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Approximation of maps into spheres by regulous maps

Maciej Zieliński

Abstract. Let X be a compact real algebraic set of dimension n. We prove
that every Euclidean continuous map from X into the unit n-sphere can
be approximated by a regulous map. This strengthens and generalizes
previously known results.
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1. Introduction. A recent direction of research in real algebraic geometry is
to study intermediate classes of maps between continuous and regular maps.
Such classes as continuous rational maps, stratified-regular maps, and regulous
maps (which often coincide) have been studied in a series of papers [3,7,8,11–
27]. The aim of this note is to strengthen a certain related result of [21] and
[15].

We begin by fixing some terminology. A real algebraic variety is a locally
ringed space isomorphic to some algebraic subset of R

n, for some positive
integer n, endowed with the Zariski topology and the sheaf of regular functions.
It is worth recalling that this class is identical with the class of quasi-projective
real varieties, for more detail and information see [4]. A morphism of real
algebraic varieties is called a regular map. We will be also interested in the
Euclidean topology of such varieties and this is the topology we will mean,
unless explicitly stated otherwise, when using topological notions. By a smooth
map we understand a map of class C∞.

Let X be a real algebraic variety. A stratification S of X is a finite collection
of pairwise disjoint Zariski locally closed subvarieties whose union is equal to
X. A map f : X → Y of real algebraic varieties is said to be regulous if it is
continuous and if there exists some stratification S of X such that f |S is a
regular map for every S ∈ S. We denote the set of all regulous maps between
X and Y by R0(X,Y ). We shall treat R0(X,Y ) as a subspace of the space
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C(X,Y ) of all continuous maps endowed with the compact-open topology.
Note that regulous maps in the sense of our definition were called stratified-
regular in [21] and the follow-up papers [20,22]. This definition is different
but equivalent to that of [7] where the terminology was introduced, see [21,
Remark 2.3] or [24].

Each regulous map is also continuous rational—i.e. f is continuous and
f |X0 is regular for some Zariski open dense subset X0 ⊂ X. While the converse
is false in general, it is true if X is nonsingular, see [11].

Let us first recall the following result contained in [15].

Theorem 1.1. Let X be a compact nonsingular real algebraic variety of dimen-
sion p ≥ 1. Then the set R0(X, Sp) is dense in C(X, Sp).

A related weaker result allowing for a singular X is contained in [21]:

Theorem 1.2. Let X be a compact real algebraic variety of dimension p ≥ 1.
Then any continuous map X → S

p is homotopic to a regulous map.

Our aim is to strenghten Theorem 1.2 by showing that the nonsingularity
assumption of Theorem 1.1 is unnecessary.

Theorem 1.3. Let X be a compact real algebraic variety of dimension p ≥ 1.
Then the set R0(X, Sp) is dense in C(X, Sp).

It is well known that analogous results do not hold if regulous maps in
Theorems 1.1, 1.2, and 1.3 are replaced with regular maps. For example, a
continuous map S

1 × S
1 → S

2 is homotopic to a regular map if and only if it
is null-homotopic, cf. [5].

2. Proof of the main theorem. We shall use the concept of the algebraic
cohomology classes of a real algebraic variety which we recall now. Let X be a
compact nonsingular real algebraic variety. A class in H∗(X; Z/2) is said to be
algebraic if it is Poincaré dual to a homology class in H∗(X, Z/2) represented by
an algebraic subset. The set H∗

alg(X; Z/2) of all algebraic cohomology classes is
a subring of H∗(X; Z/2) and if f : X → Y is a regular map, then the induced
map f∗ in cohomology maps H∗

alg(Y ; Z/2) into H∗
alg(X, Z/2), cf. [2,4,6].

An important tool we need is [15, Lemma 2.2], which allows controlled
approximation of continuous maps into projective space by regular maps. We
restate it here for convenience.

Lemma 2.1. Let X be a compact nonsingular real algebraic variety, and let A
be a Zariski closed subvariety of X. Let f : X → P

n(R) be a continuous map
whose restriction f |A : A → P

n(R) is a regular map. Assume that

f∗(H1(Pn(R); Z/2)) ⊂ H1
alg(X; Z/2).

Then one can find a regular g : X → P
n(R) arbitrarily close to f and satisfying

g|A = f |A (i.e. every neigborhood of f in C(X, Pn(R)) contains such a map).

We are now ready to prove Theorem 1.3
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Proof. Let f be any map in C(X, Sp). Treating X as a closed subset of R
m

for some m ∈ N, one can find a smooth map f0 : U → S
p defined on some

neighborhood U of X in R
m such that f0|X is arbitrarily close to f . Let Σ

denote the singular locus of X. Then f0(Σ) � S
p, since dim Σ < p. This allows

us to approximate f0|Σ by regular maps using the stereographic projection
and Weierstrass approximation theorem. We can therefore reduce the proof
(by replacing f with suitably modified f0) to the case where f is a restriction
of a smooth map defined on a neighborhood of X in R

m and f |Σ is regular
with f(Σ) � S

p. Then, by Sard’s theorem, there exists an s0 ∈ S
p \f(Σ) which

is a regular value of the smooth map f |X\Σ.
By Hironaka’s resolution of singularities theorem [9,10], there exists a finite

