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the CS. The effects of fatigue on postural control are more 
important when proprioceptive information at the ankle is 
altered. In particular, older adults had more difficulty and 
may have needed more attention to stand quietly, compared 
with young adults.
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Introduction

Neuromuscular or muscle fatigue can alter postural con-
trol, with most studies showing an increase in sway ampli-
tude or velocity in young adults (Paillard 2012). Numerous 
studies examining the effect of ankle muscle fatigue on 
postural control have suggested a link between an altera-
tion in proprioception and an increase in sway with fatigue 
(Salavati et al. 2007; Gribble and Hertel 2004; Vuillerme 
et al. 2002a). According to the re-weighting hypothesis 
(Peterka 2002; Maurer et al. 2006), re-weighting sensory 
information from less or altered to more reliable sources 
would be required to maintain stability in such a condition 
(fatigue). In fact, studies have shown a modulation of the 
effect of fatigue on postural control according to available 
sources of sensory information (e.g., eyes closed vs. eyes 
open) (Boyas et al. 2011; Thedon et al. 2011; Gimmon 
et al. 2011; Bisson et al. 2010). Furthermore, when pro-
prioceptive input is less reliable [e.g., on a compliant sur-
face (CS)], postural control alterations due to ankle mus-
cle fatigue can be exaggerated (Bisson et al. 2012) due to 
an additive effect: altered joint position sense (Allen et al. 
2010) and force sense (Vuillerme and Boisgontier 2008) as 
a result of muscle fatigue and further alteration in kinesthe-
sia caused by the CS (Horak and Hlavacka 2001).

Abstract The reduction in the quality and integration of 
sensory information with aging could increase the altera-
tions in postural control associated with muscle fatigue 
observed in younger adults. This study aimed to com-
pare changes in postural control and attentional demands 
due to ankle muscle fatigue, with intact and reduced pro-
prioceptive information at the ankle, between young and 
older adults. Eleven young (24 ± 4 years) and 13 older 
(65 ± 4 years) men stood quietly on a force platform 
(blindfolded) under four experimental conditions (combi-
nations of firm (FS)/compliant (CS) surfaces and single/
dual tasks), before and immediately after a fatiguing exer-
cise. The fatiguing exercise, performed on a dynamometer, 
consisted of maintaining an isometric contraction of the 
plantarflexors at 50 % of maximum until exhaustion. Both 
COP sway area and COP sway velocity were greater on 
the CS compared to FS and increased with fatigue for both 
groups in all conditions. COP sway area showed a greater 
increase with fatigue in older adults when standing on the 
CS. Reaction time (secondary task) increased significantly 
after fatigue, but only for older adults when standing on 
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The impact of muscle fatigue on postural control in 
older adults may be more pronounced than in young adults 
since their proprioceptive and neuromuscular systems are 
less efficient. Neuromuscular fatigue mechanisms can also 
be influenced by age, and this has been shown to be task 
dependent (Allman and Rice 2002). Interestingly, a number 
of studies have shown greater sway during quiet standing in 
older adults after fatigue (Moore et al. 2005; Egerton et al. 
2009), but no direct comparison has been made with young 
adults. Furthermore, these studies were conducted on a firm 
and stable surface. It is known that age-related differences 
in postural control are particularly evidenced when inputs 
from two of the three sensory systems controlling posture 
are not available/reliable (e.g., vision blocked and pro-
prioception altered). No study has examined the effect of 
fatigue on postural control in this condition in older adults. 
These individuals may present with greater fatigue-related 
alterations in sway with reduced proprioceptive informa-
tion, because they have more difficulty re-weighting less-
to-more reliable sensory information (Redfern et al. 2001; 
Hay et al. 1996). Also, as suggested by Egerton et al. 
(2009), even if postural control alterations due to mus-
cle fatigue are similar between older and young adults, a 
greater increase in attentional demands after fatigue may be 
observed in the former group.

