m2 = 1 to M do

if ((m1==m2) or (nm2==nmax) or (j1 cannot be produced on m2)) do
for k2 = 1 to nm2 + 1 do

infeas[j1][s(m2, k2)] = INVALID
end (for)

end (if)
end (for)

end (for)

The update

Assume that we have chosen the move ν = (j1, j2) in a given iteration with current
solution s. We now have to update c_ins, c_del, and infeas, as well as nm , the number
of jobs on a machine m, and of course the current solution s. As can be seen from
Fig. 3, c_del has to be updated along the lines of Pseudo-code 3 for the following
entries.

update c_del[j1 prev], c_del[j1], c_del[j1next], c_del[j2 prev], c_del[j2].

In Fig. 3 we detect that inserting a job before j1next , j1, or j2 has altered cost. We
therefore, perform the following update according to Pseudo-code 3.

for j = 1 to n do
update c_ins[j][j1], c_ins[j][j1next], c_ins[j][j2]

end (for)

Lastly, we also need to update

nm1 = nm1 − 1
nm2 = nm2 + 1

Clearly, which moves are infeasible has also changed, so that infeas needs to be re-
initialized (or updated, which entails a rather lengthy description which is why we
skip it here).

123

A tabu search tutorial based on a scheduling problem 487

Algorithm

Naturally, in each iteration we choose the move ν = (j1, j2) such that the corre-
sponding cost of the move is minimized (over all (j1, j2) with j1 = 1, . . . , n, j2 =
1, . . . , n + M). For the algorithm we replace the corresponding lines of Algorithm 2
by the following.

3′ for all insert moves ν = (j1, j2) do
5′ f ′ = f + c_del[j1] + c_ins[j1][j2] + in f eas[j1][j2]
Note that in this version, the arrays ins_tabu, c_del, c_ins and infeas need initialized
and updated in line 2 and line 14 of Algorithm 2, respectively.

Computational cost

The update of insert move costs as described above requires 9n + 15 function calls to
jobcost, yielding again a computational effort of O(n) in our measure of complexity.

Results

The introduction of insert moves brought an improvement of 8.58% in the objective
function compared to the initial solution. This is a step up of almost 2 percentage
points with respect to the previous version ts3. We note that similar to the versions
with swap moves and no diversification strategy, only real improvements are found in
the first 89 iterations before the search switches to zero-cost moves in the remaining
steps.

4.5 ts5—One neighborhood is not enough

Since the introduction of insert moves brought a clear improvement in terms of the
best solution found, we will keep this neighborhood in the following versions. To
diversify the search further, we combine the use of both neighborhoods in ts5, at first
without adapting both concepts to each other. The search simply alternates between
100 iterations with swap moves and 100 iterations with insert moves.

Tabu strategy

We implement the tabu strategy from Sect. 4.2 for swap moves and the tabu strategy
from Sect. 4.4 for insert moves. In this version, the two strategies still ignore each
other—the array swap_tabu is only updated after swap moves and the array ins_tabu
only after insert moves.

Diversification

We use the diversification strategy of ts3 from Sect. 4.3 for swap moves. For the
mean time, we neglect the fact that the search also picks solutions from a different
neighborhood.

123

488 U. Schneider

Algorithm

Basically, the algorithms of ts3 and ts4 are run for loops of 100 iterations each for a
total of N =1,000 iterations. At the end of each loop, the current solution is passed as
initial solution to the next loop.

Computational cost

Additionally to the O(n) function calls of jobcost per iteration, every 100 iterations
we need to re-initialize swap_cost or ins_cost which entails a cost of O(n2).

Results

Combining both neighborhoods brought an additional improvement of 0.2 percentage
points compared to the previous version. We also observe that the best solution was
found later on in the search, although we also see that besides real improvements, only
zero-cost moves where chosen. Since this version only serves as an intermediate step,
we do not comment further on the results.

