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ABSTRACT

UAV Formation Flight utilizing a Low Cost, Open Source Configuration

Christian Lopez

The control of multiple unmanned aerial vehicles (UAVs) in a swarm or coop-

erative team scenario has been a topic of great interest for well over a decade,

growing steadily with the advancements in UAV technologies. In the academic

community, a majority of the studies conducted rely on simulation to test devel-

oped control strategies, with only a few institutions known to have nurtured the

infrastructure required to propel multiple UAV control studies beyond simulation

and into experimental testing. With the Cal Poly UAV FLOC Project, such an

infrastructure was created, paving the way for future experimentation with multi-

ple UAV control systems. The control system architecture presented was built on

concepts developed in previous work by Cal Poly faculty and graduate students.

An outer-loop formation flight controller based on a virtual waypoint implemen-

tation of potential function guidance was developed for use on an embedded

microcontroller. A commercially-available autopilot system, designed for fully

autonomous waypoint navigation utilizing low cost hardware and open source

software, was modified to include the formation flight controller and an inter-

UAV communication network. A hardware-in-the-loop (HIL) simulation was set

up for multiple UAV testing and was utilized to verify the functionality of the

modified autopilot system. HIL simulation results demonstrated leader-follower

formation convergence to 15 meters as well as formation flight with three UAVs.

Several sets of flight tests were conducted, demonstrating a successful leader-

follower formation, but with relative distance convergence only reaching a steady

state value of approximately 35 ± 5 meters away from the leader.

iv



ACKNOWLEDGMENTS

This work is dedicated to my grandfather, Harold Condon. At the age of 95,

He continues to be an inspiration for me, driving me to follow his example: To

work hard towards my goals, and to keep my family close to my heart.

With such an ambitious, multi-faceted project, I am extremely fortunate to

have had so much support from faculty, peers, friends, and family. Without

so many people willing to donate their time and expertise, I could have only

accomplished a fraction of the work that is presented here.

First, I would like to acknowledge Dr. Eric Mehiel who served as my adviser,

guided my work, and provided the resources to make my lofty project goals a

reality. I would also like to acknowledge the other members of my thesis com-

mittee, Dr. Rob McDonald, Dr. Kira Abercromby, and Dr. Charles Birdsong.

Their presence and support throughout the various stages of the project was a

valuable resource, and I am grateful to have had such an involved committee. I

am especially grateful to Dr. McDonald who accommodated me in the Cal Poly

UAV Lab and provided a significant amount of guidance throughout the project.

I must also make a special acknowledgment of Dr. Abercromby’s involvement,

especially her persistent encouragement to finish strong towards the end of this

odyssey.

Early in the process, the easiest risk to identify in my project goals was the

reliance I would have on other students to help me during the testing phases

of this work. Thankfully, I have had the steadfast support of a core group of

my peers who I am lucky enough to call my friends. I would not have had a

chance to do any flight testing if it were not for Cory Suebert, Brian Marchini,

and Martin Bialy, who generously served as my pilots throughout the testing. A

v



special thanks to Cory Seubert for being a part of nearly every flight test, despite

working and living four hours away in LA. I would also like to acknowledge

Adam Chase, Dan Brown, Alex Gary, Lance Genato, Trevor Goehring, Brad

Shab, Chris Satterwhite, Greg Gradwell, and Robby Campbell. Their assistance

during the pre-flight preparations and flight testing were instrumental to the

successes achieved in this work. In addition to their help during the flight tests,

I must acknowledge Adam Chase, Brian Marchini, and Michael Darling for the

moral support they provided daily during the long hours spent together in the

UAV lab, as well as their assistance reviewing and editing this work. Additionally,

a special thanks goes out to Cory Hackett-Robles, Aleksey Pavlov, Scott Sawyer,

Derek Goss, and Todor Anguelov. All of these good friends helped me to keep

some level of sanity during this long process, and often found their way out to

the flight range early in the morning to provide their support both during, and

after the testing.

This project commanded a great deal of determination, often testing my men-

tal and physical limits. I am not sure where I would be today without Monica

McPherrin, who served as a constant beacon of positive energy and fed me a

steady stream of love and encouragement. I am thankful for her patience and un-

derstanding, as well as her family’s support of my efforts. Especially her mother

Tonya, who assisted by editing several sections in this work.

Similarly the love and support provided by my family has enabled me to

succeed throughout my college career. I am increasingly grateful for the solid

foundation my uncles Ed and Norman provided for my academic success through

their Montessori schools. Their value of education and their continuing support

of my academic achievement, including the review and editing of this work, has

been a large factor in my success. I must also acknowledge the unwavering en-

vi



couragement and well-timed phone calls from my brother, Eddie. No matter how

far apart our worlds tend to be, he can always be counted on to provide the

guidance and insight that only a brother can have.

Last but not least, I am eternally grateful for the unconditional love and sup-

port provided by my father, Emilio, his partner, Troy, and my mother, Margee.

The opportunities they have provided for me have allowed me to reach for some-

thing only a small percentage of people in this world have achieved. All that I

am, I am because of them. My successes are their successes.

vii



TABLE OF CONTENTS

LIST OF TABLES xi

LIST OF FIGURES xii

CHAPTER

1 Introduction 1

1.1 Topic Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 General Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 8

2.5 The Role of UAVs in the World Today . . . . . . . . . . . . . . . 8

2.6 Small, Mini, and Micro UAVs . . . . . . . . . . . . . . . . . . . . 10

2.7 Learning From Nature . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 The Challenge of Situational Awareness . . . . . . . . . . . . . . 16

2.9 Potential Function Guidance . . . . . . . . . . . . . . . . . . . . 17

2.10 The Role of Simulation and Flight Testing . . . . . . . . . . . . 18

2.11 Multiple UAV Control Literature Review . . . . . . . . . . . . . 21

2.12 Previous Work at Cal Poly . . . . . . . . . . . . . . . . . . . . . 27

2.13 Unique Nomenclature Utilized . . . . . . . . . . . . . . . . . . . 29

3 Autopilot Control System Architecture 31

3.14 Example Control System Architectures . . . . . . . . . . . . . . 32

3.15 Control System Architecture Presented . . . . . . . . . . . . . . 39

3.16 Near-Field and Far-Field Considerations . . . . . . . . . . . . . . 40

3.17 Swarm Organization Algorithm . . . . . . . . . . . . . . . . . . . 41

3.18 Potential Function Guidance Algorithm . . . . . . . . . . . . . . 45

3.19 Virtual Waypoint Placement and Airspeed Commands . . . . . . 53

3.20 Algorithm Parameter Selection . . . . . . . . . . . . . . . . . . . 55

4 Achieving Relative Situational Awareness 59

viii



4.21 Communication of Observed States . . . . . . . . . . . . . . . . . 60

4.22 Detailed State-Sharing Strategy . . . . . . . . . . . . . . . . . . 63

4.23 Limitations of Strategy . . . . . . . . . . . . . . . . . . . . . . . 65

5 Hardware 66

5.24 Selection Methodology . . . . . . . . . . . . . . . . . . . . . . . . 66

5.25 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.26 Communication Options . . . . . . . . . . . . . . . . . . . . . . . 70

