
Numer. Math. (2015) 131:173–198
DOI 10.1007/s00211-014-0684-3

Numerische
Mathematik

Automatic integration using asymptotically optimal
adaptive Simpson quadrature

Leszek Plaskota

Received: 11 September 2013 / Revised: 30 September 2014 / Published online: 25 November 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We present a novel theoretical approach to the analysis of adaptive quadra-
tures and adaptive Simpson quadratures in particular which leads to the construction
of a new algorithm for automatic integration. For a given function f ∈ C4 with
f (4) ≥ 0 and possible endpoint singularities the algorithm produces an approxima-
tion to

∫ b
a f (x) dx within a given ε asymptotically as ε → 0. Moreover, it is optimal

among all adaptive Simpson quadratures, i.e., needs the minimal number n(f, ε) of
function evaluations to obtain an ε-approximation and runs in time proportional to
n(f, ε).

Mathematics Subject Classification 65Y20 · 65D05 · 41A10 · 41A25

1 Introduction

Consider a numerical approximation of the integral

I (f) =
∫ b

a
f (x) dx (1)

for a function f : [a, b] → R. Ideally we would like to have an automatic routine that
for given f and error tolerance ε produces an approximation Q(f) to I (f) such that
it uses as few function evaluations as possible and its error

|I (f) − Q(f)| ≤ ε.

L. Plaskota (B)
Faculty of Mathematics, Informatics, and Mechanics,
University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
e-mail: leszekp@mimuw.edu.pl

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191619717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-014-0684-3&domain=pdf

174 L. Plaskota

This is usually realized with the help of adaption. Recall a general principle. For a
given interval two simple quadrature rules are applied, one more accurate than the
other. If the difference between them is sufficiently small, the integral in this interval
is approximated by the more accurate quadrature. Otherwise the interval is divided
into smaller subintervals and the above rule is recursively applied for each of the
subintervals. The oldest and probably most known examples of automatic integration
are adaptive Simpson quadratures [8–11], see also [4] for an account on adaptive
numerical integration.

An unquestionable advantage of adaptive quadratures is that they try to maintain
the error on a prescribed level ε and simultaneously adjust the length of the successive
subintervals to the underlying function. This often results in a much more efficient
final subdivision of [a, b] than the nonadaptive uniform subdivision. For those rea-
sons adaptive quadratures are now frequently used in computational practice, and
those using higher order Gauss-Kronrod rules [1,5,15] are standard components of
numerical packages and libraries such as MATLAB, NAG or QUADPACK [13]. Nev-
ertheless, to the author’s knowledge, there is no satisfactory and rigorous analysis that
would explain good behavior of adaptive quadratures in a quantitative way or identify
classes of functions for which they are superior to nonadaptive quadratures. This paper
is an attempt to partially fill in this gap.

At this point we have to admit that there are theoretical results showing that adaptive
quadratures are not better than nonadaptive quadratures. This holds in the worst case
setting over convex and symmetric classes of functions. There are also corresponding
adaption-does-not-help results in other settings, see, e.g., [12,14,17,18]. On the other
hand, if the class is not convex and/or a different from the worst case error criterion is
used to compare algorithms then adaption can significantly help, see [2] or [16].

In this paper we present a novel theoretical approach to the analysis of adaptive
Simpson quadratures. We want to stress that the restriction to the Simpson rule as
a basic component of composite rules is only for simplicity and we could equally
well use higher order quadratures. The Simpson rule is a relatively simple quadrature
and therefore better enables clear development of our ideas. To be more specific, we
analyze the adaptive Simpson quadratures from the point of view of computational
complexity. Allowing all possible subdivision strategies our goal is to find an optimal
strategy for which the corresponding algorithm returns an ε-approximation to the
integral (1) using the minimal number of integrand evaluations or, equivalently, the
minimal number of subintervals. The main analysis is asymptotic and done assuming
that f is four times continuously differentiable and its 4th derivative is positive.

To reach our goal we first derive formulas for the asymptotic error of adaptive
Simpson quadratures. Following [7] we find that the optimal subdivision strategy
produces the partition a = x∗

0 < · · · < x∗
m = b such that

∫ x∗
i

a

(
f (4)(x)

)1/5
dx = i

m

∫ b

a

(
f (4)(x)

)1/5
dx, i = 0, 1, . . . ,m.

This partition is practically realized by maintaining the error on successive subinter-
vals on the same level. The optimal error corresponding to the subdivision into m
subintervals is then proportional to Lopt(f)m−4 where

123

Optimal adaptive Simpson quadrature 175

Lopt(f) =
(∫ b

a

(
f (4)(x)

)1/5
dx

)5

.

For comparison, the errors for the standard adaptive (local) and for nonadaptive (using
uniform subdivision) quadratures are respectively proportional to Lstd(f)m−4 and
Lnon(f)m−4 where

Lstd(f)= (b − a)

(∫ b

a

(
f (4)(x)

)1/4
dx

)4

, Lnon(f)= (b − a)4
(∫ b

a
f (4)(x) dx

)

.

Obviously, Lopt(f) ≤ Lstd(f) ≤ Lnon(f). Hence the optimal Simpson quadrature
is especially effective when Lopt(f) � Lstd(f). An example is

∫ 1
δ
x−1/2 dx with

‘small’ δ. If δ = 10−8 then Lopt(f), Lstd(f), Lnon(f) are correspondingly about 105,
108, 1028.

Even though the optimal strategy is global it can be efficiently harnessed to auto-
matic integration and implemented in time proportional tom. The only serious problem
of how to choose the acceptable error ε1 for subintervals to obtain the final error ε

is resolved by splitting the recursive subdivision process into two phases. In the first
phase the process is run with the acceptable error set to a ‘test’ level ε2 = ε. Then the
acceptable error is updated to

ε1 = εm−5/4
2

where m2 is the number of subintervals obtained from the first phase. In the second
phase, the recursive subdivision is continued with the ‘target’ error ε1.

As noted earlier, the main analysis is provided assuming that f ∈ C4([a, b]) and
f (4) > 0. It turns out that using additional arguments the obtained results can be
extended to functions with f (4) ≥ 0 and/or possible endpoint singularities, i.e., when
f (4)(x) goes to +∞ as x → a, b. For such integrals the optimal strategy works
perfectly well while the other quadratures may even lose the convergence rate m−4.

The contents of the paper is as follows. In Sect. 2 we recall the standard (local)
Simpson quadrature for automatic integration. In Sect. 3 we derive a formula for the
asymptotic error of Simpson quadratures and find the optimal subdivision strategy.
In Sect. 4 we show how the optimal strategy can be used to construct an optimal
algorithm for automatic integration. The final Sect. 5 is devoted to the extensions of
themain results. The paper is enrichedwith numerical tests where the optimal adaptive
quadrature is compared with the standard adaptive and nonadaptive quadratures.

