
Theory Comput Syst (2014) 55:136–169
DOI 10.1007/s00224-013-9505-9

Decidability of Branching Bisimulation on Normed
Commutative Context-Free Processes

Wojciech Czerwiński · Piotr Hofman ·
Sławomir Lasota

Published online: 29 September 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract We investigate normed commutative context-free processes (Basic Parallel
Processes). We show that branching bisimilarity admits the bounded response prop-
erty: in the Bisimulation Game, Duplicator always has a response leading to a process
of size linearly bounded with respect to the Spoiler’s process. The linear bound is ef-
fective, which leads to decidability of branching bisimilarity. For weak bisimilarity,
we are able merely to show existence of some linear bound, which is not sufficient
for decidability. We conjecture however that the same effective bound holds for weak
bisimilarity as well. We suppose that further elaboration of novel techniques devel-
oped in this paper may be sufficient to demonstrate decidability.

Keywords Branching bisimulation equivalence · Commutative context-free
graphs · Equivalence checking · Basic parallel processes

1 Introduction

Bisimulation equivalence (bisimilarity) is a fundamental notion of equivalence of
processes, with many natural connections to logic, games and verification [12, 15].

The first author acknowledges a partial support by the Polish MNiSW grant N N206 568640. The
remaining two authors acknowledge a partial support by the Polish MNiSW grant N N206 567840.

W. Czerwiński (B)
Institute of Computer Science, University of Bayreuth, Bayreuth, Germany
e-mail: wczerwin@mimuw.edu.pl

P. Hofman · S. Lasota
Institute of Informatics, University of Warsaw, Warsaw, Poland

P. Hofman
e-mail: ph209519@mimuw.edu.pl

S. Lasota
e-mail: sl@mimuw.edu.pl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191620338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:wczerwin@mimuw.edu.pl
mailto:ph209519@mimuw.edu.pl
mailto:sl@mimuw.edu.pl

Theory Comput Syst (2014) 55:136–169 137

This paper is a continuation of the active line of research focusing on decidability and
complexity of decision problems for bisimulation equivalence on various classes of
infinite systems [14].

We investigate the class of commutative context-free processes, known also under
name Basic Parallel Processes (BPP) [1]. By this we mean the labeled graphs induced
by context-free grammars in Greibach normal form, with a proviso that non-terminals
appearing on the right-hand side of a productions are assumed to be commutative. For
instance, the production X −→ aYZ, written

X
a−→ YZ,

says that X performs an action a and then executes Y and Z in parallel. Formally, the
right-hand side is a multiset rather than a sequence.

Over this class of graphs, we focus on bisimulation equivalence as the primary
type of semantic equality of processes. It is known that strong bisimulation equiva-
lence is decidable [2] and PSPACE-complete [10, 13]; and is polynomial for normed
processes [7]. Dramatically less is known about weak bisimulation equivalence, that
abstracts from the silent ε-transitions: we only know that it is semi-decidable [4] and
that it is decidable in polynomial space over a very restricted class of totally normed
processes [5]. The same applies to branching bisimulation equivalence, a variant of
weak bisimulation that respects faithfully branching of equivalent processes. The
only non-trivial decidability result known by now for weak bisimulation equivalence
is proved in [16], it applies however to a very restricted subclass.1

During last two decades decidability of weak bisimulation over context-free pro-
cesses became an established long-standing open problem. This paper is a significant
step towards solving this problem in affirmative.

It is well known that bisimulation equivalences have an alternative formulation,
in terms of Bisimulation Game played between Spoiler (aiming at showing non-
equivalence) and Duplicator (aiming at showing equivalence) [15]. One of the main
obstacles in proving decidability of weak (or branching) bisimulation equivalence is
that Duplicator may do arbitrarily many silent transitions in a single move, and thus
the size of the resulting process is hard to bound.

In this paper we investigate branching bisimilarity over normed commutative
context-free processes. Our main technical result is the proof of the following
bounded response property, formulated as Theorem 6 in Sect. 3: if Duplicator has a
response, then he also has a response that leads to a process of size linearly bounded
with respect to the other (Spoiler’s) process. Importantly, we obtain an effective
bound on the linear coefficient, which enables us to prove (Theorem 7) decidabil-
ity of branching bisimulation equivalence. The proof of Theorem 6 is quite complex
and involves a lot of subtle investigations of combinatorics of BPP transitions, the
main purpose being elimination of unnecessary silent transitions.

A major part of the proof works for weak bisimulation equally well (and, as we
believe, also for any reasonable equivalence that lies between the two equivalences).

1This decidability result has been recently reproved in [8], basing on an observation that long-step approx-
imants stabilize at level ω, in the subclass of [16].

138 Theory Comput Syst (2014) 55:136–169

However, for weak bisimulation we can merely show existence of the linear coef-
ficient witnessing the bounded response property, while we are not able to obtain
any effective bound. Nevertheless we strongly believe (and conjecture) that a further
elaboration of our approach will enable proving decidability of weak bisimulation
equivalence. In particular, we actually reprove decidability of weak bisimilarity in
the subclass investigated in [16].

This paper is the full and improved version of the extended abstract [3].

2 Preliminaries

The commutative context-free processes (known also as Basic Parallel Processes [1])
are determined by the following ingredients (called a process definition): a finite set
V of variables, a finite set A of letters, and a finite set of transition rules, each of

the form X
ζ−→ α where X is a variable, ζ ∈ A ∪ {ε} and α is a finite multiset of

variables.
A process, is any finite multiset of variables, thus a mapping that assigns a finite

nonnegative multiplicity to each variable, and may be understood as the parallel com-
position of a given number of copies of respective variables. In particular the empty
process, denoted ε, is the empty multiset. For any W ⊆ V we denote by W⊗ the set
of all processes where only variables from W occur, that is, W⊗ is the set of all finite
multisets over W .

A process definition defines a labeled transition systems, called transition graph,
whose nodes are processes, and whose transitions are defined as follows. By α||β we
mean the composition of processes α and β , understood as the multiset union. Note
that composition is commutative: α||β = β||α. The behavior of processes, i.e. the
transition relation, is defined by the following extension rule:

if X
ζ−→ α is a transition rule then X||β ζ−→ α||β, for any β ∈ V ⊗.

We also say that the transition is induced by a transition rule X
ζ−→ α.

The transitions labeled by letters from A are observable transitions, while the tran-
sition relation

ε−→ models silent steps. This distinction will play a role when defining
bisimulation equivalence below. The transition relation

ε−→ will be written −→, and
the reflexive and transitive closure of

ε−→ will be denoted =⇒. Thus α =⇒ β if a
process β can be reached from α by a sequence of

ε−→ transitions.

Example 1 For illustration consider the following process definition:

P −→ ε P −→ P ||A P
b−→ ε P −→ Q

Q −→ ε Q −→ Q||A A
a−→ ε A −→ ε

For instance the process definition induces the following sequence of transitions:

Q||P −→ Q||P ||A −→ Q||P ||A||A −→ P ||A||A b−→ A||A.

Theory Comput Syst (2014) 55:136–169 139

Writing Ak for the k-ary composition of the process A,

Ak =A|| . . . ||A
︸ ︷︷ ︸

,

k times

one obtains, for any k, the following sequence of transitions:

Q||P =⇒ P ||Ak b−→ Ak.

Remark 2 Commutative context-free processes are precisely labeled communication

free Petri nets, where the places are variables and transitions X
ζ−→ α are firing rules.

A process represents a marking, i.e., a finite multiset of places.

The standard references for introduction of branching and weak bisimilarity
are [19] and [12], respectively. For an exhaustive taxonomy of various notion of
bisimulation respecting silent moves, the classical reference is [18].

To simplify definitions, we conveniently postulate from now on that every process
α, including the empty process ε, has the silent transition α −→ α.

Definition 3 (Branching Bisimilarity) Let B be a symmetric binary relation over
processes. A pair (α,β) of processes satisfies the branching bisimulation expansion
wrt. B if for every ζ ∈ A ∪ {ε} satisfies:

– if α
ζ−→ α′ then β =⇒ β ′′ ζ−→ β ′ such that α B β ′′ and α′ B β ′.

B is a branching bisimulation when every pair (α,β) ∈ B satisfies the branching
bisimulation expansion wrt. B. We say that two processes α and β are branching
bisimilar, denoted α 	 β , if there exists a branching bisimulation B containing (α,β).

In the proofs we will use the characterization of bisimilarity in terms of Bisim-
ulation Game [12, 15]. The game is played by two players, Spoiler and Duplicator,
over an arena consisting of all pairs of processes, and proceeds in rounds. Each round
starts with a Spoiler’s move followed by a Duplicator’s response. In position (α,β),

Spoiler chooses one of processes, say α, and one transition α
ζ−→ α′. As a response,

Duplicator has to do a sequence of transitions of the form β =⇒ β ′′ ζ−→ β ′, and then
Spoiler chooses whether the next starts from (α,β ′′) or (α′, β ′).

If one of players gets stuck, the other wins. Otherwise the play is infinite and
in this case it is Duplicator who wins. A well-known fact is that two processes are
branching bisimilar iff Duplicator has a winning strategy in the game that starts in
these two processes.

According to the winning condition of Bisimulation Game, if the two processes
are branching bisimilar in some position of the game then, whatever move is played
by Spoiler, there is always a Duplicator’s response so that the two resulting pairs of
processes are branching bisimilar again. Any such Duplicator’s response move will
be called matching in the sequel. We will also say that the Spoiler’s move is matched
by some Duplicator’s response.

140 Theory Comput Syst (2014) 55:136–169

Weak Bisimilarity Branching bisimilarity is a competitor against more widely
known weak bisimilarity. The principal difference, roughly speaking, is that the latter
notion of equivalence does not test for equivalence immediately prior to performing a
visible action, and is thus coarser. Formally, one defines weak bisimulation expansion
as follows. A pair (α,β) of processes satisfies the weak bisimulation expansion wrt. a
symmetric relation B if for every ζ ∈ A ∪ {ε} satisfies:

– if α
ζ−→ α′ then β =⇒ ζ−→=⇒ β ′ such that α′ B β ′.

Then one derives weak bisimulation, weak bisimilarity, an appropriate variant of
Bisimulation Game, etc. similarly as before in the branching case. Weak bisimilarity
we denote by ≈.

Example 4 As an illustration of ≈ �= 	 consider the following grammar.