4.6 ts6—No zero moves

ts6 uses the neighborhood structures and tabu strategies from ts5. Additionally, we
implement a supplementary tabu strategy for an intensification phase, on which also
a new diversification strategy for swap moves is based. Moreover, we finally address
the issue of zero-cost moves.

Intensification

Up to now, the tabu strategy held off jobs from certain positions, so that the search
was kept away from particular areas of the search space and therefore, diversified.
The following idea of a supplemental tabu strategy should help to intensify in certain
regions of S. We use the n × n array tabu_sup[j][p] that indicates the iteration in
which job j was assigned to position p where it is supposed to remain for at least
Tsup = 2 iterations. We only activate tabu_sup after Tstart = 2/3 · N iterations.

Diversification

So far, the diversification strategy for swap moves encouraged the search to choose
moves whose component jobs have rarely been exchanged before. The new strategy
is based on the idea that new good solutions can be found by encouraging the search
to put jobs on positions where they have rarely been before. We employ the n × n
res_ freq[j][p] which stores the number of iteration job j has been on position p to
keep track of the residence frequency. With the use of tabu_sup, the update of res_ freq
is, in fact, very simple. If, in iteration i , we choose a move through which job j leaves

123

A tabu search tutorial based on a scheduling problem 489

position p, we simply set

res_ f req[j][p] = res_ f req[j][p] + i − tabu_sup[j][p].

After a large number of iterations, we do not want res_freq to distinguish between
jobs whose residence frequency only differs by a couple of iterations. We therefore,
introduce penalty levels Plev. When we update res_freq, we therefore, also set

res_ f req[j][p] = Plev ∗ (res_ f req[j][p]/Plev),

where “/ ” denotes integer division. Plev is set to 2. The penalty terms are applied
the same way as in Sect. 4.3 by replacing the cost of a swap move μ = (p, q) with
component jobs j1 and j2 by

swap_cost[p][q] + Pfac ∗ (res_ f req[j1][p] + res_ f req[j2][q])

Since the search typically has to walk across hills and plateaus to find better solutions,
we keep the terms deactivated after an improving move for an additional number of
Pgap = 2 admissible non-improving moves.

Prohibiting zero-cost moves

To address the issue of too many zero-cost moves, we simply prohibit them in the
following way. Not more than Cmax = 5 consecutive zero cost moves are allowed.
Moreover, to keep the search from repeatedly choosing Cmax zero-cost moves in suc-
cession and one move with cost not equal to zero in between, we allow for a total
of Ctot = N/2 zero-cost moves only, after which no such moves are admitted at all
anymore.

Algorithm

As in ts5, the two neighborhood concepts still run independently of each other with
the exception of sharing the strategy for banning zero-cost moves as described above.
The implementation of ts6 is therefore, analogous as for ts5, with the following adap-
tion incorporating ts3 as a basis for swap moves. res_ freq is employed instead of
pen_rec, and additionally sup_tabu needs to be initialized and updated. Moreover, the
supplemental tabu strategy has to be included when checking the tabu status of a swap
move. Obviously, for the zero-cost move strategy, two variables need to be maintained
during the search, one for the current consecutive number of zero-cost moves and one
for the total number of such moves.

Results

ts6 was able to find slightly better solutions than ts5. It is noticeable that the number of
real improvements increased for swap moves, but remained the same for insert moves

123

490 U. Schneider

compared to the previous version. Clearly, this fact suggests a diversification strategy
for insert moves which is implemented in the following version.

4.7 ts7—Advanced diversification

In the last version of the program, we want to better adapt the succession of swap and
insert move, where we finally implement a tabu and diversification strategy that can
be employed for both types of moves.

Neighborhood

We switch between the two types of moves not after a fixed number of iterations, but
alter between them dynamically depending what kind of solutions could be found in
a particular type of neighborhood. More concretely, we stay with a type of move for
at least Nmin iterations. After that, we switch to the other type of move once the gap
between current iteration and the iteration with the last real improvement has become
greater than Ngap. The admissible size of the gaps increases throughout the search by
setting it to Ngap = Nfac ∗ i where i denotes the current iteration and 0 < Nfac < 1. We
used Nfac = 0.2.