We use the following asymptotic notation. For two positive functions of m, we
write

ψ1(m) � ψ2(m) iff lim sup
m→∞

ψ1(m)

ψ2(m)
≤ 1,

ψ1(m) ≈ ψ2(m) iff lim
m→∞

ψ1(m)

ψ2(m)
= 1,

ψ1(m) � ψ2(m) iff lim sup
m→∞

ψ1(m)

ψ2(m)
< ∞,

123

176 L. Plaskota

ψ1(m)
 ψ2(m) iff 0 < lim inf
m→∞

ψ1(m)

ψ2(m)
≤ lim sup

m→∞
ψ1(m)

ψ2(m)
< ∞.

A corresponding notation applies for functions of ε as ε → 0.

2 The standard adaptive Simpson quadrature

In its basic formulation the local adaptive Simpson quadrature for automatic inte-
gration, which will be called standard, can be written recursively as follows. Let
Simpson(u, v, f) be the procedure returning the value of the simple three-point Simp-
son rule on [u, v] for the function f , and let ε > 0 be the error demand.

0 function STD(a, b, f, ε);
1 begin S1 := Simpson(a, b, f);
2 S2 := Simpson

(
a, a+b

2 , f
) + Simpson

(a+b
2 , b, f

);
3 if |S1 − S2| ≤ 15 ε then return S2 else
4 return STD

(
a, a+b

2 , f, ε
2

) + STD
(a+b

2 , b, f, ε
2

)

5 end;
A justification of STD that can be found in textbooks, e.g., [3,6], is as follows. Denote
by S1(u, v; f) the three-point Simpson rule,

S1(u, v; f) =
(
u − v

6

) (

f (u) + 4 f

(
u + v

2

)

+ f (v)

)

,

and by S2(u, v; f) the composite Simpson rule that is based on subdivision of [u, v]
into two equal subintervals,

S2(u, v; f) = S1

(

u,
u + v

2
; f

)

+ S1

(
u + v

2
, v; f

)

=
(

v − u

12

) (

f (u) + 4 f

(
3u + v

4

)

+ 2 f

(
u + v

2

)

+4 f

(
u + 3v

4

)

+ f (v)

)

.

We also denote I (u, v; f) = ∫ v

u f (x) dx . Suppose that

f ∈ C4([a, b]).

If the interval [u, v] ⊆ [a, b] is small enough so that f (4) is ‘almost’ a constant,
f (4) ≈ C and C �= 0, then

S2(u, v; f) − S1(u, v; f) = (I (u, v; f) − S1(u, v; f)) − (I (u, v; f) − S2(u, v; f))

=
(

− (v − u)5

2880
f (4)(ξ1)

)

−
(

− (v − u)5

24 · 2880 f (4)(ξ2)

)

123

Optimal adaptive Simpson quadrature 177

≈ − (v − u)5

24 · 2880 15C

≈ 15 (I (u, v; f) − S2(u, v; f)). (2)

Now let a = x0 < · · · < xm = b be the final subdivision produced by STD and

Sstd(f ; ε)

be the result returned by STD. Then, provided the estimate (2) holds for any [xi−1, xi],
we have

|I (f) − Sstd(f ; ε)| ≤
m∑

i=1

∣
∣
∣I (xi−1, xi ; f) − S2(xi−1, xi ; f)

∣
∣
∣

≈ 1

15

m∑

i=1

|S1(xi−1, xi ; f) − S2(xi−1, xi ; f)|

≤ 1

15

m∑

i=1

15 ε
xi − xi−1

b − a
= ε.

This reasoning has a serious defect; namely, the approximate equality (2) can be
applied only when the interval [u, v] is sufficiently small. Hence STD can terminate
too early and return a completely false result. In an extreme case of [a, b] = [0, 4]
and f (x) = ∏4

i=0(x − i)2 we have I (f) > 0 but STD returns zero independently
of how small ε is. Of course, concrete implementations of STD can be equipped with
additional mechanisms to avoid or at least to reduce the probability of such unwanted
occurrences. To radically cut the possibility of premature terminations we assume, in
addition to f ∈ C4([a, b]), that the fourth derivative is of constant sign, say,

f (4)(x) > 0 for all x ∈ [a, b]. (3)

Equivalently, this obviously means that f (4)(x) ≥ c for some c > 0 that depends
on f . Assumption (3) assures that the maximum length of the subintervals produced
by STD decreases to zero as ε → 0 and the asymptotic equality (2) holds. Indeed,
denote by D(u, v; f) the divided difference of f corresponding to 5 equispaced points
z j = u + jh/4, 0 ≤ j ≤ 4, where h = v − u, i.e.,

D(u, v; f) = f [z0, z1, z2, z3, z4]
= 32

3h4
(f (z0) − 4 f (z1) + 6 f (z2) − 4 f (z3) + f (z4)) .

Since

S2(u, v; f) − S1(u, v; f) = −h5

27
D(u, v; f),

the termination criterion

|S2(u, v; f) − S1(u, v; f)| ≤ 15 ε

(
v − u

b − a

)

123

178 L. Plaskota

that is checked in line 3 of STD for the current subinterval [u, v], is equivalent to

(v − u)4 |D(u, v; f)| ≤ 15 · 27
b − a

ε. (4)

Our conclusion about applicability of (2) follows from the inequality D(u, v; f) ≥
c/4!

Observe that each splitting of a subinterval [u, v] results in the (asymptotic) decrease
of the controlled value in (4) by the factor of 24. Thus the algorithm asymptotically
returns the approximation of the integral within ε, as desired. Specifically, we have

ε

16
� Sstd(f ; ε) − I (f) � ε as ε → 0. (5)

Remark 1 The inequality (5) explains why numerical tests often show better perfor-
mance of STD than expected. To avoid this it is suggested to run STDwith larger input
parameter, say 2ε instead of ε.

3 Optimizing the process of interval subdivision

The error formula (5) for the standard adaptive Simpson quadrature does not say any-
thing about how the numberm of subintervals depends on ε, or what is the actual error
after producing m subintervals. We now study this question for different subdivision
strategies. In order to be consistent with STD we assume that for a given subdivision
a = x0 < x1 < · · · < xm = b we apply S2(xi−1, xi ; f) for each of the subintervals
[xi−1, xi], so that the final approximation

Sm(f) =
m∑

i=1

S2(xi−1, xi ; f)

uses n = 4m + 1 function evaluations.
The goal is to find optimal strategy, i.e., the one that for any function f ∈ C4([a, b])

satisfying (3) produces a subdivision for which the error of the corresponding Simpson
quadrature Sm(f) is asymptotically minimal (as m → ∞).

We first analyze two particular strategies, nonadaptive and standard adaptive, and
then derive the optimal strategy. In what follows, the constant

γ = 1

24 · 2880 = 1

46 080
∼= 2.17 × 10−5.