C
a−→ C C

b−→ C

C −→ A C −→ B C −→ ε

A
a−→ A B

b−→ B A −→ ε B −→ ε

One easily observes that A||B ≈ C. To see that A||B �	 C consider a Spoiler’s move
C −→ ε. Duplicator obviously has to reply also by reaching ε. There are two pos-
sibilities, A||B −→ A −→ ε and A||B −→ B −→ ε. In both cases a single variable
process is visited, A or B , and none of them is branching bisimilar to C.

For the rest of this paper we assume that each variable X has a sequence of transi-

tions X
ζ1−→ . . .

ζm−→ ε leading to the empty process. A process definition that fulfills
this requirement is usually called normed. By the norm of X, denoted norm(X), we
mean the smallest possible number of visible transitions that appears in some se-
quence as above. Formally speaking, the norm of X is the length of the shortest word
a1 . . . an ∈ A∗ such that

X =⇒ a1−→=⇒ . . . =⇒ an−→=⇒ ε.

We additively enhance the definition of norm to processes and write norm(α) for any
α ∈ V ⊗. Note that the norm is weak in the sense that silent transitions do not count.

The normedness assumption makes the equivalence testing easier as both bisimi-
larities considered in this paper are norm preserving:

if α 	 β or α ≈ β then norm(α) = norm(β).

Indeed, if norm(α) < norm(β) then Spoiler wins Bisimulation Game with a sequence
of moves from α to ε that witnesses the norm of α. On the other hand we do not know
if branching bisimilarity remains decidable without the normedness assumption.

3 Decidability via Bounded Response Property

It was known before that branching and weak bisimilarities are semi-decidable [4].
A main obstacle for a semi-decision procedure for inequivalence is that commutative

Theory Comput Syst (2014) 55:136–169 141

context-free processes are not image finite with respect to branching or weak bisimi-
larity: a priori Duplicator has infinitely many possible responses to a Spoiler’s move.
The main insight of this paper is that commutative context-free processes are essen-
tially image-finite, in the following sense. Define the size of a process as its multiset
cardinality. For instance,

size
(

A4||B3||C) = 8.

Then Duplicator has always a response of size bounded linearly with respect to a
Spoiler’s process (as formulated in Theorem 6 below). The linear bound is formalized
as follows:

Definition 5 (Bounded Response Bisimulations) For c ∈ N, by a c-branching bisim-
ulation we mean a relation B defined as in Definition 3 with the additional require-
ments:

size(β ′), size(β ′′) ≤ c · size(α′). (1)

Analogously we define c-weak bisimulation, similarly as in Sect. 2 but with the ad-
ditional requirements:

size(β ′) ≤ c · size(α′). (2)

Then we define in a standard way c-branching bisimilarity (c-weak bisimilarity), de-
noted 	c (≈c, respectively), as the greatest c-branching bisimulation (c-weak bisim-
ulation, respectively).

Let the size of a process definition be the sum of sizes of all production rules. Our
main technical result is an efficient estimation of the constant c in Definition 5, with
respect to the size of a process definition:

Theorem 6 (Bounded Response Property of) Given a normed process definition,
one can compute c ∈ N such that branching bisimilarity 	, over the transition graph
induced by the process definition, is a c-branching bisimulation.

The proof of Theorem 6 is deferred to Sects. 4–6.
In consequence of the theorem, a Spoiler’s winning strategy, seen as a tree, be-

comes finitely branching. This observation leads directly to decidability:

Theorem 7 Branching bisimilarity 	 is decidable over normed commutative
context-free processes.

Proof The decision procedure starts with computing c ∈ N, according to Theorem 6,
such that branching bisimilarity coincides with c-branching bisimilarity. Then we run
two semi-decision procedures (along the lines of [11]): the positive one for branching
bisimilarity and the negative one for c-branching bisimilarity.

For the positive side we use a standard semi-linear representation of bisimula-
tion, knowing that each congruence, including 	, is semi-linear [6, 9]. The algorithm
guesses a base-period representation of a semi-linear set and then checks validity of

142 Theory Comput Syst (2014) 55:136–169

a Presburger formula that says that this set is a branching bisimulation containing the
input pair of processes.

For the negative side, we observe that due to Theorem 6 Duplicator has only
finitely many possible answers to each Spoiler’s move. Thus, if Spoiler wins then
its winning strategy may be represented by a finitely-branching tree. Furthermore, by
König Lemma this tree is finite. The algorithm thus simply guesses a finite Spoiler’s
strategy. This can be done effectively: for given β,β ′, β ′′ and ζ it is decidable if

β =⇒ β ′′ ζ−→ β ′, as the =⇒ relation is effectively semilinear [4]. �

For weak bisimilarity we obtain a result weaker than Theorem 6, as we are not
able to prove that the coefficient c is computable:

Theorem 8 (Bounded Response Property of ≈) For every normed process definition,
there is c ∈ N such that weak bisimilarity ≈, over the transition graph induced by the
process definition, is a c-weak bisimulation.

Theorem 8 follows, similarly as Theorem 6, from our results in Sects. 4–6. We note
that Theorem 8 does not imply decidability of weak bisimilarity. In Sect. 3.1 we
investigate in detail the possible impact on decidability.

3.1 Approximations

In order to discuss in detail the actual impact of Theorems 6 and 8 on decidability, we
now define standard approximating hierarchies for branching and weak bisimilarity.
For convenience we use a new symbol ≡ to stand for any of the two equivalences,
	 or ≈. Thus, whenever we state a property of ≡, it should be understood as the
property of both 	 and ≈.

One may define a sequence of approximating relations ≡m as follows. Every pair
of processes belongs to the first approximant ≡0. Every consecutive approximant
≡m+1 contains those pairs of processes that satisfy branching/weak bisimulation ex-
pansion wrt. ≡m. Thus the relation ≡m relates two processes iff Duplicator has a
strategy to survive at least m rounds of the Bisimulation Game.

In general, the hierarchy does not stabilize, both for branching and weak bisimi-
larity:

≡ � ∩m<ω ≡m .

Indeed, the counterexample for approximability of weak bisimilarity has been given
in [17], and it works for branching bisimilarity just as well, see [8]. On the technical
level, the inapproximability is actually the main obstacle in proving decidability of
the two bisimilarities.

Let c ∈N be an arbitrary natural number. In an entirely analogous way one defines
approximants ≡m

c , describing m steps in the variant of Bisimulation Game where Du-
plicator is obliged to play under the size restrictions (1) or (2), respectively. We have
the following ω-stabilization result applying both to branching and weak bisimilarity:

Proposition 9 (ω-Approximation) For every c ∈ N, ≡c = ∩m<ω ≡m
c .

Theory Comput Syst (2014) 55:136–169 143

Proof As usual, one proves that ∩m<ω ≡m
c is a c-branching/weak bisimulation, sim-

ilarly as for strong bisimilarity for image-finite systems. �

This may be surprising at first sight, in view of Theorems 6 and 8. Theorems 6
and 8 say jointly that ≡ coincides with ≡c, for some c:

Corollary 10 For every normed process definition there is c ∈N with ≡=≡c.

Thus for every process definition one obtains the following seeming contradiction.
On one hand, ≡ is not equal to the limit ∩m<ω ≡m. On the other hand, By Propo-
sition 9 and Corollary 10, ≡ is equal to ∩m<ω ≡m

c , for some c ∈ N. The following
example serves as an illustration:

Example 11 Consider weak bisimilarity for the process definition from Example 1:

P −→ ε P −→ P ||A P
b−→ ε P −→ Q

Q −→ ε Q −→ Q||A A
a−→ ε A −→ ε

We have P �≈ P ||Q but P ≈n P ||Q for all n < ω. Indeed, if for instance Spoiler

starts with P ||Q b−→ Q then Duplicator can respond with P =⇒ P ||Ak b−→ Ak for
an arbitrarily large k.

On the other hand ≈ coincides with (≈)1, i.e., Duplicator can respond with a
process of size at most equal to the size of Spoiler’s process. Intuitively, this is due to
an observation that two processes are bisimilar iff

– they have the same number of occurrences of P ;
– Q occurs in both, or in none of them; and
– in the latter case, the number of occurrences of A is the same.

Therefore Duplicator, conforming to the size restriction, can keep this invariant.
(Thus ≈ coincides with ≈c for any c ≥ 1.)

In consequence P �≈1 P ||Q. In agreement with Proposition 9 it is not true that
P ≈n

1 P ||Q for all n, for instance P �≈3
1 P ||Q.

3.2 Decidability of Weak Bisimilarity?

Observe that ≡c need not be an equivalence relation in general. However, due to
Theorems 6 and 8 we know that for every process definition, for sufficiently large c

the relation ≡c is an equivalence indeed. We claim the following:

Theorem 12 For every normed process definition, if ≡c is an equivalence then it is
decidable.

The proof is entirely analogous to the proof of Theorem 7. The equivalence as-
sumption is necessary for the correctness of the positive semi-procedure: the as-
sumption guarantees existence of a semi-linear bisimulation. Furthermore, there is

144 Theory Comput Syst (2014) 55:136–169

an algorithm whose input is a process definition, a constant c and a pair of processes,
and it answers whether the pair is related by ≡c.

At first sight Theorem 8 together with Theorem 12 seems to open the way to a
decision procedure for weak bisimilarity. This is however not the case, as the constant
c depends in general on a given process definition and we do not know any way of
estimating this constant, for an arbitrary given process definition. In fact we may
only conclude semi-decidability of ≈ (which is however pretty well known, see for
instance [4]), as we have the following approximation hierarchy:

≈0 ⊆≈1⊆ . . .

that reaches finally ≈ for any process definition, by Corollary 10:

≈=
⋃

c∈N
≈c .

3.3 Proof Strategy

The rest of this paper is devoted to the proof of Theorems 6 and 8. Consider a fixed
normed process definition from now on. In Sect. 4 we define a notion of normal form
nf(α) for a process α and provide linear lower and upper bounds on its size:

size(α) ≤ size
(

nf(α)
) ≤ c · size(α) (3)

(the lower bound holds assuming that α is minimal wrt. multiset inclusion in its bisim-
ulation class). The results of Sect. 4 apply both to branching and weak bisimilarity
(as well as to other variants of bisimulation that lie between branching and weak
bisimilarity, cf. [19]). However, the linear coefficient c is not bounded effectively.