The goal of this study was to compare changes in postural 
control and attentional demands due to ankle muscle fatigue, 
on both a firm surface (FS) and a CS, between young and 
older healthy adults. Our main hypotheses were that (1) we 
would observe an increase in all sway variables with fatigue 
in both young and older adults, but this would be more pro-
nounced in the latter group and on the CS (Bisson et al. 
2012) and (2) we would document a decrease in performance 
of a secondary cognitive task with fatigue, which would also 
be more pronounced on the CS and for older adults.

Methods

Participants

Eleven young (24 ± 3 years, 181.9 ± 6.6 cm, 
75.2 ± 9.8 kg) and 13 older men (65 ± 4 years, 
175.3 ± 4.1 cm, 78.5 ± 9.6 kg) were recruited. None of the 

participants had a history of falls in the past year, and all 
reported being healthy. The older men scored between 28.5 
and 30/30 (mean = 29.7) on the Mini Mental State Exam 
(Folstein et al. 1975). No participants had diminished pro-
tective plantar sensation when tested with the Semmes–
Weinstein monofilaments (Feng et al. 2009). Both groups 
included participants with low (3 young, 3 older), moder-
ate (3 young, 6 older) and high levels of physical activity 
(5 young, 4 older), as assessed with the Godin Leisure-
Time Exercise Questionnaire (Godin and Shephard 1997). 
The study was approved by the University of Ottawa and 
the Bruyère Continuing Care Research Ethics Boards, and 
written informed consent was obtained prior to enrollment.

Procedures

Following sufficient practice, standing postural control and 
attentional demands in a dual-task paradigm were tested 
during two distinct groups of trials: (a) baseline trials and 
(b) post-fatigue trials. A schematic of the post-fatigue 
period is presented in Fig. 1. To minimize recovery dur-
ing post-fatigue trials, the fatigue protocol was repeated 
between tested conditions (F1, F2, F3, F4).

Participants were first secured in a dynamometer chair. 
After a brief warm-up period, they performed three maxi-
mal isometric voluntary contractions (MVC) in plantarflex-
ion, where the highest peak torque was considered the par-
ticipant’s baseline MVC.

For the postural task, participants had to stand as still as 
possible with their feet together, their arms by their sides and 
blindfolded (opaque ski goggles) in four different conditions: 
quiet standing alone and while performing a secondary task 
(single vs. dual-task conditions), both on a FS and a CS. Each 
condition comprised four 30-s trials. The order of the four 
postural conditions was counterbalanced. For trials with the 
CS, participants were asked to stand on a block of dense foam 
placed on the force platform. For dual-task condition trials, 
participants had to prioritize the postural task while respond-
ing to a secondary task as best as they could. The secondary 
task consisted of a choice reaction time (CRT) task, where 
two different auditory stimuli were presented. Participants 
needed to respond “TIE” when the auditory cue was a high-
pitch sound (3,000 Hz, 50 ms) and respond “TOE” when the 
auditory cue was a low-pitch sound (250 Hz, 50 ms). Six 

Fig. 1  Schematic of the post-fatigue period. After baseline assess-
ment of MVC and each postural tasks, participants performed the 
fatigue protocol four times (F1–F4), each followed with a MVC and 

four trials (T1–T4) of one postural task (task order counterbalanced 
between participants). MVC maximal isometric contraction, FS firm 
surface, CS compliant surface, ST single task and DT dual-task
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stimuli were presented per trial in a quasi-random manner 
with at least two stimuli of each sound given per trial. Four 
trials of seated CRT were also performed prior to the baseline 
trials and following the post-fatigue trials. While lip move-
ment may increase postural sway during the dual task (Dault 
et al. 2003), the six verbal responses per trial took only a frac-
tion of the 30-s trial used to measure each sway parameters. 
Thus, we are confident that lip movements had little to no 
effects on our postural data.

The fatigue protocol used in this study has been described 
in detail elsewhere (Bisson et al. 2012). A custom-built attach-
ment to a BIODEX dynamometer (System III, Shirley, NY) 
was used to fatigue the plantarflexor muscles of both ankles 
simultaneously. The fatigue task consisted of a continuous 
isometric contraction of the plantarflexors at 50 % MVC until 
failure. The fatigue protocol was ended when participants 
were unable to hold 50 % MVC for five consecutive seconds. 
After completion of each bout of fatiguing exercise, partici-
pants were asked to perform a MVC before transferring to the 
force platform (2 m away) to perform the postural tasks.