In the nonadaptive strategy, the interval [a, b] is divided into m equal subintervals
[xi−1, xi]with xi = a+ih, h = (b−a)/m. Let the corresponding Simpson quadrature
be denoted by Snonm . Then

Snonm (f) − I (f) = γ (b − a)4

(
1

m

m∑

i=1

f (4)(ξi)

)

m−4 (ξi ∈ [xi−1, xi])

123

Optimal adaptive Simpson quadrature 179

≈ γ (b − a)4
(∫ b

a
f (4)(x) dx

)

m−4 (6)

as m → ∞.
Observe that for the asymptotic equality (6) to hold we do not need to assume (3).
We now analyze the standard adaptive strategy used by STD. To do this, we first

need to rewrite STD in an equivalent way, where the input parameter is m instead of
ε. We have the following greedy algorithm.

The algorithm starts with the initial subdivision a = x (1)
0 < x (1)

1 = b. In the

(k + 1)st step, from the current subdivision a = x (k)
0 < · · · < x (k)

k = b a subinterval

[x (k)
i∗−1, x

(k)
i∗] is selected with the highest value

(
x (k)
i − x (k)

i−1

)4 ∣
∣
∣D

(
x (k)
i−1, x

(k)
i ; f

)∣
∣
∣ , 1 ≤ i ≤ k, (7)

and the midpoint (x (k)
i∗−1 + x (k)

i∗)/2 is added to the subdivision.
Denote by Sstdm (f) the result returned by the corresponding Simpson quadrature

when applied tom subintervals. Then, in view of (4), the values Sstdm (f) and Sstd(f ; ε)

are related as follows. Let m = m(ε) be the minimal number of steps after which (4)
is satisfied by each of the subintervals [x (m)

i−1, x
(m)
i]. Then

Sstdm (f) = Sstd(f ; ε). (8)

We are ready to show the error formula for Sstdm corresponding to (6).

Theorem 1 Let f ∈ C4([a, b]) and f (4)(x) > 0 for all x ∈ [a, b]. Then

Sstdm (f) − I (f)
 γ (b − a)

(∫ b

a

(
f (4)(x)

)1/4
dx

)4

m−4 as m → ∞.

Proof We fix � and divide the interval [a, b] into 2� equal subintervals [zi−1, zi] of
length (b−a)/2�. Call this partition a coarse grid, in contrast to the fine grid produced
by Sstdm . Let

Ci = max
zi−1≤x≤zi

f (4)(x), ci = min
zi−1≤x≤zi

f (4)(x).

Let m be sufficiently large, so that the fine grid contains all the points of the coarse
grid. Denote by zi−1 = xi,0 < xi,1 < · · · < xi,mi = zi the points of the fine grid
contained in the i th interval of the coarse grid, and hi, j = xi, j − xi, j−1. Then the error
can be bounded from below as

123

180 L. Plaskota

Sstdm (f) − I (f) =
2�

∑

i=1

mi∑

j=1

(
S2(xi, j−1, xi, j ; f) − I (xi, j−1; xi, j ; f)

)

= γ

2�
∑

i=1

mi∑

j=1

h5i, j f
(4)(ξi, j) (ξi, j ∈ [xi, j−1, xi, j])

≥ γ

2�
∑

i=1

mi∑

j=1

h5i, j ci .

Suppose for a moment that for all i, j we have h4i, j ci = A for some A. Then (b −
a)/2� = ∑mi

j=1 hi, j = mi (A/ci)1/4. Using
∑2�

i=1 mi = m we get

A =
(
b − a

2�

)4
⎛

⎝
2�

∑

i=1

c1/4i

⎞

⎠

4

m−4.

Observe now that any splitting of a subinterval decreases h4i, j ci by the factor of 16.
Hence

maxi, j h4i, j ci

mini, j h4i, j ci
≤ 16

and consequently h4i, j ci ≥ A/16 for all i, j . Thus

Sstdm (f) − I (f) ≥ γ

2�
∑

i=1

mi∑

j=1

hi, j
A

16
= 1

16
γ (b − a) A

= 1

16
γ (b − a)

(
b − a

2�

)4
⎛

⎝
2�

∑

i=1

c1/4i

⎞

⎠

4

m−4.

To obtain the upper bound, we proceed similarly. Replacing ci with Ci and using the
equation h4i, jCi ≤ 16A we get that

Sstdm (f) − I (f) ≤ 16γ (b − a)

(
b − a

2�

)4
⎛

⎝
2�

∑

i=1

C1/4
i

⎞

⎠

4

m−4.

To complete the proof we notice that both

2�
∑

i=1

c1/4i (b − a)2−� and
2�

∑

i=1

C1/4
i (b − a)2−�

are Riemann sums that converge to the integral
∫ b
a

(
f (4)(x)

)1/4
dx as � → ∞. ��

123

Optimal adaptive Simpson quadrature 181

Remark 2 From the proof it follows that the constants in the ‘
’ notation in Theo-
rem 1 are asymptotically between 1/16 and 16. The gap between the upper and lower
constants is certainly much overestimated, see also Remark 4.

The two strategies, nonadaptive and standard adaptive, will be used as reference
points for comparison with the optimal strategy that we now derive. We first allow all
possible subdivisions of [a, b] regardless of the possibility of their practical realization.
Proposition 1 The subdivision determined by points

a = x∗
0 < x∗

2 < · · · < x∗
m = b

where x∗
i satisfy

∫ x∗
i

a

(
f (4)(x)

)1/5
dx = i

m

∫ b

a

(
f (4)(x)

)1/5
dx, i = 0, 1, 2, . . . ,m,

is optimal. For the corresponding quadrature S∗
m we have

S∗
m(f) − I (f) ≈ γ

(∫ b

a

(
f (4)(x)

)1/5
dx

)5

m−4 as m → ∞.

Proof We first show the lower bound. Let Sm be the Simpson quadrature that is based
on an arbitrary subdivision. Proceeding as in the beginning of the proof of Theorem 1
we get that for sufficiently large m the error of Sm is lower bounded by

Sm(f) − I (f) ≥ γ

2�
∑

i=1

mi∑

j=1

h5i, j ci ≥ γ

(
b − a

2�

)5 2�
∑

i=1

ci
m4

i

,

where mi is the number of subintervals of the fine grid in the ith subinterval of the
coarse grid. (We assume without loss of generality that the coarse grid is contained in

the fine grid.) Minimizing this with respect to mi such that
∑2�

i=1 mi = m we obtain
the optimal values

m∗
i =

(
c1/5i

∑2�

i=1 c
1/5
i

)

m, 1 ≤ i ≤ 2�.