5.27 Selected Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 ArduPlane 80

6.28 The ArduPlane project . . . . . . . . . . . . . . . . . . . . . . . 80

6.29 Standard Functionality . . . . . . . . . . . . . . . . . . . . . . . 81

6.30 Software Process Flow . . . . . . . . . . . . . . . . . . . . . . . . 82

6.31 Controller Implementation . . . . . . . . . . . . . . . . . . . . . 84

6.32 Compatible Ground Control Stations . . . . . . . . . . . . . . . 85

7 Modification to ArduPlane for Formation Flight 87

7.33 New Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.34 New Arduino Sketches . . . . . . . . . . . . . . . . . . . . . . . . 91

7.35 New Configuration Files and “common” Header Files . . . . . . 93

7.36 New Control Modes . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.37 New Additions to Assist in Software Debugging, Test Transparency,
and Post-Test Analysis . . . . . . . . . . . . . . . . . . . . . . . 95

7.38 Implementation in to the ArduPlane v2.66 Process Flow . . . . . 98

8 GPS 2D Relative Error Testing and Evaluation 99

8.39 Source of GPS Error . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.40 GPS 2D Relative Error Experiment . . . . . . . . . . . . . . . . 100

9 Simulation 106

9.41 Requirements for Formation Flight Simulation . . . . . . . . . . 106

9.42 Simulation Approaches . . . . . . . . . . . . . . . . . . . . . . . 106

9.43 Aircraft Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10 HIL Simulation 115

ix



10.44 HIL Simulation Set-up . . . . . . . . . . . . . . . . . . . . . . . . 115

10.45 HIL Simulation Procedures . . . . . . . . . . . . . . . . . . . . . 118

10.46 HIL Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 123

10.47 Data Collection and Reduction Techniques . . . . . . . . . . . . 135

11 Flight Testing 137

11.48 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

11.49 Test Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

11.50 Formation Flight Test Set-up . . . . . . . . . . . . . . . . . . . . 141

11.51 Standardized Checklists . . . . . . . . . . . . . . . . . . . . . . . 142

11.52 General Flight Procedures . . . . . . . . . . . . . . . . . . . . . . 143

12 Flight Test Results 145

12.53 Initial Demonstration Attempts . . . . . . . . . . . . . . . . . . 145

12.54 4th Demonstration Attempt . . . . . . . . . . . . . . . . . . . . . 149

12.55 Data Collection and Reduction Techniques . . . . . . . . . . . . 160

13 Conclusion 161

13.56 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

13.57 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

BIBLIOGRAPHY 175

APPENDICES

A. Checklists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

x



LIST OF TABLES

5.1 Sky Surfer Specifications . . . . . . . . . . . . . . . . . . . . . . 73

5.2 RC Equipment Selected . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Specifications of the APM 2 . . . . . . . . . . . . . . . . . . . . . 76

5.4 Specifications for the selected communication hardware . . . . . 78

10.1 Matrix of simulation run cases and intended purpose . . . . . . . 120

10.2 Algorithm parameter values used during HIL simulation cases . . 122

11.1 Various stages of flight testing . . . . . . . . . . . . . . . . . . . 140

12.1 Summary of results and observed issues for the flight test demon-

stration attempts . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xi



LIST OF FIGURES

2.1 UAV class definitions adapted from reference [19] . . . . . . . . . 10

2.2 Small and Micro UAV classification in terms of wingspan and
weight from reference [66] . . . . . . . . . . . . . . . . . . . . . . 12

3.1 A baseline representation of a UAV control system architecture. . 32

3.2 A system architecture for formation flight using a rule-based al-
gorithm and simplified dynamics, presented in [61]. . . . . . . . . 33

3.3 A system architecture for formation flight simulation using a
6DOF aircraft model, presented in [86]. . . . . . . . . . . . . . . 34

3.4 System architectures presented in previous works utilizing a com-
mon thread of PFG for terrain and obstacle avoidance . . . . . . 35

3.5 A general control system architecture for formation flight demon-
stration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 The system architecture presented in this work. . . . . . . . . . . 41

3.7 The determination of global versus local leadership . . . . . . . . 42

3.8 Examples of side determination for swarm organization logic . . 43

3.9 A 2D representation of an attracitve potential field which com-
bines a linear and quadratic potential function . . . . . . . . . . 47

3.10 The process used for the near-field correction of the attractive
potential function gradient values . . . . . . . . . . . . . . . . . 49

3.11 Examples of the effect of various potential function parameters . 52

3.12 The physical interpretation of the new potential function guidance
algorithm sizing metrics . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Examples of various communication network configuration op-
tions for a state-sharing strategy to achieve relative situational
awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 The approximate dimensions of the test area expected to be uti-
lized for flight testing . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Flow-down for system hardware requirements . . . . . . . . . . . 69

5.3 Typical range and data rates for various wireless technologies . . 71

5.4 The Sky Surfer 1400 . . . . . . . . . . . . . . . . . . . . . . . . . 72

xii



6.1 The loop-oriented process flow for ArduPlane v2.66 . . . . . . . . 83

6.2 The PID control structure used in ArduPlane v2.66 . . . . . . . 85

7.1 The Augmented process flow for ArduPlane v2.66 FLOC Edition 98

8.1 The GPS relative distance error evaluation test set-up at the Cal
Poly EFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2 The calculated 2D RMS relative distance error value compared
to the derived 2D RMS relative distance error value. . . . . . . . 103

8.3 The calculated probability curve for relative distance error that
is less than the relative distance itself . . . . . . . . . . . . . . . 105

9.1 Flow-down for multiple UAV simulation requirements . . . . . . 107

9.2 State Space Equations for a Linearized Aircraft Model . . . . . . 109

9.3 The Sky Surfer model constructed using the XFLR5 interface,
used to calculate stability derivatives . . . . . . . . . . . . . . . . 111

9.4 ”Swing Test” performed to determine inertial properties of the
SkySurfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10.1 HIL simulation software setup for a single UAV using XPlane v9,
APM Mission Planner v1.2.32, and ArduPlane v2.66 . . . . . . . 116

10.2 HIL simulation hardware setup for a single UAV . . . . . . . . . 117

10.3 HIL simulation hardware setup for 3 UAVs . . . . . . . . . . . . 118

10.5 Goal location for leader loiter flight path . . . . . . . . . . . . . 121

10.6 HIL Simulation: Convergence of Huey and Dewey in leader-follower
formation, with Dewey leading . . . . . . . . . . . . . . . . . . . 123

10.7 HIL Simulation: Ground track for Huey and Dewey in leader-
follower formation, with Dewey leading . . . . . . . . . . . . . . 124

10.8 HIL Simulation: The effect of HIL station differences on conver-
gence of Huey and Dewey in leader-follower formation . . . . . . 126

10.9 HIL Simulation: Formation convergence of Huey, Dewey, and
Louie with leader-follower relationships dictated by the decen-
tralized swarming algorithm . . . . . . . . . . . . . . . . . . . . 127

10.10 HIL Simulation: Formation cohesion of Huey, Dewey, and Louie . 129

10.11 HIL Simulation: Ground Track for Huey, Dewey, and Louie three-
member formation test . . . . . . . . . . . . . . . . . . . . . . . 130

xiii



10.12 HIL Simulation: Ground Track for Huey, Dewey, and Louie dur-
ing formation leadership recovery test . . . . . . . . . . . . . . . 133

10.13 HIL Simulation: Ground Track for Huey, Dewey, and Louie dur-
ing formation collision avoidance test . . . . . . . . . . . . . . . 134