Data acquisition and statistical analyses

Fatigue characterization

Muscle fatigue was quantified by measuring the MVC 
torque after each fatigue protocol (F1, F2, F3, F4) and com-
paring this value to the baseline MVC. The time (s) elapsed 
from the start of the isometric contraction until failure was 
also recorded for each fatigue protocol (time to failure). A 
two-way mixed-model analysis of variance (ANOVA) was 
performed on the MVC torque and time to failure to ana-
lyze the effect of group (young, older) and fatigue protocol 
(MVC torque: baseline, F1, F2, F3, F4; time to failure: F1, 
F2, F3, F4).

Sway parameters

Center of pressure (COP) data were collected at a sampling 
rate of 50 Hz using an AMTI AccuGait force platform 
(Watertown, MA). COP sway during feet-together stance 
was characterized with three time-domain variables using 
BioAnalysis 2.1 software (Watertown, MA): the 95 % 
ellipse sway area, and medio-lateral (ML) and anterior–
posterior (AP) COP sway velocity. For each condition, the 
mean of the four pre-fatigue trials (baseline) was calcu-
lated. In contrast, because the effect of muscle fatigue on 
COP sway has been shown to recover rapidly (Boyas et al. 
2011; Harkins et al. 2005) and considering the present data 
which indicates that the effect of fatigue is apparent mainly 
in the first post-fatigue trial for all COP sway variables (see 
Figs. 2 and 3 in Results section), statistical analyses were 
performed only on this trial (T1) compared to the mean of 

the pre-fatigue trials (baseline). For each COP sway vari-
able (area, AP and ML velocity), a four-way mixed-model 
ANOVA was used to analyze the effects of group (young, 
older), fatigue (baseline, T1), task (single, dual) and surface 
(FS, CS) on postural control.

Choice reaction time

The response time (referred to as CRT) was calculated as 
the time between the start of the auditory cue and the start 
of the vocal response. Both high-pitch (3,000 Hz, 50 ms) 
and low-pitch (250 Hz, 50 ms) auditory cues were gener-
ated by a computer and output through speakers placed 
at ear level. Verbal responses were recorded using a wire-
less voice recorder. The mean CRT (four trials) was cal-
culated for both auditory cues (high and low-pitch cue) 
for the seated trials (before baseline trials and after post-
fatigue trials), baseline trials and for each trial after fatigue 
(T1, T2, T3, T4). First, a three-way mixed-model ANOVA 
was performed on the seated CRT with the following fac-
tors: group (young, older), fatigue (baseline, post-fatigue) 
and type of cue (high-pitch, low-pitch) to confirm that mus-
cle fatigue has no effects on verbal responses per se. Sec-
ond, a four-way mixed-model ANOVA was performed on 
the standing CRT with the following factors: group (young, 
older), fatigue (baseline, T1), type of cue (high-pitch, low-
pitch) and surface (FS, CS) to examine the effects of mus-
cle fatigue on performance of a secondary task.

All statistical analyses were completed using PASW sta-
tistics 18 (IBM, Chicago, IL) with a significance level set 
at p < 0.05. Tests for sphericity were performed and val-
ues adjusted (using Greenhouse and Geisser adjustment) if 
found significant. Post hoc analyses were used when appro-
priate using a Bonferroni adjustment.

Results

Fatigue characterization

MVC torque showed significant main effects of group 
[F(1,21) = 4.73, p = 0.041], fatigue [F(4,84) = 172.7, 
p < 0.001] and a fatigue by group interaction [adjusted 
F(2.6,84) = 5.2, p = 0.005]. As presented in Table 1, MVC 
torque recorded after each fatiguing protocol was signifi-
cantly different from baseline for both groups (p < 0.001). 
Young men had a greater MVC at baseline (p = 0.008), 
after fatigue protocol 1 (p = 0.027) and fatigue protocol 
2 (p = 0.031) compared with older adults, but not after 
fatigue protocols 3 and 4.

