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Abstract

Many mathematical models of physical phenomena that have been proposed in recent years
require more general spaces than manifolds. When taking into account the symmetry group of the
model, we get a reduced model on the (singular) orbit space of the symmetry group action. We
investigate quantization of singular spaces obtained as leaf closure spaces of regular Riemannian
foliations on compact manifolds. These contain the orbit spaces of compact group actions and
orbifolds. Our method uses foliation theory as a desingularization technique for such singular
spaces. A quantization procedure on the orbit space of the symmetry group - that commutes with
reduction - can be obtained from constructions which combine different geometries associated with
foliations and new techniques originated in Equivariant Quantization. The present paper contains
the first of two steps needed to achieve these just detailed goals.
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1 Introduction

Quantization of singular spaces is an emerging issue that has been addressed in an increasing num-
ber of recent works, see e.g. [BHP06], [Hue02], [Hue06], [HRS07], [Hui07], [PH02] ...

One of the reasons for this growing popularity originates from current developments in Theoret-
ical Physics related with reduction of the number of degrees of freedom of a dynamical system with
symmetries. Explicitly, if a symmetry Lie group acts on the phase space or the configuration space of
a general mechanical system, the quotient space is usually a singular space, an orbifold or a stratified
space ... The challenge consists in the quest for a quantization procedure for these singular spaces that
in addition commutes with reduction.

In this work, we investigate quantization of singular spaces obtained as leaf closure spaces of reg-
ular Riemannian foliations of compact manifolds. These contain the orbit spaces of compact group
actions (see [Rich01]). We build a quantization that commutes by construction with projection onto
the quotient.

Our method uses the foliation as desingularization of the orbit space M /F, where F is the singular
Riemannian foliation made up by the closures of the leaves of the regular Riemannian foliation F on
manifold M. More precisely, we combine Foliation Theory with recent techniques from Natural and
Equivariant Quantization. Close match can indeed be expected, as both topics are tightly connected
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with natural bundles and natural operators.

Equivariant quantization, in the sense of C. Duval, P. Lecomte, and V. Ovsienko, developed as from
1996, see [LMT96], [LO99], [DLO99], [Lec00], [BMO01], [DO01], [BHMPO02], [BMO06]. This procedure
requires equivariance of the quantization map with respect to the action of a finite-dimensional Lie
subgroup of the symmetry group Diff (R™) of configuration space R™. Equivariant quantization has first
been studied in Euclidean space, mainly for the projective and conformal subgroups, then extended in
2001 to arbitrary manifolds, see [Lec01]. An equivariant, or better, a natural quantization on a smooth
manifold M is a vector space isomorphism

Q[V] : Pol(T* M) 5 s — Q[V](s) € D(M)

that verifies some normalization condition and maps, in this paper, a smooth function s € Pol(T* M)
of “phase space” T* M, which is polynomial along the fibers, to a differential operator Q[V](s) € D(M)
that acts on functions f € C°°(M) of “configuration space” M. The quantization map Q[V] depends
on the projective class [V] of an arbitrary torsionless covariant derivative V on M, and it is natural
with respect to all its arguments and for the action of the group Diff (M) of all local diffeomorphisms
of M, i.e.

Q6" V1(6"5)(6" 1) = 6" (QIVI()(f))

Vs € Pol(T*M),Vf € C°(M),V¢ € Diff(M). Existence of such natural and projectively invariant
quantizations has been investigated in several works, see e.g. [Bor02], [MRO05], [Han06].

In Foliation Theory, one distinguishes different geometries associated with a foliated manifold
(M, F) (defined by a Heefliger cocycle), namely adapted geometry, foliated geometry, and transverse
geometry. We denote in this introduction objects of the adapted (resp. foliated, transverse) “world”
by Os (resp. Oq, O1), whereas objects of leaf closure space M /F are denoted by Oy. Ideally, geometric
structures of level 4 project onto geometric structures of level i — 1, so that p(O;) = O;_1, if we agree
to denote temporarily any of these projections by p. Let us also recall that, roughly, adapted objects
are objects on M with some special properties, foliated objects are locally constant along the leaves
and live in the normal bundle of the foliation, and that transverse objects are objects on the transverse
manifold IV, which are H-invariant, where transverse manifold N and the holonomy pseudo-group H
depend on the chosen defining cocycle of foliation F. In order to build a quantization Qo on M/F,
which commutes with the projection onto this singular space, we construct adapted, foliated, and
transverse quantizations @3, QJ2, and ()1, in such a way that

Qi—1lpVil(psi)(p fi) = p(Qi[Vil(si)(fi)), Vie{l,2,3}. (1)

Hence,
Qo[Vol(s0)(fo) = Qolp’Vsl(p*s3) (p” f3) = p* (Qs[Vs](s3)(f3)) -

Observe that adapted quantization @3 quantizes objects on M, whereas singular quantization o only
quantizes the objects of M/F. Eventually, quantization actually commutes with projection onto the
quotient.

The proofs of the three stages mentioned in Equation (1) are not equally hard. Since foliated geo-
metric objects on a foliated manifold (M, F) are in 1-to-1 correspondence with H-invariant geometric
objects on the transverse manifold N associated with the chosen cocycle, it is clear that stage Q2 — Q1
is quite obvious. The passages Q3 — Q2 between the “big” adapted and “small” foliated quantizations,
as well as transition @1 — Qo from transverse quantization to singular quantization are much more
intricate.

In order to limit the length of the article, we publish the stages Q3 — Q2 and @1 — Qg in two different
works. This publication deals with the first approximation Q3 — Q2 for quantization of singular spaces.
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2 Natural and projectively invariant quantization

The constructions of Q3 and Q)2 are nontrivial extensions to the adapted and foliated contexts of
the proof of existence of natural and projectively invariant quantization maps on an arbitrary smooth
manifold, see [MRO05]. In the present section, we concisely describe the basic ideas of this technique.
We refer the reader to [MRO5] for more details.

Throughout this note, we denote by M a smooth, Hausdorff and second countable manifold of
dimension n.

We denote by Cps the space of torsion-free linear connections on M. A quantization on a manifold
M is a linear bijection Qs from the space of symbols S(M) to the space of differential operators D(M)
such that

o(Qu(s)) =s, VseSHM), Vk €N,

where o denotes the principal symbol operator. A natural and projectively equivariant quantization is
a collection of maps (defined for every manifold M)

such that
e For all V in Cps, Qpr(V) is a quantization,

e If ¢ is a local diffeomorphism from M to IV, then one has
Qu(d"V)(9"s) = ¢"(Qn(V)(s)), VYV €Cn,Vs € S(N).

e One has Qn (V) = Qum (V') whenever V and V' are projectively equivalent torsion-free linear
connections on M.

Recall that V and V'’ are projectively equivalent if they fulfill the relation
VY =VxY +a(X)Y + (Y)X,

where « is a one-form on M.