10.14 FLOC APM Log Parser Tool . . . . . . . . . . . . . . . . . . . . 135

11.1 Flow-down for formation flight testing requirements . . . . . . . 138

11.2 The ground track of a mission flown to tune the outer-loop navi-
gation PID gains . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

12.1 Photograph of Huey and Dewey in a leader-follower formation
with Dewey tracking Huey . . . . . . . . . . . . . . . . . . . . . 147

12.2 Photograph of Huey and Louie in a leader-follower formation with
Louie tracking Huey . . . . . . . . . . . . . . . . . . . . . . . . . 148

12.3 Ground Track plots for fully-autonomous formation flight test
attempt with Huey and Dewey in a leader-follower formation . . 150

12.4 Convergence of Huey and Dewey in a leader-follower formation
with Dewey in the lead, flown manually . . . . . . . . . . . . . . 152

12.5 Ground track for Huey and Dewey in a leader-follower formation
with Dewey in the lead, flown manually . . . . . . . . . . . . . . 153

12.6 Best example of convergence for Huey and Dewey in a leader-
follower formation with Dewey in the lead, flown manually . . . . 154

12.7 Ground track for the best example of convergence for Huey and
Dewey in a leader-follower formation with Dewey in the lead,
flown manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

12.8 Photograph of Huey and Dewey in a leader-follower configuration,
with Dewey leading while being flown manually from the ground 156

12.9 Best example of convergence for Huey and Dewey in a leader-
follower formation, broken down by dimension in Dewey’s LNAV
reference frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

12.10 An example of the collision avoidance algorithm built in to PFG
doing its job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

12.11 The relationship between leader velocity changes and follower
convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xiv



1 Introduction

1.1 Topic Area

The increased use of small and micro unmanned aerial vehicles (UAVs) by

soldiers on the battlefield and, more recently, by various civil institutions, has

brought renewed focus on how these technologies can be utilized effectively. Dra-

matic improvements have been made towards the utility of small UAVs, driven by

parallel advancements in subsystem technologies. Yet, small UAV applications

will always be limited by reduced payload capability. Many of the applications

considered for small UAVs marginalize these payload limitations by proposing

the use of multiple systems to accomplish a common goal, capitalizing on the re-

duced cost and increased redundancy associated with using multiple small UAVs

instead of one large UAV.

For many of these proposed applications, multiple UAV control strategies

must be developed to enable driving capabilities such as vehicle cooperation,

collision avoidance, and task coordination. General UAV control strategy devel-

opment requires several levels of simulation and testing. For small UAVs, a larger

gap exists between the computational power available on the desktop comput-

ers used during preliminary simulation and the small embedded control systems

used in flight. These computational limitations often generate pushback on the

control system design, and place greater emphasis on lower-level simulation, such

as hardware-in-the-loop (HIL) simulation in order to accurately characterize per-

formance during the development process. Furthermore, multiple UAV control

strategy development requires that much of this simulation process is carried out

in parallel for each system, allowing for the control strategy effectiveness to be

1



evaluated at a global level. It is this multiple UAV control strategy development

and evaluation process for small UAVs that serves as the topic area of this paper.

1.2 General Problem

Control strategies for multiple UAV applications have received significant at-

tention in recent years as the utility of small UAVs has increased and cost has

decreased. However, the majority of this attention has been directed towards

high-level simulation, with very few cases of full implementation and flight test

evaluation using embedded control systems. This lack of attention is understand-

able considering the amount of redundant equipment required to support such

evaluations.

An example of such a study could include the development of a control strat-

egy designed to coordinate four UAVs charged with a mission to optimally search

for unhealthy radiation levels in a region recently affected by a reactor leak at

a nuclear energy plant. In order to fully evaluate the ability of the designed

control strategy to accomplish the objectives of such a mission, at least four com-

plete UAVs must be acquired along with their associated support systems and

test instrumentation. The cost of four redundant systems alone can prove to

be prohibitive, especially when equipment failures and system losses, which are

unavoidable during flight testing, continuously add to the cost of sustaining such

a study. Beyond cost, the higher combined probability of debilitating component

failure substantially elevates the risk associated with performing successful flight

tests for the evaluation of the control strategy.

While UAVs are multi-disciplinary by nature, the additional subsystems re-

quired to enable relative situational awareness and control for more than one sys-

2



tem are rooted heavily in engineering disciplines not traditionally associated with

UAV control strategy development. Additionally, the majority of previous work

demonstrating multiple UAV control systems have all started from scratch, de-

veloping custom embedded control systems and testbed aircraft from the ground

up, tailoring these systems for the specific application considered. This approach

does not provide a legitimate baseline for other projects, nor does it encourage co-

ordinated research on multiple UAV control that is linked together by a common

thread.

Lower cost and greater availability of small UAV components has significantly

lowered the barriers to establishing the necessary infrastructure for these studies.

Additionally, the surge of low-cost hardware and open-source software for UAVs

has yielded a launch pad to begin control system research without having to start

from scratch and develop the required lower-level autopilot control system. By

utilizing open-source software and not developing an entirely new custom archi-

tecture, a baseline is set that is adaptable to several projects and supported by a

larger community, providing a common thread not only among related projects

at Cal Poly, but also among academics and hobbyists around the world.

1.3 Project Goals

Previous work at Cal Poly has focused on the development and high-level

simulation of a control strategy for accomplishing formation flight with multiple

UAVs, based on concepts such as leader-follower swarm logic, potential function

guidance, and virtual waypoint navigation. The scope of this work is to build

upon these previous studies and progress the control strategy development and

evaluation all the way to flight test demonstration. The goals of this work are

summarized as:

3



• Acquisition of the necessary infrastructure for multiple UAV control studies

at Cal Poly

• Adaptation of the developed control strategies for an embedded control

system

• Development of a viable communication scheme

• Implementation of a parallel simulation tool able to accommodate multiple

UAV control strategies

• Demonstration of formation flight through flight testing

Each of the first four goals listed truly serve as milestones which must be reached

in order to accomplish the final goal of formation flight demonstration through

flight testing.

Expanding on these goals: first, in order to empower future related studies

at Cal Poly in a way that will be both meaningful and sustainable, low cost

hardware and open source software will be selected wherever feasible. Second,

the formation flight control strategy developed in previous work was developed in

Matlab and Simulink and must be adapted for implementation on a commercially-

available control system. Third, a communication scheme must be developed to

allow the UAVs to exchange state information necessary to accomplish the coor-

dination required for formation flight. Additionally, the communication scheme

must be developed to accommodate adequate system monitoring from a portable

ground control station for real-time evaluation during simulation and flight test-

ing . Fourth, a HIL simulation tool must be set up to support multiple systems

in parallel so that the outer loop multiple UAV control strategy can be tested

in simulation and verified before attempting to demonstrate the strategy during

flight testing. Lastly, demonstration of the formation flight control strategy can

be divided into two stages:

4



• Leader-Follower convergence to a relative position offset of 15 meters with

an offset error tolerance of ± 10 meters

• Flock convergence with two linked Leader-Follower pairs, a total of three

UAVs, with each pair achieving the 15 meter offset convergence requirement

with the same offset error tolerance of ± 10 meters

These target offset values and error tolerances are heavily influenced by GPS

relative position error, discussed in more detail in Section 8. Additionally, con-

troller performance expectation and the testbed’s susceptibility to atmospheric

disturbances also factor into the derivation of this goal.