Time to failure showed significant main effects of group 
[F(1,22) = 5.79, p = 0.025] and fatigue [F(3,66) = 31.0, 
p < 0.001]. As shown in Table 1, time to failure was 
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significantly longer during the first bout of fatiguing exer-
cise compared to all other bouts (p < 0.001). In addition, 
the time to failure of older men was longer compared with 
that of young men (p < 0.05).

Effects of fatigue on COP sway parameters

For all COP parameters, the effect of the task (single vs. 
dual task) and all associated interactions were non-signif-
icant, suggesting that participants prioritized the primary 
(postural) task as instructed. Thus, for clarity purposes, 
COP data from both tasks were pooled and the subsequent 
results are presented as such. A summary of the statistical 
results are shown in Table 2.

COP sway area results (Fig. 2) showed (a) significantly 
greater COP sway area on the CS compared with the FS in 
both baseline and T1, and for both groups (p < 0.001); (b) a 
significant increase in COP sway area with fatigue for each 
surface and for both groups (p < 0.001) and (c) a significant 
difference in COP sway area between groups after fatigue (T1) 
when standing on the CS (p = 0.029) only. Thus, the increase 
in COP sway area due to fatigue was more pronounced for 

older men when standing on the CS (78 % increase) compared 
with when standing on the FS (46 % increase) and compared 
to their young counterparts when standing on either surfaces 
(CS: 46 % increase; FS: 31 % increase).

COP sway velocity results (Fig. 3) showed that AP and 
ML COP sway velocities were significantly greater during 
the CS condition compared with the FS condition at both 
baseline and post-fatigue and for both groups (p < 0.001). 
However, older men had greater COP sway velocity com-
pared with young men on the CS (p < 0.05), but not the 
FS. Finally, ankle muscle fatigue significantly increased AP 
and ML COP sway velocity on both CS and FS, and for 
both groups (p < 0.01). This increase was more pronounced 
when standing on the CS (mean of both groups of 37 and 
30 % increase for AP and ML, respectively) compared with 
when standing on a FS (mean of both groups of 24 and 
21 % increase for AP and ML, respectively).

Effects of fatigue on attention

Seated CRT showed no significant main effects of group 
[F(1,20) = 3.15, p = 0.091], fatigue [F(1,20) = 0.021, 

Table 1  Fatigue characterization for young (n = 11) and older men (n = 13)

MVC maximal voluntary contraction and F fatigue protocol
a MVC torque decreased for both groups from baseline to each fatigue protocol (p < 0.001)
b MVC torque was significantly greater for young compared with older adults (p < 0.05)
c Time to failure was longer for the first fatigue protocol (p < 0.001)
d Older adults had longer time to failure compared to young adults (p < 0.05)

Baseline Fatigue protocol

F1 F2 F3 F4

MVC torque (N)

Young 266.1 (48.9)a,b 196.4 (39.0)b 197.1 (45.9)b 183.6 (41.8) 184.0 (39.4)

Older 219.1 (28.6)a 165.6 (25.4) 164.6 (22.6) 163.9 (27.3) 159.2 (25.6)

Time to failure (s)

Young 126.1 (29.6)c 101.8 (25.9) 95.4 (22.0) 90.3 (18.3)

Older 176.2 (65.0)c,d 138.0 (49.6)d 123.6 (44.0)d 116.5 (25.7)d

Table 2  Statistical results of 
the comparison between groups 
on the effects of fatigue and 
types of surface for the COP 
sway parameters

COP center of pressure, AP 
antero-posterior, ML medio-
lateral and ns not significant

Effects COP sway parameters

Area AP velocity ML velocity

F(1,22) p F(1,22) p F(1,22) p

Fatigue 56.24 <0.001 61.13 <0.001 24.35 <0.001

Surface 140.33 <0.001 186.81 <0.001 239.50 <0.001

Group ns 4.44 0.047 8.29 0.009

Fatigue × surface 34.15 <0.001 35.47 <0.001 14.26 <0.001

Fatigue × group 4.62 0.047 ns ns

Surface × group ns 9.15 0.006 4.46 0.046

Fatigue × surface × group 4.42 0.043 ns ns
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p = 0.886] or type of cue [F(1,20) = 0.793, p = 0.384], 
nor any interactions (p > 0.05). Both young and older 
adults were able to maintain their baseline seated CRT after 
the post-fatigue trials.