After substituting mi with m∗
i in the error formula we finally get

Sm(f) − I (f) ≥ γ

(
b − a

2�

)5
⎛

⎝
2�

∑

i=1

c1/5i

⎞

⎠

5

m−4

≈ γ

(∫ b

a

(
f (4)(x)

)1/5
dx

)5

m−4. (9)

123

182 L. Plaskota

Since for the optimal m∗
i we have

h∗
i, j c

1/5
i =

(
b − a

2�m

)
⎛

⎝
2�

∑

i=1

c1/5i

⎞

⎠ , (10)

the lower bound (9) is attained by the subdivision determined by {x∗
i }. ��

Now the question is whether the optimal subdivision into m subintervals of Propo-
sition 1 can be practically realized, i.e., using 4m+1 function evaluations. The answer
is positive, at least up to an absolute constant. The corresponding algorithm Soptm runs
as Sstdm with the only difference that in each step it halves the subinterval with the
highest value

(
x (k)
i − x (k)

i−1

)5 ∣
∣
∣D

(
x (k)
i−1, x

(k)
i ; f

)∣
∣
∣ , 1 ≤ i ≤ k (11)

[instead of (7)].

Theorem 2 Let f ∈ C4([a, b]) and f (4)(x) > 0 for all x ∈ [a, b]. Then

Soptm (f) − I (f) � K γ

(∫ b

a

(
f (4)(x)

)1/5
dx

)5

m−4 as m → ∞

where K ≤ 32.

Proof The proof goes as the proof of the upper bound of Theorem 1 with obvious
changes related to the facts that now the algorithm tries to balance (11) [instead of
(7)], and that

maxi, j h5i, jCi

mini, j h5i, jCi
≤ 32.

��
Remark 3 The best constant K of Theorem 2 is certainly much less than 32, see also
Remark 4.

We summarize the results of this section. All the three quadratures Snonm , Sstdm , Soptm
converge at rate m−4 but the asymptotic constants depend on the integrand f through
the multipliers

Lnon(f) = (b − a)4
(∫ b

a
f (4)(x) dx

)

,

Lstd(f) = (b − a)

(∫ b

a

(
f (4)(x)

)1/4
dx

)4

,

123

Optimal adaptive Simpson quadrature 183

Table 1 Values of Lnon, Lstd,
Lopt for

∫ 1
δ

1
2
√
x
dx with

different δ

δ Lnon Lstd Lopt

0.5 6.04 × 10−1 4.51 × 10−1 4.41 × 10−1

10−2 9.01 × 1006 4.88 × 1003 2.24 × 1003

10−4 9.37 × 1013 2.94 × 1005 2.59 × 1004

10−8 9.38 × 1027 8.82 × 1007 1.39 × 1005

10−16 9.38 × 1055 1.29 × 1012 2.89 × 1005

Fig. 1 Error e versus m for
∫ 1
δ

1
2
√
x
dx with δ = 10−2

Lopt(f) =
(∫ b

a

(
f (4)(x)

)1/5
dx

)5

.

These multipliers indicate how difficult a function is to integrate using a given quadra-
ture. Obviously, by Hölder’s inequality we have

Lopt(f) ≤ Lstd(f) ≤ Lnon(f).

Example 1 Consider the integral

Iδ =
∫ 1

δ

1

2
√
x
dx with 0 < δ < 1.

In this case Lnon, Lstd, Lopt rapidly increase as δ decreases, as shown in Table 1.
Numerical computations confirm the theory very well. We tested all the three

quadratures (the adaptive quadratures being implemented in m logm running time
using heap data structure) and ran them for different values of δ. Specific results are
as follows.

123

184 L. Plaskota

Fig. 2 Error e versus m for
∫ 1
δ

1
2
√
x
dx with δ = 10−8

Fig. 3 K non
m , K std

m , K opt
m versus m for

∫ 1
δ

1
2
√
x
dx with δ = 10−2

For δ = 0.5 the quadratures Snonm , Sstdm , and Soptm give almost identical results inde-
pendently of m. For instance, for m = 102 the errors are respectively 1.31 × 10−13,
1.46 × 10−13, 1.46 × 10−13, and for m = 103 we have 1.28 × 10−17, 1.43 × 10−17,
1.35 × 10−17. Note that the smallest error for the nonadaptive quadrature is caused
by the fact that Snonm has a little better absolute constant in the error formula (6) than
the adaptive quadratures.

However, the smaller δ, the more differences between the results. A character-
istic behavior of the errors for δ = 10−2 and δ = 10−8 is illustrated by Figs. 1
and 2. Observe that in case δ = 10−8 the nonadaptive quadrature needs more than 104

subintervals to reach the right convergence rate m−4.

123

Optimal adaptive Simpson quadrature 185

Remark 4 It is interesting to see the behavior of

K qad
m (f) =

(
Sqadm (f) − I (f)

)
· m4

γ · Lqad(f)
, qad ∈ {non, std, opt}.

By (6) we have that limm→∞ K non
m (f) = 1. The corresponding limits for the adaptive

quadratures are unknown; however,we ran somenumerical tests andwenever obtained
more than 1.5. This would mean, in particular, that Soptm is at most 50 %worse than S∗

m .

Figure 3 shows the behavior of K qad
m (f) for the integral Iδ ofExample 1with δ = 10−2.

4 Automatic integration using optimal subdivision strategy

We want to have an algorithm that automatically computes an integral within a given
error tolerance ε. An example of such algorithm is the recursive STD. Recall that the
recursive nature of STD allows to implement it in time proportional to the numberm of
subintervals using stackdata structure.However, it does not use the optimal subdivision
strategy. On the other hand, the algorithm Soptm uses the optimal strategy, but one does
not know in advance how largem should be to have the error |Soptm (f)− I (f)| ≤ ε. In
addition, the best implementation of Soptm (that uses heap data structure) runs in time
proportional to m logm. Thus the question now is whether there exists an algorithm
that runs in time linear in m and produces an approximation to the integral within ε

using the optimal subdivision strategy.
Since the optimal subdivision is such that the errors on subintervals are roughly

equal, the suggestion is that one should run STD with the only difference that it
is recursively called with parameter ε instead of ε/2. Denote such modification
by OPT.

0 functionOPT(a, b, f, ε);
1 begin S1 := Simpson(a, b, f);
2 S2 := Simpson

(
a, a+b

2 , f
) + Simpson

(a+b
2 , b, f

);
3 if |S1 − S2| ≤ 15 ε then return S2 else
4 return OPT

(
a, a+b

2 , f, ε
) + OPT

(a+b
2 , b, f, ε

)

5 end;

Let

Sopt(f ; ε)

be the result returned by OPT. Analogously to (8) we have

Soptm (f) = Sopt(f ; ε)

if m is the minimal number of steps after which (11) is satisfied by all subintervals.

123

186 L. Plaskota

It is clear thatOPTdoes not return an ε-approximationwhen ε is the input parameter.
However we are able to estimate a posteriori error. Indeed, let m1 be the number of
subintervals produced by OPT for an ε1. Then

m1 ε1

32
� Sopt(f ; ε1) − I (f) � m1 ε1 as ε1 → 0. (12)

We need to find ε1 such that m1ε1 ≤ ε. Since m1 depends not only on ε1 but also on
Lopt(f), it seems hopeless to predict ε1 in advance. Surprisingly this is not true.