The method used in [MRO5] to solve the problem of the natural and projectively equivariant
quantization can be divided into four steps.

In a first step, one associates in a natural and bijective way to the projective class of V a reduction P
of the second order frame bundle P2M. This reduction is called Cartan fiber bundle and its structural
group is H(n+ 1, R), the isotropy subgroup at the origin of the projective space RP" of the projective
group PGL(n + 1,R).

Next, one can associate to the symbol s an equivariant function on P in a natural and bijective
way.

In a third step, one associates naturally to the projective class of V a Cartan connection on P
called the normal Cartan connection w.

Finally, thanks to an operation called invariant differentiation builded from w, one constructs a
formula on P expressing the natural and projectively equivariant qunatization, this formula being
exactly the same as the formula giving the projectively equivariant quantization on R"™ if one replaces
the invariant differentiation by the partial derivatives.

3 Adapted and foliated quantizations

In this section, we are going to define precisely the notions of adapted and foliated objects in order
to define the problems of adapted and foliated quantizations.
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3.1 Foliations

Let (M,F) be a foliated manifold, more precisely, let M be an n-dimensional smooth manifold
endowed with a regular foliation F of dimension p (and codimension ¢ = n — p). It is well-known that
such a foliation can be defined as an involutive subbundle T'F C T M of constant rank p.

Foliation F can also be viewed as a partition into (maximal integral) p-dimensional smooth sub-
manifolds or leaves, such that in appropriate or adapted charts (U;, ¢;) the connected components of
the traces on U; of these leaves lie in M as R? in R™ [pages of a book], with transition diffeomorphisms
of type ¥j; = ¢j 0 ;" : 4i(Uss) 3 (w,y) — (Yjin(2,),¥ji2(y)) € 6;(Uji), Uiy = U N Uj [the 1 map
a page onto a page]. The pages provide by transport to manifold M the so-called plaques or slices and
these glue together from chart to chart—in the way specified by the transition diffeomorphisms—to
give maximal connected injectively immersed submanifolds, precisely the leaves of the foliation.

Eventually, foliation F can be described by means of a Heefliger cocycle U = (Uj, fi, gi;) mod-
elled on a g-dimensional smooth manifold Ny. The U; form an open cover of M and the f; : U; —
fi(U;) =: N; C Ny are submersions that have connected fibers [the connected components of the
traces on the U; of the leaves of F] and are subject to the transition conditions gj;f; = f;, where
the gj; : fi(Ui;) =2 Ny — Nj; := f;(Uj;) are diffeomorphisms that verify the usual cocycle condition
Gijgjk = Gik- We refer to the disjoint union N = II;N; as the (smooth, ¢-dimensional) transverse
manifold and to H :=)g;;( as the pseudogroup of (locally defined) diffeomorphisms or holonomy pseu-
dogroup associated with the chosen cocycle U.

A vector field X € Vect(M), such that [X,Y] € I'(TF), for all Y € I'(T'F), is said to be adapted
(to the foliation). The space Vect (M) of adapted vector fields is obviously a Lie subalgebra of the
Lie algebra Vect(M), and the space T'(TF) of tangent (to the foliation) vector fields is an ideal of
Vectz(M). The quotient algebra Vect(M,F) = Vectx(M)/T(TF) is the algebra of foliated vector
fields.

Let (z,y) be local coordinates of M that are adapted to F, i.e. x = (z!,...,2P) are leaf coordinates
and y = (y',...,y%) are transverse coordinates. The local form of an arbitrary (resp. tangent,
adapted, foliated) vector field is then X = >V | X*(x, )0, + > X'(2,9)d;, O, = Oy, 0; = O,s (resp.
X = Zf:l XL(xa y)aw

P q
X =) X'(z,y)0, + > X'(y)o, (2)

=1 i=1
q .
[X] =D X ()], (3)
i=1
where [.] denotes the classes in the aforementioned quotient algebra).

A smooth function f € C*°(M) is foliated (or basic) if and only if Ly f = 0,VY € I'(TF). We
denote by C°°(M, F) the space of all foliated functions of (M, F). A differential k-form w € QF(M)
is foliated (or basic) if and only if iy w = iy dw = 0,VY € T'(TF), where notations are self-explaining.
Again, we denote by QF(M, F) the space of all foliated differential k-forms of (M, F).

It is easily checked that C>°(M, F) x Vect(M,F) > (f, [X]) — fIX] = [fX] € Vect(M,F) defines
a C°°(M,F)-module structure on Vect(M, F). Furthermore, Vect(M,F) x C>*(M,F) > ([X], f) —
Lix1f := Lx f € C°(M,F) is the natural action of foliated vector fields on foliated functions. Even-
tually, the contraction of a foliated 1-form o € Q!(M, F) and a foliated vector field [X] € Vect(M, F)
is a foliated function a([X]) := a(X) € C>°(M, F).

3.2 Adapted and foliated frame bundles

3.2.1 Adapted frame bundles

Since an adapted linear frame is a frame (v1, ..., vptq) of a fiber T, M, m € M, the first vectors
(v1,...,vp) of which form a frame of 7}, F, we denote by PzM the principal bundle PzM = {j5(f)| f :
0cUCR"— MTyf € Isom(R",TyoyM),Tf(TFo) = TF}, where Fy is the canonical regular p-
dimensional foliation of R™. The structure group of PxM is G}, » = {js(¢)lp : 0 € U C R" —
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R™, ¢(0) = 0,Top € GL(n,R), To(TFy) = TFo}, its action on PyM is canonical. We call PxM the
principal bundle of adapted r-frames on M. For instance, P}-M =: LyM is the bundle of adapted
linear frames of M with structure group

G =Lna®) ={(§ § )i AcCLOR.Bedp xR DECLGR]. ()

The foliation F induces a foliation Fpr on PzM whose leaves are locally defined by the sets of
frames ji f such that P"(y)(j§ f) is constant, with

P'(y) : jo.f = do(y o foig),

where y denotes the passing to the transverse coordinates and where ¢, denotes the canonical inclusion
of R? into R".

3.2.2 Foliated frame bundles

Let U and V be neighborhoods of 0 in R? and let f : U — M, g : V — M be smooth maps
transverse to F (it means that im f, ® TF = TM) with f(0) = g(0) = z. Let W be a neighborhood
of z and let F': W — R? be a submersion constant along the leaves of F. We say that f and g define
the same transverse r-frame at x if F o f and F o g have the same partial derivatives up to order r
at 0. This definition is independent of the choice of the submersion F' (one can take F' equal to the
passing y to the transverse coordinates of an adapted system). Let J§(f) denote the transverse r-frame
determined by f and let P"(M,F) be the set of transverse r-frames on M. Then 7" : P"(M,F) — M,
7" (J5(f)) = =, is a principal bundle over M with group G} where G7 is the group of r-frames at
0 € R?. The right action of G}, on P"(M, F) is given by Ji (f)jy(9) = J§(fog), for Ji(f) € P"(M, F),
js(9) € Gy

One can view the frame J7(f) as the following set of ¢ foliated vectors :

q q
O oo H¥Okrpls -2 D gy o ) [Orsp)-
k=1 k=1

The foliation F induces a foliation Fprn on P"(M,F) whose leaves are locally defined by the sets
of frames J§(f) such that P"N(y)(J§(f)) is constant, with

P'N(y) : Jof = Jo(yo f).