Zero-cost moves and intensification

We use tabu_sup and the prohibition of zero-cost moves in the same way as in the
previous version.

Diversification

We wish to encourage the search to assign jobs to positions where they can contribute
to yield better solutions. Aside from the type of the job itself, the machine and the job
assigned to the previous slot are crucial for the cost of a job. We use the M × n × n
array freq[m][j_prev][j] to store how many iterations job j has spent on machine
m after job j_prev. The update works analogously to the update of res_ freq using
ins_tabu, as well as the way the resulting penalty terms are utilized.

Algorithm

We give the skeleton of the algorithm alternating between the neighborhoods in
Pseudo-code 5. The individual components for each neighborhood can be gleaned
from previous versions.

Computational cost

As in ts5 and ts6, we have an additional computational cost of O(n2) each time there
is a switch between neighborhoods. Similar to the strategy in ts5 and ts6, we can
control this additional cost by setting the parameter Nmin = Nprop ∗ N (which yields

123

A tabu search tutorial based on a scheduling problem 491

Pseudo-code 5 Dynamic switch between neighborhoods
i = 0
while (i ≤ N) do

initialize relevant arrays for insert moves
do

pick a new neighbor (through insert move)
update relevant arrays for insert moves
i = i + 1

while (check whether to stay with insert moves) end(do)
initialize relevant arrays for swap moves
do

pick a new neighbor (through swap move)
update relevant arrays for swap moves
i = i + 1

while (check whether to stay with swap moves) end(do)
end(while)

a number of a total 1/Nprop − 1 change-overs) and therefore, keep the overall cost at
O(n) function call to jobcost per iteration. We set Nprop = 0.1.

Results

The final version ts7 brought an improvement of 9% compared to the initial solution,
which is an enhancement of 0.11 percentage points to the previous version ts6. For
the first time, most real improvements were found during insert moves, even though
almost 80% of all solutions were found in swap move neighborhoods. This suggests
that the diversification strategy for insert moves works very well. On the other hand,
the penalty terms were not utilized during swap moves, which indicates that the cri-
terion of when to activate the diversification strategy should adapted to each type of
neighborhood separately. The switch between neighborhoods occurred 4 times.

4.8 Comparison of all versions

All results from the previous sections are summarized in Table 1, details of the search
process are listed in Table 2. The values for the different parameters can be found in
Table 3.

5 Conclusions

We applied a tabu search algorithm to the concrete scheduling problem of a company
producing cables for cars after modeling it as a combinatorial optimization problem.
We implemented and examined various features of tabu search adapted to our spe-
cific problem to improve the results which were listed in different program versions
throughout Sect. 4. Program ts7 is the best version of our algorithms.

Although we were dealing with assigning cable jobs to machines as an underlying
application, our considerations for the fast update of f presented in Sect. 4.2 and

123

492 U. Schneider

Sect. 4.4 can be useful for any local search problem where the objective function has
the same structure as (2) in Sect. 2.

A limitation of our work clearly lies in testing our ideas on only one problem
instance.

Useful elements

The most successful implementation compared to the basic version was the introduc-
tion of an additional neighborhood defined by insert moves, as presented in version
ts4. The switch between swap and insert moves in ts5, eventually employed dynam-
ically in ts7 also brought improvements. Other profitable features were the banning
of zero-cost moves and the intensification using the supplemental tabu strategy intro-
duced in ts6. The diversification based on residence frequency records in ts7 could
directly account for the structure of the objective function and proved to be a valuable
adaptation.