The idea of the algorithm is as follows. We first run OPT with some ε2 ≤ ε

obtaining a subdivision consisting of m2 subintervals. Next, using (12) and Theorem
2 we estimate Lopt(f), and using again Theorem 2 we find the ‘right’ ε1. Finally OPT
is resumed with the input ε1 and with subdivision obtained in the preliminary run of
OPT. As we shall see later, this idea can be implemented in time proportional to m1.

Concrete calculations are as follows. From the equality

α2 m2 ε2 = Soptm2 (f) − I (f) = K2 γ Lopt(f)m−4
2

where α2 and K2 depend on ε2, we have

Lopt(f) = α2

K2γ
ε2 m

5
2. (13)

We need ε1 such that for the corresponding m1 the error of S
opt
m1 (f) is at most ε, i.e.,

α1 m1ε1 = Soptm1 (f) − I (f) = K1 γ Lopt(f)m−4
1 ≤ ε

where α1 and K1 depend on ε1. Substituting Lopt(f) with the right hand side of (13)
we obtain

m1 = m2

(
K1 α2 ε2

K2 α1 ε1

)1/5

, (14)

and solving the inequality α1m1ε1 ≤ ε with m1 given by (14) we get

ε1 ≤ β

(
ε5

ε2 m5
2

)1/4

where β =
(

K2

K1 α4
1 α2

)1/4

.

Recall that, asymptotically, α1 and α2 are in [1/32, 1] which means that β can be
asymptotically bounded from below by 1. Hence, taking

ε2 = ε and ε1 = εm−5/4
2 (15)

we have

Sopt(f ; ε1) − I (f) � ε as ε → 0.

123

Optimal adaptive Simpson quadrature 187

The choice of ε1 given by (15) is rather conservative. In practice, we observe that
the error of Sopt(f ; ε1) is ‘on average’ even 6 or more times smaller than ε. Hence
we encounter the same phenomenon as for the standard Simpson quadrature, see
Remark 1. Yet, in the latter case, the error is usually not so much smaller than ε. As a
consequence, for integrands f with Lopt(f) ∼= Lstd(f) the approximation Sstd(f ; ε)

may use less subintervals than Sopt(f ; ε1).
To avoid an excessive work, we propose to run the optimal algorithm with the input

B ε1 instead of ε1 where, say,

B = 45/4 = 4
√
2 ∼= 5.656854

(This corresponds to α1, α2 = 1/4.) We stress that such choice of B is based on some
heuristics and is not justified by any rigorous arguments.

Example 2 We present test results for the integral Iδ = ∫ 1
δ
x−1/2/2 dx of Example 1

with δ = 10−2 and δ = 10−8, for the standard and optimal Simpson quadratures. In
Tables 2 and 3 the results are given correspondingly for Sstd(f ; ε) and Sopt(f ; ε1),
while in Tables 4 and 5 for Sstd(f ; 2ε) and Sopt(f ; 4√2ε1).

We end this section by presenting a rather detailed description of the optimal algo-
rithm for automatic integration that runs in time proportional tom1. It uses two stacks,
Stack1 and Stack2, corresponding to the two phases of the algorithm. The elements
of the stacks, elt, elt1, elt2, represent subintervals. Each such element consists of 6
fields containing information about: the endpoints of the subinterval, function values
at the endpoints and at the midpoint, and the value of the three-point Simpson quadra-
ture for this subinterval. Such structure enables evaluation of f only once at each
sample point. Push and Pop are usual stack commands for inserting and removing
elements.

Table 2 Standard and optimal
quadratures for

∫ 1
δ

1
2
√
x
dx with

δ = 10−2

ε Standard (B = 1) Optimal (B = 1)

Error m Error m

1.0E−03 3.54064E−05 13 1.28793E−04 11

1.0E−04 2.70762E−05 15 1.01889E−05 19

1.0E−05 1.88171E−06 29 1.63224E−06 29

1.0E−06 4.21492E−07 47 1.36983E−07 53

1.0E−07 3.76521E−08 89 1.04855E−08 101

1.0E−08 3.02315E−09 165 1.13726E−09 177

1.0E−09 3.10104E−10 295 1.12420E−10 317

1.0E−10 3.44621E−11 523 1.20113E−11 555

1.0E−11 3.62842E−12 923 1.19899E−12 987

1.0E−12 3.56781E−13 1,627 1.19112E−13 1,757

123

188 L. Plaskota

Table 3 Standard and optimal
quadratures for

∫ 1
δ

1
2
√
x
dx with

δ = 10−8

ε Standard (B = 1) Optimal (B = 1)

Error m Error m

1.0E−03 3.95465E−05 107 1.01415E−04 43

1.0E−04 3.34721E−05 189 1.02928E−05 61

1.0E−05 2.32107E−06 341 1.02185E−06 95

1.0E−06 3.69227E−07 605 1.25590E−07 157

1.0E−07 4.06133E−08 1,075 1.11498E−08 283

1.0E−08 3.09464E−09 1,905 1.20507E−09 491

1.0E−09 2.87135E−10 3,383 1.15265E−10 883

1.0E−10 3.48973E−11 6,035 1.13688E−11 1, 577

1.0E−11 3.57812E−12 10,747 1.16955E−12 2, 789

1.0E−12 3.60253E−13 19,123 1.18105E−13 4, 945

Table 4 Standard and optimal
quadratures for

∫ 1
δ

1
2
√
x
dx with

δ = 10−2

ε Standard (B = 2) Optimal (B = 4
√
2)

Error m Error m

1.0E−03 1.28793E−04 11 8.51947E−04 9

1.0E−04 2.70762E−05 15 3.54064E−05 13

1.0E−05 1.23725E−05 25 + 6.03436E−06 21

1.0E−06 4.21492E−07 47 7.11390E−07 35

1.0E−07 5.33769E−08 77 6.93759E−08 63

1.0E−08 5.87002E−09 139 6.74705E−09 113

1.0E−09 6.71603E−10 245 6.56445E−10 203

1.0E−10 6.99015E−11 435 6.48708E−11 363

1.0E−11 6.87621E−12 773 6.67488E−12 643

1.0E−12 6.65216E−13 1,383 6.70510E−13 1,143

Table 5 Standard and optimal
quadratures for

∫ 1
δ

1
2
√
x
dx with

δ = 10−8

ε Standard (B = 2) Optimal (B = 4
√
2)