Standing CRT showed significant main effects of 
type of cue [F(1,22] = 9.41, p = 0.006] and surface 
[F(1,22) = 4.73, p = 0.042]. Additionally, a significant 
fatigue by surface by group interaction [F(1,22) = 6.79, 
p = 0.017] was found. Participants responded faster to the 
low-pitch sound (mean CRT of 460 ms) compared to the 
high-pitch sound (mean CRT of 482 ms). As depicted in 
Fig. 4, pairwise comparisons showed that standing CRT 
increased significantly with fatigue in older men when 
standing on the CS (mean increase of 54 ms, p = 0.004) 
compared with when standing on a FS and compared with 
their young counterparts when standing on either surfaces 
(p > 0.05).

Discussion

This study was the first to examine age-related differ-
ences in postural control alterations and possible increased 
attentional demands caused by ankle muscle fatigue when 
standing on a FS compared with a CS. All COP sway vari-
ables increased after fatigue. Both groups showed a greater 
increase in COP sway area with fatigue when standing 

on the CS compared with the FS. Older adults were also 
affected to a greater extent by muscle fatigue compared 
with young adults, but only when standing on a CS. Finally, 
only older men showed an increase in standing CRT with 
fatigue, and only when standing on the CS.

Muscle fatigue effects on postural control in young adults

Localized muscle fatigue at the ankle has been shown to 
reduce joint position sense (Allen et al. 2010) and force 
sense (Vuillerme and Boisgontier 2008) through possible 
alterations in muscle spindles. Intensive work by Proske 
and colleagues (Allen et al. 2010; Tsay et al. 2012; Proske 
and Gandevia 2012) suggests that muscle fatigue induces 
a bias in the internal representation of the body (body 
schema). The consequences of this bias in postural control 
could be an increase in and/or improper corrective actions 
resulting in increased postural sway. In the present study, 
when the complexity of the task was fairly low (FS), young 
adults showed increased postural sway when fatigued. 
However, they were able limit postural control alterations 
due to fatigue possibly by re-weighting sensory inputs to 
more reliable sources such as vestibular and proprioceptive 
inputs from cutaneous mechanoreceptors (Paillard 2012).

Standing on an unstable surface alters the proprioceptive 
inputs from both the ankle joint and the foot (i.e., mecha-
noreceptors), increasing the difficulty to maintain stability. 

Fig. 2  Mean and standard deviation of COP sway area during each 
condition for both groups. Statistical analysis between baseline and 
T1 showed that COP sway area was greater when standing on the 
CS compared to FS at all time points (p < 0.001). COP sway area 
significantly increased with fatigue (T1) for both young and older 
adults when standing on the FS and the CS (*p < 0.05, **p < 0.01, 

***p < 0.001). COP sway area was significantly different (p < 0.05) 
between groups only at T1 when standing on the CS, suggesting a 
greater increase for the older adults during this condition. For clarity 
purposes, significance symbols are only shown to depict differences 
between baseline and T1
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Our results showed increase in postural sway during such a 
task, but the increase was even greater after muscle fatigue. 
This finding is similar to others (Gimmon et al. 2011; Bis-
son et al. 2012) and suggests that postural sway increases 
in relation to the amount of reliable proprioceptive inputs 
available. Bias in body schema due to muscle fatigue, as 
suggested by Tsay et al. (2012), possibly accentuated the 
difficulty in maintaining stability during conditions where 

proprioceptive inputs were altered (when standing on a CS). 
The increased COP sway may also have been intentional to 
allow the use of sensory information from muscles, but with 
a higher threshold, following fatiguing activity.