The computable estimation of the coefficient c is derived in Sect. 5, in the case
of branching bisimilarity. Finally, in Sect. 6 we show how the bounds (3) are used to
prove Theorem 6. Section 6 contains also the proof of Theorem 8.

As observed e.g. in [16], a crucial obstacle in proving decidability is so called
generating transitions of the form X −→ X||Y , as they may be used by Duplicator to
reach silently X||Ym for arbitrarily large m. A great part of our proofs is an analysis
of combinatorial complexity of generating transitions and, roughly speaking, elimi-
nation of ‘unnecessary’ generations.

Weak Bisimilarity Branching bisimilarity is more discriminating than weak bisim-
ilarity. The whole development of Sect. 4 is still valid if weak bisimilarity is con-
sidered in place of branching bisimilarity. Furthermore, except one single case, the
entire proof of estimation of the coefficient in Sect. 5 remains valid too. Interestingly,
this single case is obvious under assumptions of [16], thus our proof remains valid
for weak bisimilarity over the subclass studied there. We conjecture that the single
missing case is provable for weak bisimilarity and thus Theorem 6 holds for weak
bisimilarity just as well. This would imply decidability.

Theory Comput Syst (2014) 55:136–169 145

4 Normal Form by Squeezing

The results of this section are quite general and apply equally well to branching
bisimilarity 	 and to weak bisimularity ≈. (This will not be however the case in
later sections.) We will thus continue using the symbol ≡ to stand for either 	 or ≈
in this section. Actually the only place where we need to distinguish between weak
and branching bisimilarity is Lemma 31 that speaks of matching Duplicator’s re-
sponses. Furthermore, we claim that all the results of Sect. 4 apply equally well to
intermediate notions of bisimulation, lying between branching and weak bisimilarity,
as introduced in [19].

In the sequel we will use, sometimes implicitly, the well-known fact that both
branching and weak bisimilarities is substitutive over commutative context-free pro-
cesses, i.e.

α ≡ β =⇒ α||γ ≡ β||γ.

4.1 Normal Forms

In this section we develop a framework useful for the proofs of Theorems 6 and
Theorem 8, to be given in the following sections.

By the bisimulation class of a process α we mean the set of all processes β with
β ≡ α. Note that this definition applies both bisimilarities, as ≡ instantiates either
with 	 or ≈. An important role in our development will be played by normal forms
of processes that identify the bisimulation classes uniquely. The normal forms are
defined using the linear well-founded order � on processes, as defined in Defini-
tion 22 in Sect. 4.3 below. We prefer to postpone the definition of �, in order to avoid
inessential technical details at this early stage.

Definition 13 (Normal Form) For any process α let nf(α) denote the smallest process
with respect to �, bisimilar to α.

Clearly α ≡ nf(α) and thus we conclude that bisimulation equivalence is character-
ized by syntactic equality of normal forms:

Lemma 14 α ≡ β if and only if nf(α) = nf(β).

The main contribution of Sect. 4 is, roughly speaking, providing lower and upper
bound on the size of nf(α), relative to the size of α, (cf. Lemmas 40 and 41 appearing
at the end of this section). The technical tool will be an operation called below squeeze
(defined in Sect. 4.4), transforming a process α into an equivalent one, squeeze(α) ≡
α. We will prove that iterative application of squeeze eventually converges to the
normal form:

α ≡ squeeze(α) ≡ squeeze2(α) ≡ . . . ≡ squeezei (α) = nf(α),

for some i depending on α. The estimations on the size of normal form will follow
easily from the fact that we will be able to control the increase of size of squeeze at
every iteration.

146 Theory Comput Syst (2014) 55:136–169

4.2 Decreasing Transitions

We will often use the following easy observation, that actually holds for unnormed
processes as well.

Lemma 15 If α =⇒ β =⇒ α′ and α ≡ α′ then β ≡ α.

Proof Immediate using Definition 3. If Spoiler plays from α, Duplicator uses its
response from α′, precomposed with β =⇒ α′. On the other hand, if Spoiler plays
from β , Duplicator moves α =⇒ β and then copies the Spoiler’s transition. �

A transition α
ζ−→ β is norm preserving if |α| = |β| and norm reducing if

|α| = |β| + 1. In the sequel we will pay special attention to norm preserving ε-
transitions. Therefore we write α −→0 β , respectively α =⇒0 β , to emphasize that
the transitions are norm preserving. Note that in the definition of branching bisim-
ulation (Definition 3) one could equivalently use =⇒0 instead of =⇒, as all the
transitions performed in a Duplicator’s response, except possibly the last one, are
necessarily norm-preserving. Similarly, the =⇒ transitions in Lemma 15 are actually
=⇒0 transitions, i.e. whenever α =⇒ α′ and α ≡ α′ then the transitions from α to α′
are necessarily norm-preserving.

Definition 16 We call the transition α
ζ−→ β decreasing if either ζ ∈ A and the

transition is norm-reducing; or ζ = ε and the transition is norm preserving.

Note that every variable has a sequence of decreasing transitions leading to the empty
process ε.

Lemma 17 (Decreasing Response) Whenever α ≡ β and α
ζ−→ α′ is decreasing

then any Duplicator’s matching sequence of transitions from β contains exclusively
decreasing transitions.

Proof Follows from the following simple observations: ≡ is norm preserving; for
a �= ε, the transition relation

a−→ may decrease the norm by at most one; the transi-
tion relation

ε−→ never decreases the norm. �

Due to Lemma 15, instantiated to single variables, we may assume wlog. that there
are no two distinct variables X,Y with X =⇒0 Y =⇒0 X. Indeed, since reachability
via the =⇒0 transitions is decidable [4], in a preprocessing one may eliminate such
pairs X,Y . Relying on this assumption, we may define a partial order induced by
decreasing transitions.

Definition 18 For variables X,Y , let X >decr Y if there is a sequence of decreasing
transitions leading from X to Y . Let > denote an arbitrary total order extending >decr.

Theory Comput Syst (2014) 55:136–169 147

Note that we do not assume that X > Y =⇒ norm(X) ≥ norm(Y). Indeed, the
order > may be chosen in arbitrary way. In Sect. 4 it is only relevant to have some
fixed linear order on variables. In the next sections we will alternate between different
orders, but only those extending >decr.

In the sequel we assume that there are n variables {X1, . . . ,Xn}, ordered:

X1 > X2 > · · · > Xn.

If α ∈ {X1, . . .Xk}⊗ and β ∈ {Xk+1, . . . ,Xn}⊗, for k ∈ {0, . . . , n}, we say that k sep-
arates α and β . (Note that there may be more than one k separating a given pair of
processes.) If some such k exists, we say that α and β are separated. By α · β we
mean concatenation, that is the composition of processes α, β under the assumption
that α and β are separated. Thus formally speaking, concatenation is a partially de-
fined operation, and whenever we write α · β we implicitly assume that α and β are
separated.

Directly from the definition of > we deduce:

Lemma 19 (Decreasing Transition) If a decreasing transition X
a1
1 · . . . · X

an
n

ζ−→
X

b1
1 · . . . · Xbn

n is performed by Xk , say, then b1 = a1, . . . , bk−1 = ak−1.

Consider a norm preserving silent transition rule X −→0 δ. If X appears in δ, i.e.
δ = Xδ̄, we call the transition rule generating. We use the name generating also for
a transition α −→0 β induced by a generating transition rule. Note that generating
transitions are decreasing.

Lemma 20 (Decreasing Transition cont.) If a decreasing transition, as in Lemma 19,
is not generating then bk = ak − 1.

Following [16], we say that X generates Y if X =⇒0 X||Y . Thus if X =⇒0 X||δ̄
then X generates every variable that appears in δ̄. In particular, X may generate it-
self. Note that each generated variable is of norm 0. More generally, we say that α

generates β if α =⇒0 α||β . This is the case precisely iff every variable occurring in
β is generated by some variable occurring in α.

We write α � β if there is some γ such that α||γ = β (� is thus the multiset
inclusion of processes). As an easy implication of Lemma 15 we obtain:

Lemma 21 If α generates β then α ≡ α||β̄ for any β̄ � β .

Lemma 21 will be useful in the sequel, as a tool for eliminating unnecessary tran-
sitions and thus decreasing the size of a resulting process.

4.3 Unambiguous Processes

Once we have a fixed ordering on variables, a process X
a1
1 · . . . · Xan

n may be equiv-
alently presented as a sequence of exponents (a1, . . . , an) ∈ N

n. In this perspective,
� is the point-wise order. The sequence presentations induce additionally the lexico-
graphic order on processes, denoted �.

148 Theory Comput Syst (2014) 55:136–169

Definition 22 We define the order � on processes as follows:

X
a1
1 · . . . · Xan

n ≺ X
b1
1 · . . . · Xbn

n iff ∃k. (ak < bk and ∀i < k. ai = bi).

The same may be written briefly using concatenation: α ≺ β if α = γ · Xa
k · α′,

β = γ · Xb
k · β ′, and a < b.

For instance, the decreasing non-generating transitions α
ζ−→ β always go strictly

down the lexicographical order, i.e. α � β .
We will exploit the fact that the order � is total, and thus each bisimulation class

exhibits the least element. The least process in the bisimulation class of α will serve
as the normal form of α, denoted nf(α) (cf. Definition 13 in Sect. 4.1).

The sequence presentation allows us to speak naturally of prefixes of a process:
the k-prefix of X

a1
1 · . . . · Xan

n is the process X
a1
1 · . . . · Xak

k , for k = 0 . . . n.
We now introduce one of the core notions used in the proof: unambiguous pro-

cesses and their greatest extensions.

Definition 23 (Unambiguous Processes) A process X
a1
1 · . . . · X

an
n , is called k-un-

ambiguous if for every i ∈ {1, . . . , k}, α,β ∈ {Xi+1, . . . ,Xn}⊗ and b, c ∈ N, if b �= c

and

X
a1
1 · . . . · Xai−1

i−1 · Xb
i · α ≡ X

a1
1 · . . . · Xai−1

i−1 · Xc
i · β (4)

then b, c ≥ ai . When k = n we write simply unambiguous.

Note that being k-unambiguous is a property of the k-prefix: a process is k-unam-
biguous iff its k-prefix is so.

