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Abstract

Many mathematical models of physical phenomena that have been proposed in recent years
require more general spaces than manifolds. When taking into account the symmetry group of the
model, we get a reduced model on the (singular) orbit space of the symmetry group action. We
investigate quantization of singular spaces obtained as leaf closure spaces of regular Riemannian
foliations on compact manifolds. These contain the orbit spaces of compact group actions and
orbifolds. Our method uses foliation theory as a desingularization technique for such singular
spaces. A quantization procedure on the orbit space of the symmetry group - that commutes with
reduction - can be obtained from constructions which combine different geometries associated with
foliations and new techniques originated in Equivariant Quantization. The present paper contains
the first of two steps needed to achieve these just detailed goals.
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1 Introduction

Quantization of singular spaces is an emerging issue that has been addressed in an increasing num-
ber of recent works, see e.g. [BHP06], [Hue02], [Hue06], [HRS07], [Hui07], [Pfl02] ...

One of the reasons for this growing popularity originates from current developments in Theoret-
ical Physics related with reduction of the number of degrees of freedom of a dynamical system with
symmetries. Explicitly, if a symmetry Lie group acts on the phase space or the configuration space of
a general mechanical system, the quotient space is usually a singular space, an orbifold or a stratified
space ... The challenge consists in the quest for a quantization procedure for these singular spaces that
in addition commutes with reduction.

In this work, we investigate quantization of singular spaces obtained as leaf closure spaces of reg-
ular Riemannian foliations of compact manifolds. These contain the orbit spaces of compact group
actions (see [Rich01]). We build a quantization that commutes by construction with projection onto
the quotient.

Our method uses the foliation as desingularization of the orbit space M/F̄ , where F̄ is the singular
Riemannian foliation made up by the closures of the leaves of the regular Riemannian foliation F on
manifold M . More precisely, we combine Foliation Theory with recent techniques from Natural and
Equivariant Quantization. Close match can indeed be expected, as both topics are tightly connected
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with natural bundles and natural operators.

Equivariant quantization, in the sense of C. Duval, P. Lecomte, and V. Ovsienko, developed as from
1996, see [LMT96], [LO99], [DLO99], [Lec00], [BM01], [DO01], [BHMP02], [BM06]. This procedure
requires equivariance of the quantization map with respect to the action of a finite-dimensional Lie
subgroup of the symmetry group Diff(Rn) of configuration space Rn. Equivariant quantization has first
been studied in Euclidean space, mainly for the projective and conformal subgroups, then extended in
2001 to arbitrary manifolds, see [Lec01]. An equivariant, or better, a natural quantization on a smooth
manifold M is a vector space isomorphism

Q[∇] : Pol(T ∗M) 3 s→ Q[∇](s) ∈ D(M)

that verifies some normalization condition and maps, in this paper, a smooth function s ∈ Pol(T ∗M)
of “phase space” T ∗M , which is polynomial along the fibers, to a differential operator Q[∇](s) ∈ D(M)
that acts on functions f ∈ C∞(M) of “configuration space” M . The quantization map Q[∇] depends
on the projective class [∇] of an arbitrary torsionless covariant derivative ∇ on M , and it is natural
with respect to all its arguments and for the action of the group Diff(M) of all local diffeomorphisms
of M , i.e.

Q[φ∗∇](φ∗s)(φ∗f) = φ∗ (Q[∇](s)(f)) ,

∀s ∈ Pol(T ∗M),∀f ∈ C∞(M),∀φ ∈ Diff(M). Existence of such natural and projectively invariant
quantizations has been investigated in several works, see e.g. [Bor02], [MR05], [Han06].

In Foliation Theory, one distinguishes different geometries associated with a foliated manifold
(M,F) (defined by a Hæfliger cocycle), namely adapted geometry, foliated geometry, and transverse
geometry. We denote in this introduction objects of the adapted (resp. foliated, transverse) “world”
by O3 (resp. O2, O1), whereas objects of leaf closure space M/F̄ are denoted by O0. Ideally, geometric
structures of level i project onto geometric structures of level i− 1, so that p(Oi) = Oi−1, if we agree
to denote temporarily any of these projections by p. Let us also recall that, roughly, adapted objects
are objects on M with some special properties, foliated objects are locally constant along the leaves
and live in the normal bundle of the foliation, and that transverse objects are objects on the transverse
manifold N , which are H-invariant, where transverse manifold N and the holonomy pseudo-group H
depend on the chosen defining cocycle of foliation F . In order to build a quantization Q0 on M/F̄ ,
which commutes with the projection onto this singular space, we construct adapted, foliated, and
transverse quantizations Q3, Q2, and Q1, in such a way that

Qi−1[p∇i](p si)(p fi) = p (Qi[∇i](si)(fi)) , ∀i ∈ {1, 2, 3}. (1)

Hence,
Q0[∇0](s0)(f0) = Q0[p3∇3](p3s3)(p3f3) = p3 (Q3[∇3](s3)(f3)) .

Observe that adapted quantization Q3 quantizes objects on M , whereas singular quantization Q0 only
quantizes the objects of M/F̄ . Eventually, quantization actually commutes with projection onto the
quotient.

The proofs of the three stages mentioned in Equation (1) are not equally hard. Since foliated geo-
metric objects on a foliated manifold (M,F) are in 1-to-1 correspondence with H-invariant geometric
objects on the transverse manifold N associated with the chosen cocycle, it is clear that stage Q2 – Q1

is quite obvious. The passages Q3 – Q2 between the “big” adapted and “small” foliated quantizations,
as well as transition Q1 – Q0 from transverse quantization to singular quantization are much more
intricate.

In order to limit the length of the article, we publish the stages Q3 – Q2 and Q1 – Q0 in two different
works. This publication deals with the first approximation Q3 – Q2 for quantization of singular spaces.
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2 Natural and projectively invariant quantization

The constructions of Q3 and Q2 are nontrivial extensions to the adapted and foliated contexts of
the proof of existence of natural and projectively invariant quantization maps on an arbitrary smooth
manifold, see [MR05]. In the present section, we concisely describe the basic ideas of this technique.
We refer the reader to [MR05] for more details.

Throughout this note, we denote by M a smooth, Hausdorff and second countable manifold of
dimension n.

We denote by CM the space of torsion-free linear connections on M . A quantization on a manifold
M is a linear bijection QM from the space of symbols S(M) to the space of differential operators D(M)
such that

σ(QM (s)) = s, ∀s ∈ Sk(M), ∀k ∈ N,

where σ denotes the principal symbol operator. A natural and projectively equivariant quantization is
a collection of maps (defined for every manifold M)

QM : CM × S(M)→ D(M)

such that

• For all ∇ in CM , QM (∇) is a quantization,

• If φ is a local diffeomorphism from M to N , then one has

QM (φ∗∇)(φ∗s) = φ∗(QN (∇)(s)), ∀∇ ∈ CN ,∀s ∈ S(N).

• One has QM (∇) = QM (∇′) whenever ∇ and ∇′ are projectively equivalent torsion-free linear
connections on M .

Recall that ∇ and ∇′ are projectively equivalent if they fulfill the relation

∇′XY = ∇XY + α(X)Y + α(Y )X,

where α is a one-form on M .
The method used in [MR05] to solve the problem of the natural and projectively equivariant

quantization can be divided into four steps.
In a first step, one associates in a natural and bijective way to the projective class of∇ a reduction P

of the second order frame bundle P 2M . This reduction is called Cartan fiber bundle and its structural
group is H(n+ 1,R), the isotropy subgroup at the origin of the projective space RPn of the projective
group PGL(n+ 1,R).

Next, one can associate to the symbol s an equivariant function on P in a natural and bijective
way.

In a third step, one associates naturally to the projective class of ∇ a Cartan connection on P
called the normal Cartan connection ω.