Muscle fatigue could increase the central process-
ing necessary for optimal postural control (Vuillerme 
et al. 2002b; Simoneau et al. 2006). Vuillerme et al. 
(2002b) and Simoneau et al. (2006) have shown changes 

Fig. 3  Mean and standard deviation of COP sway velocity in AP (a) 
and ML (b) during each condition for both groups. Statistical anal-
ysis between baseline and T1 showed that AP and ML COP sway 
velocity was greater when standing on the CS compared to FS at all 
time points (p < 0.001). AP and ML COP sway velocity significantly 
increased with fatigue (T1) when standing on the FS and the CS 

(**p < 0.01, ***p < 0.001). This increase was greater when standing 
on the CS (p < 0.001) but similar between groups. COP sway veloc-
ity was significantly different (p < 0.05) between groups on the CS 
(p < 0.05) but not on the FS. For clarity purposes, significance sym-
bols are only shown to depict differences between baseline and T1
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in attentional demands with fatigue using a button-press 
reaction time task. However, using a voice reaction time 
task, our findings demonstrated that the attention allo-
cated to the postural task did not increase with fatigue for 
young adults. This suggests that the attentional demands 
of postural control during muscle fatigue may be depend-
ent on the secondary task performed. Furthermore, the 
fact that a CRT task (compared to a simple reaction time 
task) did not increase with fatigue suggests that this task 
specificity may not depend on the difficulty of the task, 
but more so on the type of response used (button press 
versus vocal response).

Muscle fatigue effects on postural control of older adults

The effect of fatigue on COP sway of older adults reported 
here was greater compared with previous studies. For 
example, Egerton et al. (2009) have shown a modest effect 
of fatigue on COP sway displacement (5 % increase), 
whereas we showed a 46 % increase in COP sway area. 
This could be explained by the absence of vision, since vis-
ual information can attenuate the effect of muscle fatigue 
on postural control (Boyas et al. 2011; Bisson et al. 2010). 
However, as Egerton et al. (2009) failed to demonstrate, 
postural control in the present group of older adults was 
not more altered with fatigue than in young adults when 
standing on a FS. As for the young adults, possible bias in 
body schema may have resulted in more postural sway with 
fatigue. However, during a simple postural task such as 
standing with feet together, older adults, just like the young 

adults, were able to limit postural control alterations pos-
sibly by using other available proprioceptive inputs (e.g., 
mechanoreceptors at the foot).

With similar results, Egerton et al. (2009) suggested 
that the attention allocated to postural control could have 
increased with fatigue, making older adults at greater risk 
of falls. However, as observed here for young adults, older 
adults did not require more attention with fatigue on the 
FS, which suggests that for this condition, older adults 
were able to limit postural control alterations with a similar 
amount of attention as their younger counterparts.

Postural tasks where two sensory systems are altered 
(e.g., with eyes closed and standing on a CS) are more 
sensitive to differences between older and young adults 
(Woollacott et al. 1986). This is reflected in our results 
where no differences between groups were found in COP 
sway velocity when standing on a FS, but a greater veloc-
ity was observed when standing on the CS for older com-
pared with young adults. However, the novelty of our work 
was to examine how older adults, compared to younger 
adults, can maintain stability with sub-optimal sensory 
information, beyond environmental factors (such as unsta-
ble surface). Further to previous studies that found greater 
postural control alterations due to muscle fatigue when the 
eyes are closed and the surface is unstable (Gimmon et al. 
2011; Bisson et al. 2012), our findings are the first to show 
that these alterations are even greater in older adults. Dur-
ing muscle fatigue, the increase in COP sway velocity was 
similar across groups, which may suggest a similar increase 
in corrective actions between groups. COP sway area 