Observe that an unambiguous process is necessarily the least one wrt. � in its
bisimulation class, as the definition disallows the equivalence (4) to hold for ai =
b > c. On the other hand, it is not immediately clear whether the opposite implication
holds, i.e. whether every bisimulation class contains some unambiguous process. In
the sequel we will show that this is actually the case.

Example 24 Consider the following process definition:

X1
a−→ X1 X2

b−→ X3 X3
b−→ ε

X1 −→ ε X2 −→ X3 X3 −→ ε

and an order X1 > X2 > X3 on variables. We observe that X2
1 ≈ X1, therefore the

process X2
1 is not (1-)unambiguous. On the other hand X1 �≈ α for any α ∈ {X2,X3}⊗

(because neither X2 nor X3 can perform an a transition), so X1 is unambiguous.
Furthermore X1 · X2 ≈ X1 · X2

3, hence X1 · X2 is not (2-)unambiguous. Finally we
observe that X1 · X2

3 �≈ X1 · X3. Therefore X1 · X2
3 is unambiguous, but also X1 · X3

is so.

Note that a prefix of a k-unambiguous process is k-unambiguous as well. More-
over, k-unambiguous processes are downward closed wrt. �: whenever α � β and β

is k-unambiguous, then α is k-unambiguous as well.

Theory Comput Syst (2014) 55:136–169 149

Directly by Definition 23, if γ = X
a1
1 · . . . · Xak−1

k−1 is (k − 1)-unambiguous then it
is automatically k-unambiguous (in fact j -unambiguous for any j ≥ k). This corre-
sponds to ak = 0; we will be especially interested in the greatest value of ak possible,
as formalized in the definition below.

Definition 25 (The Greatest Extension) The greatest k-extension of a (k − 1)-unam-
biguous process γ ∈ {X1 . . .Xk−1}⊗ is that process among k-unambiguous processes
γ · Xa

k that maximizes a.

Clearly the greatest extension does not need exist in general, as illustrated below.

Example 26 Consider the processes from Example 24. The process X1 is the greatest
1-extension of the empty process as X2

1 is not 1-unambiguous. X1 is also its own
greatest 2-extension. Furthermore, X1 does not have the greatest 3-extension. Indeed,
X1X

a
3 is not bisimilar to X1X

b
3 , for a �= b, therefore X1X

a
3 is 3-unambiguous for

any a.

Definition 27 (Unambiguous Prefix) By an unambiguous prefix of a process X
a1
1 ·

. . . · Xan
n we mean any k-prefix X

a1
1 · . . . · Xak

k that is k-unambiguous, for k = 0 . . . n.
The maximal unambiguous prefix is the one that maximizes k.

Example 28 For the process definition from Example 24, the maximal unambiguous
prefix of X1 · X2

2 is X1, and the maximal unambiguous prefix of X2
1 · X2 is the empty

process.

4.4 Squeezes

The following lemma is fundamental for our subsequent development. The rough idea
is as follows. For an unambiguous α consider a sequence of decreasing transitions
from α · β , for an arbitrary β . The resulting process is necessarily of the form α′||β ′,
where α′ is obtained from α by a subsequence of transitions, and β ′ is obtained from
β by the remaining subsequence of transitions. The lemma says that if α′||β ′ is still
bisimilar to α||γ for some γ then up to bisimilarity, the same process is reached by
the latter subsequence of transitions.

Lemma 29 Consider a process α · β , where α is unambiguous, and a sequence of
decreasing transitions:

α · β ζ1−→ . . .
ζl−→ α′||β ′ (5)

with α′ and β ′ originating from α and β , respectively, i.e.

α
ζi1−→ . . .

ζik−→ α′ and β
ζj1−→ . . .

ζjm−→ β ′, (6)

for some sequences i1 < · · · < ik and j1 < · · · < jm of indices that partition the
sequence 1,2, . . . , l. Suppose that

α′||β ′ ≡ α||γ
for some γ . Then α′ ≡ α and hence α′||β ′ ≡ α · β ′.

150 Theory Comput Syst (2014) 55:136–169

Proof Our goal is to show the following two facts:

– α and β ′ are separated (in other words, β ′ contains only variables which are smaller
than all variables from α with respect to >), and

– α′ ≡ α.

Indeed, in this case α · β ′ is well defined and α′||β ′ ≡ α · β ′ due to substitutivity.
Let’s prove the first item first. Observe that each variable X occurring in the pro-

cess β ′ is an effect of a sequence of decreasing transitions originating from some
variable Y occurring in the process β , hence Y ≥ X. Thus α and β ′ are separated
since α and β are.

Now it remains to prove the second item, namely α′ ≡ α. Extend the sequence of
transition (5) with

α′||β ′ =⇒0 ᾱ′||β ′

induced by a sequence

α′ =⇒0 ᾱ′

leading from α′ to a �-minimal process ᾱ′ � α′ bisimilar to α′. By substitutivity
ᾱ′||β ′ is bisimilar to α′||β ′, and thus also to α||γ :

ᾱ′||β ′ ≡ α||γ. (7)

We claim that ᾱ′ = α, which immediately implies α′ ≡ α.
Towards contradiction, suppose ᾱ′ �= α. Let k be the first coordinate on which ᾱ′

doesn’t agree with α. In other words:

α = θ · Xa
k · ω, ᾱ′ = θ · Xa′

k · ω′ and a �= a′,

for some k, a, a′ and processes θ,ω, and ω′. We consider two cases.
First suppose a > a′. As α and β ′ are separated, and a > 0, we know that all

variables appearing in β ′ are smaller than Xk . Thus ᾱ′||β ′ may be presented as

ᾱ′||β ′ = θ · Xa′
k · (ω′||β ′).

Recall that the process α = θ · Xa
k · ω is unambiguous. By the very definition of un-

ambiguous processes, as a′ < a then the process ᾱ′||β ′ can not be bisimilar to α||γ ,
which contradicts (7).

As the last remaining case, suppose a < a′. Because in the sequence of transitions
α =⇒ ᾱ′ we use only decreasing transitions, and because k is the first coordinate on
which ᾱ′ differs from α, by Lemmas 19 and 20 we deduce that Xk was created via
some generating transition. Thus θ ·Xa

k generates Xk , and by Lemma 21 we conclude
that

θ · Xa′
k ≡ θ · Xa

k .

This means that ᾱ′ = θ · Xa′
k · ω′ ≡ θ · Xa

k · ω′ and ᾱ′ � θ · Xa
k · ω′ which is in contra-

diction with �-minimality of ᾱ′. �

The following simple example illustrates the reasoning in the proof above.

Theory Comput Syst (2014) 55:136–169 151

Example 30 Consider the process definition from Example 1 with an order
P > Q > A. Clearly process P is the only one which can perform action b and
no other variable can reach P via a sequence of transitions, thus P is unambiguous.
Instantiate Lemma 29 with α = P , β = Q, and a sequence of decreasing transitions

P · Q =⇒ P · Q · A9 a−→ P · Q · A8 −→ P · A8,

with all A’s produced using the transition rule P −→ P ||A. Clearly the assumption
of Lemma 29 holds as P · A8 � P .

Then Lemma 29 says that P ·A8 ≡ P . Indeed, this must be true as P generates A.
This simple example has an advantage of being general enough: in Lemma 29, all
variable occurrences in α′ that do not belong to α are actually generated by α.

Lemma 31 Under the assumptions of Lemma 29, if the sequence of transitions (5) is
a matching Duplicator’s move (which means in particular that all symbols ζi are ε,
except possibly one), then the subsequence of transitions originating from β:

α · β ζj1−→ . . .
ζjm−→ α · β ′ (8)

is also a matching Duplicator’s move.

Proof For weak bisimilarity it is sufficient that the last process α ·β ′ in (8) is bisimilar
to the last process in (5). In case of branching bisimilarity we need to inspect also
the second last process in (8). We know however that the sequence in (5), being a
matching Duplicator’s response, has the form:

α · β =⇒ a−→ α′||β ′ (9)

(i.e. ζ1 = · · · = ζl−1 = ε). Recall that α′ is bisimilar to α, by Lemma 29. As the last
transition in (9) is the only one in the sequence that may change bisimulation class,
and α′||β ′ is bisimilar to α · β ′, the process obtained by transitions originating from
β , we claim that the last transition necessarily originates from β , i.e.

α · β =⇒ α′||β ′′ a−→ α′||β ′

for some β ′′. Thus restricting to only transitions originating from β we obtain

α · β =⇒ α · β ′′ a−→ α · β ′.

The sequence is necessarily a matching Duplicator’s response as α · β ′′ is bisimilar
to α′||β ′′. �

A direct conclusion from Lemmas 29 and 31 is the following result that speaks
about an interplay between composition and concatenation with an unambiguous pro-
cess. Consider an unambiguous γ and suppose that the following two processes are
bisimilar:

γ · α ≡ (γ ||β). (10)

152 Theory Comput Syst (2014) 55:136–169

Then for any decreasing Spoiler’s move from the right process originating from β ,
there is a matching Duplicator’s move from the left one that only engages α. The
precise formulation follows.

Lemma 32 Let γ be a k-unambiguous process and let α,β be arbitrary processes

satisfying (10). Then for any decreasing transition β
ζ−→ β ′, giving rise to a Spoiler’s

move

γ ||β ζ−→ γ ||β ′

there is a sequence of decreasing transitions:

α
ζ1−→ . . .

ζn−→ α′

that gives rise to a matching Duplicator’s move

γ · α ζ1−→ . . .
ζn−→ γ · α′,

as required by the definition of branching or weak bisimulation expansion.

Proof Consider a matching Duplicator’s move (all transitions are necessarily de-
creasing by Lemma 17):

γ · α ζ1−→ . . .
ζn−→ γ ′ · α′. (11)

As the move is matching, we know that

γ ′ · α′ ≡ γ ||β ′.

The process γ is unambiguous and γ ||β ′ � γ , which allows us to apply Lemma 29,
to obtain a subsequence of (11)

α
ζj1−→ . . .

ζjm−→ ᾱ

such that γ · ᾱ ≡ γ ′ · α′. Then by Lemma 31 we learn that the subsequence is a
matching Duplicator’s move. �

The lemma to follow applies Lemma 32 to a special kind of unambiguous pro-
cesses, namely to the greatest k-extensions γ · Xa

k of unambiguous processes γ .

