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Abstract Anew family of locking-free finite elements for shear deformableReissner–
Mindlin plates is presented. The elements are based on the “tangential-displacement
normal-normal-stress” formulation of elasticity. In this formulation, the bending
moments are treated as separate unknowns. The degrees of freedom for the plate
element are the nodal values of the deflection, tangential components of the rotations
and normal–normal components of the bending strain. Contrary to other plate bend-
ing elements, no special treatment for the shear term such as reduced integration is
necessary. The elements attain an optimal order of convergence.

Mathematics Subject Classification 65N30 · 74K20

1 Introduction

In this paper we are concerned with finite elements for shear deformable plates based
on the Reissner–Mindlin model [34,42]. A direct discretization of the equations leads
to shear locking phenomena as the plate thickness becomes small. In the limit of
zero thickness, the Kirchhoff assumption is enforced, where the shear strain vanishes
and the deflection gradient equals the rotations. Over the last decades, a vast amount

B Astrid S. Pechstein
astrid.pechstein@jku.at

Joachim Schöberl
joachim.schoeberl@tuwien.ac.at

1 Institute of Technical Mechanics, Johannes Kepler University Linz, Altenbergerstr. 69,
4040 Linz, Austria

2 Institute for Analysis and Scientific Computing, Vienna University of Technology,
Wiedner Hauptstrasse 8-10, 1040 Wien, Austria

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191619915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-017-0883-9&domain=pdf


714 A. S. Pechstein, J. Schöberl

of different elements overcoming shear locking by different kinds of remedies has
been proposed. In most standard, conforming finite element methods, the Kirchhoff
constraint of vanishing shear stress is alleviatedormodified in someway.Analternative
are discontinuous Galerkin (DG) methods, mixed, or hybrid methods.

An example for the alleviation of the Kirchhoff constraint is the “assumed shear
strain method” introduced by MacNeal [33]. A special operator for the displacement–
strain relation relying on local averaging is used, this approach was further developed
by Refs. [10,21,31]. In a further method referred to as “linked interpolation”, the
displacement gradient in theKirchhoff constraint is augmented by a “kinematic linking
operator”. Pioneers in this field were Zienkiewicz et al. [49] and Taylor and Auricchio
[47]. Auricchio and Lovadina [9] provide an analysis of general linked-interpolation
elements.

Other methods employ additional unknowns for the shear stress quantity, which
allows to pose the Kirchhoff condition of vanishing shear in weak sense. Examples
are the Falk–Tu element [25] or the MITC element [16]. In implementations, the
further unknown can be eliminated element-wise, which leads to a projection of the
shear stresses in the penalty term. This projection is referred to as “reduction” in [16].
In some cases, it may be achieved by reduced integration of the shear term. This
approach is analyzed minutely for the one-dimensional case of a thick beam in [2].
Reduced integration is also used without the background of an additional shear stress
unknown [26,48], where care has to be taken to avoid spurious modes.

For MITC elements, error analysis has been provided; see e.g. the works by Brezzi
et al. [17], where additionally a postprocessing step for the deflections is proposed, or
by Stenberg and Suri [46] for an hp error analysis.

Nonconforming elements have been constructed by Arnold and Falk [6], where
Crouzeix–Raviart elements are used for the deflection. More recently, Brezzi and
Marini [18] developed a nonconforming element in the framework of discontinuous
Galerkin methods. In both works, the shear strain is projected into a lower-order finite
element space to alleviate the Kirchhoff constraint. Other DG approaches allow for
a direct enforcement of the Kirchhoff constraint, as the rotation space can be chosen
such that it contains the deflection gradient. Deflections, rotations and the shear are
approximated using different continuity assumptions in [5]. In [14,27]DGmethods for
deflection and rotation without reduced integration techniques are presented. We also
mention [19] for a discontinuous Petrov–Galerkin method, where optimal test func-
tions of higher polynomial order are chosen to suit the trial functions. A quadrilateral
hybrid finite element method was introduced in [20], where shear stress and bending
moment are discontinuous and the corresponding finite element basis is constructed
to satisfy a local equilibrium condition.

Hughes and Franca [30] added an additional stabilization term to the variational
equations.Also,Chapelle andStenberg [22] augmented the equations by a stabilization
term, which then allows for an analysis ensuring an optimal order of convergence. An
entirely different approach by Pontaza and Reddy [41] is to use a least squares method
instead of the standard Galerkin equations.

Mixedmethodwithweak symmetry for the tensor of bendingmoments are proposed
in [11,12]. In both works, the bending moments are approximated in the normal-
continuous space H(div). Since symmetric H(div)-conforming elements are hard
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The TDNNS method for Reissner–Mindlin plates 715

to construct and of high polynomial order [8], imposing symmetry weakly using a
Lagrange multiplier has often been proposed in the context of continuum mechanics,
see e.g. [4,7,44,45]. The continuum mechanics formulation used in the current paper
overcomes this problem.

The plate elements proposed in the current paper are based on the “tangential-
displacement normal-normal-stress” (TDNNS) formulation of elasticity introduced
by the authors in [38]. This leads to a formulation containing deflection, rotations and
bendingmoments as separate unknowns.While the deflection is sought in the standard
Sobolev space H1, the rotation is assumed to be in the less regular space H(curl).
Additionally the TDNNS stress space H(div div) is chosen for the bending moments.
Accordingly, we use standard continuous finite elements for the deflection, tangential
continuous Nédélec elements for the rotations, and normal–normal continuous tensor
valued elements from [38] for the bending moments. The main benefit of this choice
is that the gradient of the deflection space is a subset of the rotation space both for the
infinite dimensional and for the finite element problem, and the Kirchhoff constraint
of vanishing shear strain does not lead to locking. Thus, the proposed formulation
seems to be a very natural alternative to the established ones based on H1 continuity
and continuous finite elements. In [39] the authors have shown that three-dimensional
anisotropic TDNNS elements are suitable for the discretization of slim domains. The
proposed Reissner–Mindlin plate elements show an optimal order of convergence,
which is confirmed in our numerical results.

Theproposed elements are closely related to theHellan–Herrmann–Johnson [28,29,
32] element for the bending problem of aKirchhoff plate. Also in theHHJ formulation,
the normal–normal component of the bendingmoment is continuous across interfaces.
As theHellan–Herrmann–Johnson element is restricted to the biharmonic problem, the
rotations are not treated independently as done in the current work. On the other hand,
for vanishing thickness one can eliminate the rotations in the current formulation, and
arrives at the HHJ plate formulation. Thus, the HHJ formulation may be seen as the
limiting case of the proposed method. In [24], Lagrangian multipliers for the normal–
normal component of the bending moment are introduced. Postprocessing then leads
to a faster convergence of the deflection gradient.

This work is organized as follows: in Sect. 2, the TDNNS method is shortly
introduced and applied to the Reissner–Mindlin problem. An analysis of the infi-
nite dimensional problem using the TDNNS spaces for positive as well as vanishing
thickness is provided in Sect. 3. Finite elements are introduced in Sect. 4, and a-priori
error estimates are provided. We mention hybridization of the bending moments by
Lagrangianmultipliers resembling the normal component of the rotation,which results
after static condensation in a symmetric positive system matrix. Finally, Sect. 5 con-
tains numerical examples verifying the claimed convergence orders.