Finally, thanks to an operation called invariant differentiation builded from ω, one constructs a
formula on P expressing the natural and projectively equivariant qunatization, this formula being
exactly the same as the formula giving the projectively equivariant quantization on Rn if one replaces
the invariant differentiation by the partial derivatives.

3 Adapted and foliated quantizations

In this section, we are going to define precisely the notions of adapted and foliated objects in order
to define the problems of adapted and foliated quantizations.
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3.1 Foliations

Let (M,F) be a foliated manifold, more precisely, let M be an n-dimensional smooth manifold
endowed with a regular foliation F of dimension p (and codimension q = n− p). It is well-known that
such a foliation can be defined as an involutive subbundle TF ⊂ TM of constant rank p.

Foliation F can also be viewed as a partition into (maximal integral) p-dimensional smooth sub-
manifolds or leaves, such that in appropriate or adapted charts (Ui, φi) the connected components of
the traces on Ui of these leaves lie in M as Rp in Rn [pages of a book], with transition diffeomorphisms
of type ψji = φj ◦ φ−1

i : φi(Uij) 3 (x, y)→ (ψji,1(x, y), ψji,2(y)) ∈ φj(Uji), Uij = Ui ∩ Uj [the ψji map
a page onto a page]. The pages provide by transport to manifold M the so-called plaques or slices and
these glue together from chart to chart—in the way specified by the transition diffeomorphisms—to
give maximal connected injectively immersed submanifolds, precisely the leaves of the foliation.

Eventually, foliation F can be described by means of a Hæfliger cocycle U = (Ui, fi, gij) mod-
elled on a q-dimensional smooth manifold N0. The Ui form an open cover of M and the fi : Ui →
fi(Ui) =: Ni ⊂ N0 are submersions that have connected fibers [the connected components of the
traces on the Ui of the leaves of F ] and are subject to the transition conditions gjifi = fj , where
the gji : fi(Uij) =: Nij → Nji := fj(Uji) are diffeomorphisms that verify the usual cocycle condition
gijgjk = gik. We refer to the disjoint union N = qiNi as the (smooth, q-dimensional) transverse
manifold and to H :=〉gij〈 as the pseudogroup of (locally defined) diffeomorphisms or holonomy pseu-
dogroup associated with the chosen cocycle U .

A vector field X ∈ Vect(M), such that [X,Y ] ∈ Γ(TF), for all Y ∈ Γ(TF), is said to be adapted
(to the foliation). The space VectF (M) of adapted vector fields is obviously a Lie subalgebra of the
Lie algebra Vect(M), and the space Γ(TF) of tangent (to the foliation) vector fields is an ideal of
VectF (M). The quotient algebra Vect(M,F) = VectF (M)/Γ(TF) is the algebra of foliated vector

fields.
Let (x, y) be local coordinates of M that are adapted to F , i.e. x = (x1, . . . , xp) are leaf coordinates

and y = (y1, . . . , yq) are transverse coordinates. The local form of an arbitrary (resp. tangent,
adapted, foliated) vector field is then X =

∑p
ι=1X

ι(x, y)∂ι+
∑q

i=1X
i(x, y)∂i, ∂ι = ∂xι , ∂i = ∂yi (resp.

X =
∑p
ι=1X

ι(x, y)∂ι,

X =
p∑
ι=1

Xι(x, y)∂ι +
q∑

i=1

X i(y)∂i, (2)

[X] = [
q∑

i=1

X i(y)∂i], (3)

where [.] denotes the classes in the aforementioned quotient algebra).

A smooth function f ∈ C∞(M) is foliated (or basic) if and only if LY f = 0,∀Y ∈ Γ(TF). We
denote by C∞(M,F) the space of all foliated functions of (M,F). A differential k-form ω ∈ Ωk(M)
is foliated (or basic) if and only if iY ω = iY dω = 0,∀Y ∈ Γ(TF), where notations are self-explaining.
Again, we denote by Ωk(M,F) the space of all foliated differential k-forms of (M,F).

It is easily checked that C∞(M,F)×Vect(M,F) 3 (f, [X])→ f [X] := [fX] ∈ Vect(M,F) defines
a C∞(M,F)-module structure on Vect(M,F). Furthermore, Vect(M,F) × C∞(M,F) 3 ([X], f) →
L[X]f := LXf ∈ C∞(M,F) is the natural action of foliated vector fields on foliated functions. Even-
tually, the contraction of a foliated 1-form α ∈ Ω1(M,F) and a foliated vector field [X] ∈ Vect(M,F)
is a foliated function α([X]) := α(X) ∈ C∞(M,F).

3.2 Adapted and foliated frame bundles

3.2.1 Adapted frame bundles

Since an adapted linear frame is a frame (v1, . . . , vp+q) of a fiber TmM , m ∈ M , the first vectors
(v1, . . . , vp) of which form a frame of TmF , we denote by P rFM the principal bundle P rFM = {jr0(f)| f :
0 ∈ U ⊂ Rn → M,T0f ∈ Isom(Rn, Tf(0)M), T f(TF0) = TF}, where F0 is the canonical regular p-
dimensional foliation of Rn. The structure group of P rFM is Grn,F0

= {jr0(ϕ)|ϕ : 0 ∈ U ⊂ Rn →
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Rn, ϕ(0) = 0, T0ϕ ∈ GL(n,R), Tϕ(TF0) = TF0}, its action on P rFM is canonical. We call P rFM the
principal bundle of adapted r-frames on M . For instance, P 1

FM =: LFM is the bundle of adapted
linear frames of M with structure group

G1
n,F0

' GL(n, q,R) =
{(

A B
0 D

)
: A ∈ GL(p,R), B ∈ gl(p× q,R), D ∈ GL(q,R)

}
. (4)

The foliation F induces a foliation FP r on P rFM whose leaves are locally defined by the sets of
frames jr0f such that P r(y)(jr0f) is constant, with

P r(y) : jr0f 7→ jr0(y ◦ f ◦ iq),

where y denotes the passing to the transverse coordinates and where iq denotes the canonical inclusion
of Rq into Rn.

3.2.2 Foliated frame bundles

Let U and V be neighborhoods of 0 in Rq and let f : U → M , g : V → M be smooth maps
transverse to F (it means that im f∗ ⊕ TF = TM) with f(0) = g(0) = x. Let W be a neighborhood
of x and let F : W → Rq be a submersion constant along the leaves of F . We say that f and g define
the same transverse r-frame at x if F ◦ f and F ◦ g have the same partial derivatives up to order r
at 0. This definition is independent of the choice of the submersion F (one can take F equal to the
passing y to the transverse coordinates of an adapted system). Let Jr0 (f) denote the transverse r-frame
determined by f and let P r(M,F) be the set of transverse r-frames on M . Then πr : P r(M,F)→M ,
πr(Jr0 (f)) = x, is a principal bundle over M with group Grq where Grq is the group of r-frames at
0 ∈ Rq. The right action of Grq on P r(M,F) is given by Jr0 (f)jr0(g) = Jr0 (f ◦g), for Jr0 (f) ∈ P r(M,F),
j20(g) ∈ Grq.

One can view the frame Jr0 (f) as the following set of q foliated vectors :

(
q∑

k=1

∂1(y ◦ f)k[∂k+p], . . . ,
q∑

k=1

∂q(y ◦ f)k[∂k+p]).

The foliation F induces a foliation FP rN on P r(M,F) whose leaves are locally defined by the sets
of frames Jr0 (f) such that P rN(y)(Jr0 (f)) is constant, with

P rN(y) : Jr0f 7→ jr0(y ◦ f).

3.3 Adapted and foliated connections

3.3.1 Adapted connections

Definition 1. Let (M,F) be a foliated manifold. An adapted connection ∇F is a linear torsion-free
connection on M , such that ∇F : VectF (M)× Γ(TF)→ Γ(TF) and ∇F : VectF (M)× VectF (M)→
VectF (M).