Lemma 33 (Squeezing Out) Suppose γ is a (k − 1)-unambiguous process with the
greatest k-extension γ · Xa

k . Then for some process δ it holds:

γ · Xa+1
k ≡ γ · Xa

k · δ. (12)

Proof By δ, δ′, etc. we denote below processes from {Xk+1 . . .Xn}⊗.

Theory Comput Syst (2014) 55:136–169 153

As a is the maximal extension of γ , there is some b > a and some processes δ, δ′
such that

γ · Xb
k · δ ≡ γ · Xa

k · δ′.

Consider an arbitrary sequence of decreasing transitions

Xb
k · δ ζ1−→ . . .

ζm−→ Xa+1
k .

By Lemma 32 applied to the unambiguous process γ · Xa
k , there is a sequence of

matching (necessarily decreasing) transitions

δ′ ψ1−→ . . .
ψl−→ δ′′,

for some δ′′, such that

γ · Xa+1
k ≡ γ · Xa

k · δ′′.

This completes the proof. �

Definition 34 If a (k − 1)-unambiguous process γ ∈ {X1 . . .Xk−1}⊗ has the great-
est k-extension, say γ · Xa

k , then any δ ∈ {Xk+1 . . .Xn}⊗ satisfying (12) is called a
γ -squeeze of Xk .

By the very definition, Xk has a γ -squeeze only if γ has the greatest k-extension.
Lemma 33 shows the opposite: if γ has the greatest k-extension then Xk has a
γ -squeeze, that may depend in general on γ and k. The squeeze is however not
uniquely determined and in fact Xk may admit many different γ -squeezes. In the
sequel assume that for each (k − 1)-unambiguous γ ∈ {X1 . . .Xk−1}⊗ and Xk , some
γ -squeeze of Xk is chosen; this squeeze will be denoted by δk,γ .

Example 35 Consider again the process definition from Example 1, with the order
P > Q > A. Observe that Q2 ≡ Q which means that Q2 is not an unambiguous
process. If we fix γ = P 3, say, then ne possible γ -squeeze of Q is the empty one:
P 3 · Q2 ≡ P 3 · Q · ε, but there are many others, for instance P 3 · Q2 ≡ P 3 · Q · An,
for any n ≥ 0. The same squeezes are fine for any other γ ∈ {P }⊗.

Definition 36 (Squeezing Step) For a given process α, assuming it is not n-unambi-
guous, let γ be its maximal unambiguous prefix. Thus there is k ≤ n such that

α = γ · Xa
k · δ,

γ ∈ {X1 . . .Xk−1}⊗, δ ∈ {Xk+1 . . .Xn}⊗, and γ Xa
k is not k-unambiguous. Note that

a is surely greater than 0. We define squeeze(α) by

squeeze(α) = γ · Xa−1
k · (δk,γ ||δ).

Otherwise, i.e. when α is n-unambiguous, for convenience put squeeze(α) = α.

By Lemma 33 and by substitutivity of ≡ we conclude that α ≡ squeeze(α) and if
α is not unambiguous then squeeze(α) ≺ α.

154 Theory Comput Syst (2014) 55:136–169

4.5 Bounds on Normal Forms

For an arbitrary partial order � on processes, a process α is called �-minimal if it
is minimal with respect to � in its bisimulation class (in other words, there is no
β � α with β ≡ α). In the sequel in this section we will often refer to �-minimal
processes, and to �-minimal ones. Clearly in every bisimulation class there is ex-
actly one �-minimal process, the normal form of processes from that class. In the
following sections we will use the notion of �-minimality also for other orders than
� and �.

For a process α, by a �-minimization of α we mean any �-minimal process β

with β ≡ α and β � α. In particular, if α is �-minimal then it is its own minimiza-
tion, in fact the unique one. Clearly, if the order is well-founded then every process
has some �-minimization. All orders considered in this paper are refinements of the
lexicographical order � and are thus well-founded.

Due to Lemma 33 we learn that every bisimulation class contains an unambiguous
processes:

Lemma 37 A process α is unambiguous if and only if it is �-minimal.

Proof One implication does not refer to squeezes. Suppose α is not the least process
in its bisimulation class. That is, for some i ≤ n we have α = γ · Xa

i · ᾱ and there
is some β = γ · Xb

i · β̄ ≡ α with b < a. Thus, according to the definition, α is not
unambiguous.

The other implication is easily provable building on the development of this sec-
tion. If α is not unambiguous then it is not the least one in its bisimulation class wrt. �
as α ≡ squeeze(α) and squeeze(α) ≺ α. �

It follows that the squeezing step, applied in a systematic manner sufficiently many
times on a process α, leads to the normal form process nf(α).

Lemma 38 (Normal Form via Squeezing) Let α be an arbitrary process. Then con-
secutive applications of the squeezing step eventually stabilize at nf(α), i.e. for some
m ≥ 0, squeezem(α) = nf(α).

Finally we formulate lower and upper bounds on the size of nf(α), with respect
to the size of α, that will be crucial for the proof of Theorem 6. The first one, stated
in Lemma 40, applies uniquely to �-minimal processes. The following lemma is the
technical preparation:

Lemma 39 If α is �-minimal then size(α) ≤ size(ᾱ), for any �-minimization ᾱ of
squeeze(α).

Proof If α is unambiguous the proof is trivial, therefore assume otherwise. According
to Definition 36, let α = γ · Xa

k · δ and let

squeeze(α) = γ · Xa−1
k · (δk,γ ||δ). (13)

Theory Comput Syst (2014) 55:136–169 155

Consider any ᾱ � squeeze(α) such that ᾱ ≡ squeeze(α). First we observe that γ is
necessarily a (k − 1)-prefix of ᾱ as α is (k − 1)-unambiguous and α ≡ ᾱ. Therefore

ᾱ = γ · Xb−1
k · (δ̄k,γ ||δ̄)

for some b ≤ a and δ̄k,γ � δk,γ and δ̄ � δ. We observe that δ̄k,γ is necessarily non-
empty, as α is �-minimal and α ≡ ᾱ. For size(α) ≤ size(ᾱ) it is thus sufficient to
demonstrate that

b = a and δ̄ = δ.

Towards a contradiction assume the opposite, i.e. either b < a, or δ̄ � δ. As α ≡ ᾱ,
i.e.,

γ · Xa
k · δ ≡ γ · Xb−1

k · (δ̄k,γ ||δ̄),
knowing that a > b−1 we deduce that the process γ ·Xb may not be k-unambiguous.
Thus we may apply squeeze(_) to γ · Xb · δ̄ to obtain

squeeze
(

γ · Xb
k · δ̄) = γ · Xb−1

k · (δk,γ ||δ̄).
By Lemma 15 applied to

squeeze(α) = γ · Xa−1
k · (δk,γ ||δ) =⇒0 γ · Xb−1

k · (δk,γ ||δ̄)
=⇒0 γ · Xb−1

k · (δ̄k,γ ||δ̄) = ᾱ

we deduce squeeze(α) ≡ γ · Xb−1
k · (δk,γ ||δ̄), i.e.,

squeeze(α) ≡ squeeze
(

γ · Xb
k · δ̄).

Since always α ≡ squeeze(α) we obtain

α = γ · Xa
k · δ ≡ squeeze(α) ≡ squeeze

(

γ · Xb
k · δ̄) ≡ γ · Xb

k · δ̄,

with either b < a or δ̄ � δ, thus contradicting the �-minimality of α. This completes
the proof. �

Lemma 40 (Lower Bound) If α is �-minimal then size(nf(α)) ≥ size(α).

Proof This lemma is a corollary of Lemma 39, once one observes that the same
normal form is obtained by consecutive applications of the following non-determi-
nistic modification of the squeezing step:

– the minimization-squeezing step: replace α by any �-minimization of squeeze(α).

Indeed, as minimization preserves the bisimulation class, the unambiguous process
obtained at the end, starting from a process α, is necessarily nf(α). �

Contrarily to Lemma 40, the upper bound holds for all processes.

156 Theory Comput Syst (2014) 55:136–169

Lemma 41 (Upper Bound) There is a constant c, depending only on the process
definition, such that size(nf(α)) ≤ c · size(α) for any process α.

Proof Let α be an arbitrary process. We claim that the size of nf(α) is bounded by:

size
(

nf(α)
) ≤ size(α) · size(δk1,γ1) · . . . · size(δkn,γn) (14)

for some unambiguous processes γ1 . . . γn not depending on α. Indeed, let γk be the
(k − 1)-unambiguous process witnessing the squeezing step for Xk (if any). The size
of the process, during all squeezing steps for Xk , increases at most size(δkk,γk

) times.
However, in general, there may be infinitely many different processes δk,γ used

in the squeezing steps for different processes α, as there may be in general infinitely
many unambiguous processes γ . We will argue that for the purpose of estimating the
size of nf(α) for all processes α, it is sufficient to take into account only a finite subset
of unambiguous processes. We will rely on the following simple observation. Let
γ, γ ′ ∈ {X1 . . .Xk−1}⊗, for some k ≤ n, be both (k − 1)-unambiguous and γ � γ ′,
respectively. Let the greatest k-extensions of γ and γ ′ be γ · Xa

k and γ · Xa′
k . The

exponents necessarily satisfy a ≥ a′. The crucial observation is that whenever a = a′
then every γ -squeeze, like δk,γ , is also a γ ′-squeeze. Indeed:

γ · Xa+1
k · δ ≡ γ · Xa

k · δk,γ · δ implies γ ′ · Xa+1
k · δ ≡ γ ′ · Xa

k · δk,γ · δ,
since ≡ is substitutive. In other words: one may safely assume δk,γ ′ = δk,γ whenever
γ � γ ′ and a ≤ a′.

Now we easily obtain the estimation. For every k ∈ {1 . . . n}, consider all pairs
(γ, a), where γ ∈ {X1 . . .Xk−1}⊗ is any (k − 1)-unambiguous process that exhibits
the greatest extension γXa

k (note that only such processes γ witness a squeezing
step). Choose those among them that are minimal wrt. � on the first coordinate,
and wrt. ≤ on the second one. By Dickson’s Lemma there are only finitely many
such minimal pairs. The set of all processes δk,γ , for all chosen minimal pairs (γ, a),
jointly for all k, has an element which is maximal wrt. size; denote this maximal size
by s. The size of any process δki ,γi

in (14) is dominated by s and thus we obtain:

size
(

nf(α)
) ≤ size(α) · sn (15)

which completes the proof by putting c = sn. Note that c only depends on a process
definition, and does not depend on a process α. �

Concerning the upper bound, in the following section we demonstrate a sharper
result, with the constant c estimated effectively. However, the estimation will be only
shown for branching bisimilarity.