2 Problem formulation

2.1 Notation

In the following, all vectors are denoted by boldface letters, tensors are boldface and
underlined. Let Ω ⊂ R

2 be a bounded, connected, polygonal Lipschitz domain. Its
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716 A. S. Pechstein, J. Schöberl

unit outward normal n is defined almost everywhere on the boundary ∂Ω . The unit
tangential vector in counter-clockwise direction τ is given as the rotation of n,

τ = n⊥ =
(−ny

nx

)
. (1)

For a vector field v on Ω , normal and tangential component on the boundary are
denoted by

vn := v · n, vτ = v − vnn. (2)

For a tensor field of second order σ , its normal component is given by σ n := σn.
The normal component σ n can further be split into a (scalar-valued) normal–normal
component σnn and a (vector-valued) normal–tangential component σ nτ ,

σnn = σ n · n, σ nτ = σ n − σnnn. (3)

Rotation and divergence of a two-dimensional vector field shall be denoted by curl,
div, respectively. The operatordiv is the row-wise divergence operator,mapping tensor
to vector fields.

For a general Hilbert space V , its inner product and norm are denoted by (·, ·)V
and ‖ · ‖V , respectively. The duality product between V and its dual V ∗ is denoted by
angles,

〈 f, g〉 = f (g) ∀ f ∈ V ∗, g ∈ V . (4)

Let L2(Ω) denote the usual Lebesgue space. Moreover, let H1(Ω) be the usual
Sobolev space of weakly differentiable functions, and let H1

0 (Ω) be the space of H1

functions satisfying zero boundary conditions.We also use the Sobolev spaces Hs(Ω)

for integer s. Moreover, H(curl,Ω) and H0(curl,Ω) shall be the spaces of vector-
valued functions with weak rotation, the latter satisfying zero boundary conditions for
the tangential component of the vector fields, see [35].

The dual space of H1
0 (Ω) shall be denoted by H−1(Ω). It is well established [13,

Equation (10.4.52)] that the dual space of H0(curl,Ω) is H−1(div,Ω) being the space
of H−1 vector fields with distributional divergence in H−1,

H−1(div,Ω) = {f ∈ H−1(Ω) : div f ∈ H−1(Ω)} = (H0(curl,Ω))∗. (5)

The distributional divergence operator is defined by the relationship

〈div f, w〉 = −〈f,∇w〉 ∀w ∈ C∞
0 (Ω). (6)

Using this definition, a natural norm of H−1(div,Ω) is

‖f‖2H−1(div,Ω)
= ‖f‖2H−1(Ω)

+ ‖ div f‖2H−1(Ω)
(7)

= sup
v∈H1

0(Ω)

〈f, v〉2
‖∇v‖2

L2(Ω)

+ sup
w∈H1

0 (Ω)

〈f,∇w〉2
‖∇w‖2L2(Ω)

. (8)
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The TDNNS method for Reissner–Mindlin plates 717

In all further occurrences of Sobolev spaces on Ω , the domain can also be omitted.
We thus write H1 for H1(Ω) or H(curl) for H(curl,Ω). When defined on domains
other than Ω , the domain must be indicated as above.

2.2 The TDNNS method

In [38,39] we introduced the tangential-displacement normal-normal-stress (TDNNS)
method for elasticity, and refined the analysis in [40]. In the current section, we
briefly cover the main idea of the TDNNS method for elasticity problems in the two-
dimensional continuum, as the proposed Reissner–Mindlin elements will be based on
this method.

Let Ω ⊂ R
2 be a bounded, connected, polygonal domain with Lipschitz boundary

∂Ω . The displacement vector u = (u1, u2) and symmetric stress tensor σ ∈ R
2×2
sym are

connected via Hooke’s law (9) and the equilibrium equation (10)

Aσ = ε(u) in Ω, (9)

divσ = −f in Ω. (10)

Here, we use the linearized strain tensor ε(u) = 1
2 (∇u + (∇u)T ). Stress and strain

are connected via the compliance tensor A, which is the inverse of the elasticity tensor
C depending on Young’s modulus E and the Poisson ratio ν in the well known way.
For simplicity, we assume that homogeneous displacement boundary conditions are
posed on ∂Ω ,

u = 0 on ∂Ω. (11)

Most standard methods for the elasticity problem rely on a primal formulation,
which is obtained eliminating the stress tensor σ from Eqs. (9) and (10). Then one
searches for the displacement u in H1

0 such that

∫
Ω

Cε(u) : ε(v) dx =
∫

Ω

f · v dx ∀v ∈ H1
0. (12)

In a conforming finite element method, the displacement vector u is approximated by
a continuous finite element function.

On the other hand, the dual Hellinger–Reissner formulation is obtained directly
from system (9), (10) when multiplying with test functions and using integration by
parts,

∫
Ω

Aσ : τ dx +
∫

Ω

divτ · u dx = 0 ∀τ ∈ Hsym(div), (13)
∫

Ω

divσ · v dx =
∫

Ω

f · v dx ∀v ∈ L2. (14)

Here, the solution spaces are Hsym(div) for the stress and L2 for the displacement.
In a conforming finite element method, the displacement elements can be totally
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718 A. S. Pechstein, J. Schöberl

discontinuous, while the stress elements need to be tensor-valued symmetric and
normal-continuous. These requests lead to computationally expensive finite elements
of at least 24 degrees of freedom in two dimensions (see [8]) and 162 degrees of
freedom in three dimensions (see [1,3]).

The TDNNS formulation is “in between” those two concepts, where the displace-
ments are not assumed totally continuous or discontinuous, but where the tangential
component is assumed to be continuous across element borders. In a mathematical
setting, the displacement space is chosen as

H0(curl) = {v ∈ H(curl) : vτ = 0 on ∂Ω}. (15)

In [38,40] we have shown that the corresponding stress space is the space of symmetric
L2 tensors with weak divergence in the dual space of H0(curl). Due to (5), the stress
space is given by

H(div div) =
{
τ ∈ L2

sym : div divτ ∈ H−1
}

. (16)

The duality product 〈divτ , v〉, where the divergence of a stress tensor is applied to a dis-
placement field, plays an important role in the TDNNS method. In [40] we elaborated
on the meaning of the duality product 〈divτ , v〉 for τ ∈ H(div div) and v ∈ H0(curl).
We state that, for smooth τ ∈ H(div div) and v ∈ H0(curl), i.e. for v smooth with
vanishing tangential component vτ = 0 on ∂Ω , the duality product can be evaluated
by

〈divτ , v〉 = −
∫

Ω

τ : ε(v) dx +
∫

∂Ω

τnnvn ds. (17)

A natural norm of the stress space H(div div) uses this duality product and is given
by, see [40]

‖τ‖2H(div div) = ‖τ‖2
L2 + ‖ div divτ‖2H−1 = ‖τ‖2

L2 + sup
w∈H1

0 ∩H2

〈divτ ,∇w〉2
‖∇w‖2L2

. (18)

It is well known that finite elements for H(curl) have to be tangential continuous,
such as Nédélec elements introduced in [36,37]. In [38] it was shown that finite
elements for the stress space H(div div) are normal–normal continuous, meaning that
the normal component σnn of the normal stress vector σ n is continuous across element
borders.