The scope of this project does not aim to make vast improvements to the

control strategy itself or solve complex problems such as decentralized relative

state estimation. Instead, this work will contribute a baseline model for future

multiple UAV control studies at Cal Poly, offering viable solutions to many of the

challenges associated with propelling multiple UAV control strategy development

to a flight test stage. This work will show that it is feasible to use low cost

hardware and open source software to demonstrate control strategies for multiple

UAVs, such as formation flight, through HIL simulation and flight testing.

1.4 Thesis Layout

This work is divided in to 13 chapters, providing a comprehensive account

of the FLOC project. Chapters 1 and 2 cover some background information.

Chapters 3 and 4 cover the control system and communication architecture de-

sign. Chapter 5 covers the hardware selected for this project. Chapters 6 and 7

discuss the software components of this work. Chapter 8 covers the GPS error

characterization performed for this work. Chapters 9 and 10 cover simulation,
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and chapters 11 and 12 cover flight testing. The final chapter presents some

concluding remarks and suggestions for future work.

Chapter 1 has already introduced the topic area for this work, discussed the

general problem that has motivated this study, and has stated the goals for

this project. Chapter 2 will provide some background on current and future

applications of multiple UAVs with a focus on small UAVs, such as the ones used

in this work. Background information is provided for some of the various focuses

of this work, such as biomimetic swarm logic, potential function guidance, as

well as simulation and flight testing for small UAVs. A brief review of related

literature, with an emphasis on other examples of multiple UAV control research

is also conducted in this chapter.

Chapter 3 details the traditional components of an autopilot control system

architecture and steps through previous work done at Cal Poly to highlight the

trajectory of the control architectures developed and how they have influenced the

control architecture design for this work. Details of the specific implementation of

potential function guidance, virtual waypoint navigation, and swarm organization

logic are all presented in this chapter as well. Chapter 4 develops the state-

sharing method used to provide each UAV with the other formation members’

state information, required to estimate the relative states used for guidance and

navigation control.

Chapter 5 lays out the hardware components selected for this project with

basic descriptions and justification for their selection. Chapter 6 describes the

open source software, ArduPlane, chosen as the backbone of the control system

developed in this work. Chapter 7 continues on to discuss the modifications and

additions made to the ArduPlane software in order to accommodate formation

flight capability and the communication network used for state-sharing.
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Chapter 8 details an in-depth experiment conducted to quantify the error

expected using GPS for relative position approximations. Chapter 9 discusses the

simulation approaches taken and the models utilized for each approach. Chapter

10 discusses the HIL simulation performed in greater detail. In this chapter, the

configuration of the simulator is discussed, simulation results are presented, and

errors associated with the simulation are discussed.

Chapter 11 focuses on requirements and procedures for multiple UAV flight

testing. Here, general requirements are laid out, and the specific flight test set

up for formation flight demonstration is discussed. In chapter 12, the flight test

results are presented, with a summary of the various attempts as well as analysis

and explanation of the errors observed during the testing.

Lastly, chapter 13 provides some concluding remarks, summarizing the con-

tributions made by this work and discussing the overall success of this project.

Additionally, several recommendations for future work are provided. For this

type of project, this is a very important section, as many of the lessons learned

from this work have blazed a trail for similar projects and will allow them to

achieve higher levels of success with respect to control studies, without the need

to focus so much attention on developing the necessary tools to support a vast

interdisciplinary project such as this one.
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2 Background

2.5 The Role of UAVs in the World Today

Unmanned aerial vehicles, commonly referred to as “drones” have emerged

from the shadows, where engineers have been quietly improving their capabilities

over the last few decades, and found their way into the mainstream, becoming a

controversial topic that is part of a larger national conversation about the ethics

of modern warfare. The Nova documentary, “Rise of the Drones”, which aired

on PBS, refers to this emergence of UAVs as a new chapter in aviation history

that comes straight from science fiction [91]. This documentary and others like it

signal a shift in the public appetite to learn more about this newly-controversial

technology that is making headlines around the world as more and more of these

systems are deployed into high-profile situations.

In general, the American public response towards the increasing capabilities

of UAVs and the way in which they are being deployed to wage war remotely has

been favorable. However, new questions about executive power and privacy, such

as the questions brought forward during the thirteen-hour filibuster on March

6th, 2013 by Kentucky senator Rand Paul, shows that there is beginning to be a

shift in this perception, and pushback on “drone” policies have already begun at

the congressional and judicial levels of the United States government [44].

One of the first armed UAVs was the MQ-1 Predator, the poster child of

“drones”, and a symbol of the type of power UAVs now have to conduct warfare

in an entirely different manner, providing a smaller footprint, higher precision

strike capability, and less direct exposure of military personnel to traditional risks.

These capabilities, however, are not always interpreted in such a positive light,
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especially by others around the world [31]. The image of an armed MQ-1 Predator

has eclipsed other widely-used UAVs, as well as the reality that UAVs come in

all shapes and sizes, designed for a wide range of applications. Fully autonomous

UAVs have even become common enough to be found in the workshop of an

amateur radio-control hobbyist. Additionally, several online communities have

emerged in the last few years, dedicated to the development of UAV technologies

for recreational, non-military applications, the largest and most famous of these

communities being DIY Drones [3].

In fact, with the easing of restrictions on UAVs in national airspace, it is more

and more common to find UAVs designed for use in civil institutions. Notable

examples often overlooked include: agricultural applications, such as unmanned

crop-dusting; environmental monitoring, especially in remote locations; and aerial

photography in situations ranging from counting fish to filming extreme sports.

More well-known is the growing market for UAVs designed for law enforcement

and border security agencies, which holds the promise of greater public safety,

but also raises serious privacy concerns [18]. Civil applications are predicted to

grow rapidly once regulation is reformed. However, despite the projected market

growth, the reality is that small UAVs are not as well developed as their bigger

brothers. “For many of these applications to develop maturity, the reliability

of [unmanned aerial systems] needs to increase, their capabilities need to be

extended further, their ease of use needs to be improved, and their cost must

decrease” [22]. The improvements necessary to bring UAVs to the maturity level

appropriate for a wider range of civilian applications are likely going to be derived

from UAVs designed for military applications.

The “drone” poster child, the MQ-1 Predator, has already been discussed,

but this class of UAV is not actually the most common employed by the US
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military. “The original vision for UAVs was to replace manned aircraft in the

dull, dangerous, and dirty combat roles” [14]. Strike aircraft, such as the armed

MQ-1 Predator, is the exception, not the norm for military UAVs. Military

applications cover such a large spectrum, it can be useful to discuss them in

terms of the class definitions provided in [19]. The Class III and Class II UAVs

shown in Figure 2.1 have been more common until, in the last decade, wars in Iraq

and Afghanistan have demonstrated the utility of a small, Class I UAV handled

by a platoon-sized group.[19].

Figure 2.1: UAV class definitions adapted from reference [19]

2.6 Small, Mini, and Micro UAVs

While the term “small” is used quite often in literature to refer to a distinct

class of UAV, presently there is no single, unified definition of what constitutes

a small UAV, or under what circumstances a UAV is considered a miniature or
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micro UAV, both of which are referred to as MAVs to adding to more confusion.