5 Effective Bound on Normal Form

In this section we only consider branching bisimilarity 	. In particular, the notion of
normal form is understood with respect to 	. Fix an arbitrary process definition and
denote its size by d .

Theory Comput Syst (2014) 55:136–169 157

Contrarily to the previous section, where the linear order > on variables was fixed,
in this section we consider all linear orders on variables that extend >decr (cf. Def-
inition 18); such orders we call briefly admissible. Note however that the whole de-
velopment of Sect. 4 strongly depends on the choice of >. In particular, the normal
form of a process may change if one changes the order. Thus in this section we will
have to be careful enough to explicitly specify the order we use, whenever we apply
any notation or result of Sect. 4.

Concerning the notation, we will use indexed variable names X1,X2, . . . ,Xn as
in Sect. 4, assuming that the indexing is consistent with a currently used admissible
order:

X1 > X2 > · · · > Xn.

The following lemma is the main result of this section. The lemma will be used in
Sect. 6 for the proof of Theorem 6.

Lemma 42 (Upper Bound) For every admissible order >, and for every process α,
size(nf(α)) ≤ dn−1 · size(α).

Lemma 42 is a direct corollary of Lemma 43 which says that whatever admissible
order is chosen, squeezing does not increase a weighted measure of size, defined as:

d-size
(

X
a1
1 . . .Xan

n

) = a1 · dn−1 + a2 · dn−2 + · · · + an−1 · d + an.

(The measure of size clearly depends on the choice of >.)

Lemma 43 For every k ∈ {1 . . . n}, for every admissible order > and (k − 1)-unam-
biguous γ ∈ {X1 . . .Xk−1}⊗ that has the greatest k-extension, the variable Xk has a
γ -squeeze δ with d-size(δ) ≤ d-size(Xk).

(Note that even the variable Xk , as well as the property of being (k − 1)-unambi-
guous, depend on the choice of >.) Indeed, whatever an admissible order > is cho-
sen, Lemma 43 together with Lemma 38 imply d-size(nf(α)) ≤ d-size(α) and then
Lemma 42 follows:

size
(

nf(α)
) ≤ d-size

(

nf(α)
) ≤ d-size(α) ≤ dn−1 · size(α).

All the rest of this section is devoted to the proof of Lemma 43.

5.1 Proof of Lemma 43

The proof is by induction on n − k. The induction basis is for k = n. Whatever an
admissible order is chosen, if k = n then it trivially holds that d-size(δ) ≤ d-size(Xk),
as the only possible γ -squeeze δ of Xn is the empty process, whose weighted size
is 0.

For the induction step, fix some k and an admissible order >, assuming that the
lemma holds for all greater values of k, for all admissible orders.

158 Theory Comput Syst (2014) 55:136–169

Then fix a (k − 1)-unambiguous process γ ∈ {X1 . . .Xk−1}⊗, assuming that γ has
the greatest k-extension, say γ · Xa

k . The assumption guarantees existence of some
γ -squeeze of Xk , that is a process δ satisfying

γ · Xa+1
k 	 γ · Xa

k · δ. (16)

The proof is split into three cases:

– a > 0,
– a = 0 and Xk has a γ -squeeze δ such that Xk =⇒0 δ,
– a = 0 and Xk has no γ -squeeze δ such that Xk =⇒0 δ.

Case 1: a > 0 In this case we will not refer to the induction assumption at all.
The idea behind that proof is based on the fact that a > 0, and thus, roughly speak-

ing, Xk does not vanish during squeezing. From this we deduce that variables gen-
erated by Xk do not appear in some squeeze δ of Xk . Bounding the number of oc-
currences of other variables in δ is an easy conclusion from Claim 44, formulated
below.

Claim 44 The variable Xk has a γ -squeeze η such that γ · Xa+1
k =⇒0 γ · Xa

k · η.

Proof Choose an arbitrary γ -squeeze of Xk , say δ. Consider the pair (16) and an arbi-

trary non-generating decreasing transition Xk
ζ−→ ω (due to normedness assumption

every variable has such a transition). The transition gives rise to a Spoiler’s move

γ · Xa
k · δ ζ−→ γ · Xa−1

k · (δ||ω),

matched by some sequence of transitions of the form

γ · Xa+1
k =⇒0 α

ζ−→ α′.

We claim that

α = γ · Xa
k · η and α′ = γ · Xa−1

k · η′,

for some processes η and η′. The claim follows due to the equivalences

α 	 γ · Xa
k · δ and α′ 	 γ · Xa−1

k · (δ||ω),

using the fact that γ · Xa
k is k-unambiguous. Thus η is a γ -squeeze of Xk :

γ · Xa
k · η 	 γ · Xa

k · δ 	 γ · Xa+1
k ,

and γ · Xa+1
k =⇒0 γ · Xa

k · η as required. �

Remark 45 Actually it follows easily that Xk =⇒0 η. We will however not need this
property in the remaining part of the proof.

Theory Comput Syst (2014) 55:136–169 159

Consider the sequence of transitions γ · Xa+1
k =⇒0 γ · Xa

k · η and assume that all
transitions originating from γ precede all transitions originating from Xa+1

k . Distin-
guish the very first transition of Xk , say Xk −→0 φ, that decreases the exponent from
a + 1 to a:

γ · Xa+1
k =⇒0 γ · Xa+1

k · θ −→0 γ · Xa
k · (φ||θ) =⇒0 γ · Xa

k · η. (17)

Note that by Lemma 15 we have:

γ · Xa+1
k 	 γ · Xa

k · (θ ||φ). (18)

Furthermore, as γ ·Xa+1
k generates θ , namely γ ·Xa+1

k =⇒0 γ ·Xa+1
k · θ , and a > 0,

we observe that γ · Xa
k generates θ as well, and hence

γ · Xa
k 	 γ · Xa

k · θ.

This allows us to obtain, using substitutivity and the equation (18), a γ -squeeze of
Xk of size at most d :

γ · Xa+1
k 	 γ · Xa

k · (θ ||φ) 	 γ · Xa
k · φ.

Knowing that φ ∈ {Xk+1 . . .Xn}⊗ and size(φ) < d , we easily deduce the required
bound on the weighted size of φ:

d-size(φ) ≤ d · dn−k−1 = dn−k = d-size(Xk).

The proof of Case 1 is thus completed.

Case 2.1: a = 0 and Xk Has a γ -Squeeze δ such that Xk =⇒0 δ This is the only
case that we are not able to adapt to weak bisimilarity.

Recall that we have a fixed admissible order >, for which we should provide an
estimation on the size of a γ -squeeze δ of Xk . The idea of the solution for this case
is to do a proof for an admissible order >′ different than >, knowing that both orders
are k-consistent, which means that they agree on k greatest elements. For instance,
the two orders on the set {A,B,C,D,E}:

A > B > C > D > E and A >′ B >′ D >′ E >′ C

are 2-consistent but not 3-consistent. The estimation on the size of a γ -squeeze δ will
transfer easily to the original order >, as we will actually prove that size(δ) ≤ d . Our
proof is based on the simple observation that if two orders are k-consistent then for
l ≤ k, l-unambiguous prefixes with respect to both orders are the same, as well as
squeezes of Xl .

The modified order, denoted >′, is any one that satisfies the following conditions:

1. >′ is k-consistent with >, and
2. all variables generated by Xk are smaller with respect to >′ than all variables not

generated by Xk .

160 Theory Comput Syst (2014) 55:136–169

Note that the second condition is satisfiable: whenever Y is generated by Xk and
Z is not, then there exists no sequence of decreasing transitions from Y to Z, thus
Y >decr Z is impossible. From now on we work with the order >′, so indexing of
variables Xi , squeezes, normal forms, etc. are implicitly understood to be defined
with respect to that order.

To make the notation more readable, we will constantly use symbols α,α′, etc. for
processes containing exclusively variables smaller than Xk that are not generated
by Xk , and symbols β,β ′, etc. for those containing exclusively variables generated
by Xk .

Let δ be a γ -squeeze of Xk such that Xk =⇒0 δ. In the sequence of transitions
Xk =⇒0 δ, distinguish the transition that makes Xk disappear, induced by a transition
rule Xk −→0 ω, say. We may thus write:

γ · Xk =⇒0 γ · Xk · β̂ −→0 γ · (ω||β̂) =⇒0 γ · δ (19)

for some process β̂ . Let nf(γ ·Xk) = γ ·α ·β . As the first step we prove the following:

Lemma 46 nf(γ · ω) = γ · α · β̄ for some process β̄ .

Proof As the first step we compute nf(γ · (ω||β̂)). Knowing that δ is a γ -squeeze
of Xk , we may apply Lemma 15 to (19) to obtain

γ · Xk 	 γ · (ω||β̂)

and thus

nf
(

γ · (ω||β̂)
) = nf(γ · Xk) = γ · α · β.

Now we claim that normal forms of the processes

γ · ω and γ · (ω||β̂) (20)

differ only on variables generated by Xk , which immediately proves the lemma. In-
deed the processes themselves (20) differ only on variables generated by Xk (i.e. vari-
ables appearing in β̂). Recall that the order on variables has been chosen so that the
variables generated by Xk are smaller than other variables. As normal form is ob-
tained by consecutive squeezing (cf. Lemma 38), the normal forms of processes (20)
may only differ on variables generated by Xk , as required. �

Recall that nf(γ · Xk) = γ · α · β and consider Bisimulation Game from the pair
of processes

γ · Xk 	 γ · α · β.

Suppose the first Spoiler’s move is γ · Xk −→0 γ · ω, answered by a matching Du-
plicator’s move:

γ · α · β =⇒0 τ ′ −→0 τ.

Theory Comput Syst (2014) 55:136–169 161

The sequence of transitions satisfies assumptions of Lemma 29: γ ·α is unambiguous
and

τ 	 γ · ω 	 γ · α · β̄
for some β̄ (the latter equivalence follows by Lemma 46). We apply Lemma 29 to-
gether with Lemma 31 and deduce that Duplicator has a matching move engaging
only variables generated by Xk , thus of the form:

γ · α · β =⇒0 γ · α · (β ′||Y) −→ γ · α · (β ′||θ). (21)

Finally we use (21) to provide a γ -squeeze of Xk of size at most d . Recall that (21)
is a matching Duplicator’s move, i.e.