And not so useful elements

Of little help was the diversification strategy from ts3 that penalized swap moves
whose component jobs have been moved often before. This information seems to
have little association with the solutions actually visited during the search. Moreover,
adding penalty levels and keeping the terms deactivated for several iterations after an
improving move, as done in ts6, had no influence on the results.

Possible extensions and outlook

Certainly, there is room left for various improvements of the implementations from
Sect. 4. A first step could be devising an intensification strategy that can be employed
for both swap and insert moves which takes into account the structure of the objective
function (in a similar way as the common diversification strategy in ts7). Another
means of intensification could be a solving M individual TSP problems on each
machine in parallel, carried out every few iterations. An implementation of a fast
update of ins_cost and swap_cost after “the other” type of move could facilitate an
arbitrarily dynamic switch between neighborhoods. Also, a stopping criterion based
on the gaps between real improvements rather than a fixed number of iteration would
be an interesting extension.

In terms of the model, a uniform work load of the machine (which is desired in
this context) could be better taken care of by aiming to put equal total length, not total
number of jobs on each machine.

Clearly, to obtain robust results of the search, more comprehensive testing on dif-
ferent instances will be necessary.

Acknowledgments The author would like to acknowledge the help and guidance of her master’s thesis
advisor Arnold Neumaier on the underlying research of this paper, as well as valuable input from Fred
Glover, Manuel Laguna, and an anonymous referee.

123

A tabu search tutorial based on a scheduling problem 493

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Aarts E, Lenstra JK (eds) (1997) Local search methods in combinatorial optimization. Wiley, Chichester,
New York

Abdullah S, Burke EK, McCollum B (2007) Using a randomised iterative improvement algorithm with
composite neighbourhood structures for the university course timetabling problem. In: Doerner KF,
Gendreau M, Greistorfer P, Gutjahr WJ, Hartl RF, Reimann M (eds) Metaheuristics—progress in
complex systems optimization. Springer, New York, pp 153–169

Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison.
ACM Comput Surv 35:268–308

Brucker P (2007) Scheduling algorithms, 5th edn. Springer, Berlin
Glover F (1977) Heuristics for integer programming using surrogate constraints. Decis Sci 8:156–166
Glover F (1989) Tabu search—part I. INFORMS J Comput 1:190–206
Glover F (1990) Tabu search—part II. INFORMS J Comput 2:4–32
Glover F, Laguna M (1997) Tabu search. Kluwer, Boston
Grabowski J, Wodecki M (2004) A very fast tabu search algorithm for the permutation flow shop problem

with makespan criterion. Comput Oper Res 31:1891–1909
Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deter-

ministic sequencing and scheduling: a survey. Ann Discrete Math 5:287–326
Leung J (2004) Handbook of scheduling: algorithms, models, and performance analysis. CRC Press,

Boca Raton
Nowicki E, Smutnicki C (1996) A fast taboo search algorithm for the job shop scheduling problem. Manage

Sci 42:797–813
Reeves CR, Beasley JE (1993) Introduction. In: Reeves CR, Beasley JE (eds) Modern heuristic techniques

for combinatorial problems. Wiley, New York, pp 1–19
Tan KC, Burke E, Lee TH (2007) Feature cluster: evolutionary and meta-heuristic scheduling (guest edi-

torial). Eur J Oper Res 177:1852–2118

123

	A tabu search tutorial based on a real-world scheduling problem
	Abstract
	1 Introduction
	2 Problem formulation and modeling
	2.1 Search space
	2.2 Objective function
	2.3 The problem
	2.4 A note on the complexity
	2.5 Classification

	3 Using tabu search
	3.1 Adapting basic tabu search elements

	4 The different versions
	4.1 ts1---The basic version
	4.2 ts2---Smart update
	4.3 ts3---With diversification
	4.4 ts4---A new neighborhood
	4.5 ts5---One neighborhood is not enough
	4.6 ts6---No zero moves
	4.7 ts7---Advanced diversification
	4.8 Comparison of all versions

	5 Conclusions
	Acknowledgments
	References