In the previous section the authors of reference [19] chose to classify small UAVs

based on the way they were deployed in combat, noting that these are sometimes

expendable, often back-packable, and typically require minimal set-up or logisti-

cal support. In reference [22] Beard and McLain offer definitions for both small

and miniature UAVs. According to their convention, small UAVs

• Are fixed-wing aircraft with wingspans between 5 and 10 feet

• Are usually gas-powered

• Often require a runway for take-off and landing

• Typically designed to operate on the order of 10 - 12 hours

• Intended to carry payloads between 10 - 50 pounds

While in their definition of miniature air vehicles, these MAVs

• Have wingspans less than 5 feet

• Are typically battery powered

• Typically hand-launched and belly-landed

• Operate for periods of time anywhere from 20 minutes to several hours

• Intended to carry payloads ranging from ounces to several pounds

Lastly, in reference [66], the authors define small UAVs in terms of weight and

wing span and make a distinction between small and micro UAVs, which they

also refer to as MAVs. Figure 2.2 shows regimes defining both small and micro
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Figure 2.2: Small and Micro UAV classification in terms of wingspan
and weight from reference [66]

UAVs with respect to mass and wingspan. Also included in the figure are data

points of existing UAVs to provide references that justify their definition.

For this work, the intended definition of a “small UAV” is more consistent with

what references [66] and [19] refer to as small or Class I UAVs, but what reference

[22] considers a “miniature” air vehicle. This definition will avoid confusion over

the acronym MAV from being interpreted as ”micro air vehicle”, which is the

more common usage of MAV in literature, but implies a drastically different

class of UAV.

Current applications for small UAVs are heavily tilted towards surveillance

and battlefield situational awareness [55]. Additionally, these systems are used

to track vehicles, enable communications, capture signals, and detect biological,
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chemical, or nuclear materials [19]. Concepts for future applications are poised

to take advantage, not only of the relatively lower cost and portability of small

UAVs, but also of the implications of multiple UAVs working cooperatively to

accomplish a common goal. Low-tech requirements for a single agent in a coop-

erative behavior concept will allow for mass production, reducing the cost per

agent, while increasing the redundancy and therefore, survivability of the system

[14]. An often-cited future application is the concept of a mobile ad-hoc network

that could be deployed in any environment with a swarm of small, inexpensive

UAVs [19]. Another application mentioned often in literature is the concept of

cooperative forest fire monitoring. The motivation being that, while satellite

imagery provides valuable information to ground personel, the imagery is not

provided continuously, as the satellites only pass overhead a few times per day.

Low-Altitude, Short Endurance UAVs could provide such continuous coverage,

cooperating to identify and monitor new hot spots [82]. In reference [69] these

concepts are all mentioned along with a novel idea for parallel distribution of pay-

loads with small UAVs. There are countless other ideas for future applications,

and among many of them, there is strong agreement that the applications with

the most utility will incorporate small UAVs into teams or swarms to accomplish

complex tasks that are not possible with a single UAV, small or large.

2.7 Learning From Nature

Science and technology have a long, rich history of taking cues from the

natural world to inspire and guide new developments in every possible field.

As technologies shrink, greater attention is being given to parts of the natural

world which are sometimes difficult to observe, and whose complexities are being

uncovered in parallel with the technologies they inspire.
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Aviation in particular was spawned through natural inspiration. Now that

technology has enabled aircraft that more similarly represent the scale and per-

formance of the animals that provided the original muse for flight, renewed focus

has been directed towards how and why these animals behave the way that they

do, and how those capabilities may be translated for applications with utility in

modern society. These small UAVs have opened the door for greater understand-

ing of flocking behavior, or even more generally, cooperative behavior, which can

be observed, not just by birds, but by a multitude of other examples in nature

who make up for their individual size, performance, and utility by working to-

gether to solve problems. In Small Power: The Role of Micro and Small UAVs

in the Future [14], the author notes that

“Over the last millennium, some of the world’s strongest creatures
have become extinct while some of the smallest have flourished. One
reason these small creatures have survived is their ability to cooperate
as a group to accomplish seemingly impossible tasks. Scientists today
are working with the same behavioral concepts for tomorrows UAVs.”

The behaviors that these small creatures exhibit, such as nest construction, for-

aging, brood sorting, hunting, navigation, and emigration are all local behaviors,

with individuals responding to other individuals or their environment [24]. An-

alyzing these behaviors can provide a guide for what the authors of [24] call an

“inverse problem”, where individual behavior is designed such that a group can

achieve a desired “macroscopic goal”.

Specific group behaviors most often considered for translation to multiple

UAV applications are flocking and swarming behaviors, observed from birds and

insects. Bird formations provide a particularly useful model for several multiple

UAV applications, according to the authors of [63], because
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1. “Birds are highly mobile agents capable of flying independently
for long distances with small energy.

2. The birds only use local neighborhood information to direct their
movement within a group.

3. There is no specific bird that directs movement of a flock. Yet,
overall, the flock moves in a directed manner.”

The hallmark of the behaviors observed in nature is that they are distributed

or decentralized behaviors, which is a beneficial control architecture for many

small UAV applications which operate under communication or computational

constraints. A more in-depth discussion of the benefits of decentralized control

architectures for multiple UAV applications, especially formation flight, can be

found in [86] and [36].

Algorithms which look to emulate these natural behaviors, sometimes referred

to as “biomimetic” algorithms, often seek the most distilled, simplified form to

implement these behaviors locally. For the flocking of agents, a simple set of

rules are presented in [75], which have been applied to “Boids”, often used for

computer-generated representations of birds. Simple rules for cohesion, following,

homing, dispersion, and alignment are classic techniques for implementing flock-

ing [63]. Biomimetic algorithms span across several fields and disciplines, drawing

inspiration, not just from high-level animal group behaviors, but the complexities

found in genetic and neural sciences. A good example of how these algorithms

can be incorporated into a single application is a project presented in [84], where

biologically inspired processes for motion cues, optical flow, pattern recognition,

vision and neural control systems, and sensing and communication techniques are

all combined with a birds-of-prey inspired search and track algorithm for a UAV

envisioned for operation on Mars. Additionally, the investigation of biomimetic

algorithms, such as the work presented in [29] translates both ways, providing

valuable insight into how and why animals behave as they are observed.
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2.8 The Challenge of Situational Awareness

A key component of achieving autonomous formation flight with UAVs is

providing situational awareness for the vehicles and the humans monitoring the

system. The requirement of situational awareness is not unique to autonomous

aircraft, and has been defined in numerous ways, with each definition tuned for

the application under review. The most widely-accepted definition of situational

awareness is one suggested by Endsley in 1988 which specifies three levels of

situational awareness: Level 1) the perception of the elements in the environment

within a volume of time and space; Level 2) the comprehension of their meaning;

and Level 3) the projection of their status in the near future[35].

With current technologies, meeting these three levels of situational awareness

can prove to be quite difficult for an autonomous UAV, and this challenge has been

one of the largest barriers to integration of UAVs into civil airspace. Commonly

referred to as the “See and Avoid” clause, the Code of Federal Regulations Title

14, Part 91.113 defines right-of-way rules to avoid in-air collisions, emphasizing

the operators responsibility to see and avoid other aircraft. Citing safety as

their primary concern, the FAA has been reluctant to allow UAVs into civilian

airspace, until it can be proven that eminent in-air collisions can be detected

and avoided[34]. Although these regulations are sure to change near-term, civil

agencies must acquire a certificate of authorization to operate UAVs.