Remark In the following, we use the Einstein summation convention, and, as already adumbrated
above, Latin indices i, k, l . . . (resp. Greek indices ι, κ, λ . . ., German indices i, k, l . . .) are systematically
and implicitly assumed to vary in {1, . . . , n} (resp. {1, . . . , p}, {1, . . . , q}).

As torsionlessness means that∇F,YX = ∇F,XY +[Y,X], it follows that∇F : Γ(TF)×VectF (M)→
Γ(TF).

Further, locally, in adapted coordinates, we have ∇F,XY =
(
Xi∂iY

k + ΓkilX
iY l
)
∂k, so that con-

dition ∇F : VectF (M)× Γ(TF)→ Γ(TF) means that

Γk
iλ = Γk

λi = 0, (5)

whereas condition ∇F : VectF (M) × VectF (M) → VectF (M) is then automatically verified provided
that Christoffel’s symbols Γk

il are independent of x, Γk
il = Γk

il(y).
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Proposition 1. If two adapted connections ∇F and ∇′F of a foliated manifold (M,F) are projectively
equivalent, the corresponding differential 1-form α ∈ Ω1(M) is foliated, i.e. α ∈ Ω1(M,F).

Proof. In adapted local coordinates (x, y), projective equivalence of∇F and∇′F reads (Γ′kil−Γkil)X
iY l =

αiX
iY k + αiY

iXk,∀k. When writing this equation for Xi = δiι, Y
l = δll , and k = l, we get, in view

of Equation (5), αι = 0. If we now choose Xi = δii , Y
l = δll , and k = i 6= l, we finally see that αl is

independent of x.

3.3.2 Foliated connections

Definition 2. Consider a foliated manifold (M,F). A foliated torsion-free connection ∇(F) on (M,F)
is a bilinear map ∇(F) : Vect(M,F) × Vect(M,F) → Vect(M,F), such that, for all f ∈ C∞(M,F)
and all [X], [Y ] ∈ Vect(M,F), the following conditions hold true:

• ∇(F)f [X][Y ] = f∇(F)[X][Y ],

• ∇(F)[X](f [Y ]) =
(
L[X]f

)
[Y ] + f∇(F)[X][Y ],

• ∇(F)[X][Y ] = ∇(F)[Y ][X] + [[X], [Y ]].

In view of the above definitions, the local form (in adapted coordinates (x,y)) of a foliated vector
field is [X] = X i[∂i], X i = X i(y), and a foliated connection reads

∇(F)[X][Y ] = X i
(
L[∂i]Y

l
)

[∂l] +X iY l Γ(F)k
il [∂k], Γ(F)k

il = Γ(F)k
il(y).

Definition 3. Two foliated connections ∇(F) and ∇′(F) of a foliated manifold (M,F) are pro-
jectively equivalent, if and only if there is a foliated 1-form α ∈ Ω1(M,F), such that, for all
[X], [Y ] ∈ Vect(M,F), one has ∇′(F)[X][Y ]−∇(F)[X][Y ] = α([X])[Y ] + α([Y ])[X].

3.3.3 Link between adapted and foliated connections

Eventually, adapted connections induce foliated connections.

Proposition 2. Let (M,F) be a foliated manifold of codimension q. Any adapted connection ∇F of
M induces a foliated connection ∇(F), defined by ∇(F)[X][Y ] := [∇F,XY ]. In adapted coordinates,
Christoffel’s symbols Γ(F)i

kl of ∇(F) coincide with the corresponding Christoffel symbols Γi
F,kl of ∇F .

Eventually, projective classes of adapted connections induce projective classes of foliated connections.

Proof. It immediately follows from the definition of adapted connections that for any [X], [Y ] ∈
Vect(M,F), the class ∇(F)[X][Y ] := [∇F,XY ] ∈ Vect(M,F) is well-defined. All properties of fo-

liated connections are obviously satisfied. If (x, y) are adapted coordinates, we have Γ(F)k
il[∂k] =

∇(F)[∂i][∂l] = [∇F,∂i
∂l] = [Γk

F,il∂k] = Γk
F,il[∂k], since Γk

F,il = Γk
F,il(y). The remark on projective

structures follows immediately from preceding observations.

3.4 Adapted and foliated differential operators

3.4.1 Adapted differential operators

Definition 4. An adapted differential operator of a foliated manifold (M,F) (where F is of dimension
p and codimension q) is an endomorphism D ∈ EndR(C∞(M)) that reads in any system of adapted
coordinates (x, y) = (x1, . . . , xp, y1, . . . , yq) over any open subset U ⊂M ,

D|U =
∑
|γ|≤k

Dγ ∂
γ1

x1 . . . ∂
γp

xp ∂
γp+1

y1 . . . ∂γ
p+q

yq ,

where k ∈ N is independent of the considered adapted chart, where Dγ ∈ C∞(U), and where the
coefficients Dγ with γ1 = . . . = γp = 0 are locally defined foliated functions. The smallest possible
integer k is called the order of operator D.

We denote by DF (M) the filtered space of all adapted differential operators on (M,F).
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3.4.2 Foliated differential operators

Definition 5. A foliated differential operator of a foliated manifold (M,F) (where F is of dimension
p and codimension q) is an endomorphism D ∈ EndR(C∞(M,F)) that reads in any system of adapted
coordinates (x, y) = (x1, . . . , xp, y1, . . . , yq) over any open subset U ⊂M ,

D|U =
∑
|γ|≤k

Dγ ∂
γ1

y1 . . . ∂
γq

yq ,

where k ∈ N is independent of the considered adapted chart and where the coefficients Dγ ∈ C∞(U,F)
are locally defined foliated functions. The smallest possible integer k is called the order of operator D.

We denote by D(M,F) (resp. Dk(M,F)) the space of all foliated differential operators (resp. all
foliated differential operators of order ≤ k). Of course, the usual filtration

D(M,F) = ∪k∈NDk(M,F) (6)

holds true.

3.4.3 Link between adapted and foliated differential operators

The space of adapted differential operators projects onto the space of foliated differential operators
in the following way :∑

|γ|≤k

Dγ ∂
γ1

x1 . . . ∂
γp

xp ∂
γp+1

y1 . . . ∂γ
p+q

yq 7→
∑

|γ|≤k,γ1=...=γp=0

Dγ ∂
γ1

y1 . . . ∂
γq

yq .

3.5 Adapted and foliated symbols

3.5.1 Adapted symbols

Definition 6. The graded space SF (M) associated to DF (M) is the space of adapted symbols on
(M,F).

One can view the symbol [
∑
|γ|≤kDγ ∂

γ1

x1 . . . ∂
γp

xp ∂
γp+1

y1 . . . ∂γ
p+q

yq ] as the symmetric contravariant

tensor fields
∑
|γ|=kDγ ∂

γ1

x1 ∨ . . . ∨ ∂γ
p

xp ∨ ∂
γp+1

y1 . . . ∨ ∂γ
p+q

yq .

Theorem 1. Let (M,F) be a foliated manifold of codimension q. We then have a canonical vector
space isomorphism:

∼: SkF (M) 3 s 7→ s̃ ∈ C∞F (LFM,SkRn)GL(n,q,R), (7)

where the notation C∞F means that pn,q s̃ is foliated for FP 1 , with pn,q denoting the canonical projection
from SkRn to SkRq.

Proof. One associates to s =
∑
|γ|=kDγ ∂

γ1

x1 ∨. . .∨∂γ
p

xp ∨∂
γp+1

y1 ∨. . .∨∂γ
p+q

yq the function s̃ that associates∑
|γ|=kDγ (A−1e1)γ

1∨ . . .∨(A−1ep)γ
p∨(A−1ep+1)γ

p+1∨ . . .∨(A−1ep+q)γ
p+q

to j10(f), where A denotes
the representation of j10f in the adapted coordinates system. Thanks to the fact that A ∈ GL(n, q,R),
one sees easily that Dγ is foliated for γ1 = . . . = γp = 0 if and only if pn,q s̃ is foliated for FP 1 .