Error m Error m

1.0E−03 3.98407E−05 95 1.10755E−03 37

1.0E−04 3.68038E−05 161 1.01415E−04 43

1.0E−05 1.34783E−05 287 5.78319E−06 65

1.0E−06 4.88650E−07 511 7.40987E−07 103

1.0E−07 5.88129E−08 899 6.83728E−08 181

1.0E−08 6.21797E−09 1,603 6.70486E−09 321

1.0E−09 7.10367E−10 2,855 6.71221E−10 569

1.0E−10 7.42057E−11 5,083 6.49621E−11 1,019

1.0E−11 7.12978E−12 9,039 6.59023E−12 1,805

1.0E−12 6.66354E−13 16,031 6.50999E−13 3,223

123

Optimal adaptive Simpson quadrature 189

00 functionOPTIMAL(a, b, f, ε);
01 begin elt.left := a; elt.right := b; c := (a + b)/2;
02 fleft := f (a); fcntr := f (c); fright := f (b);
03 elt.fl := fleft; elt.fc := fcntr; elt.fr := fright;
04 elt.Smps := (fleft + 4 ∗ fcntr + fright) ∗ (b − a)/6;
05 Push(Stack1, elt);
06 m := 0;
07 repeat elt := Pop(Stack1);
08 l := elt.left; r := elt.right; c := (l + r)/2;
09 fleft := elt.fl; fcntr := elt.fc; fright := elt.fr;
10 cl := (l + c)/2; cr := (c + r)/2;
11 fcl := f (cl); fcr := f (cr);
12 Sleft := (fleft + 4 ∗ fcl + fcntr) ∗ (c − l)/6;
13 Sright := (fcntr + 4 ∗ fcr + fright) ∗ (r − c)/6;
14 S1 := elt.Smps; S2 := Sleft + Sright;
15 elt1.left := l; elt1.right := c; elt1.Smps := Sleft;
16 elt1.fl := fleft; elt1.fc := fcl; elt1.fr := fcntr;
17 elt2.left := c; elt2.right := r; elt2.Smps := Sright;
18 elt2.fl := fcl; elt2.fc := fcr; elt2.fr := fright;
19 if |S2 − S1| <= 15 ∗ ε then
20 begin m := m + 1;
21 Push(Stack2, elt1, elt2)
22 end else
23 Push(Stack1, elt1, elt2)
24 until StackEmpty(Stack1);
25 ε1 := B ∗ ε ∗ m−5/4; Result := 0.0;
26 repeat elt := Pop(Stack2);
27 l := elt.left; r := elt.right; c := (l + r)/2;
28 fleft := elt.fl; fcntr := elt.fc; fright := elt.fr;
29 cl := (l + c)/2; cr := (c + r)/2;
30 fcl := f (cl); fcr := f (cr);
31 Sleft := (fleft + 4 ∗ fcl + fcntr) ∗ (c − l)/6;
32 Sright := (fcntr + 4 ∗ fcr + fright) ∗ (r − c)/6;
33 S1 := elt.Smps; S2 := Sleft + Sright;
34 if |S2 − S1| <= 15 ∗ ε1 then Result := Result + S2 else
35 begin elt1.left := l; elt1.right := c; elt1.Smps := Sleft;
36 elt1.fl := fleft; elt1.fc := fcl; elt1.fr := fcntr;
37 elt2.left := c; elt2.right := r; elt2.Smps := Sright;
38 elt2.fl := fcl; elt2.fc := fcr; elt2.fr := fright;
39 Push(Stack2, elt1, elt2)
40 end
41 until StackEmpty(Stack2);
42 return Result
43 end;

123

190 L. Plaskota

5 Extensions: f (4) ≥ 0 and endpoint singularities

We have analyzed adaptive Simpson quadratures assuming that f ∈ C4([a, b]) and
f (4) > 0. It turns out that the obtained results hold and automatic integration can be
successfully applied also for functions with f (4) ≥ 0 and functions with endpoint
singularities. An observed good behavior of adaptive quadratures for such functions
cannot be explained using directly previous tools. What we need is a non-asymptotic
error bound for S2(u, v; f). Such a bound, together with the corresponding result for
S1(u, v; f), is provided by the following lemma.

Lemma 1 Suppose that f ∈ C([u, v]) and f ∈ C4([u1, v1]) for all u < u1 < v1 <

v. If, in addition, f (4)(x) ≥ 0 for all x ∈ (u, v), then

1 ≤ S1(u, v; f) − I (u, v; f)

S1(u, v; f) − S2(u, v; f)
≤ 2

and

0 ≤ S2(u, v; f) − I (u, v; f)

S1(u, v; f) − S2(u, v; f)
≤ 1

(with convention that 0/0 = 1).

Proof Given c ∈ (u, v), we have that for any x ∈ [u, v]

f (x) = Tc(x) +
∫ x

c

(x − t)3

3! f (4)(t) dt, (16)

where Tc is a Taylor polynomial for f of degree 3 at c. (The formula is obvious for
x ∈ (a, b) and by continuity of f it extends to x = u, v.) Furthermore, integrating
(16) with respect to x we get that

∫ v

u
f (x) dx =

∫ v

u
Tc(x) dx +

∫ c

u

(u − t)4

4! f (4)(t) dt +
∫ v

c

(v − t)4

4! f (4)(t) dt.

(17)
Using (16) for z j = u + jh/4, 0 ≤ j ≤ 4, h = v − u, we then obtain

S1(u, v; f) − S2(u, v; f) = h5

27
D(u, v; f) =

∫ v

u
ψ0(u, v; t) f (4)(t) dt (18)

with the Peano kernel ψ0(u, v; t) = h4
0((t − u)/h) where

0(t) =
⎧
⎨

⎩

t3/72, 0 ≤ t ≤ 1/4,
(t3 − 4(t − 1/4)3)/72, 1/4 < t ≤ 1/2,

0(1 − t), 1/2 < t ≤ 1.

123

Optimal adaptive Simpson quadrature 191

For the error of S1 we similarly find that

15

16
(S1(u, v; f) − I (u, v; f)) =

∫ v

u
ψ1(u, v; t) f (4)(t) dt,

where ψ1(u, v; t) = h4
1((t − u)/h),

1(t) =
{
5t3(1/3 − t/2)/64, 0 ≤ t ≤ 1/2,

1(1 − t), 1/2 < t ≤ 1.

Since

15

16
≤
1(t)

0(t)
≤ 15

8
, ∀t ∈ (0, 1)

(and both bounds are sharp), we get the desired bounds.
For the error of S2(u, v; f) we analogously find that

15 (S2(u, v; f) − I (u, v; f)) =
∫ v

u
ψ2(u, v; t) f (4)(t) dt,

where the kernel ψ2(u, v; t) = h4
2((t − u)/h),

2(t) =
⎧
⎨

⎩

5t3(1/3 − t)/8, 0 ≤ t ≤ 1/4,

2(1/2 − t), 1/4 < t ≤ 1/2,

2(t − 1/2), 1/2 < t ≤ 1.

The remaining bound follows from the inequality

2(t)

0(t)
≤ 15, ∀t ∈ (0, 1).