Achieving situational awareness which satisfies all three levels of Endsley’s

definition lies in the sensor technologies that are available as well as the confidence

and accuracy associated with these technologies.
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2.9 Potential Function Guidance

Potential Function Guidance (PFG) is one of the main vehicles driving for-

mation flight capability in this work. This guidance method has been a common

thread in the previous related work at Cal Poly, discussed in Section 2.12.

With a reputation for relative simplicity and computational efficiency, PFG-

related control schemes have a long history of successful employment in unmanned

vehicle control and path planning. This guidance strategy was first introduced

in [52], published in 1986. The author sought to augment the computationally

burdensome and relatively slow high-level path planning algorithms for a robot

arm with a lower-level obstacle avoidance strategy that was capable of running

real-time. “Artificial Potential Fields” would pull the end-effector of the arm

towards the desired position, while also pushing the arm away from obstacles as

it traveled.

The concept is analogous to physical phenomena such as the potential fields

found in the studies of gravity and electromagnetism, making them somewhat

intuitive to visualize and implement. However, the concept is not without faults

and limitations, the most famous being the “local minima problem” where the

superposition of a global goal potential field and an obstacle potential field result

in the guidance of an object to a local minima that is not the global goal. Several

studies have been conducted to mitigate these problems, such as those published

in references [53] and [79], where analytical analysis or the inclusion of additional

concepts attempt to improve upon these shortcomings.

With efficiency gains and simplicity of integration generally outweighing the

drawbacks of PFG, this method has been applied to numerous applications which

require collision or obstacle avoidance. These include applications concerning
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autonomous ground vehicles [80] [87], autonomous underwater vehicles [43] [25]

and UAVs [26] [88]. PFG has found a special niche in UAV formation flight

applications, which combine the need for supporting evolving goal positions with

dynamic collision avoidance requirements. Variants of PFG have been applied in

[83] [20] [72] and notably [86], which has inspired the majority of the concepts

implemented in this work and is discussed in more detail in Section 2.12. The

specific implementation of PFG for this project is discussed in greater detail in

Section 3.18

2.10 The Role of Simulation and Flight Testing

2.10.1 Simulation

Flight simulation has come a long way from the 1929 Link Trainer often cited

as the first real training simulator. The progress from analog to digital com-

puters in the 1960s introduced the utility of the flight simulator, not only as

a training resource, but as a valuable tool for development and testing of new

aircraft. Mathematical models with second order effects could be implemented

into a “universal” simulator [16]. “As computers became more powerful, the

tasks grew more complex” [92]. Modern simulation tools can handle simple lin-

earized decoupled models as well as complicated non-linear, coupled models that

vary dramatically in fidelity. The availability of such tools combined with the

substantial increases in computing capabilities and rapidly decreasing cost, have

made simulation one of the most widely accepted tools in aircraft systems anal-

ysis [78]. Driven by the growing complexity of aerospace systems, emphasis on

simulation has spanned technical disciplines at every level with a track record of

cost reduction and development time compression [74]. For UAVs at the system
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level, referred to as UASs, simulation that spans several technical disciplines is a

necessity, as a UAS relies more heavily on systems not traditionally considered

in the aerospace engineering discipline. For UAVs, simulation not only empowers

designers to reduce development risk for new vehicles or traditional subsystems,

but also reduces the types of risks commonly associated with automatic control

systems and also allows for an evaluation of robustness. For UAVs meant to

carry sensors and equipment, this process is invaluable. Tools such as Software-

in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) simulation can test the most

error-prone components of UASs before the UAV has ever flown, saving expen-

sive electronics from devastating crashes in flight testing. Coupled with accurate

models of the UAV, performance requirements can be approximately met through

control system tuning, saving time and money required for flight testing.

2.10.2 Limitations of Simulation for Small UAVs

A natural tendency with simulation, according to [76], is to simulate too much

detail, instead of too little. The author goes on to contend that a model should

always be designed around the goals of the study, and that adding more and

more detail to a model is not going to allow the computer to solve all of the

engineer’s problems. In fact, the truly significant aspects may be lost among the

trivial details [76]. While computers and simulation have come a long way since

the publishing of [76], the author’s warning is still relevant. For the simulation

of small UAVs, it is important to keep in mind the goals of simulation, such

that the fidelity reflects those goals, and resources are not spent in places where

there is minimal value added. With regard to small, low-cost UAVs, many of

the traditional bennifits of simulation break down. The argument made in [48] is

that the resource trade-off between simulation and flight testing becomes skewed
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at this level, and that, while simulation is still an essential tool for keeping the

amount of flight testing and risk manageable, the fidelity and implementation

method of simulation should be selected with goals calibrated accordingly.

The largest factor for this shift in relative resource requirement between sim-

ulation and flight testing is the over-all lower cost of the system. With little

redundancy and minimal payloads, the cost of replacement is relatively low. Fur-

thermore, the risk of injury or damage caused by a failure is also much lower [48].

The lower cost and risk, however, is not the only reason for the shift. Small UAVs

are also more difficult to model. Many of the assumptions used when modeling

traditional fixed-wing aircraft are often violated, such as assuming the aircraft

is operating in mostly linear flight regimes. Additionally, low Reynolds numbers

and relatively high atmospheric disturbance both introduce other unsteady or

non-linear aerodynamic phenomena, which have magnitudes that can not be ig-

nored at this scale [66]. Many studies, such as the one presented in reference [51],

rely on traditional tools for developing stability derivatives corresponding to lin-

earized relationships about several points of operation, such as Digital Datcom.

However, tools such as these are often developed for and validated by comparison

to full-scale aircraft, and should be used with caution when extrapolating their

output to small UAVs. Ultimately, achieving the same level of fidelity for a small

UAV in comparison to a full-scale aircraft can prove to be more difficult with cur-

rently available tools and data-sets. This should be considered when developing

simulation goals for a small UAV system.

2.10.3 Flight Testing

In contrast with simulation, flight testing actually becomes more manageable

for UAVs at the smaller end of the scale spectrum. UAVs, in general, present
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a number of challenges with respect to flight testing. Translating traditional

flight test techniques from manned-aircraft to UAV applications can prove to be

difficult, not only due to the absence of sensory cues usually experienced by a

pilot, but also because the vehicle, although an important component, is only

one part of the complex system [89]. For UAVs, the extensive infrastructure

traditionally required for manned flight testing is not required due, in part, to

the instrumentation that is already included on-board the UAV and streamed

down through a telemetry link. However, regulations and safety concerns make a

suitable testing facility difficult to find, often requiring project partnerships with

government institutions [89].

While some of the challenges of UAV flight testing, such as reaching stabi-

lization or measuring the full aircraft state, are exacerbated when testing small

UAVs, fortunately several other challenges are mitigated. Especially those con-

cerning the infrastructure requirements for testing. As mentioned in the previous

section, costs and risks associated with flight tests of small UAVs are significantly

reduced [48]. Additionally, the size of the required test field shrinks, and in the

case of many small UAVs, the requirement of a runway is irrelevant, as many of

the aircraft falling in to this category are hand-launched and belly-landed.