3.5.2 Foliated symbols

Definition 7. The graded space S(M,F) associated with the filtered space D(M,F),

S(M,F) = ⊕k∈NSk(M,F) = ⊕k∈NDk(M,F)/Dk−1(M,F),

is the space of foliated symbols. The principal symbol of a foliated differential operator D is then
simply its class [D] in the associated graded space.
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Theorem 2. Let (M,F) be a foliated manifold of codimension q. We then have a canonical vector
space isomorphism:

∼: Sk(M,F) 3 s 7→ s̃ ∈ C∞(LN(M,F), SkRq;FLN )GL(q,R). (8)

Proof. One associates to s = [
∑
|γ|≤kDγ ∂

γ1

y1 . . . ∂
γq

yq ] the function s̃ that associates
∑
|γ|=kDγ (A−1e1)γ

1∨
. . .∨(A−1eq)γ

q

to J1
0 (f), where A denotes the representation of J1

0f in the adapted coordinates system.
It is then obvious that s is foliated if and only if s̃ is foliated for FLN .

3.5.3 Link between adapted and foliated symbols

First define the following canonical projection :

Fpr : P rFM → P r(M,F) : jr0f 7→ Jr0 (f ◦ iq).

Projection of adapted differential operators onto foliated differential operators induce a projection
of adapted symbols onto foliated symbols that we will denote by Fπ. In fact, we have the

Proposition 3. If Fπ̃ denotes projection Fπ read through the isomorphism ∼ detailed in Theorems 2
and 1, we have, for any symbol s ∈ SkF (M), k ∈ N,(Fπ̃s̃) ◦Fp1 = pn,q ◦ s̃. (9)

Proof. It is quite obvious thanks to the description of Fπ and to the description of the equivariant
functions given in theorems 1 and 2.

3.6 Adapted and foliated quantizations

The definitions of adapted and foliated natural projectively equivariant quantizations that we will
denote respectively by QF and Q(F) are obtained simply by replacing the standard objects in the
definition of the natural projectively equivariant quantization by adapted or foliated objects. Simply
note that QF and Q(F) have to commute with foliated morphisms as they are defined in [Wol89] page
340. Recall that φ is a foliated morphism between two foliated manifolds (M1,F1) and (M2,F2) if
φ∗TF1 ⊂ TF2 and φ∗F2 = F1.

The aim is to show that this two quantizations ”commute with the reduction”. In other words :

QF (∇F )(s)(f) = Q(F)(∇(F))(Fπs)(f)

if ∇F , s and f are respectively adapted connection, symbol and foliated function.

4 Construction of the Cartan fiber bundle

4.1 Construction in the adapted case

The isotropy subgroup of [en+1] in the projective space RPn for the natural action of

PGL(n+ 1, q + 1,R) =


 A B h′

0 D h′′

0 α′′ a

 : A ∈ GL(p,R), B ∈ gl(p× q,R),

h′ ∈ Rp, D ∈ GL(q,R), h′′ ∈ Rq, α′′ ∈ Rq∗, a ∈ R0} /R0 id

(10)

on RPn is

H(n+ 1, q + 1,R) =


 A B 0

0 D 0
0 α′′ a

 : A ∈ GL(p,R), B ∈ gl(p× q,R),

D ∈ GL(q,R), α′′ ∈ Rq∗, a ∈ R0} /R0 id .

(11)
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The group H(n+ 1, q + 1,R) acts on Rn by linear fractional transformations that leave the origin
fixed. This allows to view H(n+ 1, q + 1,R) as a subgroup of G2

n (see [Koba72]).

Theorem 3. For any foliated manifold (M,F), there exists a natural application from the set of
projective classes of adapted connections [∇F ] into the set of reductions PF of the principal bundle
P 2
FM of F-adapted second order frames on M to structure group H(n+ 1, q + 1,R).

Proof. The proof is exactly similar to that of Proposition 7.2 p.147 in [Koba72]. The reduction asso-
ciated to the class of [∇F ] is equal over a point x to j20fH(n + 1, q + 1,R), where j20f is equal in an
adapted coordinates system to

(xi, δik,−Γikl),

where the Γikl are Christoffel’s symbols of [∇F ].

4.2 Construction in the foliated case

Theorem 4. For any foliated manifold (M,F) of codimension q, there exists a natural application
from the set of projective classes of foliated connections [∇(F)] into the set of reductions P (F) of
P 2(M,F) to structure group H(q + 1,R) ⊂ G2

q.

Proof. The proof is exactly similar to that of Theorem 3. The reduction associated to the class of
[∇(F)] is equal over a point x to J2

0fH(q+1,R), where J2
0f is equal in an adapted coordinates system

to
(xi, δi

k,−Γi
kl),

where the Γi
kl are Christoffel’s symbols of ∇(F).

4.3 Link between the adapted and the foliated Cartan fiber bundle

Proposition 4. For any foliated manifold (M,F) endowed with an adapted projective structure and
the induced foliated projective structure, projection Fp2 restricts to a projection Fp2 : PF → P (F).

Proof. It is easily seen thanks to proposition 2 and thanks to descriptions of PF and P (F) given in
theorems 4 and 3.

5 Lift of symbols

We denote by prF (resp. pr(F)), r ≥ 1, the canonical projection

prF : P rFM → P r−1
F M : jr0(f) 7→ jr−1

0 (f) (resp.pr(F) : P r(M,F)→ P r−1(M,F) : Jr0 (f) 7→ Jr−1
0 (f)).

5.1 Lift of adapted symbols

Theorem 5. Let (M,F) be a foliated manifold of codimension q endowed with an adapted projective
structure [∇F ], and denote by PF the corresponding reduction of P 2

FM to H(n+ 1, q+ 1,R). We then
have the following canonical vector space isomorphism:

∧ : SkF (M) 3 s 7→ ŝ = s̃ ◦ p2
F ∈ C∞F (PF , SkRn)H(n+1,q+1,R), (12)

where the notation C∞F means that pn,q ŝ is foliated for FP 2 .

Proof. Using Theorem 1, the proof is exactly similar to the proof of proposition 3 in [MR05].

5.2 Lift of foliated symbols

Theorem 6. Let (M,F) be a foliated manifold of codimension q endowed with a foliated projective
structure [∇(F)], and denote by P (F) the corresponding reduction of P 2(M,F) to H(q + 1,R) ⊂ G2

q.
The following canonical vector space isomorphism holds :

∧ : Sk(M,F) 3 s 7→ ŝ = s̃ ◦ p2(F) ∈ C∞(P (F), SkRq;FP 2N )H(q+1,R). (13)

Proof. Using Theorem 2, the proof is exactly similar too to the proof of proposition 3 in [MR05].
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5.3 Link between the lifts

Proposition 5. If Fπ̂ denotes projection Fπ read through the isomorphism ∧ detailed in Theorems 6
and 5, we have, for any symbol s ∈ SkF (M), k ∈ N,(Fπ̂ŝ) ◦Fp2 = pn,q ◦ ŝ. (14)

Proof. It is obvious thanks to (9) and thanks to the fact that p2(F) ◦Fp2 =Fp1 ◦ p2
F .

6 Construction of the normal Cartan connection

The method exposed in [MR05] in order to solve the problem of the natural and projectively
equivariant quantization uses the notion of normal Cartan connection. We are going to adapt this
object firstly to the adapted situation and secondly to the foliated situation. Finally, in a third step,
we are going to analyze the link between the adapted normal Cartan connection and the foliated one.