One obtains a variational problem of a form similar to the dual problem (13)–(14),

∫
Ω

Aσ : τ dx + 〈divτ , u〉 = 0 ∀τ ∈ H(div div), (19)

〈divσ , v〉 =
∫

Ω

f · v dx ∀v ∈ H0(curl). (20)

In a finite element method, it is necessary to evaluate duality products of the form
〈divτ , v〉 for piecewise smooth functionswith τnn andvτ continuous on afinite element
mesh T = {T }. In this case, the definition from (17) can be extended to
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The TDNNS method for Reissner–Mindlin plates 719

〈divτ , v〉 =
∑
T∈T

( ∫
T

divτ · v dx −
∫

∂T
τnτ · vτ ds

)
(21)

= −
∑
T∈T

( ∫
T

τ : ε(v) dx −
∫

∂T
τnn · vn ds

)
, (22)

It was shown (see [38,40]) that the infinite dimensional problem (19), (20) is well
posed. Moreover, a stable family of mixed finite elements was constructed, using
Nédélec’s elements for the displacement space and a new family of tensor-valued sym-
metric normal–normal continuous elements for the stress space. The two-dimensional
mixed finite elements shall be used in the Reissner–Mindlin elements proposed in this
work.

2.3 Reissner–Mindlin model

Let again Ω ⊂ R
2 be a bounded, connected domain with Lipschitz boundary ∂Ω .

We consider a plate of thickness t corresponding to the three-dimensional domain
Ω×(−t/2, t/2). In theReissner–Mindlinmodel, the displacement vectoru is assumed
to take the form

u =
⎛
⎝−zθ1

−zθ2
w

⎞
⎠ , (23)

where θ = (θ1, θ2) are rotations and w is the deflection in vertical z direction. Both
the rotations θ and the deflectionw are assumed to depend on the in-plane coordinates
(x1, x2) only.

Assuming a vertical volume load f = (0, 0, t2g)T ∈ L2 to be given, the Reissner–
Mindlin problem for a clamped plate is to find the deflection w and rotations θ such
that

−div(Cbε(θ)) − μt−2(∇w − θ) = 0 in Ω, (24)

−μt−2 div(∇w − θ) = g in Ω, (25)

θ = 0 on ∂Ω, (26)

w = 0 on ∂Ω. (27)

Here Cb is the tensor of bending moduli and μ is the shear modulus with shear
correction factor ks , which depend on Young’s modulus E and Poisson’s ratio ν via

Cb = E

12(1 − ν2)

⎛
⎝ 1 ν 0

ν 1 0
0 0 1−ν

2

⎞
⎠ , μ = ks E

2(1 + ν)
. (28)
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720 A. S. Pechstein, J. Schöberl

Additionally, we provide the compliance tensor Ab = C−1
b

Ab = C−1
b = 12

E

⎛
⎝ 1 −ν 0

−ν 1 0
0 0 2(1 + ν)

⎞
⎠ . (29)

Of course, other boundary conditions such as simply supported or free boundaries,
or boundary tractions and moments, may be prescribed. Although the analysis of the
proposed finite element formulation is done for the clamped case for sake of simplicity,
we shall comment shortly on the implementation of other boundary conditions in the
end of the current section. We will see that all common types of boundary conditions
can be treated in a very natural way.

As in the continuum problem in Sect. 2.2, a primal, displacement-based variational
formulation of the Reissner–Mindlin problem (24)–(27) can be obtained directly. Both
the rotations θ and the deflection w are assumed weakly differentiable, with θ ∈
�prim = H1

0 and w ∈ Wprim = H1
0 . The primal variational formulation of the

Reissner–Mindlin problem is to find θ ∈ �prim and w ∈ Wprim such that for all test
functions η ∈ �prim and v ∈ Wprim

∫
Ω

Cbε(θ) : ε(η) dx + μt−2
∫

Ω

(∇w − θ) · (∇v − η) dx =
∫

Ω

gv dx . (30)

A straightforward finite element discretization of this primal problem choosing con-
tinuous finite element spaces �prim,h ⊂ �prim and Wprim,h ⊂ Wprim leads to shear
locking as the thickness t tends to zero. In the limit case of a Kirchhoff plate with
t = 0, the condition of vanishing shear strain

∇w − θ = 0 (31)

has to be satisfied. For conventional finite element discretizations one observes that
∇Wprim,h 
⊂ �prim,h , thus the Kirchhoff constraint (31) cannot be satisfied by the
discrete solution, the formulation locks. Different methods have been proposed to
reduce this phenomenon by alleviating the Kirchhoff constraint (31), see Sect. 1. In
this work, the rotation space will be chosen such that both ∇W ⊂ � and ∇Wh ⊂ �h .
This ensures stability and an optimal order of convergence of the method.

Themain idea of the currentwork is to use theTDNNSmethod presented in Sect. 2.2
for the discretization of rotations θ . To this end, additional unknowns m = Cbε(θ)

for the tensor of bending moments are introduced. This leads to the following system
of partial differential equations

Abm − ε(θ) = 0 in Ω, (32)

−div(m) − μt−2(∇w − θ) = 0 in Ω, (33)

−μt−2 div(∇w − θ) = g in Ω, (34)

123



The TDNNS method for Reissner–Mindlin plates 721

Table 1 Different types of
essential and corresponding
natural boundary conditions and
the incorporation of the latter
into the right hand side of
(35)–(36)

Essential bc Natural bc Surface term

w μt−2(∂nw − θn) = g0
∫
Γ g0 v ds

θτ mnτ = g1
∫
Γ g1 · ητ ds

mnn θn = g2
∫
Γ g2 τnn ds

Now, we obtain a variational formulation for finding θ ∈ � = H0(curl), m ∈ M =
H(div div) and w ∈ W = H1

0 in the same manner as in Sect. 2.2,

∫
Ω

Abm : τ dx + 〈divτ , θ〉 = 0 ∀τ ∈ M, (35)

〈divm, η〉 − μt−2
∫

Ω

(∇w − θ) · (∇v − η) dx = −
∫

Ω

gv dx ∀η ∈ �, v ∈ W.

(36)

We shortly comment on the changes in the variational formulation (35)–(36) which
are necessary for the incorporation of different types of boundary conditions. Essential
boundary conditions, which have to be enforced by the finite element space, are the
deflectionw, the tangential component of the rotation θτ and the normal component of
the bending moment mnn . Note that these expressions are also degrees of freedom of
the corresponding finite element spaces. The corresponding natural conditions, in the
same order, are the shear μt−2(∂nw − θn), the tangential component of the bending
moment mnt , and the normal component of the rotation θn . Natural homogeneous
conditions are satisfied whenever the corresponding essential condition is dropped,
inhomogeneous conditions result in additional surface integrals on the right hand
side, see Table 1.

