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This paper considers the steady mixed convection boundary layer flow of a viscous and 
incompressible fluid near the stagnation point on a vertical surface with slip effect. The 
temperature of the sheet and the velocity of the external flow are assumed to vary linearly with the 
distance from the stagnation point. The governing partial differential equations are first 
transformed into a system of ordinary differential equations, which is then solved numerically by a 
shooting method. The features of the flow and heat transfer characteristics for different values of 
the governing parameters are analyzed and discussed. Both assisting and opposing flows are 
considered. The results indicate that for the opposing flow, dual solutions exist for a certain range 
of the buoyancy parameter, while for the assisting flow, the solution is unique. In general, the 
effect of velocity slip is to reduce the wall shear stress and increase the heat transfer rate at the 
surface, while the thermal slip gives a vice versa behavior on the physical quantities. 
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1. INTRODUCTION 

The two-dimensional stagnation point flow of an incompressible viscous fluid on a vertical 
sheet has attracted the attention of researchers for the past several decades because of its wide 
applications in industrial and practical applications. Some of the applications are cooling of 
electronic devices by fans, cooling of nuclear reactors during emergency shutdown, solar 
central receivers exposed to wind currents, and many hydrodynamic processes (Ishak et al. 
2007). 

Significant numbers of investigations have discovered the existence of dual solutions for 
the problem of a stagnation-point flow toward a vertical plate. Ramachandran et al. (1988) 
studied the steady laminar mixed convection in two-dimensional stagnation-point flows 
around heated surfaces by taking both cases of an arbitrary wall temperature and arbitrary 
surface heat flux variations. They found that a reversed flow developed in the buoyancy 
opposing flow region, and dual solutions were found to exist for a certain range of the 
buoyancy parameter. This problem was then extended by Devi et al. (1991) to the unsteady 
case, where they obtained the similar results as in Ramachandran et al. (1988). Further, Nazar 
et al. (2004) extended this problem to a micropolar fluid, and considered small and large 
values of ratio of the external velocity over the stretching velocity. Hassanien and Gorla 
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(1990) studied the stagnation-point flows of micropolar fluids over non-isothermal surfaces. 
The case of unsteady mixed convection flow of a micropolar fluid was studied by Lok et al. 
(2006) and they found a smooth transition from the initial unsteady-state flow to the final 
steady-state flow. Recently, Ishak et al. (2010) reported the existence of dual solutions for 
both assisting and opposing flows of an electrically conducting fluid past a vertical permeable 
flat plate. It may be pointed out here that less work has been done on the stagnation-point 
flows with slip. The similarity solutions of the Navier-Stokes equations for a stagnation-point 
flow towards a flat plate with slip was found by Wang (2003) where the solutions are 
applicable to the slip regime of rarefied gases. Later, Wang (2006) extended this problem to 
include the heat transfer aspect, while Ariel (2008) studied the stagnation-point flow of a 
viscoelastic fluid. Considering other aspect, Fang et al. (2010) have solved the problem of the 
slip flow over a permeable shrinking surface (without heat transfer aspect) using a second 
order slip flow model and presented an exact solution to the governing Navier-Stokes 
equations. Recently Fang and Zhang (2010) studied the heat transfer over a shrinking sheet 
with mass transfer. The flow is induced by a shrinking sheet with a linear velocity distribution 
fi-om the slot. 

In this paper, we consider the problem of a mixed convection boundary layer flow near 
the stagnation point on a vertical surface with slip. The effects of the buoyancy and slip 
parameters on the skin friction coefficient and the heat transfer rate at the surface are analyzed 
and discussed. 

2. PROBLEM FORMULATION 

Consider a steady, two-dimensional laminar boundary layer flow of a viscous and 
incompressible fluid near the stagnation-point on a vertical surface. It is assumed that the 

velocity of the free stream is u,(x) , the temperature of the plate is Tw (x) , and the 

temperature of the ambient fluid is T, . The boundary layer equations are 

where u and v are velocities in the x and y directions, respectively, g is the acceleration due to 
gravity, T the fluid temperature, P the thermal expansion coefficient and a is the thermal 
diffusivity. The boundary conditions are given by (Wang (2006), Andersson (2002)) 
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where L is the slip length and S is a proportionality constant. Further, we assume that 

where a and b are constants. 