6.1 Construction in the adapted case

First, recall the notion of Cartan connection on a principal fiber bundle :

Definition 8. Let G be a Lie group and H a closed subgroup. Denote by g and h the corresponding
Lie algebras. Let P → M be a principal H-bundle over M , such that dimM = dimG/H. A Cartan
connection on P is a g-valued one-form ω on P such that

• If Ra denotes the right action of a ∈ H on P , then R∗aω = Ad(a−1)ω,

• If k∗ is the vertical vector field associated to k ∈ h, then ω(k∗) = k,

• ∀u ∈ P, ωu : TuP → g is a linear bijection.

Recall too the definition of the curvature of a Cartan connection :

Definition 9. If ω is a Cartan connection defined on a H-principal bundle P , then its curvature Ω is
defined as usual by

Ω = dω +
1
2

[ω, ω]. (15)

Next, one adapts Theorem 4.2. cited in [Koba72] p.135 in the following way :

Theorem 7. Let PF be an H(n + 1, q + 1,R)-principal fiber bundle on a manifold M . If one has a
one-form ω−1 with values in Rn of components ωi and a one-form ω0 with values in gl(n, q,R) (the
Lie algebra of GL(n, q,R)) of components ωij that satisfy the three following conditions :

• ω−1(h∗) = 0, ω0(h∗) = h0, ∀h ∈ gl(n, q,R) + Rq∗, where h0 is the projection with respect to
gl(n, q,R) of h,

• (Ra)∗(ω−1 + ω0) = (Ad a−1)(ω−1 + ω0), ∀a ∈ H(n + 1, q + 1,R), where Ad a−1 is the ap-
plication from Rn + gl(n, q,R) + Rq∗/Rq∗ in itself induced by the adjoint action Ad a−1 from
Rn + gl(n, q,R) + Rq∗ into Rn + gl(n, q,R) + Rq∗,

• If ω−1(X) = 0, then X is vertical,

and the following additional condition :

dωi = −
∑

ωik ∧ ωk, (16)

then there is a unique Cartan connection ω = ω−1+ω0+ω1 whose curvature Ω of components (0; Ωij ; Ωj)
satisfies the following property :

n∑
i=p+1

Ki
jil = 0, ∀j ∈ {p+ 1, . . . , n},∀l,
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where
Ωij =

∑ 1
2
Ki
jkl ω

k ∧ ωl.

Proof. The proof goes as in [Koba72]. Let ω = (ωi;ωij ;ωj) and ω = (ωi;ωij ;ωj) be two Cartan
connections with the given (ωi;ωij). If ωj − ωj =

∑
Ajkω

k, where the coefficients Ajk are functions

on P , if Ω = (0; Ω
i

j ; Ωj) denotes the curvature of ω and if Ω
i

j =
∑

1
2K

i

jkl ω
k ∧ωl, one can prove in the

same way as in [Koba72] that

n∑
i=p+1

(K
i

ikl −Ki
ikl) = (q + 1)(Akl −Alk), (17)

n∑
i=p+1

(K
i

jil −Ki
jil) = (q − 1)Ajl + (Ajl −Alj). (18)

If ω and ω are normal Cartan connections, i.e.,
∑n
i=p+1K

i

jil =
∑n
i=p+1K

i
jil = 0, then Aij = 0 and

hence ω = ω. This prove the uniqueness of the normal Cartan connection.
To prove the existence, one assumes that there is a Cartan connection ω = (ωi;ωij ;ωj) with the

given (ωi;ωij). The goal is then to find functions Ajk such that ω = (ωi;ωij ;ωj) becomes a normal
Cartan connection. If 1 ≤ j ≤ p, Ajk is of course equal to zero. If p+ 1 ≤ j ≤ n and if p+ 1 ≤ k ≤ n,
one can view thanks to (17) and (18) that it suffices to set

Ajk =
1

(q + 1)(q − 1)

n∑
i=p+1

Ki
ijk −

1
q − 1

n∑
i=p+1

Ki
jik. (19)

If 1 ≤ k ≤ p, one sees thanks to (18) that it suffices to set

Ajk = −
n∑

i=p+1

1
q
Ki
jik. (20)

The last step of the proof that shows the existence of one Cartan connection ω that ”begins” by (ωi, ωij)
is exactly similar to the corresponding step in [Koba72].

One can remark that the codimension of the foliation F has to be different from 1.
One can define on PF an one-form in the following way :

Definition 10. If u = j20f is a point belonging to PF and if X is a tangent vector to PF at u, the
canonical form θF of PF is the 1-form with values in Rn ⊕ gl(n, q,R) defined at the point u in the
following way :

θF ;u(X) = (P 1f)−1
∗e (p2

F∗X),

where e is the frame at the origin of Rn represented by the identity matrix.

Theorem 8. One can associate to the projective class of an adapted connection [∇F ] a Cartan con-
nection on PF in a natural way. We will denote by ωF this Cartan connection.

Proof. The canonical one-form defined above is the restriction to PF of the canonical one-form of
P 2(M) defined in [Koba72] p.140. It is too the restriction to PF of the restriction to P of the canonical
one-form of P 2(M), where P is the projective structure associated to ∇F defined in [Koba72]. Thanks
to the fact that the canonical one-form on P satisfies the properties of Theorem 4.2. mentioned in
[Koba72], θF satisfies the properties mentioned in Theorem 7. One defines then the adapted normal
Cartan connection ωF as the unique Cartan connection on PF beginning by θF and satisfying the
property linked to the curvature cited in Theorem 7. Because of the naturality of this property, the
naturality of θF and the uniqueness of the Cartan connection mentioned in Theorem 7, ωF is a Cartan
connection on PF associated naturally to the class [∇F ].
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6.2 Construction in the foliated case

The reduction P (F) is actually an example of a foliated bundle defined in [Blum84]. The Cartan
connection that we are going to define on it is an example of a Cartan connection in a foliated bundle
defined too in [Blum84]. It is the reason for which we are going first to recall the definitions of these
notions.

Definition 11. Let M be a manifold of dimension n and F a codimension q foliation of M . Let H
be a Lie group and π : P → M be a principal H-bundle. We say that π : P → M is a foliated bundle
if there is a foliation F̃ of P satisfying

• F̃ is H-invariant,

• Ẽu ∩ Vu = {0} for all u ∈ P ,

• π∗u(Ẽu) = TFπ(u) for all u ∈ P ,

where Ẽ is the tangent bundle of F̃ and V is the bundle of vertical vectors.

Definition 12. Let F be a codimension q foliation of M . Let G be a Lie group and let H be a closed
subgroup of G with dimension(G/H) = q. Let π : P → M be a foliated principal H-bundle. Let g be
the Lie algebra of G and let h be the Lie algebra of H. For each A ∈ h, let A∗ be the corresponding
fundamental vector field on P .

A Cartan connection in the foliated bundle π : P →M is a g-valued one-form ω on P satisfying

• ω(A∗) = A for all A ∈ h,

• (Ra)∗ω = Ad(a−1)ω for all a ∈ H where Ra denotes the right translation by a acting on P and
Ad(a−1) is the adjoint action of a−1 on g,

• For each u ∈ P , ωu : TuP → g is onto and ωu(Ẽu) = 0,

• LXω = 0 for all X ∈ Γ(Ẽ) where Γ(Ẽ) denotes the smooth sections of Ẽ.

Theorem 9. The reduction P (F) is a foliated bundle.

Proof. One can easily view that FP 2N satisfies the properties of the definition of a foliated bundle :
first, FP 2N is H(q + 1,R)-invariant because, if (Ui, fi, gij) is a cocycle corresponding to the foliation
F , if J2

0f ∈ P (F) and if j20(fi ◦ f) is constant, then j20(fi ◦ f ◦h) = j20(fi ◦ f) ◦ j20(h) is constant, where
j20(h) ∈ H(q + 1,R).

