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Abstract
Objective To evaluate a computer-aided detection (CADe)
system for lytic and blastic spinal metastases on computed
tomography (CT).
Methods We retrospectively evaluated the CADe system on
20 consecutive patients with 42 lytic and on 30 consecutive
patients with 172 blastic metastases. The CADe system was
trained using CT images of 114 subjects with 102 lytic and
308 blastic spinal metastases. Lesions were annotated by
experienced radiologists. Detected benign lesions were con-
sidered false-positive findings. Detector sensitivity and the
number of false-positive findings were calculated as the
criteria for detector performance, and free-response receiver
operating characteristic (FROC) analysis was conducted.
Detailed analysis of false-positive and false-negative find-
ings was performed.
Results Algorithm runtime is 3±0.5 min per patient. The
system achieves a sensitivity of 83 % at 3.5 false positives
per patient on average for blastic metastases and a sensitiv-
ity of 88 % at 3.7 false positives for lytic metastases. False
positives appeared predominantly in the area of degenera-
tive changes in the case of the blastic metastasis detector and
in osteoporotic areas in the case of the lytic metastasis
detector.
Conclusion The CADe system reliably detects thoracolum-
bar spine metastases in real time. An additional study is
planned to evaluate how the bone lesion CADe system

improves radiologists’ accuracy and efficiency in a clinical
setting.
Key Points
• Computer-aided detection (CADe) of bone metastases has
been developed for spinal CT.

• The CADe system exhibits high sensitivity with a tolerable
false-positive rate.

• Analysis of false-positive detection may further improve
the system.

• CADe may reduce the number of missed spinal metastases
at CT interpretation.

Keywords Computer-aided detection (CADe) . Bone
metastases . Computed tomography (CT) . Spine . Clinical
decision support

Abbreviations
CADe computer-aided detection
CT computed tomography
FDG fluorodeoxyglucose
FN false negative
FP false positive
FROC free-response receiver operating characteristic
MRI magnetic resonance imaging
PET-CT positron emission tomography–computed

tomography
TN true negative
TP true positive

Introduction

Various types of malignant primary tumours spread to the
skeletal system. Most patients die not because of the growth
of the primary cancer, but because of its spread to other sites
[1]. Bone metastases portends a poor survival with a median
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of less than 6 months [2] and, therefore, are of critical
importance for oncological patients. Furthermore, metasta-
sis to the skeletal system is a frequent and serious compli-
cation of various cancer types with high incidence and
prevalence, such as breast cancer, colon cancer and lung
cancer [3]. Accurate detection of bone metastases is thus an
important task in a radiologist’s daily routine, because it
provides valuable clinical information and enables the time-
ly choice of systemic or local therapy such as surgical
intervention or radiation. There are different manifestations
of bone metastases; they appear lytic, blastic (sclerotic) or
show a mixed appearance [4]. In particular, lytic metastases
within the vertebral column can cause pathological frac-
tures, severe pain and spinal cord compression, potentially
together with neurological impairment [1]. Moreover,
the presence of bone metastasis can be an important
prognostic factor of whether the patient will benefit from
chemotherapy which is often associated with impairing side
effects [5].

Nowadays there are many radiological methods available
for examination of the skeletal system for osseous metasta-
ses, such as computed tomography (CT), magnetic reso-
nance imaging (MRI), skeletal scintigraphy or positron
emission tomography–CT (PET-CT). However, in clinical
routine, the initial staging and especially the follow-up
examinations of oncological patients often include CT im-
aging only. CT demonstrates superior bony detail, allowing
early detection of bone metastases [6]. Nevertheless, it is
challenging and time consuming to detect bone lesions at an
early stage on CT images especially when a variety of
benign osseous lesions with a lytic or sclerotic appearance,
such as osteoporosis or degenerative changes, are present.
Moreover, it has been postulated that skeletal metastases
are at risk of being missed because bone windows are
underutilised in a radiologist’s daily routine [7].