3.3 Adapted and foliated connections
3.3.1 Adapted connections

Definition 1. Let (M,F) be a foliated manifold. An adapted connection V£ is a linear torsion-free
connection on M, such that Vg : Vectz(M) x T(TF) — T(TF) and Vx : Vectx(M) x Vectz(M) —
Vectz(M).

Remark In the following, we use the Einstein summation convention, and, as already adumbrated
above, Latin indices ¢, k, ... (resp. Greek indices ¢, k, A. .., German indices i, ¢, [...) are systematically
and implicitly assumed to vary in {1,...,n} (resp. {1,...,p}, {1,...,q}).

As torsionlessness means that Vz y X = Vg xY+[Y, X|, it follows that V£ : T(TF) x Vect z(M) —
D(TF).

Further, locally, in adapted coordinates, we have Vi xY = (X'0;Y* + 'k X'Y") O, so that con-
dition V£ : Vect (M) x T'(TF) — T'(TF) means that

Fz)\ - Fg\z = 07 (5)

whereas condition V£ : Vectz(M) x Vectz(M) — Vectz(M) is then automatically verified provided
that Christoffel’s symbols T'}; are independent of z, I'f; = T (y).
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Proposition 1. If two adapted connections V z and V'y of a foliated manifold (M, F) are projectively
equivalent, the corresponding differential 1-form o € QY (M) is foliated, i.e. o € QY(M,F).

Proof. In adapted local coordinates (z, y), projective equivalence of V z and V'z reads (I'/F —T'k) XY =
@ XYk + ;Y X* Vk. When writing this equation for X* = §%, Y! = 6}, and k = [, we get, in view
of Equation (5), o, = 0. If we now choose X* = ¢?, Yl = (5%, and k =i # [, we finally see that ay is
independent of x. O

3.3.2 Foliated connections

Definition 2. Consider a foliated manifold (M, F). A foliated torsion-free connection V(F) on (M, F)
is a bilinear map V(F) : Vect(M, F) x Vect(M,F) — Vect(M,F), such that, for all f € C°(M,F)
and all [X],[Y] € Vect(M, F), the following conditions hold true:

o V(F)sxilY] = fV(F)xlYl,
o V(F)x(fIY]) = (Lixyf) Y]+ fFV(F)x Y],
o V(FA)x)[Y] = V(F)m[X] + [[X], [Y]].

In view of the above definitions, the local form (in adapted coordinates (x,y)) of a foliated vector
field is [X] = X'[0;], X' = X'(y), and a foliated connection reads

V(F)xY] = X" (LpgY') [0] + XY T(F)ig [, T(F)i = D(F)i(y).

Definition 3. Two foliated connections V(F) and V'(F) of a foliated manifold (M,F) are pro-
jectively equivalent, if and only if there is a foliated 1-form o € QY(M,F), such that, for all
[X], [Y] € Vect(M, F), one has V'(F)x)[Y]-V(F)x)[Y] = a([X]))[Y] + a([Y])[X].

3.3.3 Link between adapted and foliated connections
Eventually, adapted connections induce foliated connections.

Proposition 2. Let (M,F) be a foliated manifold of codimension q. Any adapted connection V£ of
M induces a foliated connection V(F), defined by V(F)x)[Y] := [V£ xY]. In adapted coordinates,
Christoffel’s symbols T'(F)k, of V(F) coincide with the corresponding Christoffel symbols 1"}_—7“ of V.
Eventually, projective classes of adapted connections induce projective classes of foliated connections.

Proof. It immediately follows from the definition of adapted connections that for any [X],[Y] €
Vect(M, F), the class V(F)x[Y] := [V xY] € Vect(M, F) is well-defined. All properties of fo-
liated connections are obviously satisfied. If (z,y) are adapted coordinates, we have I'(F)¥[0] =
V(F)aglo] = [Vro,0] = [[% 0] = T% ([0, since T%; = ' (y). The remark on projective
structures follows immediately from preceding observations. O

3.4 Adapted and foliated differential operators
3.4.1 Adapted differential operators

Definition 4. An adapted differential operator of a foliated manifold (M, F) (where F is of dimension
p and codimension q) is an endomorphism D € Endg(C°(M)) that reads in any system of adapted
coordinates (z,y) = (z,..., 2P, yt, ... ,y9) over any open subset U C M,

1 P p+1 p+aq
Dly = Z Dy 0y ... 80,00 ... 8,
1<k
where k € N is independent of the considered adapted chart, where D, € C*(U), and where the

coefficients D, with v* = ... = 4P = 0 are locally defined foliated functions. The smallest possible
integer k is called the order of operator D.

We denote by Dx(M) the filtered space of all adapted differential operators on (M, F).
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3.4.2 Foliated differential operators

Definition 5. A foliated differential operator of a foliated manifold (M, F) (where F is of dimension
p and codimension q) is an endomorphism D € Endg(C(M,F)) that reads in any system of adapted
coordinates (z,y) = (z,... 2P, yt, ..., y9) over any open subset U C M,

Dly= > Dy} ...00,

[v|<k

where k € N is independent of the considered adapted chart and where the coefficients D., € C*(U, F)
are locally defined foliated functions. The smallest possible integer k is called the order of operator D.

We denote by D(M, F) (resp. D¥(M, F)) the space of all foliated differential operators (resp. all
foliated differential operators of order < k). Of course, the usual filtration

D(M, F) = UpenDF (M, F) (6)

holds true.

3.4.3 Link between adapted and foliated differential operators

The space of adapted differential operators projects onto the space of foliated differential operators
in the following way :

SNop,ay.onen on - Y. Dy ..o

ya-
lvI<k [vI<k,yt=...=y?=0

3.5 Adapted and foliated symbols
3.5.1 Adapted symbols
Definition 6. The graded space Sg(M) associated to Dg(M) is the space of adapted symbols on
(M, F).
p+1

1 +
One can view the symbol [Zlvl <k Dy o, 8;’5 8;1 8;: q] as the symmetric contravariant
p+aq

,Yl ’Yp ,Yp+1 v
tensor fields Z|7|=k D,0,V...VO5 V 5‘y1 oV Oy

Theorem 1. Let (M, F) be a foliated manifold of codimension q. We then have a canonical vector
space isomorphism:

~: SE(M) 3 s 5 € OF(LeM, S*R™) aL(n.q.r)s (7)
where the notation CF means that p, 48 is foliated for Fp:, with p, 4 denoting the canonical projection

from SFR™ to SFRY.