2.11 Multiple UAV Control Literature Review

One of the motivations for this work is the investigation in to what makes

small UAVs different than large ones, and in what applications their utility can

be maximized. This basis for investigating formation flight demonstration with a

low cost, open source configuration is supported by the vast collection of related

research and publications. Broadly, multiple UAV control studies represent the

majority of research conducted with small UAV applications in mind.
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The most extensive set of approaches to various multiple UAV control appli-

cations can be found in the large body of simulation-based studies, which have

more room to explore new concepts without being grounded by the difficulties of

hardware implementation. A brief overview of some of these works is presented

here to give this study some context. An overview of emerging results in co-

operative UAV control is presented in [77]. In this paper, the author discusses

several studies which have addressed one of the three predominant cooperative

UAV control subsets: 1) Aerial surveillance and tracking, 2) collision and obstacle

avoidance, and 3) Formation configuration. Additionally, in [60], a method of co-

operative control for simultaneous arrival is presented and demonstrated through

simulation. The study uses a decentralized decomposition strategy in order to

find the team-optimal solution to the task. In [82], the authors present a study

for cooperatively monitoring forest fires using a role-dependent decision making

strategy to monitor existing hot-spots as well as seek out new hot-spots as they

emerge. Threat navigation for a swarm of UAVs using a bio-inspired concept

of digital pheromones is presented in [71]. Reference [50] demonstrates, through

simulation, multi-vehicle path planning that guarantees complete coverage over

a region of interest using a spanning tree algorithm.

More specific to the type of multiple UAV control strategy presented here,

there are several simulation-based works that investigate formation flight. In

[65], the author presents simulations of a leader-follower formation flight with an

adaptive output feedback control technique. Formation flight of three quadrotors

is presented in [39], where the authors use a pre-assigned leader-follower con-

figuration with a proportional-integral (PI) controller. Close formation flight of

multiple UAVs is presented in [38] using LQR control for tracking and a decen-

tralized, Dijkstra-based formation management algorithm. In [70], point mass
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simulations of multiple UAVs are conducted, achieving formation with “Boids”-

like swarm intelligence concepts. Kim et al. present an interesting approach to

rotary UAV formation flight in [54], where a behavior-based decentralized ap-

proach is undertaken with a controller design using a feedback linearization rule

with a diffeomorphic transfer map, derived for a three degree of freedom (3DOF)

point mass model. Lastly, in [17], simulations for accomplishing surveillance

with UAV formations is presented. In this study, the authors use an asymmetric

formation control structure and a PI controller for flock-center tracking.

Not as numerous are the number of works approaching multiple UAV control

strategies with an emphasis on hardware implementation and demonstration. Re-

cently, the number of these publications and the programs supporting them have

begun to swell, some even attracting fame outside of the academic community.

The most notable of these programs is the GRASP laboratory at University

of Pennsylvania (UPenn). Videos of their small quadcopters performing aston-

ishing cooperative maneuvers have gone viral on the internet. Similarly, MIT has

produced highly publicized work out of their ACL program. One of the secrets

behind their success is the infrastructure in place to conduct research on multiple

UAV control. The GRASP testbed at UPenn, described in [62], and the RAVEN

testbed at MIT, described in [47], both support these studies with a complex

motion-capture system, Vicon. This infrastructure allows for studies to be con-

ducted indoors with a high level of situational awareness accuracy, utilized by the

test vehicles for coordination purposes. While exciting, ground-breaking concepts

can be demonstrated in this environment, the infrastructure requirement and lack

of application to real-world problems makes these studies somewhat limited.

There are, however, several examples of programs conducting multiple UAV

control studies that have looked at more realistic near-term applications, demon-

23



strating their control schemes outdoors, where these situations are most likely to

occur.

Brigham Young University (BYU) has conducted several studies relating to

cooperative control, such as [23], published in 2006. In this work, a coopera-

tive surveillance control scheme was demonstrated with three UAVs, persistently

capturing images of a target at fixed intervals of time. These experiments were

conducted with a testbed designed in-house including a commercial-off-the-shelf

(COTS) small, foam airframe, a custom autopilot, as well as COTS communica-

tion and radio-control (RC) electronics.

The APL program at John Hopkins has supported several studies like [19],

published in 2006. Here, several approaches were demonstrated including a con-

sensus variables approach for a dynamic surveillance network and a stigmeric

potential field approach for cooperative search. The testbeds used in [19] were

developed by third party manufacturers, utilizing Cloud Cap Piccolo autopilots

for low-level vehicle control as well as COTS communication and RC equipment.

The Georgia Institute of Technology (Georgia Tech) supports several multiple

UAV control studies, described in [49]. This work is conducted out of the UAVRF,

headed by Eric Johnson. UPenn, while better known for their quadrotor work,

also supports fixed-wing studies out of their GRASP lab, like the one presented

in [21]. Similarly, MIT supports several fixed-wing studies through the ACL

program that reach beyond their RAVEN testbed, which is described in [46].

Additionally, several programs outside the United States have gained momen-

tum. A good example is the Australian Centre for Field Robotics at the Univer-

sity of Sydney, which supported the work presented in [28], published in 2010. In

this work, information gathering missions are addressed, studying decentralized
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approaches with different levels of communication: No communication, limited

coordination, and full cooperation. The testbed used for the work includes a

custom RC-scale airframe, custom autopilot, differential GPS, full inertial sen-

sor suite, color and infra-red cameras, as well as COTS communication and RC

electronics.

While it is important to look at how different projects have approached multi-

ple UAV control problems, most applicable to this work are studies which demon-

strated some variant of formation flight. In [59] and [32], which were supported

by the Air Force Institute of Technology and the Chung-Shan Institute of Science

and Technology, respectively, distinct formation flight control schemes and im-

plementation strategies were presented, but were, ultimately, only demonstrated

with a single UAV and a virtual leader simulated from the ground. In [59], an

ARF Rascal 110 RC airframe was used with a Cloud Cap Piccolo II autopilot

and COTS communication and RC components. Based on telemetry data sent

to the ground control station from both UAVs, new waypoints were generated

on the ground and fed back up to the trailing aircraft. Airspeed of the trailing

aircraft was dictated by a ground-based ad-hoc controller. In [32] a testbed was

developed with a custom airframe and autopilot system. Fuzzy logic control was

used for the control system, with relative state information transmitted to the

follower from the leader. To mitigate the vulnerability of this scheme to data-link

loss, relative states are also estimated with an extended kalman filter, which kicks

in when the link is lost, and is corrected once the link is established again.

An overview of the first phase of the NASA Dryden Flight Center Autonomous

Formation Flight Project is presented in [42]. This full project objective was to

bring autonomous formation flight to a technology readiness level high enough to

attract commercial cargo operators and military interests. In this phase, leader-

25



follower formation was achieved within a pre-determined position error budget

using two F/A-18 aircraft. The original flight control computers were used with

modifications to the following aircraft for lateral and vertical commands based

on a PID controller output. State information was sent from the leader to the

follower aircraft, and the pilot in the trailing aircraft was responsible for throttle

control, which dictated spacing.

Studies [33] and [90] conducted at the University of Singapore, and [68] at

Georgia Tech focused on formation flight applications which included the use of

rotary vehicles. At Stanford, studies [56] and [57] were conducted to look in

to accomplishing formation flight with relative state information provided by a

vision system.

Lastly, the work presented in [41], supported by West Virginia University,

represents the best example of successful formation flight demonstration with at

least three UAVs. The scope and time-line of this project makes it difficult to

compare to the work presented here, but none-the-less, there are many similarities

in the approach taken to solve the formation flight problem. Custom-developed

airframes with features similar to the YF-22 make up the backbone of the testbeds

used in this project. A custom avionics system was integrated, complete with a

high-end flight computer and full sensor suite, including a 20Hz GPS receiver.