Therefore, reliable and reproducible automatic detection
of spinal metastases in CT images can be regarded as a
desperately needed and useful tool in the diagnosis, staging
and treatment monitoring of cancer patients. It could assist
the reader in the final decision making as it indicates suspi-
cious osseous regions for further consideration. Further-
more, it can be part of an often demanded multipurpose
computer-aided detection system [8]. To efficiently utilise
the software in the daily routine, it is crucial to achieve
satisfactory sensitivity. On the other hand, the number of
false-positive results has to be minimised, and the system
performance should be as fast as possible in order not to
markedly delay or prolong the reporting.

In this study, the performance of a piece of automatic
detection software for lytic and blastic spinal metastases
on CT images was evaluated. The software could po-
tentially assist radiologists in detecting thoracolumbar spine
metastases.

Materials and methods

The institutional review board of the University of Erlangen-
Nuremberg approved this study and waived the need for
informed consent.

The software was developed within the framework of the
German Theseus-Medico research programme, a recently
completed 5-year nationwide multi-centre research project
[9, 10]. Physicians, university health-care professionals and
computer scientists collaborated in this joint venture. The
Theseus-Medico software platform was developed in the
course of this programme to support physicians in accurate
and efficient patient diagnostics and patient monitoring in
various application areas including spinal metastases
detection.

Patient population

For this retrospective study the Radiological Information
System (RIS) was used to search for patients with reported
lytic and/or blastic bone metastases in the thoracolumbar
spine who underwent CT imaging from 1 January 2011 to
31 December 2011. A radiological resident with 2 years’
experience and a board-certified radiologist with 15 years’
experience collected and annotated the retrieved CT data in
consensus. Consecutive patients with at least one confirmed
malignant lytic lesion larger than 0.5 cm3 (equal to a diam-
eter of roughly 10 mm) or one malignant blastic lesion
larger than 0.3 cm3 (equal to a diameter of roughly 8 mm;
similar to O’Connor et al. [11] and Wiese et al. [12]) in the
vertebral bodies of the thoracolumbar spine were selected.
Instead of completely excluding patients with metal
implants or traumatic fractures from the experimental anal-
ysis, only specific vertebral bodies displaying metal
implants (e.g. screws; n (vertebral bodies)=4), compression
fractures (n=7) or kyphoplasty material (n=5) were exclud-
ed. The first 50 subjects who matched these parameters were
included (31 women, 19 men; mean age, 58 years; range,
32–87 years). Twenty of these patients showed lytic lesions;
30 patients showed blastic lesions. The underlying primary
cancer was breast cancer (n=11), plasmacytoma (n=8),
prostate cancer (n=5), melanoma (n=5), renal cell carcino-
ma (n=4), pancreatic carcinoma (n=3), lung cancer (n=3),
lymphoma (n=2), colorectal carcinoma (n=2), oesophageal
carcinoma (n=2) and other types of cancer (n=5). All
patients underwent contrast-enhanced thoraco/abdominal
CT imaging.

Lesion annotation was performed by positioning a 3D
rectangular bounding box around each lesion and assigning
the lesion’s type. Lesion type was verified by all available
information concerning the patient such as patient history,
MRI, skeletal scintigraphy, PET-CT and histology. Although
histological confirmation was not available for all cases, the
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lesion annotations were verified in the clinical routine until
an adequate assessment was possible.

CT technique

CT was performed with a Somatom Sensation® 64-detector
row system (Siemens AG, Erlangen, Germany) with the
following parameters: craniocaudal thoraco/abdominal CT
data acquisition, 120 kV, Care Dose® (Siemens AG, Erlan-
gen, Germany); pitch, 0.9; collimation, 0.6 mm; section
thickness, 3 mm; hard recon kernel. Images were acquired
at the portal-venous contrast agent phases (intravenous ap-
plication of weight-adapted, warmed Imeron® 400 (Bracco
Imaging, Konstanz, Germany) followed by a saline flush
with a flow rate of 3 mL/s through a 20-gauge catheter in an
antecubital vein.