Proof. One associates to s = ZM:k D, 8311 V.. .\/83: V@;fﬂ V.. .v@;:ﬂ the function § that associates
_. D, (A e TV V(AT e ) Vv (A e 1 L v (A e yoHe to jd(f), where A denotes
v|=k =Y P P+ p+q 0
the representation of j f in the adapted coordinates system. Thanks to the fact that A € GL(n,q,R),
one sees easily that D, is foliated for ! = ... =~? =0 if and only if p, ,3 is foliated for F pL- O
3.5.2 Foliated symbols
Definition 7. The graded space S(M,F) associated with the filtered space D(M,F),

S(M,F) = @enS* (M, F) = @renDF (M, F)/D*1 (M, F),

is the space of foliated symbols. The principal symbol of a foliated differential operator D is then
simply its class [D] in the associated graded space.



Quantization of Singular spaces 8
g

Theorem 2. Let (M,F) be a foliated manifold of codimension q. We then have a canonical vector
space isomorphism:

~: SH(M,F) 3 5= 5 € C*(LN(M, F), S"R%; FLn) Gr(q.5)- (8)

1
Proof. One associates to s = [}, <, Dy 01 .. 6;];1} the function 5 that associates } -, _;, D (Atey)'v

V(A7 te,)" to JA(f), where A denotes the representation of Jg f in the adapted coordinates system.
It is then obvious that s is foliated if and only if § is foliated for Fp . O

3.5.3 Link between adapted and foliated symbols
First define the following canonical projection :
B PEM — PP(M,F) : jof v Jy(f 0ig).

Projection of adapted differential operators onto foliated differential operators induce a projection
of adapted symbols onto foliated symbols that we will denote by 7. In fact, we have the

Proposition 3. If 77 denotes projection *r read through the isomorphism ~ detailed in Theorems 2

and 1, we have, for any symbol s € S}?—(M), keN,

(775) ©"p" = png 05, (9)
Proof. Tt is quite obvious thanks to the description of “7 and to the description of the equivariant
functions given in theorems 1 and 2. O

3.6 Adapted and foliated quantizations

The definitions of adapted and foliated natural projectively equivariant quantizations that we will
denote respectively by Q# and Q(F) are obtained simply by replacing the standard objects in the
definition of the natural projectively equivariant quantization by adapted or foliated objects. Simply
note that Qx and Q(F) have to commute with foliated morphisms as they are defined in [Wol89] page
340. Recall that ¢ is a foliated morphism between two foliated manifolds (M7, Fy) and (Ma, Fs) if
O TF1 CTF and ¢*f2 = Fi.

The aim is to show that this two quantizations ”commute with the reduction”. In other words :

Qr(VF)(s)(f) = QF)(V(F))(Tms)(f)

if V£, s and f are respectively adapted connection, symbol and foliated function.

4 Construction of the Cartan fiber bundle

4.1 Construction in the adapted case

The isotropy subgroup of [e,1] in the projective space RP™ for the natural action of

A B I
PGL(n+1,¢+ 1,R) = 0 D n" |:AeGL(p,R),Begllpxq,R),
0 o a (10)

R € R?,D € GL(¢q,R),h" € R, o € R™*,a € Ry} /Ry id
on RP" is

A B 0
Hn+1l,¢+1,R) = 0 D 0 |:AeGL({pR),BeglpxqR),
0 a

a//

(11)

D € GL(q,R), 0 € R%* a € Ry} /Roid.



Quantization of Singular spaces 9
g

The group H(n+ 1,¢+ 1,R) acts on R™ by linear fractional transformations that leave the origin
fixed. This allows to view H(n + 1,q + 1,R) as a subgroup of G2 (see [KobaT72]).

Theorem 3. For any foliated manifold (M,F), there exists a natural application from the set of
projective classes of adapted connections [V g| into the set of reductions Pr of the principal bundle
P}_—M of F-adapted second order frames on M to structure group H(n +1,q+ 1,R).

Proof. The proof is exactly similar to that of Proposition 7.2 p.147 in [Koba72]. The reduction asso-
ciated to the class of [V £] is equal over a point x to jafH(n + 1,q + 1,R), where j2f is equal in an
adapted coordinates system to

(xia 5127 - ;cl)a

where the I, are Christoffel’s symbols of [V £]. O

4.2 Construction in the foliated case

Theorem 4. For any foliated manifold (M,F) of codimension q, there exists a natural application
from the set of projective classes of foliated connections [V(F)] into the set of reductions P(F) of
P2(M, F) to structure group H(q+1,R) C G2.

Proof. The proof is exactly similar to that of Theorem 3. The reduction associated to the class of
[V(F)] is equal over a point = to JZfH(q+1,R), where J3 f is equal in an adapted coordinates system
to

(1‘17 6%? _Fél)v
where the T} are Christoffel’s symbols of V(F). O

4.3 Link between the adapted and the foliated Cartan fiber bundle

Proposition 4. For any foliated manifold (M, F) endowed with an adapted projective structure and
the induced foliated projective structure, projection 7p? restricts to a projection *p? : Pr — P(F).

Proof. Tt is easily seen thanks to proposition 2 and thanks to descriptions of Pz and P(F) given in
theorems 4 and 3. O

5 Lift of symbols

We denote by p’r (resp. p"(F)), r > 1, the canonical projection
Py PEM — Pr M g (f) = G (f) (respp” (F) : PT(M, F) — P™"1(M, F) : Jg(f) = J5 ' (f))-

5.1 Lift of adapted symbols

Theorem 5. Let (M, F) be a foliated manifold of codimension q endowed with an adapted projective
structure [V £], and denote by Pr the corresponding reduction of P#M to H(n+1,q+ 1,R). We then
have the following canonical vector space isomorphism.:

A:SE(M) 3 s §=30p% € OF(Pr,S*R™) g(ni1.011.8): (12)
where the notation CZ means that py 48 is foliated for Fpe.

Proof. Using Theorem 1, the proof is exactly similar to the proof of proposition 3 in [MR05]. O

5.2 Lift of foliated symbols

Theorem 6. Let (M,F) be a foliated manifold of codimension q endowed with a foliated projective
structure [V (F)], and denote by P(F) the corresponding reduction of P*(M,F) to H(q+ 1,R) C G2.
The following canonical vector space isomorphism holds :

AN:SF(M,F) 3 s §=30p*(F) € C®(P(F), S*RY Fpen ) (g 41.1)- (13)
Proof. Using Theorem 2, the proof is exactly similar too to the proof of proposition 3 in [MR05]. O
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5.3 Link between the lifts

Proposition 5. If 7# denotes projection 7 read through the isomorphism A detailed in Theorems 6

and 5, we have, for any symbol s € Sﬁ-(M), keN,
(}-ﬁ'é) ofp? = Drq © 8. (14)

Proof. Tt is obvious thanks to (9) and thanks to the fact that p*(F) o”p? =7pl o pZ%. O

6 Construction of the normal Cartan connection

The method exposed in [MRO5] in order to solve the problem of the natural and projectively
equivariant quantization uses the notion of normal Cartan connection. We are going to adapt this
object firstly to the adapted situation and secondly to the foliated situation. Finally, in a third step,
we are going to analyze the link between the adapted normal Cartan connection and the foliated one.