If X ∈ Vu, then X = d
dtu exp(th)|t=0, where h ∈ h(q + 1,R). If u = J2

0 (f) and if exp(th) = j20(gt),
then j20(fi ◦ f ◦ gt) is constant if X is tangent to the foliation FP 2N . One has then that J2

0 (f ◦ gt) is
constant and then X = 0.

If X is tangent to the foliation FP 2N , then X = d
dtγ(t)|t=0, where γ(t) ∈ FP 2N . Then π2

∗u(X) =
d
dtπ

2(γ(t))|t=0, that belongs to TFπ(u) because π2(γ(t)) belongs to F . Indeed, if γ(t) = J2
0 (ft),

fi ◦ π2(γ(t)) is constant because j20(fi ◦ ft) is constant.

Theorem 10. One can associate to the class of a foliated connection [∇(F)] a Cartan connection on
P (F) in a natural way. We will denote this connection by ω(F).

Proof. If (Ui, fi, gij) is a Haefliger cocycle of F , one can easily seen that the image by P 2N(fi) of
P (F)|Ui is a reduction of P 2N(fi)(P 2M(Ui,F)) to H(q + 1,R). We will denote by P this reduction.

One builds locally the normal Cartan connection ω(F) on P (F) in the following way : if ω denotes
the normal Cartan connection on P , then ω(F)|P 2M(Ui,F) := (P 2N(fi))∗ω.

One can show (see [Blum84]) that the connection ω(F) is a well-defined foliated Cartan connection.

Thanks to the naturality of the normal Cartan connection, ω(F) is associated naturally to the class
of the foliated connection [∇(F)].
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One can remark that, as the foliation FP 2N is of dimension p, the third condition of the definition
of a foliated Cartan connection implies that, in our case, the kernel of ω(F)u will be exactly equal to
the tangent space to FP 2N .

6.3 Link between adapted and foliated Cartan connections

Remark. The image by P 2y of P (F) is a reduction of P 2(U) to H(q + 1,R), where U is an open set
of Rq. We will denote by PU this reduction of P 2(U) to H(q+ 1,R). If ωU denotes the normal Cartan
connection on PU , then ω(F)(P 2y)−1PU = (P 2y)∗ωU . Indeed, if φ denotes the diffeomorphism such
that φ ◦ y = fi, then P 2φ(PU ) = P . By naturality of the normal Cartan connection, ωU = (P 2φ)∗ω
and then (P 2y)∗ωU = (P 2fi)∗ω.

Proposition 6. If θU denotes the canonical one-form on PU , then

(P 2y ◦ (Fp2))∗θU = pn,qθF .

Proof. It is a simple verification using the definitions of the canonical forms θU and θF .

Theorem 11. The connections ωF and ω(F) are linked by the following relation :

Fp2∗ω(F) = pn,qωF .

Proof. To prove that, it suffices to prove that

(P 2y ◦ (Fp2))∗ωU = pn,qωF .

If one denotes by ∇U the connection on U whose Christoffel symbols are the Christoffel symbols of
∇(F) read through the passing to transverse coordinates y, if (ε1, . . . , εn) denotes the canonical basis
of Rn∗ (resp. (ε1, . . . , εq) denotes the canonical basis of Rq∗), one has

ωF = Υ̃F −
n∑

j=p+1

n∑
k=1

(ΓF jk)(θkF−1)εj

(resp. ωU = Υ̃U −
q∑
j=1

q∑
k=1

(ΓU jk)(θkU −1)εj),

where Υ̃F (resp. Υ̃U ) is the Cartan connection induced by ∇F (resp. ∇U ), ΓF (resp. ΓU ) is the
deformation tensor corresponding to ∇F (resp. ∇U ) (see [CSS97]).

One recalls that Υ̃F (resp. Υ̃U ) is the unique Cartan connection such that its component with
respect to Rq∗ vanishes on the section (xi, δik,−Γijk) (resp. (xi, δi

k,−Γi
jk)). If σF (resp. σU ) denotes

the section (xi, δik,−Γijk) (resp. (xi, δi
k,−Γi

jk)), the connection Υ̃F (resp. Υ̃U ) is defined in this way :

Υ̃F u(X) = Ad(b−1)θF ((σF ◦ π2)∗X) +B,

(resp. Υ̃U u(X) = Ad(b−1)θU ((σU ◦ π2)∗X) +B),

where π2 is the projection on M (resp. U), Rb(σF (π2(u))) = u (resp. Rb(σU (π2(u))) = u) and

B∗ = X −Rb∗σF∗π2
∗X (resp. B∗ = X −Rb∗σU∗π2

∗X).

The deformation tensor ΓF (resp. ΓU ) is defined in this way :

ΓF (X) = (Υ̃F − ωF )(ω−1
F (X))

(resp. ΓU (X) = (Υ̃U − ωU )(ω−1
U (X))).

In fact, the sections (xi, δik,−Γijk) and (xi, δi
k,−Γi

jk) correspond to the section σ of the end of the
theorem 7, the connections Υ̃F and Υ̃U correspond to the connection ω of the proof of this theorem, the
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connections ωF and ωU correspond to the connection ω̄ whereas the Γjk correspond to the functions
−Ajk.

We can easily prove that (P 2y ◦ (Fp2))∗Υ̃U = pn,qΥ̃F using proposition 6.

Next, prove that (P 2y ◦ (Fp2))∗
∑q
j=1

∑q
k=1(ΓU jk)(θkU −1)εj =

∑n
j=p+1

∑n
k=1(ΓF jk)(θkF −1)εj .

One has (P 2y ◦(Fp2))∗
∑q
j=1

∑q
k=1(ΓU jk)(θkU −1)εj =

∑q
j=1

∑q
k=1(P 2y ◦(Fp2))∗(ΓU jk)(θk+pF −1)εj+p.

It remains then to prove that (P 2y ◦ (Fp2))∗(ΓU jk) = ΓF j+p,k+p and that ΓF jk = 0 if 1 ≤ k ≤ p.

Indeed, if 1 ≤ k ≤ p, ΓF jk = 1
q

∑n
l=p+1R

l
F jlk, where RF denotes the equivariant function on PF

representing the curvature tensor of ∇F thanks to the equation (20) of the Theorem 7 and thanks to
the fact that the Kl

ijk represent the components of RF (see [CSS97]). Thanks to the fact that ∇F
is adapted, one can see that if 1 ≤ k ≤ p, ΓF jk = 0. Moreover, ΓU jk = −1

(q+1)(q−1)

∑q
i=1R

i
U ijk +

1
q−1

∑q
i=1R

i
U jik, where RU denotes the equivariant function on PU representing the curvature tensor

of ∇U whereas if p+ 1 ≤ k ≤ n, ΓF jk = −1
(q+1)(q−1)

∑n
i=p+1R

i
F ijk + 1

q−1

∑n
i=p+1R

i
F jik thanks to the

equation (19) of the Theorem 7. This allows to prove that (P 2y ◦ (Fp2))∗(ΓU jk) = ΓF j+p,k+p.

7 Construction of the quantization

In a first step, we are going to explain how to build the quantization in the adapted and foliated
situations. In a second step, we are going to prove that the quantization commutes with the reduction.
In other words, quantize adapted objects is equivalent to quantize the induced foliated objects.

7.1 Construction in the adapted situation

In the adapted situation, we can define the operator of invariant differentiation exactly in the same
way as in the standard situation :

Definition 13. Let V be a vector space. If f ∈ C∞(PF , V ), then the invariant differential of f with
respect to ωF is the function ∇ωF f ∈ C∞(PF ,Rn∗ ⊗ V ) defined by

∇ωF f(u)(X) = Lω−1
F (X)f(u) ∀u ∈ PF , ∀X ∈ Rn.

We will also use an iterated and symmetrized version of the invariant differentiation

Definition 14. If f ∈ C∞(PF , V ) then (∇ωF )kf ∈ C∞(PF , SkRn∗ ⊗ V ) is defined by

(∇ωF )kf(u)(X1, . . . , Xk) =
1
k!