Computer-aided detection system

The detection process starts with the automatic detection of
vertebral bodies (Fig. 1). In CT data, vertebral bodies can be
reliably detected, for example, using iterated marginal space
learning [13]. Vertebral bodies are highlighted on the CT
image and restrict the search space for subsequent lesion
detection. The images of vertebral bodies are spatially nor-
malised to have the same orientation and extension and are
inputted into a cascade detector consisting of three random
forest-based discriminative models [14] each working on a
selection of features describing the individual lesion centre
candidates. The first model in the detector exploits a limited
set of features which includes low-level 3D Haar-like fea-
tures. The other subsequent two models exploit the full
heterogeneous set of features, which are of different nature
and describe various characteristics of the suspected lesion
[13, 15, 16]. The lesion centre detector cascade provides
rough to coarse lesion detection, which starts with a large set
of suspicious lesion-like structures and ends with a reduced
set of likely malignant clinically important findings. After
having detected the centres of likely bone metastases, the
system uses a patient-specific estimation of the spongiosa’s

intensity distribution within all segmented vertebral bodies
to additionally reject lesion candidates whose centre voxels
do not sufficiently differ from the surrounding spongy bone
tissue. The remaining findings are refined with scale esti-
mates by an additional scale detector, grouped together with
hierarchical agglomerative clustering, transformed back to
the coordinate system of the original CT data and ultimately
displayed to the clinician as bounding boxes on the CT
image.

In our study, the detection cascade, both for lytic and
blastic metastasis detection, was parameterized so as to
have, per each vertebral body, up to 1,000 findings at the
output of the first model, up to 200 candidates after applying
the second model, and up to 100 voxel candidates at the
cascade output and input for agglomerative clustering, both
in detection training and its application. This setting has
been proven to be the best, confirmed with cross validation
on the training data. Owing to the probabilistic nature of the
models, the system can be tuned to operate at different levels
of sensitivity and specificity. In our study, the operating
point (likelihood threshold) was chosen so that the expected
amount of false positives per patient did not exceed 4, which
was considered to be a tolerable amount of false positives in
the clinical routine.

The detection of lytic and blastic metastases is indepen-
dent from each other and can be initiated by a clinician on
demand. The detection processes in the search for lytic and
blastic metastases are identical and correspond to that pre-
sented in Fig. 1. The two respective detector training pro-
cesses differ only in the specific sets of positive and
negative bone lesions provided to train each component of
the detector. Training of such a detector system was dis-
cussed in more detail by Wels et al. [17], with an application
in lytic metastases detection.

An important peculiarity in the detector cascade is the
classification model, which is trained to explicitly differen-
tiate between the clinically interesting malignant findings
and similar looking benign lesions (e.g. osteophytes for
blastic lesions and osteoporotic areas or the basivertebral
vein for lytic ones). The set of negative candidates to train

Fig. 1 Machine learning-based
framework for the automatic
detection of lytic and blastic
spinal metastases in CT images.
The flow chart shows the
different steps of the system.
3D three-dimensional, CT
computed tomography
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the model is sampled so as to include a certain share of
benign degenerations, which represent typical false posi-
tives. This solution was recently implemented as an exten-
sion of Wels et al.’s approach [17] and was proven to reduce
the number of clinically uninteresting, false-positive,
findings.