composition of blowups π : Y → X over Σ with Y nonsingular. The restriction
π̄ : Y \π−1(Σ) → X \Σ of π is then a biregular isomorphism and s0 is a regular
value of the smooth map f ◦ π̄. Letting F = (f ◦ π)−1(s0) = (f ◦ π̄)−1(s0),
consider the blowup of Y with center F , which we will denote σ : B(Y, F ) → Y ,
and the blowup τ : B(Sp, s0) → S

p of S
p over s0. Since dimX = p, the set F

is finite as a fiber of the smooth map f ◦ π̄ over its regular value s0, hence
B(Y, F ) is a real algebraic variety. Finiteness of F and the fact that f ◦ π is
also a smooth map allow us to apply [1, Lemma 2.5.9] in order to construct a
smooth lifting g of f ◦ π to a map between B(Y, F ) and B(Sp, s0) making the
following diagram commute:

B(Y, F )
g−−−−→ B(Sp, s0)

σ

⏐
⏐
� τ

⏐
⏐
�

Y
f◦π−−−−→ S

p

π

⏐
⏐
�

∥
∥
∥

X
f−−−−→ S

p

Our aim for now is to find a regular map H : B(Y, F ) → B(Sp, s0) arbitrar-
ily close to g in C(B(Y, F ), B(Sp, s0)) in such a way that the map f̃ : X → S

p

making the following diagram commute will be regulous and close to f :

B(Y, F ) H−−−−→ B(Sp, s0)

π◦σ

⏐
⏐
� τ

⏐
⏐
�

X
f̃−−−−→ S

p

Let D = σ−1(F ) and E = τ−1(s0). Then D and E are nonsingular algebraic
hypersurfaces in the respective blowups. Let u ∈ H1(B(Y, F ); Z/2) be the
cohomology class Poincaré dual to the homology class in H∗(B(Y, F ); Z/2)
represented by D and let v be the class in H1(B(Sp, s0); Z/2) dual to the class
in H∗(B(Sp, s0); Z/2) represented by E. Recall that there exists a biregular
isomorphism ϕ : B(Sp, s0) → P

p(R) such that

ϕ(E) = P
p−1(R) ⊂ P

p(R). (1)
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Hence H1(B(Sp, s0); Z/2) = ϕ∗(H1(Pp(R); Z/2)) ∼= Z/2 with v the genera-
tor. Since g is transverse to E and D = g−1(E) we have u = g∗(v) (cf. [6,
Proposition 2.15]) and it follows that

g∗(H1(B(Sp, s0); Z/2)) ⊂ H1
alg(B(Y ;F ); Z/2). (2)

Let i : D → B(Y, F ) and j : E → B(Sp, s0) be the inclusion maps and
let ḡ : D → E be the map induced by the restriction of g to D. Then, since
g ◦ i = j ◦ ḡ we have ḡ∗(j∗(v)) = i∗(g∗(v)) = i∗(u). This allows us to apply
Lemma 2.1 to approximate ḡ by regular maps. Indeed, since by (1) H1(E; Z/2)
is generated by j∗(v) and by definition i∗(u) is in H1

alg(D; Z/2), we have

ḡ∗(H1(E; Z/2)) ⊂ H1
alg(D; Z/2).

Therefore, there exists a regular map r : D → E arbitrarily close to ḡ in
C(D,E).

Let L = (π◦σ)−1(Σ) and let h : Σ → B(Sp, s0) be the regular map given by
(τ |τ−1(Sp\{s0}))−1 ◦ (f |Σ). We now extend j ◦r to a smooth map G : B(Y, F ) →
B(Sp, s0) close to g such that G|L = (h◦π ◦σ)|L (this is possible since the sets
E and L are disjoint). If G is close enough to g, we have g∗ = G∗ and hence by
(2) we can apply Lemma 2.1 to G with A = D ∪ L. This gives a regular map
H : B(Y, F ) → B(Sp, s0) which is close to g and satisfies H|L = (h ◦ π ◦ σ)|L
and H(D) ⊂ E. The latter shows that the map H̄ : Y → S

p given by

H̄(y) =

{

s0, for y ∈ F,

τ(H(σ−1(y))), for y /∈ F,

is continuous and well-defined. Moreover H̄(y) = f ◦π(y) for y ∈ π−1(Σ). Also
note that H̄ is close to f ◦ π, since (τ ◦ H)|Y \F is close to τ ◦ f ◦ π. Therefore,
the map f̃ : X → S

p given by

f̃(x) =

{

f(x), for x ∈ Σ,

H̄(π−1(x)), for x /∈ Σ,

is well-defined, continuous, and can be chosen arbitrarily close to f .
It remains to check that f̃ is regulous. Since f̃ |Σ is regular as is f̃ in re-

striction to the finite set f−1(s0), it is enough to show f̃ |X\A is regular where
A = Σ ∪ f−1(s0). Since we have f̃ |X\A = τ ◦ H ◦ (σ|Y \F )−1 ◦ (π|X\Σ)−1 with
all the maps on the right-hand side regular, the proof is finished. �
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