The analysis of system (35), (36) is subject of Sect. 3, while a finite element method
is constructed and analyzed in Sect. 4.

3 Analysis of the TDNNS Reissner–Mindlin formulation

In the current sectionwe showexistence and uniqueness of the solution to theReissner–
Mindlin problem in the TDNNS setting. We show stability for decreasing thickness
t → 0+ as well as the limit case t = 0.

To this end, a further unknown γ = −μt−2(∇w − θ) related to the shear stresses
is introduced, see e.g. [13, Chapter 10.4]. For positive thickness t , we choose the
corresponding space 
 = L2(Ω). Problem (35), (36) transforms to

∫
Ω

Abm : τ dx + 〈divτ , θ〉 = 0 ∀τ ∈ M, (37)

〈divm, η〉 +
∫

Ω

γ · (∇v − η) dx = −
∫

Ω

gv dx ∀η ∈ �, v ∈ W, (38)
∫

Ω

(∇w − θ) · δ dx + μ−1t2
∫

Ω

γ · δ dx = 0 ∀δ ∈ 
. (39)
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722 A. S. Pechstein, J. Schöberl

We observe that for system (37)–(39) also the limit case of t = 0 iswell-defined, where
the term μ−1t2

∫
Ω

γ · δ dx vanishes. We reorder terms to obtain a mixed problem in
the spirit of [13].We introduce bilinear forms at : (M×
)×(M×
) → R depending
on t and b : (M × 
) × (� × W ) → R independent of t

at (m, γ ; τ , δ) =
∫

Ω

Abm : τ dx + μ−1t2
∫

Ω

γ · δ dx, (40)

b(m, γ ; θ , w) = 〈divm, θ〉 +
∫

Ω

γ · (∇w − θ) dx . (41)

From (37), (38), (39) we obtain a saddle point problem of finding m ∈ M, γ ∈ 
,
θ ∈ � and w ∈ W such that

at (m, γ ; τ , δ) + b(τ , δ; θ , w) = 0 ∀τ ∈ M, δ ∈ 
 (42)

b(m, γ ; η, v) = −
∫

Ω

gv dx ∀η ∈ �, v ∈ W. (43)

In the limiting case of an infinitely thin (Kirchhoff) plate with t = 0, it is well
known (see e.g. [13, Proposition 10.4.3]) that for t → 0 the shear γ stays bounded in

0 := H−1(div). We will see that 
0 is the natural space for the analysis of the case
t = 0. Note that a0(·, ·) is well-defined on M × 
0, while for t > 0 at (·, ·), cannot be
evaluated on the whole space M × 
0. The bilinear form b(·, ·) is also well-defined
in the limiting case, as we shall show below.

For the stability analysis of (42), (43) by Brezzi’s theory [13, Theorem 4.2.3]
a characterization of the kernel space Ker(B) is needed, which is provided in the
following lemma.

Lemma 1 Define the kernel space

Ker(B) := {
(m, γ ) ∈ M × 
 : b(m, γ ; η, v) = 0 for all (η, v) ∈ � × W

}
. (44)

Then any (m, γ ) ∈ Ker(B) satisfies

〈divm,∇v〉 = 0 ∀v ∈ H1
0 (45)

and
〈divm − γ , η〉 = 0 ∀η ∈ H0(curl). (46)

These equalities also hold when 
 = L2 is replaced by 
0 = H−1(div).

Proof The proof follows directly, setting either η = ∇v or v = 0 in (44). Note that
all duality products are well-defined due to the choice of spaces. ��

3.1 The limiting case t = 0

We prove existence and uniqueness of the solution for the limiting case of an infinitely
thin (Kirchhoff) plate with t = 0. As mentioned in the introduction, this case is
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The TDNNS method for Reissner–Mindlin plates 723

closely related to the Hellan–Herrmann–Johnson formulation, when setting θ = ∇w

and eliminating thereby the unknowns θ and γ . However, we will present an analysis
of the full mixed system, as it will help understand the case of small thickness t > 0.

As already mentioned, in this case the natural choice for the shear space is 
0 :=
H−1(div). We show boundedness and stability estimates for the bilinear forms, which
implies existence, uniqueness and stability of the solution [13, Theorem 4.2.3]. We
use the following natural norms

‖m, γ ‖2M×
0
:= ‖m‖2H(div div) + ‖γ ‖2H−1(div), (47)

‖θ , w‖�×W := ‖θ‖2H(curl) + ‖w‖2H1 . (48)

Lemma 2 The bilinear form a0 : (M×
0)× (M×
0) is bounded, for all m, τ ∈ M
and γ , δ ∈ 
0

a0(m, γ ; τ , δ) ≤ ᾱ0‖m, γ ‖M×
0‖τ , δ‖M×
0 . (49)

Moreover, it is coercive on Ker(B), for all (m, γ ) ∈ Ker(B)

a0(m, γ ; m, γ ) ≥ α0‖m, γ ‖2M×
0
. (50)

Proof Boundedness of a0 is straightforward, since M ⊂ L2, and

a0(m, γ ; τ , δ) ≤ λmax (Ab)‖m‖2
L2 ≤ λmax (Ab)‖m, γ ‖M×
0 . (51)

We proceed to showing coercivity of a0 on Ker(B). We use Eqs. (45) and (46) of
Lemma 1 to bound γ bym in their respective norms. Note that for v ∈ H1

0 andw ∈ H1
0

we have v ∈ H0(curl) and ∇w ∈ H0(curl).

‖γ ‖2H−1(div)
(8)= sup

v∈H1
0

〈γ , v〉2
‖∇v‖2

L2

+ sup
w∈H1

0

〈γ ,∇w〉2
‖∇w‖2L2

(52)

(46)= sup
v∈H1

0

〈divm, v〉2
‖∇v‖2

L2

+ sup
w∈H1

0

〈divm,∇w〉2
‖∇w‖2L2

(53)

(17),(45)= sup
v∈H1

0

(− ∫
Ω

m : ε(v) dx + 0
)2

‖∇v‖2
L2

+ 0 (54)

≤ ‖m‖2
L2 . (55)

Now coercivity of a0 is ensured by theminimal eigenvalue λmin(Ab) of the compliance
tensor Ab,

a0(m, γ ; m, γ ) =
∫

Ω

(Abm) : m dx (56)
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≥ λmin(Ab)‖m‖2
L2 + sup

w∈H1
0

〈divm,∇w〉2
‖∇w‖2L2︸ ︷︷ ︸

=0 by (46)

(57)

≥ 1

2
λmin(Ab)‖m, γ ‖2M×
0

. (58)

��
Lemma 3 The bilinear form b : (M × 
0) × (� × W ) is bounded, for all τ ∈ M,
δ ∈ 
0, η ∈ � and v ∈ W

b(τ , δ; η, v) ≤ β̄0‖τ , δ‖M×
0‖η, v‖�×W . (59)

Moreover, it is satisfies an inf-sup condition, for all θ ∈ �,w ∈ W there exist m ∈ M,
γ ∈ 
 such that

b(m, γ ; θ , w) ≥ β
0
‖m, γ ‖M×
0‖θ , w‖�×W . (60)

Proof Boundedness follows directly by the choice of spaces. We proceed to show the
inf-sup condition. Let θ ∈ �,w ∈ W be fixed.