The CADe system was trained on lesions with an ellip-
soid volume larger than 0.3 cm3 for blastic metastases
(similar to Wiese et al. [12]) and 0.5 cm3 for lytic metastases
(similar to O’Connor et al. [11]). Training data were
collected by searching the RIS for patients with reported
lytic and/or blastic bone metastases in the thoracolumbar
spine who underwent CT from 1 January 2009 to 31
December 2010. Thoraco/abdominal CT images of 114
subjects (67 women, 47 men) were annotated for train-
ing of the detectors. A group of 41 patients showed 102
lytic metastases and 73 patients showed 308 blastic
metastases, respectively. Benign bone lesions such as
osteophytes (n=576), degenerative sclerosis (n=367),
Schmorl’s nodules (n=146), osteoporotic areas (n=96),
haemangiomas (n=21) as well as the basivertebral vein
were annotated to train the last classification model in
the detector cascade. A standard personal computer
(Dual Core Xeon 2.66 GHz; Windows XP, 32 bit) was
used for evaluation of the system.

Statistical analysis

Software for the performance evaluation and statistical anal-
ysis of lesion detection was implemented as a part of the
CADe framework. The system is able to automatically gen-
erate a performance report for a set of CT images with
annotated lytic and blastic metastases. Sensitivities per le-
sion and per patient, positive predictive values per lesion
and per patient, the number of false positives per patient and
the mean runtime (with standard deviation) were calculated
for the two detectors (lytic and blastic) to assess the predic-
tive performance of the CADe system. Free-response receiv-
er operating characteristic (FROC) curves were also
generated.

A lesion is considered to be detected as soon as a detec-
tion result’s centre lies within the bounding box of the
expert-annotated bone lesion. Further, several detections
within a single vertebral body that is completely affected
by either lytic or blastic metastases are not counted as false-
positive detections. Missed detections of lytic or blastic
metastases whose ellipsoidal volume is smaller than 0.5
and 0.3 cm3 respectively (which correspond to the thresh-
olds in previously published related studies [11, 12]) are not
counted as false-negative detections. Such annotations were
excluded from evaluation and do not affect the counts of
false positives (FP), true positives (TP), false negatives (FN)
and true positives (TP).

Results

Sample lytic and blastic metastases detections of our
CADe system are shown in Fig. 2. Figure 3 includes
the curves of the FROC analysis of the two detectors
(lytic and blastic metastases), on the test patients. As
one see, both the FROC curves plateau at a certain level
of sensitivity, around 90 %. This occurs due to the fact
that a multi-level model involving a detector cascade is
used. The classification model at each cascade level has
its own sensitivity (which is high enough but is less
than 100 %), which lowers the overall reachable sensi-
tivity of the system, but makes the amount of false
positives clinically tolerable at the operating points of
interest, comparing with single-level solutions.

Detection of blastic spinal metastases

The average runtime of the CADe system is 95±12 s per
patient. On the 30 test cases the system achieves a per-lesion
sensitivity of 83 % and a per-patient sensitivity of 80 % at
3.5 false-positive detections per patient. Thus, 143 of the
172 annotated metastases were successfully detected. The
number of false-positive detections per patient varies from 0
to 26. The per-lesion and per-patient positive predictive
values are 58 % and 65 % (see Table 1 for a complete
summary of the results).

The majority of the 102 false-positive detections were
caused by degenerative changes (see Table 2 for detailed
information). Figure 4 shows examples of false-positive
detections. All false-positive detections were located inside
the vertebral bodies, mostly on or near the surface/end plates
(Table 2). Of the 29 false-negative detections, 24 misdetec-
tions had a maximum diameter not larger than 1 cm, indi-
cating the trend that smaller blastic metastases are more
likely to be missed. Figure 5 shows examples of false-
negative detections.

Detection of lytic spinal metastases

The average runtime of the CADe system is 87±18 s
per patient. On the 20 test cases the system achieves a
per-lesion sensitivity of 88 % and a per-patient sensi-
tivity of 93 % at 3.7 false positives per patient. Thus,
37 of the 42 annotated metastases were successfully
detected. The number of false-positive detections per
patient varies from 0 to 11. The per-lesion and per-
patient positive predictive values are 35 % and 49 %,
respectively (see Table 1 for a complete summary of the
results).