The Peano kernels
0,
1, and
2 are presented in Fig. 4. ��

In what follows we concentrate on generalizing Theorem 2 about Soptm since the
other results (Theorem 1 and Proposition 1) can be treated in a similar fashion.

First we prove that the assumption f (4) > 0 in Theorem 2 can be replaced by

f (4)(x) ≥ 0 ∀x ∈ [a, b]. (19)

Proof Suppose without loss of generality that f (4) is not everywhere zero in [a, b].
We first produce a course grid {zi }2�

i=1 of length (b− a)/2� and remove from it all the
points zi (1 ≤ i ≤ 2� − 1) such that

f (4)(x) = 0 ∀x ∈ [zi−1, zi+1].

123

192 L. Plaskota

Fig. 4 The Peano kernels
0 (one hump, thick line),
1 (one hump, thin line), and
2 (two humps). The
curves intersect at 1/3 and 2/3

Denote the successive points of the modified grid by {ẑi }ki=1, k ≤ 2�. Let

Ci = max
ẑi−1≤x≤ẑi

f (4)(x), ci = min
ẑi−1≤x≤ẑi

f (4)(x),

J0 = {i : ci = 0}, J1 = {i : ci > 0}, and Pt =
⋃

i∈Jt

[ẑi−1, ẑi], t = 0, 1.

From (18) it follows that a subinterval is further subdivided if and only if f (4) �≡ 0
in this subinterval. Hence for sufficiently large m the coarse grid is contained in the
fine grid produced by Soptm and the subintervals [ẑi−1, ẑi] with Ci > 0 have been
subdivided at least once.

Let ẑi−1 = xi,0 < · · · < xi,ki = ẑi be the points of the fine grid contained in
[ẑi−1, ẑi], and hi, j = xi, j − xi, j−1. Define

β = max
i, j

S1(xi, j−1, xi, j ; f) − S2(xi, j−1, xi, j ; f). (20)

We now make an important observation that for any i ∈ J0 with Ci > 0 and any
1 ≤ j ≤ ki

β ≤ 15 γ (2hi, j)
5Ci . (21)

Indeed, if this were not satisfied by a subinterval [xi∗, j∗−1, xi∗, j∗] then its predecessor,
whose length is 2hi∗, j∗ and belongs to the i∗th subinterval of the coarse grid, would
not be subdivided.

123

Optimal adaptive Simpson quadrature 193

Hence, denoting by m0 the number of subintervals of the fine grid in P0, we have

m0β =
(
m0β

1/5
)5

m−4
0 ≤ 15 · 32 γ M5

0m
−4
0 with M0 =

∑

i∈J0

ki∑

j=1

hi, jC
1/5
i .

(22)

This implies m0 ≤ 2 (15γ)1/5 M0 β−1/5. Denoting by m1 the number of subintervals
of the fine grid in P1, we have

m1β = (m1β
1/5)5m−4

1 ≥ 15 γ M5
1m

−4
1 with M1 =

∑

i∈J1

ki∑

j=1

hi, j c
1/5
i , (23)

which implies m1 ≥ (15γ)1/5 M1 β1/5. Hence m0/m1 ≤ 2M0/M1 and this bound
is independent of m. However it depends on �. Taking � large enough we can make
m0/m1 arbitrarily small.

From Lemma 1 it follows that the integration error in P0 is upper bounded bym0β.
Since f (4) is positive in P1, the error in P1 is asymptotically (as m → ∞) lower
bounded by m1β/(15 · 32). Hence for � large enough the error in P0 is arbitrarily
small compared to that in P1. In addition, the error in P1 follows the upper bound of
Theorem 2. The proof is complete. ��

We now pass to functions with endpoint singularities. To fix the setting, we assume
that f is continuous in the closed interval [a, b] and f ∈ C4([a1, b]) for alla < a1 < b.
Moreover,

lim
x→a

f (4)(x) = +∞,

and this divergence is asymptotically monotonic, i.e., there is δ > 0 such that

f (4)(x1) ≥ f (4)(x2) > 0 for all a < x1 ≤ x2 ≤ a + δ.

As before, we prove that for such functions the upper error bound for Soptm in Theorem
2 is still valid.

Proof First, we observe that the difference S1(a, a+h; f)−S2(a, a+h; f) converges
to zero faster than h. Indeed, in view of (18) we have

S1(a, a + h; f) − S2(a, a + h; f) = h
∫ a+h

a
h3
0((t − a)/h) f (4)(t) dt

≤ h
∫ a+h

a

0(t − a) f (4)(t) dt. (24)

This assures that the partition is denser and denser in the whole [a, b] and the integra-
tion error goes to zero.

123

194 L. Plaskota

Second, we have that Lopt(f) < ∞. Indeed, by Hölder’s inequality

∫ b

a
(f (4)(x))1/5 dx =

∫ b

a
(x − a)−3/5

(
(x − a)3 f (4)(x)

)1/5

≤
(∫ b

a
(x − a)−3/4 dx

)4/5 (∫ b

a
(x − a)3 f (4)(x) dx

)1/5

,

which is finite due to (16).
Now, let � be such that (b − a)2−� ≤ δ, and let {zi }ki=−∞ with k = 2� − 1 be the

(infinite) coarse grid defined as

zi =
{

a + (b − a)2−�+i , i ≤ −1,
a + (b − a)2−�(i + 1), 0 ≤ i ≤ k.

Denote, as before,Ci = maxzi−1≤x≤zi f (4)(x). We obviously haveCi = f (4)(zi−1) >

0 for all i ≤ 0. For simplicity, we also assume Ci > 0 for 1 ≤ i ≤ k.
Let m be sufficiently large so that the fine grid produced by Soptm contains all the

points zi for i ≥ 0. Moreover, we can assume that each subinterval [zi−1, zi] with
i ≥ 1 has been subdivided at least once. Let [a, z−s] be the first subinterval of the fine
grid.

Let us further denote P0 = [a, z0] and P1 = [z0, b]. Then P0 = P0,0 ∪ P0,1 where
P0,0 consists of [0, z−s] and all subintervals of the course grid that have not been
subdivided by Soptm . Let m0,0, m0,1, m1 be the numbers of subintervals of the fine grid
in P0,0, P0,1, P1, respectively.