γ · α · (β ′||Y) 	 γ · Xk, γ · α · (β ′||θ) 	 γ · ω. (22)

Using these two equivalences we derive the following sequence of equivalences:

γ · Xk 	 γ · Xk · θ 	 γ · α · (β ′||Y ||θ) 	 γ · α · (β ′||θ ||Y) 	 γ · (ω||Y).

The first one is due to the fact that θ is generated by Xk . The second one is by sub-
stitutivity, using the first equivalence in (22). The third one is simply commutativity
of composition, and the last one is by substitutivity again, this time using the second
equivalence in (22).

The process ω, being the right-hand side of a transition rule, is of size smaller than
d . Hence ω||Y is a γ -squeeze of size at most d . This completes the proof of Case 2.1.

Case 2.2: a = 0 and Xk Has no γ -Squeeze δ such that Xk =⇒0 δ We start with a
lemma that only holds under assumptions of Case 2.2:

Lemma 47 No �-minimal γ -squeeze of Xk contains a variable generated by Xk .

Proof Suppose the contrary, namely

γ · Xk 	 γ · (δ′||Y), (23)

with δ′||Y ∈ {Xk+1 . . .Xn}⊗, Y generated by Xk , and δ′||Y being �-minimal. Con-
sider Bisimulation Game for the pair (23), and suppose Spoiler performs an arbitrary
sequence of silent decreasing transitions Y =⇒0 ε from Y to the empty process ε,
giving rise to the sequence of Spoiler’s moves

γ · (δ′||Y) =⇒0 γ · δ′ (24)

from the right process. Observe that due to �-minimality of δ′||Y , the Spoiler’s tran-
sitions surely change the bisimulation class, i.e.

γ · (δ′||Y) �	 γ · δ′ (25)

as otherwise δ′ � δ′||Y would be a γ -squeeze of Xk smaller than δ′||Y .

162 Theory Comput Syst (2014) 55:136–169

By Lemma 32 we know that there is a sequence of matching Duplicator’s re-
sponses to (24) that does not engage γ at all:

γ · Xk =⇒0 γ · ω (26)

(i.e. Xk =⇒0 ω). Knowing γ · ω 	 γ · δ′, by (25) we deduce

γ · Xk �	 γ · ω. (27)

Thus Xk does not appear in ω, as otherwise (26) and (27) would be in contradiction
with Lemma 21.

As γ · ω 	 γ · δ′, we may substitute γ · ω in place of γ · δ′ in (23), to obtain a
γ -squeeze of Xk

γ · Xk 	 γ · (ω||Y),

such that Xk −→0 Xk · Y =⇒0 ω||Y . This is in contradiction with the assumption
that no γ -squeeze is reachable from Xk by =⇒0. Thus the lemma is proved. �

Recall that we have a fixed admissible order >, for which we should provide an
estimation on the weighted size of a γ -squeeze δ of Xk . As in Case 2.1, we will use
in the proof an admissible order >′ different than >, namely an arbitrary admissible
order >′ fulfilling the following conditions:

1. >′ is k-consistent with >,
2. all variables generated by Xk are smaller with respect to >′ than all variables not

generated by Xk , and
3. the orders > and >′ coincide on variables not generated by Xk .

The first two conditions are exactly as before, the last one is added. Similarly as
before, the conditions are satisfiable. Moreover, the estimation on the weighted size
of a γ -squeeze with respect to >′ easily transfers to the original order >. Indeed,
by Lemma 47, a �-minimal squeeze contains only variables not generated by Xk ,
and these variables are placed higher in the order >′ than in the order >, thus their
contribution to the weighted size with respect to the order >′ is not smaller than with
respect to >.

From now on we work with the order >′ instead of >, and thus indexing of vari-
ables, squeezes, normal forms, etc. are implicitly understood to be defined with re-
spect to that order.

Let nf(γ · Xk) = γ · α. By Lemma 47 we know that no variable appearing in α is
generated by Xk . We are aiming at showing that the d-size(α) ≤ d-size(Xk).

Case 2.2 is the only one which requires referring to the induction assumption. We
will invoke the induction assumption for variables smaller than Xk , and the same ad-
missible order >′ on variables. To this aim, we will start by considering Bisimulation
Game starting with a decreasing non-generating Spoiler’s move, as outlined below.

Let Xm be the smallest variable occurring in α, i.e. α = α′||Xm (note that Xm may
occur in α′). Consider the Bisimulation Game for

γ · Xk 	 γ · α

Theory Comput Syst (2014) 55:136–169 163

and the first Spoiler’s move from the right process induced by some decreasing non-

generating transition rule of Xm, say Xm
ζ−→ ω:

γ · (α′||Xm)
ζ−→ γ · α′ · ω.

By Lemma 32 we know that there is a matching Duplicator’s response that does not
engage γ . As no γ -squeeze of Xk is reachable from Xk by =⇒0, the response has
necessarily the following form

γ · Xk =⇒0 γ · Xk · η ζ−→ γ · (σ ||η),

where η is generated by Xk and Xk disappears in the last transition:

Xk =⇒0 Xk · η and Xk
ζ−→ σ.

Indeed, otherwise the second last process in the sequence forming a matching Dupli-
cator’s move would be a γ -squeeze of Xk , forbidden by the assumption of Case 2.2.
We have γ · (σ ||η) 	 γ · α′ · ω and thus also

nf
(

γ · (σ ||η)
) = nf(γ · α′ · ω). (28)

Now we are going to deduce from equality (28) how the weighted sizes of nf(γ ·
σ) and nf(γ · α′) are related, in order to conclude that the weighted size of α is as
required.

Let’s inspect the m-prefix of the left processes in (28). Process η can not contribute
to the m-prefix of the normal form. Indeed, η contains only variables generated by
Xk , which are necessarily smaller than Xm, as Xm is not generated by Xk , since it
appears in nf(γ · Xk). Thus if we restrict to the m-prefixes we have the equality

m-prefix
(

nf
(

γ · (σ ||η)
)) = m-prefix

(

nf(γ · σ)
)

. (29)

Similarly, let’s inspect the m-prefix of the right process in (28). Again, ω can not
contribute to the m-prefix of the normal form, thus if we restrict to the m-prefixes we
have the equality

m-prefix
(

nf
(

γ · α′ · ω)) = m-prefix
(

nf
(

γ · α′)).

As γ ·α is the normal form, γ ·α′ is unambiguous and thus we have nf(γ ·α′) = γ ·α′.
From this we derive that

m-prefix
(

nf
(

γ · α′ · ω)) = m-prefix
(

nf
(

γ · α′)) = m-prefix
(

γ · α′) = γ · α′. (30)

Combine the equalities (29), (30) and (28) to obtain:

γ · α′ = m-prefix
(

nf(γ · σ)
)

(31)

and to observe that

d-size
(

γ · α′) = d-size
(

m-prefix
(

nf(γ · σ)
)) ≤ d-size

(

nf(γ · σ)
)

. (32)

164 Theory Comput Syst (2014) 55:136–169

Now we will use induction assumption for the variables smaller than Xk , to derive
that every variable Xi smaller than Xk (i.e. for i > k) has a γ -squeeze of weighted
size smaller than Xi . As normal form is obtained via a sequence of squeezes, and γ

is unambiguous, the induction assumption implies that

d-size
(

nf(γ · σ)
) ≤ d-size(γ · σ)

which leads to the following estimation:

d-size
(

nf(γ · σ)
) ≤ d-size(γ) + d-size(σ) ≤ d-size(γ) + size(σ) · dn−k−1. (33)

The inequalities (32) and (33) jointly imply:

d-size
(

γ · α′) ≤ d-size(γ) + size(σ) · dn−k−1,

and removing γ from both sides of the inequality, we get:

d-size
(

α′) ≤ size(σ) · dn−k−1 ≤ (d − 1) · dn−k−1.

Recalling that α = α′ · Xm:

d-size(α) = d-size
(

α′ · Xm

) ≤ size(σ) · dn−k−1 + dn−m

≤ (d − 1) · dn−k−1 + dn−k−1 = dn−k = d-size(Xk)

which is the required bound. As Case 2.2 is the last one, we have thus completed the
proof of Lemma 43.

Remark 48 Lemma 43 is formulated for 	 but the major part of the proof either
works for weak bisimilarity directly, or may be adapted. The only case that we can
not adapt to weak bisimilarity is Case 2.1. Importantly, under the restriction of [16]
the proof of this subcase is straightforward.

The restriction on a process definition assumed in [16] is the following: when-
ever a variable X generates (some variable) then every silent transition rule of X is
generating, i.e. of the form X −→ X · ω. In short words, generators can not vanish
silently.

Consider a γ -squeeze γ · X ≈ γ · δ such that X =⇒0 δ. We can easily produce
a new squeeze with size bounded by d . Indeed, due to the restriction of [16] the
variable X may not be a generator, and thus must vanish in the very first transition of
the sequence X =⇒0 δ:

γ · X −→0 γ · ω =⇒0 γ · δ,
due to a non-generating transition rule X −→ ω. By Lemma 15 we deduce γ · X ≈
γ · ω, which means that already ω is a γ -squeeze of X of size at most d .

We claim that our proof, after slight adaptations in Cases 1 and 2.2, shows decid-
ability of weak bisimilarity in the subclass of [16].

Theory Comput Syst (2014) 55:136–169 165

6 Proof of the Bounded Response Property

This section contains finally the proofs of two main results announced in Sect. 3,
namely Theorem 6 and Theorem 8. The two theorems state the bounded response
property for branching and weak bisimilarity, respectively; moreover the former one
claims a response of an effectively bounded size.

6.1 Proof of Theorem 8

In case of weak bisimilarity ≈, the bounded response property follows easily from
the estimations given in Lemmas 40 and 41. Fix a process definition and an admis-

sible order on variables. Consider α ≈ β , a Spoiler’s move α
ζ−→ α′ and a matching

Duplicator’s response:

β =⇒0
ζ−→=⇒0 β ′,

with α′ ≈ β ′. Extend the Duplicator’s response with

β =⇒0
ζ−→=⇒0 β ′ =⇒0 β̄ ′,

for an arbitrary �-minimal β̄ ′. Then using Lemma 40, Lemma 41, and the equality
nf(α′) = nf(β̄ ′), we obtained the required bound:

size(β̄ ′) ≤ size(nf(β̄ ′)) = size(nf(α′)) ≤ c · size(α′),

for a constant c from Lemma 41.