The majority of the 70 false-positive detections were
caused by osteoporotic changes (see Table 2 for detailed
information). Figure 4 shows examples of false-positive
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detections. A set of 7 (10 %) false-positive detections were
located outside the vertebra (Table 2). Contrary to blastic
metastasis, four of the five false-negative detections had a
maximum diameter larger than 1 cm. Figure 5 shows exam-
ples of false-negative detections.

Discussion

As demonstrated by this study, the computer-aided detection
(CADe) system quickly detects bone metastases in the thor-
acolumbar spine with a sensitivity of 88 % for lytic metas-
tases and 83 % for blastic ones. The number of false-
positive detections was slightly higher in the case of the
detection of lytic metastases (3.7 versus 3.5 per patient).

Influenced by the persistent trend of an ever-increasing
image data volume and the associated rising workload of
radiologists [18, 19], there is a mounting call for computer-
based support that will assist the reading process [20].
Various CADe systems for multiple clinical tasks have
already been developed in an attempt to address this chal-
lenge. Some of them are already successfully used in daily
clinical routine, with others in the process of gaining clinical
acceptance. CADe systems for lung, breast, colon, liver and
prostate cancer as well as for coronary stenosis and pulmo-
nary embolism have been studied recently and found clini-
cal acceptance [21–27].

The sensitivity achieved and the number of false-positive
detections of the system under evaluation are promising.
Therefore we propose to further refine the system and to
evaluate it in a clinical setting, so that it could become a

Fig. 3 Free-response receiver operating characteristic (FROC) curves
showing the per-lesion sensitivity and the number of false-positive
detections per patient of the CADe system for lytic (blue line) and
blastic (red line) metastases in the vertebral bodies of the thoracolum-
bar spine

Fig. 2 Examples of detection
results on CT images (sagittal
plane). True-positive (a), false-
positive (b) and false-negative
(c) detections of blastic
metastases in the thoracolumbar
spine are shown in the upper
row; the lower row shows
analogous detections of lytic
metastases (d–f). The blue
boxes represent the ground-
truth annotations; the red boxes
represent the detection results
of the CADe system
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component of an often-demanded multipurpose CADe [8]
which is expected to improve radiologists’ accuracy and
productivity [28]. For the purpose of displaying clinical
feasibility and seamless integration into the reading process,
as recommended by van Ginneken et al. [29] we examined
the software in a cohort of consecutive patients with differ-
ent types of primary cancers. As analysis of the results
suggests, the major application of the software could be in
guiding the radiologist to suspicious areas for further con-
sideration, as early-stage bone metastases in particular are
difficult to detect on CT images even for experienced radi-
ologists [7].

O’Connor et al. [11] previously described a CADe system
for lytic bone metastases in the thoracolumbar spine. They
observed that 27% of false-positive results were located in the
region of the intervertebral disc. Similar observations were
made in earlier editions of our system. In order to reduce the
number of false-positive detections, we applied a segmenta-
tion of the vertebral bodies in a preprocessing step to exclude
the intrinsically low-attenuating intervertebral discs. O’Con-
nor et al. [11] used 50 cases (including 28 lesions) with a
section thickness of 5 mm, leading to volume averaging,
which caused the segmentation of undesired structures. We

used images with a 3-mm section thickness sagittal recon-
struction of routine thoraco-abdominal CT images. O’Connor
et al. [11] mentioned false-positive findings caused by non-
pathological, low-attenuating structures, such as the basiver-
tebral vein and by detections outside the vertebra. We met this
challenge by limiting the search space to the vertebral body
because it can be robustly segmented and because most me-
tastases are located in this part of the vertebra [30]. Addition-
ally, the automatic segmentation of the vertebral bodies allows
searching in the region of the basivertebral vein, which is
known to always reside in the same segment of the vertebral
body, to be avoided. Owing to varying conditions, the two
systems are difficult to compare. Our system generated fewer
false-positive lesions (3.7 versus 4.5 per patient) whereas the
sensitivity (88 %) was located between their training (83 %)
and test set sensitivity (94 %). In comparison to O’Connor et
al’s work [11], the software was applied to all consecutive CT
examinations and only single vertebral bodies showing hard-
ware, such as screws, compression fractures or kyphoplasty
material, were excluded from evaluation. No subject was
excluded because of bad performance, unsatisfactory image
quality, extensive disease or extensive degeneration.