∑
ν

Lω−1
F (Xν1 ) ◦ . . . ◦ Lω−1

F (Xνk )f(u)

for X1, . . . , Xk ∈ Rn.

Proposition 7. If v ∈ Rn and if pn,q(v) = 0, then ω−1
F (v) is tangent to FP 2 .

Proof. Indeed, as pn,qωF = Fp2∗ω(F), one has ω(F)(Fp2
∗ω
−1
F (v)) = 0. As Fp2

∗ω
−1
F (v) is then tangent

to FP 2N , one can easily show that ω−1
F (v) is then tangent to FP 2 .

In the adapted situation, the invariant differentiation has a particular property :

Proposition 8. If f is a foliated function on PF , then

(∇ω
k
F f)(v1, . . . , vk) = (∇ω

k
F f)((0, pn,qv1), . . . , (0, pn,qvk)).
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Proof. Indeed, one can show that if f is constant along the leaves of FP 2 , then Lω−1
F (0,pn,qv)

f is a
foliated function too if v ∈ Rn. Indeed, if X is tangent to FP 2 , then LXLω−1

F (0,pn,qv)
f = 0. To show

that, it suffices to prove that L[X,ω−1
F (0,pn,qv)]

f = 0. The fact that iXω(F) = iXdω(F) = 0 if X is

tangent to FP 2N , that pn,qωF = Fp2∗ω(F) and that Fp2
∗X is tangent to FP 2N if X is tangent to FP 2

implies that iXpn,qωF = iXpn,qdωF = 0 if X is tangent to FP 2 .

Remark that as the kernel of pn,qωF has a dimension equal to the dimension of FP 2 (i.e. p+np), the
kernel of pn,qωF is equal to the tangent space to FP 2 . One has then 0 = pn,qdωF (X,ω−1

F (0, pn,qv)) =
X.(pn,qv) − ω−1

F (0, pn,qv).(pn,qωF (X)) − pn,qωF ([X,ω−1
F (0, pn,qv)]). As the first two terms are equal

to 0, the third term vanishes too.

One has then that [X,ω−1
F (0, pn,qv)] is tangent to FP 2 and then L[X,ω−1

F (0,pn,qv)]
f = 0.

One concludes using the fact that ω−1
F (v) is tangent to FP 2 if pn,q(v) = 0.

In the adapted situation, we define a divergence operator analogous to the divergence operator
defined in [MR05].

We fix a basis (e1, . . . , en) of Rn and we denote by (ε1, . . . , εn) the dual basis in Rn∗.

Definition 15. The Divergence operator with respect to the Cartan connection ωF is defined by

DivωF : C∞(PF , Sk(Rn))→ C∞(PF , Sk−1(Rn)) : S 7→
n∑

j=p+1

i(εj)∇ωFej S,

where i denotes the inner product.

Remark. If S ∈ C∞(PF , Sk(Rn)) and if f ∈ C∞(PF ,R;FP 2), thanks to Proposition 8, we have

〈Divω
l
F S,∇ω

k−l
F f〉 = 〈pn,q Divω

l
F S, pn,q∇ω

k−l
F f〉.

One can then easily adapt Proposition 4, Lemma 7, Lemma 8, Propositions 9 and 10 from [MR05]:

Proposition 9. Let (V, ρ) be a representation of GL(n, q,R). If f belongs to C∞(PF , V )GL(n,q,R),
then ∇ωF f ∈ C∞(PF ,Rn∗ ⊗ V )GL(n,q,R).

Proof. The proof is exactly similar to the one of Proposition 4 in [MR05].

In the same way, we have the following result :

Proposition 10. Let ρ be the action of GL(q,R) on Sk(Rq) and ρ′ the induced action on Rq∗⊗Sk(Rq).
If S ∈ C∞(PF , Sk(Rn)) is such that pn,qS is foliated and that (pn,qS)(ug) = ρ(pn,qg−1)(pn,qS(u)) ∀g ∈
GL(n, q,R), then

(pn,q∇ωFS)(ug) = ρ′(pn,qg−1)(pn,q∇ωFS(u)).

Proof. The proof is analogous to the proof of the previous result.

(pn,q∇ωFS)(ug) = ρ′(pn,qg)−1(pn,q∇ωFS)(u) ∀u ∈ PF ,∀g ∈ GL(n, q,R)

⇐⇒

(pn,q∇ωFS)(ug)(X) = [ρ′(pn,qg)−1(pn,q∇ωFS)(u)](X) ∀u ∈ PF ,∀g ∈ GL(n, q,R),∀X ∈ Rq

⇐⇒

(Lω−1
F (0,X)pn,qS)(ug) = ρ(pn,qg−1)(Lω−1

F (0,(pn,qg)X)pn,qS)(u) ∀u ∈ PF ,∀g ∈ GL(n, q,R),∀X ∈ Rq.

⇐⇒

(Lω−1
F (0,X)pn,qS)(ug) = ρ(pn,qg−1)(Lω−1

F (g(0,X))pn,qS)(u) ∀u ∈ PF ,∀g ∈ GL(n, q,R),∀X ∈ Rq,



Quantization of Singular spaces 16

using the fact that pn,qS is foliated. If one denotes by ϕt the flow of ω−1
F (0, X) and by ϕ′t the flow of

ω−1
F (g(0, X)), it suffices then to verify that

d

dt
pn,qS(ϕt(ug))|t=0 = ρ(pn,qg−1)

d

dt
pn,qS(ϕ′t(u))|t=0 ∀u ∈ PF ,∀g ∈ GL(n, q,R).

One concludes using the fact that
ϕt(ug) = ϕ′t(u)g

because the fields ω−1
F (g(0, X)) and ω−1

F (0, X) are Rg-linked.

Proposition 11. Let ρ be the action of GL(q,R) on Sk(Rq) and ρ′ the action on Sk−1(Rq). If
S ∈ C∞(PF , Sk(Rn)) is such that pn,qS is foliated and that (pn,qS)(ug) = ρ(pn,qg−1)(pn,qS(u)) ∀g ∈
GL(n, q,R), then

(pn,q DivωF S)(ug) = ρ′(pn,qg−1)(pn,q DivωF S(u)).

Proof. This can be checked directly from the definition of the divergence and from the proposition
10.

Proposition 12. For every S ∈ C∞(PF , Sk(Rn)) such that (pn,qS)(ug) = ρ(pn,qg−1)(pn,qS(u)) ∀g ∈
GL(n, q,R), we have

pn,q[Lh∗ DivωF S − DivωF Lh∗S] = (q + 2k − 1)pn,qi(0, h)S,

for every h ∈ Rq∗.

Proof. First we remark that the Lie derivative with respect to a vector field commutes with the
evaluation : if η1, . . . , ηk−1 ∈ Rq∗, we have

(Lh∗pn,q DivωF S)(η1, . . . , ηk−1) = Lh∗(pn,q DivωF S(η1, . . . , ηk−1))
=

∑n
j=p+1(Lh∗Lω−1

F (ej)
pn,qS(pn,qεj , η1, . . . , ηk−1)).

Now, the definition of a Cartan connection implies the relation

[h∗, ω−1
F (X)] = ω−1

F ([h,X]), ∀h ∈ gl(n, q,R)⊕ Rq∗, X ∈ Rn,

where the bracket on the right is the one of sl(n + 1,R). It follows that the expression we have to
compute is equal to

n∑
j=p+1

(Lω−1
F (ej)

Lh∗pn,qS(pn,qεj , η1, . . . , ηk−1) + (L[h,ej ]∗pn,qS)(pn,qεj , η1, . . . , ηk−1)).