Fig. 4  Mean and standard deviation for CRT during the dual-task condi-
tions. Statistical analysis between baseline and T1 showed that CRT was 

significantly different between baseline and immediately after fatigue 
(T1) for the older adults when standing on the CS only (**p < 0.01)
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was similar between older (20.01 ± 1.83 cm) and young 
(17.64 ± 1.99 cm) adults before fatigue when standing on a 
CS, suggesting that the older group was highly functional. 
Although COP sway area increased for both groups after 
fatigue on the CS compared to the FS, older adults showed 
a greater increase (78 versus 46 % for young adults). Thus, 
with either reduced proprioception at the ankle and foot 
(CS) or when ankle muscles are fatigued on a FS, highly 
functional older adults are able to limit postural control 
alterations as well as young adults. However, when both 
conditions (muscle fatigue and standing on the CS) are 
combined, older adults have more difficulty in controlling 
their stability than young adults. Therefore, it seems that 
older adults have greater difficulty in maintaining their sta-
bility compared with young adults when task complexity is 
high and/or there is significant alteration in sensory inputs. 
By manipulating the sensory inputs (i.e., sensory organiza-
tion test), studies (Whipple et al. 1993; Mujdeci et al. 2012; 
Pedalini et al. 2009; Cohen et al. 1996) have shown greater 
differences in postural sway in older adults compared to 
young adults during the most complex conditions (i.e., 
standing on a CS with sway-referenced visual informa-
tion). Furthermore, greater instability during those condi-
tions has been shown in older adults with a history of falls 
(Mujdeci et al. 2012; Wallmann 2001; Whitney et al. 2006). 
We could hypothesize similar results when older adults are 
standing on a CS with muscle fatigue.

Furthermore, with proprioceptive inputs potentially per-
turbed by two different sources (CS and muscle fatigue), 
older adults may have more difficulty re-weighting sensory 
information and recalibrating their body schema (Sturnieks 
et al. 2008). Based on the theory of multiple internal mod-
els (Wolpert and Kawato 1998), Boisgontier et al. (2013) 
recently showed that older adults were predominantly 
using an intermittent model of control during a position 
sense task. These authors showed that older adults were 
using sub-movements to control their movement trajectory 
instead of using a re-weighting process (continuous model 
of action), which led to greater errors during a more chal-
lenging task (time constraint). In relation to our results, 
using sub-movements instead of a re-weighting process 
may explain why older adults had greater sway area dur-
ing the most challenging task. This could also lead to a 
greater increase in attentional demands with fatigue in this 
group compared with young adults (Lacour et al. 2008). 
Our results for the secondary task support this. When 
standing on a CS with eyes closed, older adults increased 
their CRT by 50 ms after muscle fatigue, whereas young 
adults showed no increase. These results contrast with the 
FS results, where peripheral inputs at the foot and ankle 
were still available to compensate for muscle fatigue. This 
reflects the importance of proprioceptive inputs for postural 
control and that older adults could be less efficient and may 

need more attention in using other sensory inputs to main-
tain stability during a complex postural task when their 
ankle muscles are fatigued.

It has to be noted that our findings can only be gener-
alized to a highly active/functional older adult population. 
Although this can be considered a limitation of the present 
study, the effect of fatigue could even be greater with a more 
frail population (e.g., sedentary older adults, diabetics) for 
which the relative task complexity and sensory threshold 
increase. This warrants further investigation. Similar to most 
previous studies, we document the effect of muscle fatigue 
on conventional COP sway parameters, without reporting 
changes in complementary measures such as muscle activa-
tion, joint stiffness and proprioception. The interpretation 
of the findings could have been more complete with these 
measures, and future studies should focus on examining the 
link between postural variables and these complementary 
variables to better understand the compensatory strategies 
elicited in response to muscle fatigue.

Conclusion

This study has shown greater postural control alterations due 
to ankle muscle fatigue when proprioceptive information at 
the ankle is less reliable (CS). Furthermore, older adults had 
more difficulty and may have needed more attention to stand 
quietly when fatigued, compared with young adults, but only 
in the context of standing on a CS without vision. To our 
knowledge, this study is the first to show fatigue-related dif-
ferences between older and young adults on postural control 
in quiet standing. Considering an increase of 78 % in COP 
sway area and an increase of 50 ms in CRT, older adults may 
be temporarily at risk of a fall when fatigued and propriocep-
tive feedback is less reliable.
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