6.1 Construction in the adapted case
First, recall the notion of Cartan connection on a principal fiber bundle :

Definition 8. Let G be a Lie group and H a closed subgroup. Denote by g and by the corresponding
Lie algebras. Let P — M be a principal H-bundle over M, such that dim M = dimG/H. A Cartan
connection on P is a g-valued one-form w on P such that

e If R, denotes the right action of a € H on P, then Riw = Ad(a™!)w,
o If k* is the vertical vector field associated to k € b, then w(k*) =k,

o Vu e Pw, :Ty,P — g is a linear bijection.

Recall too the definition of the curvature of a Cartan connection :

Definition 9. If w is a Cartan connection defined on a H-principal bundle P, then its curvature € is
defined as usual by

Q:der%[w,w]. (15)

Next, one adapts Theorem 4.2. cited in [Koba72] p.135 in the following way :

Theorem 7. Let Pr be an H(n+ 1,9 + 1,R)-pri_ncipal fiber bundle on a manifold M. If one has a
one-form w_y with values in R™ of components w* and a one-form wy with values in gl(n,q,R) (the
Lie algebra of GL(n,q,R)) of components w;» that satisfy the three following conditions :

e w 1(h*) =0, wo(h*)=ho, VhE€ glin,qR)+RY where hg is the projection with respect to
gl(n, q7 R) Of h7

o (R))*(w—1+wo) = (Ad a ') (w_1 +wo), Va € H(n+1,q+ 1,R), where Ad a™" is the ap-
plication from R™ + gl(n, q, R) + R?*/R9* in itself induced by the adjoint action Ad a=! from
R™ + gl(n, ¢, R) + R?* into R™ 4 gl(n, ¢, R) + R?*,

o Ifw_1(X) =0, then X is vertical,
and the following additional condition :
dwi:—wac/\wk, (16)

then there is a unique Cartan connection w = w_1+wo+w, whose curvature Q0 of components (0; Q;, Q)
satisfies the following property :

Y Kjy=0, Vie{p+1,...,n}V,
i=p+1
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where 1
Q=) s Kjuw A

Proof. The proof goes as in [Koba72]. Let w = (wi;wé;wj) and W = (wi;wj;wj) be two Cartan

connections with the given (wi;w;). If 0; —wj = Y. Ajrw”, where the coefficients A, are functions
on P,if Q = (O;ﬁ;;ﬁj) denotes the curvature of @ and if ﬁ; =3 %F;kl w® Awt, one can prove in the
same way as in [Koba72] that

n

Z (Kip — Ki) = (q+ 1) (Au — Aw), (17)
i=p+1
Z (F,ljil - K;il) =(q—1)Au + (A — Ay). (18)
i=p+1
If w and @ are normal Cartan connections, i.e., Z?:p—&-l F;Zl = Z?:p-‘,—l K]Z:il = 0, then A;; = 0 and

hence w = w. This prove the uniqueness of the normal Cartan connection.

To prove the existence, one assumes that there is a Cartan connection w = (wi;wj-;wj) with the
given (w';w%). The goal is then to find functions Aj; such that @ = (w';w!;w;) becomes a normal
Cartan connection. If 1 < j < p, A is of course equal to zero. If p+1<j<nandifp+1<k <n,

one can view thanks to (17) and (18) that it suffices to set

n

1 , 1 - ,
Ajp = ————— Z Kijp — — Z K- (19)
(@+1)(g-1) 2=, g—1 =

If 1 < k < p, one sees thanks to (18) that it suffices to set

n 1 :
Ajp = — Z ~Kly. (20)
i=p+1 q

The last step of the proof that shows the existence of one Cartan connection w that ”begins” by (w?, w;)

is exactly similar to the corresponding step in [Koba72]. O

One can remark that the codimension of the foliation F has to be different from 1.
One can define on Pr an one-form in the following way :

Definition 10. If u = j2f is a point belonging to Pr and if X is a tangent vector to Pr at u, the
canonical form O of Pr is the 1-form with values in R™ @ gl(n, ¢, R) defined at the point u in the
following way :

0‘7:;U<X) = (Plf);el(p‘%:*X%
where e is the frame at the origin of R™ represented by the identity matriz.

Theorem 8. One can associate to the projective class of an adapted connection [V ] a Cartan con-
nection on Pr in a natural way. We will denote by wr this Cartan connection.

Proof. The canonical one-form defined above is the restriction to Pz of the canonical one-form of
P2(M) defined in [Koba72] p.140. It is too the restriction to Pr of the restriction to P of the canonical
one-form of P?(M), where P is the projective structure associated to V £ defined in [Koba72]. Thanks
to the fact that the canonical one-form on P satisfies the properties of Theorem 4.2. mentioned in
[Koba72], 0 satisfies the properties mentioned in Theorem 7. One defines then the adapted normal
Cartan connection wr as the unique Cartan connection on Pg beginning by 6r and satisfying the
property linked to the curvature cited in Theorem 7. Because of the naturality of this property, the
naturality of 87 and the uniqueness of the Cartan connection mentioned in Theorem 7, wz is a Cartan
connection on Pr associated naturally to the class [V £]. O
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6.2 Construction in the foliated case

The reduction P(F) is actually an example of a foliated bundle defined in [Blum84]. The Cartan
connection that we are going to define on it is an example of a Cartan connection in a foliated bundle
defined too in [Blum84]. It is the reason for which we are going first to recall the definitions of these
notions.

Definition 11. Let M be a manifold of dimension n and F a codimension q foliation of M. Let H
be a Lie group and w: P — M be a principal H-bundle. We say that w: P — M is a foliated bundle
if there is a foliation F of P satisfying

o F is H-invariant,

o E,NV, ={0} forallue P,

o Tou(Ey) =TFr) for allu € P,
where E is the tangent bundle 0f.7} and V is the bundle of vertical vectors.

Definition 12. Let F be a codimension q foliation of M. Let G be a Lie group and let H be a closed
subgroup of G with dimension(G/H) = q. Let 7 : P — M be a foliated principal H-bundle. Let g be
the Lie algebra of G and let b be the Lie algebra of H. For each A € b, let A* be the corresponding
fundamental vector field on P.