Define β as in (20). In view of (24), the distance (z−s − a) decreases slower than β

as m → ∞, and therefore m0,0 is at most proportional to log2(1/β). Since (21) holds
for the subintervals in P0,1, the number m0,1 can be estimated as m0 in (22) with

M0 ≤
0∑

i=−s+1

(zi − zi−1)C
1/5
i ≤ 2

∫ z−1

0

(
f (4)(x)

)1/5
dx,

where the last inequality follows frommonotonicity of f (4). Sincem1 can be estimated
as in (23) we obtain, analogously to the previous proof, that the number of subintervals
in P1 and the error in P1 dominate the scene. The proof is complete. ��

We stress that for continuous functions with endpoint singularities we always have
Lopt(f) < ∞, which is not true for Lstd(f). An example is provided by

f (x) =
∫ 1

x

(t − x)3

3! f (4)(t) dt, 0 ≤ t ≤ 1,

with f (4)(x) = (t ln t)−4. Indeed, since f (0) = ∫ 1
0 (3! t ln4 t)−1 dt < ∞, the function

is well defined and Lopt(f) < ∞, but

123

Optimal adaptive Simpson quadrature 195

Fig. 5 Error e versus m for
∫ 1
0

3
2
√
x dx

Lstd(f) =
∫ 1

0

−1

t ln t
dt = ∞.

For such functions, the subdivision process of Sstdm will not collapse [which follows
from (24)] and the error will converge to zero; however, the convergence ratem−4 will
be lost. On the other hand, if Lstd(f) < ∞ then the error bounds of Theorem 1 hold
true.

Example 3 Consider the integral

∫ 1

0
(p + 1) x p dx .

The integrand is continuous at 0 only if p ≥ 0. Then both, Lopt(f) and Lstd(f), are
finite. However, Lnon(f) < ∞ only if p is a non-negative integer or p > 3. Figures 5
and 6, where the results for p = 1/2 and p = 1/20 are presented, show that, indeed,
the adaptive quadratures Sstdm and Soptm converge as m−4, and Snonm converges at a very
poor rate.

We end this paper by showing the importance of continuity of f .

Example 4 Consider the integral
∫ b
a f (x) dx with a = −1/2, b = 1,

f (x) =
{

0, −1/2 ≤ x ≤ 0,
x−1/2/2, 0 < x ≤ 1.

In this case Lopt(f) < ∞ but Lstd(f) = ∞. Figure 7 shows that Soptm enjoys the
‘right’ convergence m−4 but Sstdm completely fails. This is because the critical value

123

196 L. Plaskota

Fig. 6 Error e versus m for
∫ 1
0

21
20

20√x dx

Fig. 7 Error e versus m for function f of Example 4

max
i

S1
(
x (m)
i−1, x

(m)
i ; f

)
− S2

(
x (m)
i−1, x

(m)
i ; f

)

does not converge faster than h; the algorithmkeeps dividing the subinterval containing
0. As a result, the standard adaptive algorithm is asymptotically even worse than the
nonadaptive algorithm.

Equally striking is the difference between OPTIMAL and STD. While OPTIMAL
works perfectly well, see Table 6, STD will never reach the stopping criterion for
ε ≤ 10−3, and will loop forever.

Unfortunately, this example is misleading. The very good behavior of Soptm is a
consequence of our “lack of bad luck” rather than a rule. Indeed, it is enough to
change the value of f in [−1/2, 0] from 0 to 7/3 to see that then S1(a, (a+b)/2; f)−

123

Optimal adaptive Simpson quadrature 197

Table 6 Optimal quadrature for
function f of Example 4 ε Optimal (B = 4

√
2)

Error m

1.0E−03 −9.48044E−04 35

1.0E−04 −3.68769E−05 63

1.0E−05 6.29168E−06 107

1.0E−06 5.83337E−07 175

1.0E−07 6.16070E−08 281

1.0E−08 6.16381E−09 467

1.0E−09 5.46528E−10 797

1.0E−10 5.50559E−11 1,377

1.0E−11 5.89940E−12 2,375

1.0E−12 6.17718E−13 4,131

S2(a, (a+b)/2; f) = 0 although
∫ (a+b)/2
a f (x) dx = 19/12 > 0. As a consequence,

limm→∞ Soptm (f) = 13/6 while the integral equals 25/12.

Acknowledgments The author would like to thank Grzegorz Wasilkowski and Henryk Woźniakowski
for discussions on the results of this paper, and an anonymous referee for constructive comments. This
research was partially supported by the National Science Centre, Poland, based on the decision DEC-
2013/09/B/ST1/04275.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Calvetti, D., Golub, G.H., Gragg, W.B., Reichel, L.: Computation of Gauss-Kronrod quadrature rules.
Math. Comput. 69, 1035–1052 (2000)

2. Clancy, N., Ding, Y., Hamilton, C., Hickernell, F.J., Zhang, Y.: The cost of deterministic, adaptive,
automatic algorithms: cones, not balls. J. Complex. 30, 21–45 (2014)

3. Conte, S.D., de Boor, C.: Elementary numerical analysis—an algorithmic approach, 3rd edn.McGraw-
Hill, New York (1980)

4. Davis, P.J., Rabinowitz, P.: Methods of numerical integration, 2nd edn. Academic Press, Orlando
(1984)

5. Gander, W., Gautschi, W.: Adaptive quadrature—revisited. BIT 40, 84–101 (2000)
6. Kincaid, D., Cheney, W.: Numerical analysis: mathematics of scientific computing, 3rd edn. AMS,

Providence, RI (2002)
7. Kruk, A.: Is the adaptive Simpson quadrature optimal? Faculty of Mathematics, Informatics and

Mechanics, University of Warsaw, Master Thesis (in Polish) (2012)
8. Lyness, J.N.: Notes on the adaptive Simpson quadrature routine. J. Assoc. Comput. Mach. 16, 483–495

(1969)
9. Lyness, J.N.: When not to use an automatic quadrature routine? SIAM Rev. 25, 63–87 (1983)

10. McKeeman, W.M.: Algorithm 145: adaptive numerical integration by Simpson’s rule. Commun. ACM
5, 604 (1962)

11. Malcolm, M.A., Simpson, R.B.: Local versus global strategies for adaptive quadrature. ACM Trans.
Math. Softw. 1, 129–146 (1975)

123

198 L. Plaskota

12. Novak, E.: On the power of adaption. J. Complex. 12, 199–238 (1996)
13. Piessens, R., de Doncker-Kapenga, E., Uberhuber, C.W., Kahaner, D.K.: QUADPACK. A subroutine

package for automatic integration. Springer, Berlin (1983)
14. Plaskota, L.: Noisy Information and computational complexity. Cambridge University Press,

Cambridge (1996)
15. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes: the art of scientific

computing, 3rd edn. Cambridge University Press, New York (2007)
16. Plaskota, L., Wasilkowski, G.W.: Adaption allows efficient integration of functions with unknown

singularities. Numerische Mathematik 102, 123–144 (2005)
17. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-based complexity. Academic Press,

New York (1988)
18. Wasilkowski, G.W.: Information of varying cardinality. J. Complex. 1, 107–117 (1986)

123

	Automatic integration using asymptotically optimal adaptive Simpson quadrature
	Abstract
	1 Introduction
	2 The standard adaptive Simpson quadrature
	3 Optimizing the process of interval subdivision
	4 Automatic integration using optimal subdivision strategy
	5 Extensions: f(4)ge0 and endpoint singularities
	Acknowledgments
	References