Finally, we obtain

pn,q DivωF (Lh∗S)(η1, . . . , ηk−1)−
∑n
j=p+1(ρ∗(pn,q[h, ej ])pn,qS)(pn,qεj , η1, . . . , ηk−1)

= pn,q DivωF (Lh∗S)(η1, . . . , ηk−1) +
∑n
j=p+1(ρ∗(pn,q(h⊗ ej + 〈h, ej〉Id))pn,qS)(pn,qεj , η1, . . . , ηk−1).

The result then easily follows from the definition of ρ on Sk(Rq).

Proposition 13. If S is an equivariant function on PF representing an adapted symbol, we have

pn,q[Lh∗(DivωF )lS − (DivωF )lLh∗S] = l(q + 2k − l)pn,q[i(h)(DivωF )l−1S],

for every h ∈ Rq∗.

Proof. For l = 1, this is simply the proposition 12. Then the result follows by induction, using
propositions 11 and 12.
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Proposition 14. If f ∈ C∞(PF ,R)GL(n,q,R), then

Lh∗(∇ωF )kf − (∇ωF )kLh∗f = −k(k − 1)(∇ωF )k−1f ∨ h,

for every h ∈ Rq∗.

Proof. The proof goes exactly as in [MR05].

Theorem 12. In the adapted situation, the formula giving the quantization QF is then the following :

QF (∇F , s)(f) = p2∗−1

F (
k∑
l=0

Ck,l〈Divω
l
F ŝ,∇ω

k−l
F
s f̂〉) (21)

if

Ck,l =
(k − 1) · · · (k − l)

(q + 2k − 1) · · · (q + 2k − l)

(
k
l

)
,∀l ≥ 1, Ck,0 = 1.

Proof. The proof goes as in [MR05].

7.2 Construction in the foliated situation

In the foliated situation, one can define the invariant differentiation in this way :

Proposition 15. The following definition makes sense : if f is a foliated function on P (F), then

(∇ω(F)kf)(v1, . . . , vk) =
1
k!

∑
ν

Lω(F)−1(vν1 ) ◦ . . . ◦ Lω(F)−1(vνk )f(u),

where ω(F)−1(v) is a vector field such that its image by ω(F) is equal to v.

Proof. One has to show that the definition is independent of the choice of the vector field. Indeed,
two such vector fields differ by a vector field tangent to FP 2N and one can show that if f is constant
along the leaves of FP 2N , then Lω(F)−1(v)f is a foliated function too if v ∈ Rq. Indeed, if X is tangent
to FP 2N , then LXLω(F)−1(v)f = 0. To show that, it suffices to prove that L[X,ω(F)−1(v)]f = 0.

One has 0 = dω(F)(X,ω(F)−1(v)) = X.v − ω(F)−1(v).ω(F)(X) − ω(F)([X,ω(F)−1(v)]). As the
first two terms are equal to 0, the third term vanishes too. One has then that [X,ω(F)−1(v)] is tangent
to FP 2N and then L[X,ω(F)−1(v)]f = 0.

In the foliated situation, we define the divergence operator in this way :

Definition 16. The Divergence operator with respect to the Cartan connection ω(F) is defined by

Divω(F) : C∞(P (F), Sk(Rq);FP 2N )→ C∞(P (F), Sk−1(Rq);FP 2N ) : S 7→
q∑
j=1

i(εj)∇ω(F)
ej S.

One can then easily adapt the propositions 9, 11, 12, 13, 14. The proofs of these propositions are
completely similar to the proofs of the corresponding results in [MR05].

Proposition 16. If f is a GL(q,R)-equivariant foliated function on P (F) then ∇ω(F)f is GL(q,R)-
equivariant too.

Proposition 17. If S ∈ C∞(P (F), Sk(Rq);FP 2N )GL(q,R), then Divω(F) S ∈ C∞(P (F), Sk−1(Rq);FP 2N )GL(q,R).

Proposition 18. For every S ∈ C∞(P (F), Sk(Rq);FP 2N )GL(q,R) we have

Lh∗ Divω(F) S − Divω(F) Lh∗S = (q + 2k − 1)i(h)S,

for every h ∈ Rq∗.
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Theorem 13. For every S ∈ C∞(P (F), Sk(Rq);FP 2N )GL(q,R), we have

Lh∗(Divω(F))lS − (Divω(F))lLh∗S = l(q + 2k − l)i(h)(Divω(F))l−1S,

for every h ∈ Rq∗.

Theorem 14. If f ∈ C∞(P (F),R;FP 2N )GL(q,R), then

Lh∗(∇ω(F))kf − (∇ω(F))kLh∗f = −k(k − 1)(∇ω(F))k−1f ∨ h,

for every h ∈ Rq∗.

Theorem 15. In the foliated situation, the formula giving the quantization Q(F) is the following :

Q(F)(∇(F), s)(f) = (p2(F))∗
−1

(
k∑
l=0

Ck,l〈Divω(F)l ŝ,∇ω(F)k−l

s f̂〉)

if

Ck,l =
(k − 1) · · · (k − l)

(q + 2k − 1) · · · (q + 2k − l)

(
k
l

)
,∀l ≥ 1, Ck,0 = 1.

7.3 Quantization commutes with reduction

Proposition 19. If f is an equivariant function on PF representing a basic function, then

(∇ω
k
F f)(v1, . . . , vk) = Fp2∗(∇ω(F)k(Fπ̂f))(pn,qv1, . . . , pn,qvk).

Proof. Indeed, one has first that Fp2
∗ω
−1
F (v) is equal to ω(F)−1(pn,qv) modulo a vector field tangent

to FP 2N . By induction, if the proposition is true to k − 1, it is true for k :

(∇ω
k
F f)(v1, . . . , vk) = Lω−1

F (vk)
(∇ω

k−1
F f)(v1, . . . , vk−1)

= Lω−1
F (vk)

Fp2∗(∇ω(F)k−1
(Fπ̂f))(pn,qv1, . . . , pn,qvk−1)

= Fp2∗(Lω(F)−1(pn,qvk)∇
ω(F)k−1

(Fπ̂f))(pn,qv1, . . . , pn,qvk−1)

= Fp2∗(∇ω(F)k(Fπ̂f))(pn,qv1, . . . , pn,qvk).

In an other part,

Proposition 20. If S is an equivariant function on PF representing an adapted symbol, then

pn,q(Divω
l
F S) = Fp2∗(Divω(F)l(Fπ̂S)).

Proof. Indeed, by induction, if it is true to l − 1, it is true for l :

pn,q(Divω
l
F S) = pn,q

n∑
j=p+1

i(εj)Lω−1
F (ej)

(Divω
l−1
F S)

=
n∑

j=p+1

Lω−1
F (ej)

pn,qi(εj)(Divω
l−1
F S)

=
n∑

j=p+1

Lω−1
F (ej)

i(pn,qεj)Fp2∗(Divω(F)l−1
(Fπ̂S))

=
n∑

j=p+1

Fp2∗Lω(F)−1(pn,qej)i(pn,qε
j)(Divω(F)l−1

(Fπ̂S)).
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Theorem 16. If S is an equivariant function on PF representing an adapted symbol and if f is an
equivariant function on PF representing a basic function, then

〈Divω
l
F S,∇ω

k−l
F f〉 = Fp2∗〈Divω(F)l(Fπ̂S),∇ω(F)k−l(Fπ̂f)〉

if S is of degree k. The quantization commutes then with the reduction :

QF (∇F )(s)(f) = Q(F)(∇(F))(Fπs)(f).

Proof. Indeed, if Divω
l
F S = v1 ∨ . . . ∨ vk−l,

〈Divω
l
F S,∇ω

k−l
F f〉 = (∇ω

k−l
F f)(v1, . . . , vk−l)

= Fp2∗(∇ω(F)k−l(Fπ̂f))(pn,qv1, . . . , pn,qvk−l)

= 〈pn,q Divω
l
F S,Fp2∗∇ω(F)k−l(Fπ̂f)〉.

The conclusion follows then from Theorems 12 and 15.
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