From [40] we know that 〈divm, θ〉 is inf-sup stable on H(div div) × H0(curl), i.e.
there exists some m̃ ∈ H(div div) such that

〈divm̃, θ〉 ≥ c1‖m̃‖H(div div)‖θ‖H(curl) (61)

and we have shown

c‖θ‖H(curl) ≤ ‖m̃‖H(div div) ≤ c‖θ‖H(curl), (62)

with c1 > 0 and 0 < c ≤ 1 ≤ c. Moreover, since H−1(div) = 
0 is the dual space
of H0(curl) = �, and since ∇W ⊂ �, by the Riesz Isomorphism there exists some
γ̃ ∈ 
0 such that

‖γ̃ ‖H−1(div) = ‖∇w − θ‖H(curl) (63)

and
〈γ̃ ,∇w − θ〉 = ‖∇w − θ‖2H(curl). (64)

In the remainder of the proof we verify that the pair (m, γ ) := ( 2
c1c

m̃, γ̃ ) satisfies

the inf-sup condition (60) with stability constant β
0

= c1c√
2c
. First, we observe

b(m, γ ; θ , w) = 〈divm, θ〉 + 〈γ ,∇w − θ〉 (65)

≥ c1‖m‖H(div div)‖θ‖H(curl) + ‖γ ‖H−1(div)‖∇w − θ‖H(curl) (66)

≥ 2‖θ‖2H(curl) + ‖∇w − θ‖2H(curl). (67)
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Using the triangle inequality in the form that ‖θ‖2H(curl) + ‖∇w − θ‖2H(curl) ≥
1
2‖∇w‖2H(curl), and the fact that ‖∇w‖H(curl) = ‖∇w‖L2 , we obtain

b(m, γ ; θ , w) (68)

≥
(
2‖θ‖2H(curl) + ‖∇w − θ‖2H(curl)

)1/2 (
‖θ‖2H(curl) + 1

2
‖∇w‖2L2

)1/2

. (69)

Since 2‖θ‖H(curl) ≥ 2
c ‖m̃‖H(div div) = c1c

c ‖m‖H(div div) due to equation (62) and
the definition of m, and ‖γ ‖H−1(div) = ‖∇w − θ‖H(curl) due to equation (63), we
conclude

b(m, γ ; θ , w) (70)

≥ c1c

c

(
‖m‖2H(div div) + ‖γ ‖2H−1(div)

)1/2 (
‖θ‖2H(curl) + 1

2
‖∇w‖2L2

)1/2

(71)

= c1c√
2c

‖m, γ ‖M×
0‖θ , w‖�×W . (72)

��
Theorem 1 For t = 0, problem (42), (43) has a unique solution m ∈ M, w ∈ W,
θ ∈ � and γ ∈ 
0 = H−1(div). The solution is bounded by

‖m‖H(div div) + ‖γ ‖H−1(div) + ‖θ‖H(curl) + ‖w‖H1 ≤ c‖g‖H−1 (73)

with c a generic constant.

3.2 The case of positive thickness t > 0

In this section, we prove existence and uniqueness of a solution to the Reissner–
Mindlin problem (37)–(39) in the case of positive thickness t > 0. To this end, a
different set of norms is introduced, that includes the thickness t .

‖m, γ ‖2M×
,t := ‖m‖2H(div div) + t‖γ ‖2L2 , (74)

‖θ , w‖2�×W,t := ‖θ‖2H(curl) + ‖w‖2H1 + t−2‖∇w − θ‖2L2 . (75)

Lemma 4 A norm equivalent to ‖θ , w‖�×W can be defined omitting the term ‖w‖H1

in (75), where the non-trivial bound is characterized by the Friedrichs constant cF ,

‖θ , w‖2�×W,t ≤
(
1 + 2

(
1 + c2F

)) (
‖θ‖2H(curl) + t−2‖∇w − θ‖2L2

)
. (76)

Proof The statement of the lemma is clear from the following consideration, which
uses Friedrichs’ inequality, the triangle inequality and the fact that t < 1.
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1

1 + c2F
‖w‖2H1 ≤ ‖∇w‖2L2 ≤ 2

(
‖θ‖2L2 + ‖∇w − θ‖2L2

)
(77)

≤ 2
(
‖θ‖2H(curl) + t−2‖∇w − θ‖2L2

)
. (78)

��
The next two lemmas provide stability estimates for the bilinear forms in the t-

dependent norms ‖m, γ ‖M×
,t and ‖θ , w‖�×W,t . These estimates are used to ensure
existence and uniqueness of a solution and to obtain a stability estimate not deteriorat-
ing with t → 0. The proof of Lemma 5 is straightforward in the manner of the proof
of Lemma 2:

Lemma 5 For t > 0, the bilinear form at : (M × 
) × (M × 
) is bounded, for all
m, τ ∈ M and γ , δ ∈ 


at (m, γ ; τ , δ) ≤ ᾱ‖m, γ ‖M×
,t‖τ , δ‖M×
,t . (79)

It is coercive on Ker(B), for all (m, γ ) ∈ Ker(B)

at (m, γ ; m, γ ) ≥ α‖m, γ ‖2M×
,t . (80)

The constants ᾱ, α are independent of the thickness t .

Lemma 6 The bilinear form b : (M × 
) × (� × W ) is continuous with respect to
the t-dependent norms, for all τ ∈ M, δ ∈ 
, η ∈ � and v ∈ W

b(τ , δ; η, v) ≤ β̄‖τ , δ‖M×
,t‖η, v‖�×W,t . (81)

Moreover, it is satisfies an inf-sup condition, for all θ ∈ �,w ∈ W there exist m ∈ M,
γ ∈ 
 such that

b(m, γ ; θ , w) ≥ β‖m, γ ‖M×
,t‖θ , w‖�×W,t . (82)

The constants β̄, β are independent of the thickness t .

Proof Obviously, the bilinear form is bounded, as the divergence term is bounded in
H(div div) × H(curl), and the integral is bounded by the respective scaled L2-norms
t‖δ‖L2 and t−1‖∇w − θ‖L2 .