To obtain similarity solution, we introduce the following similarity transformation 
(Wang (2006), Andersson (2002)): 

where q is the independent similarity variable, 0 is the dimensionless temperature and y/ is 

the stream function defined as u = 8 ~ 1 %  and v = -8ylax which identically satisfy the 
continuity equation (1). Substituting (6) into Eqs. (2) and (3), we get the following nonlinear 
ordinary differential equations: 

subject to the boundary conditions 

Here primes denote differentiation with respect to q , Pr = v 1 a is the Prandtl number, 

6 = L ( a l ~ ) " ~  is the velocity slip parameter, y = S ( a l ~ ) " ~  is the thermal slip parameter 

and A (= gpb 1 a') is the mixed convection parameter. It is worth mentioning that A > 0 
corresponds to the assisting flow, A < 0 corresponds to the opposing flow and A = 0 
corresponds to the forced convection flow. 

The physical quantities of interest are the skin fiiction coefficient Cf and the local 

Nusselt number Nux, which are proportional to f "(0) and -el(0) , respectively. 

3. RESULTS AND DISCUSSION 

The nonlinear ordinary differential equations (7) and (8) subject to the boundary conditions 
(9) were solved numerically using the shooting method described by Zheng (2007) for some 
values of the velocity slip parameter 8, thermal slip parameter y and the buoyancy or mixed 

convection parameter A ,  while the Prandtl number Pr is fixed at 0.7 (such as air), except for 
comparisons with previously reported cases. Comparisons of the values of the reduced skin 
fiiction coefficient f "(0) and the reduced local Nusselt number - el(0) with those obtained 



by Ramachandran et al. (1988), Devi et al. (1991), Lok et al. (2006) and Hassanien and Gorla 
(1990) for several values of Pr when the slip effect is absent ( 6  = 0 and y = 0 )  are listed in 
Table 1 and 2, respectively. It is observed that the results show a very good agreement. 

Table 1. Values of f "(0) for different values of Pr when A =  1 , 6  = 0 and y = 0 

The effect of velocity slip parameter 6 on the reduced slun friction coefficient (wall 
shear stress) f "(0) and the reduced local Nusselt number (heat transfer rate at the surface) 

- e'(0) are shown in Figs. 1 and 2, respectively. In the meantime, the effect of thermal slip 

parameter y on f "(0) and - Q'(0) are shown respectively in Figs. 3 and 4. It is evident from 
these four figures that dual solutions exist for buoyancy opposing 
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Table 2. Values of - 8'(0) for different values of Pr when A =  1 , 6  = 0 and y = 0 
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flow case (A < 0 ). For the assisting flow (A > 0) , the solution is unique. We identify 
the upper and lower branch solutions in the following discussion by how they appear in Figs. 
1 to 4, i.e. the upper branch solution has a higher value of f "(0) and - Of(0) for a given 6 
and y with A, than the lower branch solution. It can be seen that for the upper branch 

solution, as the buoyancy parameter A increases, both f "(0) and - O'(0) increase for the 
velocity and thermal slip parameters, due to the increased velocity caused by the external flow 
and buoyancy forces. The opposite trend can be observed for the lower branch solution. It is 
found that at the upper branch solution, an increase in the velocity slip parameter 6 has 
decreased the wall shear stress, while the heat transfer rate at the surface increased gradually. 
Apart from that, a contrast behavior has been observed as the thermal slip parameter y 
increases at the same branch. Concurrently, for the lower branch solutions, both f "(0) and 

- Of(0) show an increment as 6 increases, while depreciation occurred as y increases for 
both physical quantities. In addition, it is also observed (from Fig. 3), that in the forced 
convection flow ( A =  0 ), all values of the reduced slun friction coefficient are the same, that 
is f "(0) = 0.5935 . It is worth mentioning that the heat transfer rate at the surface is always 

greater than zero (-O'(0) > 0), which means the heat is transferred fiom the surface to the 
fluid. 