A Cartan connection in the foliated bundle m: P — M is a g-valued one-form w on P satisfying

o w(A*)=A for all A€ b,

e (Ry)*w = Ad(a=Y)w for all a € H where R, denotes the right translation by a acting on P and
Ad(a™1) is the adjoint action of a=t on g,

e For eachu € P, wy : T,P — g is onto and w,(E,) =0,
o Lxw =0 for all X € T(E) where T'(E) denotes the smooth sections of E.
Theorem 9. The reduction P(F) is a foliated bundle.

Proof. One can easily view that Fp2y satisfies the properties of the definition of a foliated bundle :
first, Fpan is H(q + 1, R)-invariant because, if (U;, f;, gi;) is a cocycle corresponding to the foliation
F,if JBf € P(F) and if j2(fio f) is constant, then j2(f; 0 foh) = j3(fio f)oji(h) is constant, where
jo(h) € H(g +1,R).

If X €V, then X = Luexp(th)|;—o, where h € h(g + 1,R). If u = JZ(f) and if exp(th) = j2(g:),

then j2(f; o f o g;) is constant if X is tangent to the foliation Fpzy. One has then that JZ(f o g;) is
constant and then X = 0.

If X is tangent to the foliation Fp2y, then X = £~(t)|;—0, where v(t) € Fpzy. Then 72,(X) =
4 72(y(t))|t=0, that belongs to TFy(,) because m2(v(t)) belongs to F. Indeed, if y(t) = J3(f),
fiom?(y(t)) is constant because j2(f; o f;) is constant. O
Theorem 10. One can associate to the class of a foliated connection [V(F)] a Cartan connection on
P(F) in a natural way. We will denote this connection by w(F).

Proof. If (Ui, fi, gij) is a Haefliger cocycle of F, one can easily seen that the image by P2N(f;) of
P(F)|y, is a reduction of P2N(f;)(P?M (U;, F)) to H(q+ 1,R). We will denote by P this reduction.

One builds locally the normal Cartan connection w(F) on P(F) in the following way : if @ denotes
the normal Cartan connection on P, then w(F)|p2ar(u,,7) := (P2N(fi))*@.

One can show (see [Blum84]) that the connection w(F) is a well-defined foliated Cartan connection.

Thanks to the naturality of the normal Cartan connection, w(F) is associated naturally to the class
of the foliated connection [V (F)]. O
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One can remark that, as the foliation Fpzy is of dimension p, the third condition of the definition
of a foliated Cartan connection implies that, in our case, the kernel of w(F), will be exactly equal to
the tangent space to Fpzy.

6.3 Link between adapted and foliated Cartan connections

Remark. The image by P2y of P(F) is a reduction of P?(U) to H(q+ 1,R), where U is an open set
of RY. We will denote by Py this reduction of P2(U) to H(q+1,R). If wy denotes the normal Cartan
connection on Py, then w(F)p2 w-1Py = (P?y)*wy. Indeed, if ¢ denotes the diffeomorphism such

that ¢ oy = f;, then P?¢(Py) = P. By naturality of the normal Cartan connection, wy = (P2?¢)*©w
and then (P2%y)*wy = (P?f;)*©0

Proposition 6. If 0y denotes the canonical one-form on Py, then
(P2y © (%2))*0U = pn,q9f~
Proof. Tt is a simple verification using the definitions of the canonical forms 6y and 6. O

Theorem 11. The connections wr and w(F) are linked by the following relation :
}1-32*(,0(.7:) = Pp gWr.
Proof. To prove that, it suffices to prove that
(P2y o (}bz))*wU = Pn,qWF-

If one denotes by V; the connection on U whose Christoffel symbols are the Christoffel symbols of
V(F) read through the passing to transverse coordinates vy, if (¢!,...,€") denotes the canonical basis
of R™ (resp. (e!,...,€?) denotes the canonical basis of R?*), one has

wr=Tr— > > Trpn) 05 e

j=p+1k=1

4 a
(resp. wy =Yy — ZZ T k) (0 —1)€),

j=1k=1

where Tz (resp. Tp) is the Cartan connection induced by V£ (resp. Vi), I'z (resp. T'y) is the
deformation tensor corresponding to Vi (resp. Vi) (see [CSS97]).

One recalls that T (resp. Ty) is the unique Cartan connection such that its component with
respect to R9* vanishes on the section (2,8}, —T%,) (resp. (z',8;, —T}y)). If o5 (resp. oy) denotes
the section (2, 8%, —F;k) (resp. (',8}, —F}E)), the connection Tz (resp. Ty) is defined in this way :

Yru(X)=Ad(b"")0x((0F 0 7*). X) + B,
(resp. Ty o(X) = Ad(b"1)0y ((op 0 7). X) + B),

where 72 is the projection on M (resp. U), Ry(ox(m%(u))) = u (resp. Ry(oy(m?(u))) = u) and

B* = X — Rporm2X (resp. B* = X — Rp.op.m2X).

The deformation tensor I'z (resp. I'yy) is defined in this way :

Lr(X) = (Tr —wr)(wz' (X))
(resp. Ty(X) = (Ty — wp)(wiH(X))).

In fact, the sections (z°,d}, F;k) and (2,4}, —T},) correspond to the section o of the end of the
theorem 7, the connections T 7 and Ty correspond to the connection w of the proof of this theorem, the
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connections wr and wy correspond to the connection w whereas the I'j, correspond to the functions
_Ajk-

We can easily prove that (P?y o (%2))*Yy = p,, T+ using proposition 6.

Next, prove that (P?y o (%?))* Z?’:l b1 (Cu i) (0 1) = Z?:p—‘,—l Skt (TF ) (0% _p)e.
One has (P?yo (%) X7, 32111 (Do ) (0 )& = 3251 Soio1(P2yo (B%)* (Tu ju) (052, 7.
It remains then to prove that (P%y o (%?))*(Tv jk) = I'F jipi+p and that Tr j, =0if 1 <k < p.

Indeed, if 1 <k <p, I'rjr = éZ?:pH le,_-jlk7 where Rx denotes the equivariant function on Pr
representing the curvature tensor of Vz thanks to the equation (20) of the Theorem 7 and thanks to

the fact that the K}, represent the components of Rr (see [CSS97]). Thanks to the fact that Vz

is adapted, one can see that if 1 < k < p, I'r 5, = 0. Moreover, I'y ji = W(lq_l) F R{,ijk +

1 q y . . . .
P Y Ry jir» Where Ry denotes the equivariant function on Py representing the curvature tensor

of Vi whereas if p+1 <k <n, g, = W(lq_l) > iepi R + q—% > impi RY i), thanks to the

equation (19) of the Theorem 7. This allows to prove that (P?y o (%2))*(Cv jk) = I'# jipktp-
O

7 Construction of the quantization

In a first step, we are going to explain how to build the quantization in the adapted and foliated
situations. In a second step, we are going to prove that the quantization commutes with the reduction.
In other words, quantize adapted objects is equivalent to quantize the induced foliated objects.