To prove the inf-sup condition, assume θ ∈ � and w ∈ W are given. Similar to the
proof of Lemma 3, we use the theory provided in [40]. We choose m = m̃ ∈ M =
H(div div) from Eqs. (61) and (62). Additionally, we choose γ = t−2(∇w − θ). This
is possible since ∇w − θ ∈ H(curl) ⊂ L2. Then we have

∫
Ω

γ · (∇w − θ) dx = t−2‖∇w − θ‖2L2 . (83)
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Combining the definition of b(·, ·) (41), Eq. (83) and the bounds from (61) and (62)
we obtain

b(m, γ ; θ , w) = 〈divm, θ〉 +
∫

Ω

γ · (∇w − θ) dx (84)

≥ c1c‖θ‖2H(curl) + t−2‖∇w − θ‖2L2 . (85)

Basic algebra for real numbers, the definition of the shear γ and the upper bound in
(62) lead to

b(m, γ ; θ , w) (86)

≥ c1c
(‖θ‖2H(curl) + t−2‖∇w − θ‖2L2

)
(87)

≥ c1c

c

(
‖m‖2H(div div) + t2‖γ ‖2L2

)1/2 (‖θ‖2H(curl) + t−2‖∇w − θ‖2L2

)1/2
. (88)

We see inf-sup stability for b(·, ·) using the bound from Lemma 4

b(m, γ ; θ , w) ≥ c1c

c
√
1 + 2(1 + c2F )

‖m, γ ‖M×
,t‖θ , w‖�×W,t . (89)

��

Theorem 2 For t > 0, problem (42), (43) has a unique solution m ∈ M, w ∈ W,
θ ∈ � and γ ∈ 
, which is bounded as below

‖m‖H(div div) + ‖γ ‖H−1(div) + t‖γ ‖L2 + ‖θ‖H(curl) + ‖w‖H1 ≤ c‖g‖H−1 (90)

where c is a generic constant independent of t .

Proof Again, we use the statement of [13, Theorem 4.2.3], where coercivity
(Lemma 5) and inf-sup stability (Lemma 6) ensure the existence and stability of a
unique solution. Note that, for the solution m ∈ M, w ∈ W , θ ∈ � and γ ∈ 
,
there holds γ = μt−2(∇w − θ). Thus t‖γ ‖L2 = t−1‖∇w − θ‖L2 , which ensures the
estimate

‖m‖H(div div) + t‖γ ‖L2 + ‖θ‖H(curl) + ‖w‖H1 ≤ c‖g‖H−1 . (91)

We add the bound on ‖γ ‖H−1(div): since H−1(div) is dual to � = H(curl) and the
solution γ satisfies the variational equation (38) with v = 0 we have

‖γ ‖H−1(div) = sup
η∈�

〈γ , η〉
‖η‖�

= sup
η∈�

〈divm, η〉
‖η‖�

≤ ‖m‖M. (92)

Thus, the statement of the theorem is shown. ��
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4 Finite elements

Throughout this section, let Ω ⊂ R
2 be a polygonal Lipschitz domain, and let (Th) be

a family of decompositions into triangular elements T . We assume that the family (Th)
is regular, shape-regular and quasi-uniformwith mesh size h (see e.g. [15]). Moreover,
(Fh) shall denote the set of edges in the mesh.

We propose a finite element method without using the additional unknown shear γ ,
having the form of (35)–(36).We use the TDNNSfinite element spaces for the bending
moments and rotations, and a fully continuous Lagrange space for the deflection. For
integer k ≥ 1, m is approximated in the normal–normal continuous space of order k
introduced in [38], while θ is discretized by order k Nédélec elements of the second
kind [37]. The deflection elements are order k + 1 continuous elements. In detail, we
choose

Mh :=
{

mh ∈ L2
sym(Ω) : mh |T ∈ Pk,mh,nn continuous

}
, (93)

�h :=
{
θh ∈ L2(Ω) : θh |T ∈ Pk, θh,τ continuous, θh,τ = 0 on ∂Ω

}
, (94)

Wh :=
{
wh ∈ H1

0 (Ω) : wh |T ∈ Pk+1
}

. (95)

The discrete system used in implementations reads

∫
Ω

Abmh : τ h dx + 〈divτ h, θh〉 = 0 ∀τ h ∈ Mh, (96)

〈divmh, ηh〉 − μt−2
∫

Ω

(∇wh − θh) · (∇vh − ηh) dx = −
∫

Ω

g vh dx

∀ηh ∈ �h, vh ∈ Wh .

(97)

Note that the finite element space Mh is (slightly) non-conforming, Mh 
⊂ M =
H(div div). This is due to lacking continuity ofmnτ at the corner points (in the interior)
of each element, see [40, page 13] for a detailed discussion. However, the duality
product 〈divτ h, θh〉 can now be understood as the �∗

h × �h duality product, and can
be evaluated by the relations (21)–(22). Moreover, the norm ‖ · ‖M from (18) is not
well-defined for mh ∈ Mh . In [40] we provided a discrete norm and a corresponding
stability analysis for the TDNNS continuum mechanics elements. We will use this
discrete norm in the current paper, defining

‖m‖2Mh
:= ‖m‖2

L2 +
∑
F∈E

hF‖mnn‖2L2(F)
+ sup

wh∈Wh

〈divm,∇wh〉2
‖∇wh‖2L2(Ω)

, (98)

and the parameter-dependent norm

‖m, γ ‖2Mh×
h ,t := ‖m‖2Mh
+ t2‖γ ‖2L2 . (99)
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For finite element tensors mh ∈ Mh , the edge L
2 terms in the norm above can also

be omitted, as they are bounded by the domain L2 norm. The divergence operator
div : Mh → �∗

h is bounded and LBB-stable, see [40]:

Theorem 3 There exist positive constants β1, β2 > 0 such that for any mh ∈ Mh and
θh ∈ �h

〈divmh, θh〉 ≤ β1‖mh‖Mh
‖θh‖H(curl), (100)

and

inf
θh∈�h

sup
mh∈Mh

〈divmh, θh〉
‖mh‖Mh

‖θh‖H(curl)
≥ β2. (101)

4.1 Discrete stability

For the analysis, it is convenient to introduce a finite element discretization for the
shear γ , which leads to a discrete system equivalent to (96), (97), but which is of the
standard saddle point form (42), (43). The equivalence of the discrete systems is due
to the inclusion∇Wh ⊂ �h , and to our choice
h = �h . Thus, forwh ∈ Wh , θh ∈ �h

and γ h ∈ 
h the discrete variational equation

∫
Ω

(∇wh − θh) · δh dx = μ−1t2
∫

Ω

γ h · δh dx ∀δh ∈ 
h (102)

is equivalent to γ h = μt−2(∇wh − θh). This implies that γ h can be eliminated, and
the smaller system (96), (97) may be used in implementations.

The stability analysis is similar to the analysis of the infinite dimensional problem
for positive thickness presented in Sect. 3.2.