Wiese et al. [12] described a CADe system for blastic
bone metastases in the spine. In comparison to this study we
were able to achieve a significantly better sensitivity at a
smaller number of false-positive detections when concen-
trating on the vertebral body. Wiese et al. [12] did not
analyse the false-positive detections, although according to
our experience, degenerative changes such as osteophytes
are mostly responsible for the high numbers of false-positive
detections. We exploited a larger set of blastic metastases
and, as described before, our system was trained to explic-
itly avoid detection of non-malignant lesions to reduce the
false-positive rate. This has proven to be an efficient solu-
tion, eliminating obviously benign findings and significant-
ly reducing the number of false positives, on average by up
to two per patient, both for blastic and lytic metastases. This
solution can be potentially useful for other similar CADe
systems where the likely false positives include a separate
group with a specific location and/or appearance and can be
annotated and incorporated in the learning process in order
to improve the predictive performance of the system.

Table 1 Results of the automatic detection of blastic and lytic spinal
metastases on CT images

Blastic
metastasis
detector

Lytic
metastasis
detector

Total volumes 30 20

Total annotations 172 42

Total algorithm detections 245 107

Total true positives 143 37

Total false positives 102 70

Total false negatives 29 5

False positives per patient 3.5 3.7

Sensitivity per lesion (%) 83 88

Sensitivity per patient (%) 80 93

Positive predictive value per lesion (%) 58 35

Positive predictive value per patient (%) 65 49

Mean runtime ± SD (s) 93±12 87±18

Table 2 Analysis of the false-positive results of the spinal metastases detection software

False-positive results

Blastic metastasis detector (n=102) Lytic metastasis detector (n=70)

Location All inside the vertebra, predominantly close to the end plates Predominantly in the vertebra (n=63; 90 %),
some outside (n=7; 10 %)

Type Mainly osteophytes (n=42; 41 %) and degenerative sclerosis
(n=39; 38 %), some Schmorl’s nodules (n=5; 5 %) and
non-classifiable image artefacts, respectively (n=16; 16 %)

Mainly osteoporotic areas (n=54; 77 %), some
basivertebral veins (n=5; 7 %), haemangiomas
(n=3; 4 %) and a Schmorl’s nodule (n=1; 1 %)
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The runtimes for the software introduced by O’Connor et
al. [11] and Wiese et al. [12] are unknown. As the overall

runtime of our system is 3 min per patient it does not delay
the reading process which is important for clinical

Fig. 4 Examples of false-positive detections (sagittal plane). False-
positive detections of the lytic metastases detector are shown in the
upper row (a an osteoporotic area, b a basivertebral vein, c a Schmorl’s
nodule, d a haemangioma); the lower row shows analogous false-

positive detections of the blastic metastases detector (e an osteophyte,
f a degenerative sclerosis, g a Schmorl’s nodule, h a non-classifiable).
The red boxes represent the detection results of the CADe system

Fig. 5 Examples of false-
negative detections (sagittal
plane). False-negative
detections of the lytic
metastases detector are shown
in the upper row (a a lytic
metastasis close to the
basivertebral vein, b a lytic
metastasis falsely detected as an
osteoporotic area); the lower
row shows analogous false-
negative detections of the
blastic metastases detector (c a
blastic metastasis close to the
end plate, d a subtle blastic
metastasis). The blue boxes
represent the ground-truth
annotations
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feasibility. Usually, the CADe system would be able to
generate its detections while the radiologist is reading the
soft tissue window. Because the system is completely auto-
matic, it can also be launched in an offline mode, before the
case is opened for reading.