7.1 Construction in the adapted situation

In the adapted situation, we can define the operator of invariant differentiation exactly in the same
way as in the standard situation :

Definition 13. Let V' be a vector space. If f € C®(Pg,V), then the invariant differential of f with
respect to wg is the function VY7 f € C°(Pr,R™ @ V) defined by

Ve f(u)(X) = Lyorx) f(u) Vu€ Pr, VX €R™.

We will also use an iterated and symmetrized version of the invariant differentiation

Definition 14. If f € C®(Pz,V) then (V¥7)Ff € C®(Pr, S*R™ @ V) is defined by
w 1
(VY fu) (X, ..., Xp) = o ZLW?(X”) o...0L,1x, ) f(w)

for Xq1,..., X € R™.
Proposition 7. Ifv € R" and if p,4(v) = 0, then wyz'(v) is tangent to Fp:.

Proof. Indeed, as p, qwr = p* w(F), one has w(F)(%p?,wz'(v)) = 0. As %2, w;'(v) is then tangent
to Fp2p, one can easily show that w}l(v) is then tangent to Fpe. O

In the adapted situation, the invariant differentiation has a particular property :

Proposition 8. If f is a foliated function on Pr, then

(V7 )1, 08) = (V27 £)((0, D gt1)s - - (0, P k)
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Proof. Indeed, one can show that if f is constant along the leaves of Fp2, then Lw;l (0,9m.q0) fisa
foliated function too if v € R". Indeed, if X is tangent to Fp2, then Lwa;l(O,pn qv)f = 0. To show
that, it suffices to prove that L[Xw;l(&pwv)]f = 0. The fact that ixw(F) = ixdw(F) = 0 if X is

tangent to Fp2y, that p, qwr = ]1-32*w(.7-") and that 2, X is tangent to Fp2y if X is tangent to Fp2
implies that ixp, wr = ixPn,qdwr = 0 if X is tangent to Fp.

Remark that as the kernel of p,, qwr has a dimension equal to the dimension of Fp2 (i.e. p+np), the
kernel of p, qwr is equal to the tangent space to Fp2. One has then 0 = p, qdwr (X, w;_-l((),pn)qv)) =
X (Pn,gv) — wr (0, Pnq0).(Pr,qwr (X)) — Pgwr ([X, w7 (0,pnqv)]). As the first two terms are equal
to 0, the third term vanishes too.

One has then that [X,wz"(0,pn,4v)] is tangent to Fp2 and then L[X’w;l(oﬁpnqu)]f =0.

One concludes using the fact that wyz'(v) is tangent to Fpz if py q(v) = 0. O

In the adapted situation, we define a divergence operator analogous to the divergence operator
defined in [MRO5].
We fix a basis (e1,...,e,) of R™ and we denote by (e!,...,€") the dual basis in R™*.

Definition 15. The Divergence operator with respect to the Cartan connection wgr is defined by

Div¥” : C°(Pr, SK(R™)) — C*(Pr, S (R™)) : S — > i()VE7S,

Jj=p+1
where i denotes the inner product.

Remark. If S € C®(Pg, S*(R")) and if f € C®(Pz,R; Fp2), thanks to Proposition 8, we have
(Div¥s S, V<5 ) = (pn g DIVYF 8, p, (V25 ).
One can then easily adapt Proposition 4, Lemma 7, Lemma 8, Propositions 9 and 10 from [MRO5]:

Proposition 9. Let (V,p) be a representation of GL(n,q,R). If f belongs to C*°(Pr,V)ar(n,q,r)s
then V<7 f € C(Pr,R™ @ V) aL(n,q.R)-

Proof. The proof is exactly similar to the one of Proposition 4 in [MRO05]. O
In the same way, we have the following result :

Proposition 10. Let p be the action of GL(q,R) on S¥(R?) and p' the induced action on R?* @ S*(RY).
If S € C>=(Pr, S*(R™)) is such that p, S is foliated and that (pn,S)(ug) = p(Pn.qg ™) (Pn.gS (1)) Vg €
GL(n,q,R), then

(Pn.g V<7 8)(ug) = ' (Pn.gg ™) (Pn,g V=7 S(w)).

Proof. The proof is analogous to the proof of the previous result.

(Png V" S)(ug) = p'(Pn.g9) " (Pn,g V7 S)(u) Vu € Pr, Vg € GL(n, q,R)

S
(577 8)(19)(X) = [0/ (9r.49) " (9.g V7 S)(@)](X) Yuu € P, ¥g € GL(n, ¢, R), ¥X € R
>
(Lw;1(07x)pn,q5)(ug) = p(pn,qg_l)(Lw;l(0,(pnng)x)pn,q5)(u) Yu € Pr,Vg € GL(n,q,R),VX € RY.
—

(Lw;l(o?x)pn,qs) (UQ) = p(pn7qg71)(Lw;1(g(O’X))p717qS)(U) Vu € P]:,Vg € GL(na %R)aVX € Rq7
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using the fact that p, ¢S5 is foliated. If one denotes by ¢, the flow of w;_-l((), X) and by ¢} the flow of
wz'(g9(0, X)), it suffices then to verify that

d . d
—PnaS(1(g))li=0 = p(Pn,ag~") 7:Pn.aS(#1(w)li=0 Vu € Pr,¥g € GL(n, ¢, R).

One concludes using the fact that
pi(ug) = ¢y(u)g
because the fields wz'(g(0, X)) and wz'(0, X) are R,-linked. O
Proposition 11. Let p be the action of GL(q,R) on S¥(RY) and p' the action on S*~1(RY). If
S € C>®(Pg, Sk(R™)) is such that p, oS is foliated and that (pn.4S)(ug) = p(Pn.qg™ ") (Pn.eS(w)) Vg €
GL(n,q,R), then
(Pn.q DIv7 S)(ug) = p'(Png9 ") (Pn.q DIvV7 S(u)).

Proof. This can be checked directly from the definition of the divergence and from the proposition
10. O

Proposition 12. For every S € C°°(Pg, S¥(R™)) such that (pn.qS)(ug) = p(Pn.q9™ ) (PngS(u)) Vg €
GL(n,q,R), we have

Pn.g|Ln DIv¥T S — Div*” Lj,- S| = (¢ + 2k — 1)pp 4i(0, h)S,
for every h € RY*,

Proof. First we remark that the Lie derivative with respect to a vector field commutes with the
evaluation : if n*,... n*~! € R?*, we have

(LiPr.g DIVZ S)(nty ... ,nF™1) = Ly (png Dive” S(nt, ... .0k 1)
S L Ly PragS D€ 01 1)).