Lemma 7 The bilinear form at : (Mh ×
h)× (Mh ×
h) is coercive on Ker(Bh) :=
{(mh, γ h) ∈ Mh × 
h : b(mh, γ h; θh, wh) = 0 ∀θh ∈ �h, wh ∈ Wh}. There exists
a constant α1 > 0 independent of t, h such that

at (mh, γ h; mh, γ h) ≥ α1‖mh, γ h‖2Mh×
h ,t . (103)

Proof For any (mh, γ h) ∈ Ker(Bh) we have by definition, setting θh = ∇wh ,

〈divmh,∇wh〉 = 0. (104)

Thus, it follows

at (mh, γ h; θh, wh) =
∫

Ω

(Abmh) : mh dx + μ−1t2
∫

Ω

γ h : γ h dx (105)
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≥ λmin(Ab)

⎛
⎜⎜⎜⎜⎝‖mh‖2L2 + sup

wh∈Wh

〈divmh,∇wh〉2
‖∇wh‖2L2(Ω)︸ ︷︷ ︸

=0

⎞
⎟⎟⎟⎟⎠ + μ−1t2‖γ h‖2L2(Ω)

(106)

≥ min(λmin(Ab), μ
−1)‖mh, γ h‖2Mh×
h ,t . (107)

��
Lemma 8 The bilinear form b : (Mh × 
h) × (�h × Wh) is bounded and inf-sup
stable, for any θh ∈ �h, wh ∈ Wh there exist mh ∈ Mh, γ h ∈ 
h such that

b(mh, γ h; θh, wh) ≥ β‖mh, γ h‖Mh×
h ,t‖θh, wh‖�×W,t . (108)

Boundedness is clear from the discrete boundedness of the divergence operator, see
Theorem 3.

The discrete inf-sup condition is shown in the samemanner as in the infinite dimen-
sional case in Theorem 2. The arguments shall not be repeated here, but only shortly
commented on.

We use the discrete inf-sup stability of the divergence operator from Theorem 3. As
in Theorem 2, we set γ h = t−2(∇wh−θh), which is possible since∇Wh ⊂ �h = 
h .
The remainder of the proof involves the same steps as shown in Eqs. (84)–(89), only
replacing the infinite-dimensional norms by the discrete ones.

4.2 A-priori error estimates

To get a-priori error estimates, it is necessary to have interpolation error estimates. We
use the standard nodal interpolation operator IW for H1 and the standard interpolator
I� of the Nédélec space defined using its degrees of freedom, see e.g. [35] for their
definition. The following approximation properties for sufficiently smooth functions
are provided there for 1 ≤ m ≤ k,

‖θ − I�θ‖2H(curl) ≤ c
∑
T∈Th

h2m‖θ‖2
Hm+1(T )

, (109)

‖w − IWw‖2H1 ≤ c
∑
T∈Th

h2m‖w‖2Hm+1(T )
. (110)

An important property of the interpolation operators is that they commute with the
gradient operator, see e.g. [35, Theorem 5.49],

I�∇w = ∇IWw. (111)

For the bending moments m we use the nodal interpolation operator IM, which is
provided and analyzed in [40]. An error estimate in the discrete H(div div) norm was
found for IM for 0 ≤ l ≤ k
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‖m − IMm‖2Mh
≤ c

∑
T∈Th

h2(l+1)‖m‖2
Hl+1(T )

. (112)

We shall not provide the degrees of freedom of the stress space in detail here, only
note that in two space dimensions there are edge-based degrees of freedom coupling
the normal–normal component mnn of m, and inner degrees of freedom which can be
eliminated by static condensation. Corresponding polynomial basis functions can be
found in [38].

We can now venture to show a convergence result of the proposed finite element
method.

Theorem 4 Let m ∈ M, w ∈ W and θ ∈ � be the exact solution to the Reissner–
Mindlin problem (35), (36), and let mh ∈ Mh, wh ∈ Wh and θh ∈ �h be the
corresponding finite element solution. Then we have the a-priori error estimate for
1 ≤ m ≤ k

‖θ − θh‖H(curl) + ‖w − wh‖H1(Ω) + ‖m − mh‖Mh
+ t‖γ − γ h‖L2(Ω) (113)

≤ c

⎛
⎝ ∑

T∈Th
h2m(‖θ‖2Hm+1(T )

+ ‖m‖2Hm (T ) + t2‖γ ‖2Hm (T ))

⎞
⎠

1/2

. (114)

Proof Since the finite element method is slightly nonconforming, Mh 
⊂ M, see [40],
we use techniques from Strang’s second lemma. We bound the total error (115) by
interpolation error (116) and consistency error (117).

‖θ − θh‖H(curl) + ‖w − wh‖H1(Ω) + ‖m − mh‖Mh
+ t‖γ − γ h‖L2(Ω) (115)

≤
{ ‖θ − I�θ‖H(curl) + ‖w − IWw‖H1(Ω)+

‖m − IMm‖Mh
+ t‖γ − I�γ ‖L2(Ω)

}
(116)

+
{ ‖I�θ − θh‖H(curl) + ‖IWw − wh‖H1(Ω)+

‖IMm − mh‖Mh
+ t‖I�γ − γ h‖L2(Ω)

}
(117)

Clearly, the interpolation error (116) can be bounded as stated above (114). We
concentrate on the consistency error.

As stated in [13, Theorem 5.2.1], discrete stability ensures

(117) (118)

≤ ‖I�θ − θh; IWw − wh‖�×W,t + ‖IMm − mh, I�γ − γ h‖Mh×
h ,t (119)

≤ sup
τ h∈Mh

δh∈
h

{
at (IMm − mh, I�γ − γ h; τ h, δh)+
b(τ h, δh; I�θ − θh, IWw − wh)

}

‖τ h, δh‖Mh×
h ,t
(120)

+ sup
ηh∈�h

vh∈Wh

b
(
IMm − mh, I�γ − γ h; ∇vh − ηh

)
‖ηh, vh‖�×W,t

(121)
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≤ sup
τ h∈Mh

∫
Ω

Ab

(
IMm − mh

) : τ h dx + 〈divτ h, I�θ − θh〉
‖τ h‖Mh

(122)

+ sup
δh∈
h

∫
Ω

(
∇IWw − ∇wh − I�θ + θh + t2

μ

(
I�γ − γ h

)) · δh dx

t‖δh‖L2(Ω)

(123)

+ sup
ηh∈�h

vh∈Wh

〈div
(
IMm − mh

)
, ηh〉 + ∫

Ω

(
I�γ − γ h

) · (∇vh − ηh) dx

‖ηh, vh‖�×W,t
(124)

The first term, (122), was treated in [40], and is bounded by

(122) ≤ c

⎛
⎝ ∑

T∈Th
h2m

(
‖θ‖2Hm+1(T )

+ ‖m‖2Hm (T )

)⎞
⎠

1/2

(125)

For the second term (123), we used the commuting diagram property of the inter-
polation operators IW and I� (111) and the linearity of I�,

(123) = sup
δh∈
h

∫
Ω

(
I�∇w − ∇wh − I�θ + θh + t2

μ
(I�γ − γ h)

)
· δh dx

t‖δh‖L2(Ω)

(126)

= sup
δh∈
h

∫
Ω

(
I�

(
∇w − θ + t2

μ
γ
)

−
(
∇wh − θh − t2

μ
γ h

))
· δh dx

t‖δh‖L2(Ω)

. (127)

The discrete solution γ h satisfies γ h = μt−2(θh − ∇wh) (see 102). As the solution
γ satisfies γ = μt−2(θ − ∇w), we obtain