Although alternative methods for the detection of bone
metastases such as bone scintigraphy, PET-CT and MRI
have often been proven to provide better sensitivity, we
are studying CT because in daily routine a radiologist must
also detect bone metastases on the more commonly acquired
CT images. Machine learning-based CADe systems could
assist the reader in recognising suspicious osseous areas on
CT. Subsequently, in the case of high-risk patients, more
sensitive or specific methods could be provided to detect
and treat osseous metastases at an early stage. Interestingly,
it was observed that PET and bone scintigraphy also have
limitations concerning the detection and the assessment of
bone metastases. Thus, some benign bone lesions show a
high accumulation of fluorodeoxyglucose (FDG) [31] and
blastic metastases are often not detectable by PET because
they show low metabolic activity [32]. In the case of usual
technetium 99-m (99mTc)-based bone scintigraphy, lytic
bone lesions related to multiple myeloma do not show
uptake of the radioisotope [33].

The FROC curves plot the per-lesion sensitivity of each
detector versus the expected number of false-positive detec-
tions per patient (Fig. 3). The system allows easy tuning to
work at any operating point on these FROC curves. This is
important, as long as, under some circumstances, a radiolo-
gist would find lower sensitivity with fewer false positives
acceptable (e.g. in patients who show advanced degenera-
tive changes of the spine but are not expected to show
osseous metastases), whereas in some other cases exploring
every single suspicious region at the expense of observing
more false positives might be desirable, in order to increase
the sensitivity of the reading (e.g. in an oncology patient).
For images that are not likely to show many false positives
(e.g. of a young patient with a spine not showing degener-
ation), the radiologist may demand high sensitivity along
with a tolerable false-positive rate. With our system, the
operating point can be changed in real time, increasing or
reducing the set of detections, through thresholding their
likelihood.

Our study faces some limitations that suggest directions
for future work. Contrary to the alternative approaches in
which the whole vertebra is considered [11, 12], the system
was trained to detect lesions in the vertebral body only. We
intentionally concentrated on the vertebral body because it
reduces runtime and improves predictive performance.
Moreover, it is known that most metastases are located in
this part of the vertebra [30].

Furthermore, the system was trained and tested with lytic
metastases larger than 0.5 cm3 and blastic metastases larger

than 0.3 cm3 which are the same threshold values as those in
previously published related studies [11, 12]. To achieve
satisfying results in detecting smaller lesions as well, larger
patient populations with a reliable annotation of lesions of
this kind are required for the training (and evaluation) of the
detectors.

In the present study we concentrated on the detection of
lytic and blastic metastases. We noticed that in case of a
mixed metastasis, showing a lytic and a blastic portion, both
detectors usually generate findings of the corresponding
portion. Revision of collocated findings of this kind is a
subject of our ongoing work.

It has been reported recently that CADe systems have the
potential to detect up to 50 % of the lesions overlooked by
human readers in the case of breast and lung cancer [34, 35].
A study evaluating how the CADe system may help in
decreasing the number of missed spinal bone metastases
similar to Nishikawa et al. [34] and White et al. [35] can
be conducted when a big enough set of lesions that tend to
be overlooked by a radiologist is collected. This is an
interesting and important direction for future work.

In conclusion, the CADe system under evaluation reli-
ably and quickly detects thoracolumbar spine metastases in
CT images. It can be applied as a fully automatic prepro-
cessing step to indicate suspicious osseous areas and thus
support the radiologist. This is extremely valuable during
the reading of CT images as bone metastases potentially
cause severe impairment of the patient and risk being missed
even by experienced radiologists. An additional study is
planned to evaluate how the bone lesion CADe system
improves radiologists’ accuracy and efficiency in a clinical
setting.
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