6.2 Proof of Theorem 6

From now on we focus on branching bisimilarity only. Compared to weak bisimilar-
ity, the case of branching bisimilarity is slightly more subtle. As previously, consider
a fixed process definition and a fixed admissible order on variables.

Before showing how Theorem 6 follows from Lemmas 40 and 42, we will need a
definition and a lemma. Define a partial order � as a refinement of the lexicographical
order �:

α � β iff α � β and α =⇒0 β.

In the sequel we will consider �-minimal processes (cf. definition of �-minimality
and �-minimization in Sect. 4). Due to the following apparent inclusions of partial
orders:

� ⊆ � ⊆ �
we have the following dependencies between minimal processes:

� -minimal =⇒ �-minimal =⇒ � -minimal. (34)

Lemma 49 If α is �-minimal and α =⇒0 β 	 α then α � β .

166 Theory Comput Syst (2014) 55:136–169

Proof We will show that

β = α||δ for some δ generated by α. (35)

For the sake of contradiction assume the contrary and consider the shortest se-
quence of transitions α =⇒0 β such that β 	 α and β fails to satisfy (35). Consider
the last transition, say

α||δ −→0 β,

performed necessarily by a variable, say X, that appears in α but not in δ. This last
transition has the following form

α||δ −→0 α′||δ,

due to a transition α −→0 α′. As the latter transition is necessarily decreasing and
non-generating, α′ ≺ α. Recall that α 	 α′||δ and α � α′||δ. By Lemma 21 we know
that those variables in δ that are generated by a variable different than X may be
safely canceled via silent steps −→0 while preserving the bisimulation class. Hence

α =⇒0 α′ · δ′ 	 α, (36)

where all variables appearing in δ′ � δ are generated by X, and thus smaller than X

wrt. <. Knowing that α′ ≺ α we obtain

α′ · δ′ ≺ α. (37)

The facts (36) and (37) jointly contradict �-minimality of α. �

From now on, the remaining part of Sect. 6 is devoted to proving Theorem 6, using
Lemmas 40 and 42 together with Lemma 49.

Consider α 	 β , a Spoiler’s move α
ζ−→ α′ and a Duplicator’s response:

β =⇒0 β1
ζ−→ β2, (38)

with α 	 β1 and α′ 	 β2. We will show that Duplicator has a matching response
where β1 and β2 are of size bounded by c · size(α) and c · size(α′), respectively,
where c = (2dn−1 + d), n is the number of variables and d is the size of the process
definition.

We can not simply extend this response analogously as for weak bisimilarity, and
we have to estimate the size of the process β2 resulting from the last transition.
The basic idea of the proof is essentially to eliminate some unnecessary generation
done by the transitions β =⇒0 β1, without affecting executability of the transition

β1
ζ−→ β2.

As the first step we observe that without loosing generality we could assume that
the response (38) starts in a �-minimal process. Indeed, if we prove our claim in

Theory Comput Syst (2014) 55:136–169 167

this case, then we easily obtain a matching response, of required size bound, from an
arbitrary β by adjoining at the beginning of a matching response from β̄ ,

β̄ =⇒0 β1
ζ−→ β2, (39)

a sequence of transitions β =⇒0 β̄ , for some �-minimization β̄ of β , thus obtaining

β =⇒0 β̄ =⇒0 β1
ζ−→ β2. (40)

As β 	 β̄ , we know that the response from β is really matching: α 	 β1 and α′ 	 β2.
Thus from now on we consider a pair α 	 β̄ , with β̄ a �-minimal process, instead

of arbitrary α 	 β , together with a matching Duplicator’s response (39). Note that by
Lemma 49 we know that β̄ � β1.

As the second step extend (40) with any sequence β2 =⇒0 β̄2 leading to a �-
minimal process β̄2 � β2 bisimilar to β2. Our knowledge by now may be outlined
with the following diagram (the subscript in =⇒0 is omitted):

β̄
�
	

β1

ζ

β̄2 β2�
	

Both left-most processes in the diagram are size bounded. Indeed, as both β̄ and β̄2
are �-minimal, Lemma 40 applies:

size(β̄) ≤ size
(

nf(β)
) = size

(

nf(α)
)

and size(β̄2) ≤ size
(

nf(β2)
) = size

(

nf(α′)
)

.

Then applying Lemma 42 to α and α′ we obtain:

size(β̄) ≤ size(α) · dn−1 and size(β̄2) ≤ size(α′) · dn−1. (41)

As the third and the last step of the proof, we claim that β1 and β2 may be replaced
by processes of size bounded, roughly, by the sum of sizes of β̄ and β̄2.

Claim 50 There are some processes β ′
1 	 β1 and β ′

2 	 β2 such that

β̄ =⇒0 β ′
1

ζ−→ β ′
2 (42)

and

size(β ′
1), size(β ′

2) < size(β̄) + size(β̄2) + d. (43)

The claim is sufficient for Theorem 6 to hold, by inequalities (41). Thus to complete
the proof we only need to demonstrate the claim. The idea underlying the proof of

168 Theory Comput Syst (2014) 55:136–169

the claim is illustrated in the following diagram:

β̄

�
�
	

β1

ζ

�
	

β ′
1

ζ

β2

�
	

β̄2 β ′
2�

	

We will use now an intuitive coloring argument. Let us color uniquely every vari-
able occurrence in β1 and let every transition preserve the color of the left-hand side
variable of a transition rule that is used. Obviously at most size(β̄2) of these colors

will still be present in β̄2, name them surviving colors. Suppose the β1
ζ−→ β2 tran-

sition be induced by a transition rule X
ζ−→ δ and color the occurrence of X in β1

involved in this transition, say, brown.
Let β ′

1 � β1 contain sufficiently many variables occurrences from β1 so that β̄ �
β ′

1 and all occurrences colored a surviving color or brown are included. Clearly

β̄ � β ′
1 � β1.

One easily observes that after firing the brown transition X
ζ−→ δ from β ′

1 we get a
process β ′

2 such that

β̄2 � β ′
2 � β2,

because all surviving colored variables are still present. We now only need to check
that all the requirements are satisfied by β ′

1 and β ′
2.

By Lemma 15 we have β ′
1 	 β1 and β ′

2 	 β2. Clearly there is a sequence
β1 =⇒0 β ′

1, that simply cancels superfluous variable occurrences, hence the con-
dition (42) is fulfilled.

Finally we obtain the size estimation size(β ′
1) ≤ size(β̄) + size(β̄2) + 1 as in β ′

1
there can be at most size(β̄2)+ 1 surviving and brown colored variables occurrences,
except for those that come from β̄ . This easily implies the required size estimation
for size(β ′

2). Thus the required condition (43) holds.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Christensen, S.: Decidability and decomposition in process algebras. Ph.D. thesis, Dept. of Computer
Science, University of Edinburgh, UK (1993)

Theory Comput Syst (2014) 55:136–169 169

2. Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation equivalence is decidable for basic parallel
processes. In: CONCUR, pp. 143–157 (1993)

3. Czerwinski, W., Hofman, P., Lasota, S.: Decidability of branching bisimulation on normed commuta-
tive context-free processes. In: CONCUR, pp. 528–542 (2011)

4. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel processes. Fundam.
Inform. 31(1), 13–25 (1997)

5. Fröschle, S., Lasota, S.: Normed processes, unique decomposition, and complexity of bisimulation
equivalences. Electron. Notes Theor. Comput. Sci. 239, 17–42 (2009)

6. Hirshfeld, Y.: Congruences in commutative semigroups. Technical report, LFCS report ECS-LFCS-
94-291, University of Edinburgh (1994)

7. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding bisimulation equiva-
lence of normed basic parallel processes. Math. Struct. Comput. Sci. 6(3), 251–259 (1996)

8. Hofman, P., Totzke, P.: Approximating weak bisimilarity of basic parallel processes. In: DCM, pp. 99–
113 (2012)

9. Jancar, P.: Decidability questions for bismilarity of Petri nets and some related problems. In: STACS,
pp. 581–592 (1994)

10. Jancar, P.: Strong bisimilarity on basic parallel processes is PSPACE-complete. In: LICS, pp. 218–227
(2003)

11. Lasota, S.: Decidability of performance equivalence for basic parallel processes. Theor. Comput. Sci.
360, 172–192 (2006)

12. Milner, R.: Communication and Concurrency. Prentice Hall, New York (1995)
13. Srba, J.: Strong bisimilarity and regularity of basic parallel processes is PSPACE-hard. In: STACS,

pp. 535–546 (2002)
14. Srba, J.: Roadmap of Infinite Results, vol 2: Formal Models and Semantics. World Scientific, Singa-

pore (2004)
15. Stirling, C.: The joys of bisimulation. In: MFCS, pp. 142–151 (1998)
16. Stirling, C.: Decidability of weak bisimilarity for a subset of basic parallel processes. In: FoSSaCS,

pp. 379–393 (2001)
17. Stribrna, J.: Decidability and complexity of equivalences for simple process algebras. Ph.D. thesis,

Dept. of Computer Science, University of Edinburgh, UK (1998)
18. van Glabbeek, R.J.: The linear time—branching time spectrum II. In: CONCUR, pp. 66–81 (1993)
19. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM

43(3), 555–600 (1996)

	Decidability of Branching Bisimulation on Normed Commutative Context-Free Processes
	Abstract
	Introduction
	Preliminaries
	Weak Bisimilarity

	Decidability via Bounded Response Property
	Approximations
	Decidability of Weak Bisimilarity?
	Proof Strategy
	Weak Bisimilarity

	Normal Form by Squeezing
	Normal Forms
	Decreasing Transitions
	Unambiguous Processes
	Squeezes
	Bounds on Normal Forms

	Effective Bound on Normal Form
	Proof of Lemma 43
	Case 1: a > 0
	Case 2.1: a = 0 and Xk Has a gamma-Squeeze delta such that Xk 0 delta
	Case 2.2: a = 0 and Xk Has no gamma-Squeeze delta such that Xk 0 delta

	Proof of the Bounded Response Property
	Proof of Theorem 8
	Proof of Theorem 6

	References