Now, the definition of a Cartan connection implies the relation
[n*,wz' (X)) = wF' ((h, X]),  Vh € gl(n,¢,R) ®RT, X € R",

where the bracket on the right is the one of sl(n + 1,R). It follows that the expression we have to
compute is equal to

n

Z (Lw;l(ej)Lh*pnﬁqS(pnyqej7 7717 s 777k_1) + (L[h,e]']*pn,qs)(pn,qejv nla e 777k_1))'
j=p+1

Finally, we obtain

Pag DV (L= S) (0™ 1) = 3 3 (o (Pglhs €51)Png S) (Pra€ o0
= Png DV (Lp=S) (' ™) zj:erl(p* (Pr,g(h @ e+ (h,€5)1d))Pn,gS) (Png€ s - ).

The result then easily follows from the definition of p on S*(R?). O

Proposition 13. If S is an equivariant function on Pr representing an adapted symbol, we have
PrglLn- (Dive7)LS — (DiveF) Ly« S] = U(q + 2k — D)pn ¢ [i(R)(Dive7 )18,

for every h € R?*.

Proof. For [ = 1, this is simply the proposition 12. Then the result follows by induction, using
propositions 11 and 12. O
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Proposition 14. If f € C*°(Pr,R)gr(n,q,r), then
Ly (V) f — (V)L f = —k(k — 1)(V<7)F 1 f v i,
for every h € R?*,
Proof. The proof goes exactly as in [MRO5]. O

Theorem 12. In the adapted situation, the formula giving the quantization QF is then the following :

k k—1 .
Qr(Vrs)(f) =% (Y Cra(Diver 5,V ) (21)

1=0

if

(k—1)---(k—=1) (k:)
Cr1 = vi>1, Cgo=1.
T g2k — 1) (gt 2k \ L )T RO
Proof. The proof goes as in [MRO5]. O

7.2 Construction in the foliated situation
In the foliated situation, one can define the invariant differentiation in this way :

Proposition 15. The following definition makes sense : if f is a foliated function on P(F), then
o 1
(VI F) (o1, .. on) = o ZLw(}')*l(vyl) o...0Lyr)-1(u,,)f(0),

where w(F)~1(v) is a vector field such that its image by w(F) is equal to v.

Proof. One has to show that the definition is independent of the choice of the vector field. Indeed,
two such vector fields differ by a vector field tangent to Fpz and one can show that if f is constant
along the leaves of Fpzy, then L, r)-1(,)f is a foliated function too if v € R?. Indeed, if X is tangent
to Fpen, then Lx L, F)-1(,)f = 0. To show that, it suffices to prove that Lix ,(Fr)-1(v)f = 0.

One has 0 = dw(F)(X,w(F) 1 (v)) = X — w(F) "1 (v)w(F)(X) — w(F)([X,w(F)"1(v)]). As the
first two terms are equal to 0, the third term vanishes too. One has then that [X,w(F)~!(v)] is tangent
to Fp2n and then L[X’w(]:)—l(,u)]f = 0.

0

In the foliated situation, we define the divergence operator in this way :

Definition 16. The Divergence operator with respect to the Cartan connection w(F) is defined by

q
Div*) : € (P(F), S¥(R); Fpay) — C(P(F), S* "1 (RY); Fpay) : S =y i(e)VeFS.
j=1

One can then easily adapt the propositions 9, 11, 12, 13, 14. The proofs of these propositions are
completely similar to the proofs of the corresponding results in [MRO5].

Proposition 16. If f is a GL(g, R)-equivariant foliated function on P(F) then V¥¥)f is GL(q,R)-
equivariant too.

Proposition 17. IfS € C®(P(F), S*(RY); Fp2n) ar(qr): then Div¥T) S € C®(P(F), S*1(RY); Fpon) ar(q.®)-
Proposition 18. For every S € C*®(P(F),S*(R%); Fp2n) GL(q,r) we have
Lp- Div¥Y) § — Dive ) L. 8 = (q + 2k — 1)i(h)S,

for every h € R?*,
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Theorem 13. For every S € C*°(P(F), S¥(R?); Fp2n) GL(qr), we have

Lp- (Div¥))lg —

for every h € R?*,

(DivP) Ly, S = 1(q + 2k — 1)i(h) (DivF))i=1g,

Theorem 14. If f € C*(P(F),R; Fp2n)ar(g,r), then

Lh*(V“’(f))kf _

for every h € R?*,

(VeONRL . f = —k(k —

1) (V<)=L v h,

Theorem 15. In the foliated situation, the formula giving the quantization Q(F) is the following :

k
QUF)V(F).s)(f) = P*(F)* (O Cra(Div)' 5, v
=0

(k—1)--

(k

_l)

Ch.i

(q+2k—1)--

k
(q+2k—1) ( l

7.3 Quantization commutes with reduction

Yot 2

)

) VI>1, Cro=1.

Proposition 19. If f is an equivariant function on Pr representing a basic function, then

(V<% ) (vr, . ..

7vk)

FE.2*

p

(VW(}- ( ﬂ-f))(pn,qvh cee 7pn,qvk)-

Proof. Indeed, one has first that be*w}l(v) is equal to w(F) ™! (pn,qv) modulo a vector field tangent
to Fpzn. By induction, if the proposition is true to k — 1, it is true for & :

(V“’;f)(vl, e ,’Uk)

In an other part,

k—1
Lw;l(vk)(VWF f)(vl} cct

.7132*(vw(}') ) (fﬁf))(pn,qvla cee apn,qkal)

L

w;l(vk)

Uk—l)

* (FVE=1 T
‘7';32 (Lw(f)*l(pn qvk)v ) (]:Wf))(pmqq}l? s 7pn,qvk—1)
B (VOO (T

f))(pn,qvla cee 7pn,qvk)-

Proposition 20. If S is an equivariant function on Pr representing an adapted symbol, then

2*(Dlv‘”(}- (7%89)).

Dn q(Dlvwf S) = %

Proof. Indeed, by induction, if it is true to [ — 1, it is true for [ :

Pn,q Z

Jj=p+1

pn,q(DiV“’lf S)

>

Jj= p+1

>

Jj=p+1
n

>

Jj=p+1

L

L

752

p

*

L., Dives " 8)

Pagi(e)(DiveF " S)

Lw(]:)—l

pan)P

(pn,qej)z

(Dlv w(F) (779))

i(pn,ge?) DIV (F75)).



Quantization of Singular spaces 19

Theorem 16. If S is an equivariant function on Pr representing an adapted symbol and if f is an
equivariant function on Pr representing a basic function, then

(Divr 5, V7 f) = B2 (Div* ") (F78), v (Fr f)
if S is of degree k. The quantization commutes then with the reduction :
Qr(VF)(s)(f) = QF)(V(F)(Tms)(f)-

Proof. Indeed, if Div¥r § = v1 V... VUgp_y,

(V< ) (o1, vp)

= BV T (TR ) DrgUis - PrgUr—1)
. wl * w - ~

= <pn,q Div FS,]iJ2 \Y (F)* l(}—ﬂf»-

(Div¥F S, V5 ' f)

The conclusion follows then from Theorems 12 and 15. O
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