For each selected values of 6 and y , there is indeed a critical value 4 of A for which 

the solution exists. Based on our computations, we found that ;E, = -2.96 , -2.936 1 108 and 

-2.96135329 for 6= 0.2, 0.5 and 1.0, respectively. While, iZ, = -2.96135329, -3.489 and 
-4.02669366 for y = 1.0, 1.5 and 2.0, respectively. It is worth mentioning that the 
computations have been performed until the point where the solution does not converge, and 
the calculations were terminated at that point. It may also be pointed out here that the effect of 
slip is to reduce the range of A for which the solution exists. 

Figs. 5 and 6 respectively present the samples of velocity f ' (q)  and temperature O(q) 
distributions for the selected values of velocity slip parameter 6 when A = -2.0 for both 
upper and lower branch solutions. While, the velocity and temperature profiles for the thermal 
slip parameter y are depicted in Figs. 7 and 8, respectively. It is obvious that the upper 
branch solution display a thinner boundary layer thickness compared to the lower branch 
solution. It can be seen that the velocity gradient decreases as 6 increases for the upper 
branch solution and as a result decreases the reduced skin friction coefficient f TO), while the 

temperature gradient increases and so does the reduced local Nusselt number - O'(0) . For the 
lower branch solution, both the velocity and temperature gradients is seen to increase 
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therefore, f "(0)and - O t ( 0 )  increase as well. From Fig. 8, the effect of the thermal slip 
parameter y is to diminish the fluid temperature in the boundary layer, which in turn 

decreases the heat transfer rate at the surface - O t ( 0 )  for both upper and lower branch 
solutions. This observation is in agreement with the results presented in Fig. 4. Figs. 5 to 8 
also show that the boundary conditions (9) are satisfied asymptotically, hence support the 
validity of the numerical results obtained, besides supporting the existence of the dual 
solutions presented in Figs. 1 to 4. 

Fig. 1. Variation of skin friction coefficient f "(0) with buoyancy parameter il for various velocity slip 
parameter Swhen Pr = 0.7, y = 1 . 

Fig. 2. Variation of local Nusselt number with buoyancy parameter il for various velocity slip 
parameter Gwhen Pr = 0.7, y = 1 . 
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Fig. 3. Variation of skin friction coefficient ~ '"(0) with buoyancy parameter A for various thermal slip 

parameter y when Pr = 0.7, 6 = 1. 

Fig. 4. Variation of local Nusselt number -er(o) with buoyancy parameter A for various thermal slip 
parameter y when Pr = 0.7, S = 1.  
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Fig. 5. Velocity profiles f ' ( 7 1 )  for some values of 6 when Pr = 0.7, y = 1 and A = -2.0. 
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Fig. 6. Temperature profiles 8 ( ~ )  for some values of 6 when Pr = 0.7, y = 1 and A = -2.0. - 
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Fig. 7. Velocity profiles f l ( r l )  for some values of y when Pr = 0.7, 6 = 1 and il = -2.0. 
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Fig. 8. Temperature profiles B(7) for some values of y when Pr = 0.7, 6 = 1 and il = -2.0. 

4. CONCLUSION 

In this paper, the flow and heat transfer characteristics near the stagnation-point on a vertical 
surface with slip effect were studied. The boundary layer equations governing the flow were 
reduced to ordinary differential equations using a similarity transformation. These equations 
were then solved numerically to obtain the skin friction coefficient and the local Nusselt 
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number as well as the velocity and the temperature distributions for various values of the 
velocity slip parameter 6 ,  thermal slip parameter y and the buoyancy parameter A, with a 
fixed value of the Prandtl number Pr. It was found that for the opposing flow (A < 0), dual 
solutions exist for a certain range of the buoyancy parameter, whereas for the'assisting flow 
(A > 0 ), the solution is unique. Moreover, the effect of slip is to reduce the range of A for 
which the solution exists. 
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