(123) = 0. (128)

We proceed to estimating the last term (124). Since (mh, γ h) and (m, γ ) are
solutions to the discrete and infinite-dimensional variational equations, and since
(ηh, wh) ∈ �h × Wh ⊂ � × W , we have

〈div(m − mh), ηh〉 +
∫

Ω

(γ − γ h) · (∇vh − ηh) dx = 0. (129)

The first term above and the divergence of similar differences ofm and discrete tensors
in Mh is well-defined in the sense

〈div(m − mh), ηh〉 = 〈divm, ηh〉�∗×� − 〈divmh, ηh〉�∗
h×�h . (130)
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We may rewrite

(124) = sup
ηh∈�h

vh∈Wh

〈div(IMm − m), ηh〉 + ∫
Ω

(I�γ − γ ) · (∇vh − ηh) dx

‖ηh, vh‖�×W,t
(131)

In [40] we have shown that

〈div(IMm − m), ηh〉 ≤ c‖IMm − m‖Mh
‖ηh‖H(curl). (132)

Thus, we deduce

(124) (133)

≤ c sup
ηh∈�h

vh∈Wh

‖IMm − m‖Mh
‖ηh‖H(curl) + ‖I�γ − γ ‖L2‖∇vh − ηh‖L2

‖ηh, vh‖�×W,t
(134)

≤ c
(‖IMm − m‖Mh

+ t‖I�γ − γ ‖L2(Ω)

)
(135)

≤ c

⎛
⎝ ∑

T∈Th
h2m‖m‖2Hm (T ) + t2‖γ ‖2Hm (T )

⎞
⎠

1/2

. (136)

Consequently, we have arrived at the desired result. ��

4.3 Hybridization

To avoid the implementation of normal–normal continuous finite elements and an
indefinite system matrix, a hybridization technique in the spirit of [13, Chapter 7.1]
wasmentioned in [38] and analyzed in [43]. Here, the normal–normal continuity of the
tensor of bending moments is broken and imposed by Lagrangian multipliers defined
on element edges. The Lagrangian multipliers resemble the normal component of the
rotation γn . As the Lagrangian multipliers are chosen of the same polynomial order
as the normal–normal component of the bending moment, the discrete systems are
equivalent. However, now the bending moment m is completely local and can be
eliminated element-wise (static condensation). The remaining system contains only
displacement-based unknowns. It is symmetric positive definite, which makes it easier
to be solved by sparse direct solver or standard iterative solvers.

5 Numerical example

5.1 Clamped square plate

The first example is taken from [23], where the solution is known analytically. We
consider a clamped square plate Ω = (0, 1)2, i.e. at the boundary deflection w = 0
and rotation θ = 0 vanish. The plate thickness varies from t = 0.1 to t = 10−5.
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Young’s modulus and Poisson ratio are chosen as E = 12 and ν = 0. The shear
correction factor is set to ks = 5/6. The vertical component of the volume load is
chosen as

fz(x, y)

= E

1 − ν2

(
y(y − 1)(5x2 − 5x + 1)

(
2y2(y − 1)2 + x(x − 1)(5y2 − 5y + 1)

)

+ x(x − 1)(5y2 − 5y + 1)
(
2x2(x − 1)2 + y(y − 1)(5x2 − 5x + 1)

))
. (137)

The solution (θ , w) is given by

θ1(x, y) = y3(y − 1)3x2(x − 1)2(2x − 1), (138)

θ2(x, y) = x3(x − 1)3y2(y − 1)2(2y − 1), (139)

w(x, y) = 1

3
x3(x − 1)3y3(y − 1)3

− 2t2

5(1 − ν)

(
y3(y − 1)3x(x − 1)(5x2 − 5x + 1)

+ x3(x − 1)3y(y − 1)(5y2 − 5y + 1)
)
. (140)

Twodiscretizationmethods are compared: theMITC7 element [16] and theTDNNS
element for k = 1 and k = 2. In case of the MITC7 element and the TDNNS element
with k = 1, the deflections are discretized by polynomials of order two. For the
higher-order TDNNS element, the deflections are of order three.

First, we compare the different methods for a thickness of t = 10−3. In Fig. 1,
the convergence of ‖w − wh‖L2(Ω) is shown, Fig. 2 displays the convergence of
‖θ − θh‖L2(Ω). It shows that for the deflection w, both the MITC7 element and the
lowest-order TDNNS element with k = 1 show convergence order three, while the
TDNNS element with k = 2 converges, as expected, at order four. However, for the
rotations θ , the MITC7 element and the TDNNS element with k = 2 converge at the
same rate of order three, while the lowest-order TDNNS element shows a convergence
rate of order two. Thus, from the point of view of convergence, the MITC7 element
lies in between the TDNNS elements with k = 1 and k = 2.

Next, we plot the convergence of the lowest order TDNNS method for different
thicknesses. Figure 3 shows the convergence of the method for thicknesses varying
between t = 0.1 and t = 10−5. The error curves are very close, as the method does
not suffer from the degrading thickness.

5.2 Square plate with hole

In the second example, we consider a square plate of dimensions 100 × 100 mm, in
which a circular hole of diameter d = 30 mm is cut. The Young’s modulus E =
2.1 × 105 N/mm2 and Poisson ratio ν = 0.3 are chosen as those of steel. The shear
correction factor is set to ks = 5/6. The plate is clamped at the left hand side (x = 0),
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Fig. 1 Convergence of ‖w − wh‖L2 over the number of degrees of freedom for the MITC7 element as

well as the TDNNS element for k = 1 and k = 2, thickness t = 10−3
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Fig. 2 Convergence of ‖θ − θh‖L2 over the number of degrees of freedom for the MITC7 element as well

as the TDNNS element for k = 1 and k = 2, thickness t = 10−3
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Fig. 3 Convergence of ‖w − wh‖L2 and ‖θ − θh‖L2 over the number of degrees of freedom for the

TDNNS element for k = 1, thickness t varying from t = 0.1 to t = 10−5

d

zz

clamped

Fig. 4 Sketch of the setup for the plate with hole

and a surface traction σzz = 0.1(y − 50) N/mm2 acts on the right hand side. All other
boundaries are free. See Fig. 4 for a sketch of the setup.

An initial mesh consisting of 56 elements of mesh size approximately h = 30 mm
is used. A two-level geometric refinement towards the corners and the free boundary
at the center hole is applied to catch singularities, leading to a total number of 95
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Fig. 5 Bending moment mxy , using TDNNS elements with k = 4. A different scale is used in the zoom
to the interior hole to make visible the steep gradient of the bending moment

elements. The TDNNS method with k = 4 is applied, which leads to 2593 coupling
degrees of freedom.

The bending moments mxy and myy are depicted in Figs. 5 and 6, respectively.
Note that in Fig. 5, different scales are used for the original plate and the zoom to the
interior hole, such that the steep gradient of the bending moment becomes visible.
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Fig. 6 Bending moment myy , using TDNNS elements with k = 4
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