Additionally, COTS RC components were integrated for manually flying the air-

craft. This project was quite extensive, with over 100 flights were conducted over

the span of three flying seasons between 2002 and 2004. Ultimately, success-

ful two-aircraft (Leader-Follower) formations were demonstrated four times, and

there was one successful demonstration of a three-aircraft formation.
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2.12 Previous Work at Cal Poly

The work presented in this study is intended to be an extension of previous

work conducted by Cal Poly faculty and graduate students over the last decade,

defining its scope based on the trajectory of this previous work. The body of

previous work is made up of four different projects that have all contributed, in

some fashion, to the work presented here. While specific contributions will be

highlighted throughout the discussion, it is important to provide some context

by giving a brief overview of each of these previous works.

Inspired by the observation of flocking geese, Eric Mehiel, now the Aerospace

Engineering Department Chair at Cal Poly San Luis Obispo, authored a paper

with Mark Balas titled A Rule Based Algorithm That Produces An Exponentially

Stable Formation of Autonomous Agents [61]. Published in 2002, while Dr. Mehiel

was a graduate student at The University of Colorado, Boulder, this paper pro-

vided the foundation for an interest in formation flight that has guided several

projects at Cal Poly. In this paper, a simplified two-dimensional model is used

to simulate exponentially stable formation flight using a discrete-time, non-linear

logic based control algorithm. The main contributions made by this paper to the

future works at Cal Poly include distinct near-field and far-field control regions,

the use of a multiple leader-follower pair architecture, and the logic necessary to

produce a structured ‘V’ formation.

In 2008, Masamitsu Tsuruta presented a thesis titled An Integrated Forma-

tion Flight Algorithm Via Potential Function Guidance and Biomimetics [86]. Ad-

vised by Dr. Mehiel, Tsuruta integrated many of the concepts from [61] with

a more realistic 6DOF linearized aircraft model and a PFG algorithm. Using

a standard PID control scheme for low-level lateral and longitudinal controllers,
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Tsuruta simulated results in a Matlab/Simulink environment, demonstrating the

functionality of the PFG algorithm and the decentralized formation controller.

While Tsuruta noted one of the benefits of the decentralized technique was that

it could be accomplished with limited communication, this was not addressed

in his simulation, with each formation member having perfect knowledge of the

other aircrafts’ relative position. Furthermore, simulations were run for an ideal

condition where the formation leader’s body frame was aligned with the inertial

frame, with the leader simply proceeding along a straight trajectory in the X-Y

plane. Ultimately, Tsuruta showed the utility and relative simplicity of using a

PFG algorithm for formation control as well as collision avoidance with multiple

agents participating in the formation, linked together in leader-follower pairs.

A thesis titled Development of a Small and Inexpensive Terrain Avoidance

System for an Unmanned Aerial Vehicle via Potential Function Guidance Algo-

rithm was presented by Shane Wallace in 2010[88]. While this work deviated from

the concept of formation flight, it retained the use of a PFG algorithm, similar to

what was developed in [86], and began a push to apply these guidance concepts

to hardware. While the full system was never completed, Wallace set out to con-

struct the terrain detection sensor using cheap COTS hardware and intended to

implement this sensor with a custom algorithm to map terrain obstacles and feed

a commercially-available autopilot new waypoints to direct the UAV around the

obstacle. In the end, Wallace was not able to fully integrate the terrain avoidance

system with the guidance algorithm, but did demonstrate the guidance algorithm

through HIL simulation. This HIL simulation was conducted with a Cloud Cap

Piccolo autopilot and the software provided with the system. Based on infor-

mation from a simulated terrain detection sensor, the PFG algorithm provided

commands for the placement of new waypoints which were then added to the
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waypoint queue used by the Piccolo for navigation.

Although not yet completed, in 2010, Michael Manuel began work on a the-

sis tentatively titled Development and Implementation of a Potential Function

Guidance and Virtual Waypoint Algorithm UAV Navigation and Collision Avoid-

ance [58]. While Manuel’s focus also deviates from the initial theme of formation

flight, his methodology utilized the PFG algorithms presented in [86] and [88]

and like Wallace, focused more attention to hardware integration. While Wallace

made use of the relatively high-end Piccolo autopilot system, Manuel, instead,

shifted his focus to the low cost, open source autopilot system, ArduPilot. Addi-

tionally, instead of adding waypoints to a pre-existing queue, Manuel made use

of a concept he dubbed “Virtual Waypoints”, where the waypoint used for navi-

gation purposes would constantly be moving, assigned based on the output of the

PFG algorithm. The obstacles used in his study were artificial representations of

obstructions or terrain, used in order to limit the scope of his work to not include

obstacle detection. Manuel’s latest draft shows that he was able to successfully

demonstrate his method through both simulation and flight testing.

2.13 Unique Nomenclature Utilized

As expected of any technical report, several acronyms are utilized throughout

this paper, some of which have been presented already. In general, acronyms

are presented first with their full description before stand-alone use in the text.

Acronyms such as UAV, for unmanned aerial vehicle, are not unique to this paper,

and should not require much explanation. Some acronyms, such as PFG, used

for potential function guidance, VWP, for virtual waypoint, and GCS, for ground

control station, are used heavily in this work, but are not necessarily unique to

this paper either.
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In several places, this work is referred to as the FLOC project, which stands

for Formation flight demonstration utilizing a Low cost, Open source Config-

uration, the title of this work (With the selected acronym letters admittedly

cherry-picked). Additionally, the FCOM network is referred to often as well.

This is not so much an acronym as a title given to the inter-UAV network that

stands for the Formation Communication Network. Lastly, a unique reference

frame, the LNAV or localized navigation frame, is presented in this work. This

reference frame is simply the NED frame, rotated about the z, or down, axis in

an amount equal to the UAV’s heading. This frame is especially convenient for

describing formation distance offsets.
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3 Autopilot Control System Architecture

To the average person, references to autopilots often bring to mind the latest

science fiction movie, with a single button push and an intelligent-sounding voice

with a prickly personality. Because the cutting edge of automation is what often

gets the headlines, this perception is somewhat justified. However, to qualify as

an autopilot, a system does not need a cool accent.

Historically, autopilots have been implemented to augment a pilot’s control,

not replace it. In military aircraft designed to push the envelope of possibility,

autopilots can turn an inherently unstable aircraft into something manageable for

the pilot without losing the maneuverability the aircraft was designed for. Stabil-

ity augmentation systems like these are also often used to make inherently stable

aircraft simply easier to fly, requiring less pilot workload. Higher level autopi-

lots, often found in commercial airliners, control velocity, altitude, and heading,

further reducing the workload of pilots, as well as squeezing every possible fuel

savings by programming the autopilots to follow a schedule that will maximize

efficiency. Automatic landing and takeoff autopilots are also used extensively in

the commercial airliner world to assist in poor atmospheric conditions.

Up until the relatively recent widespread use of UAVs, fully autonomous air-

craft were rare and limited. The higher levels of path planning and decision mak-

ing require a greater ability to detect and interact with the world and therefore

have typically been reserved for human operators. It is important to understand

each level of autonomy so that function and dependencies of each level can be

put into context.
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3.14 Example Control System Architectures

In [22], Beard and McLain detail a system architecture for use throughout

their text. Figure 3.1 shows the block diagram used to describe their system, with

each block differentiated by function and required inputs. It is important to note

that the authors refer to the more basic form of an autopilot in their “autopilot”

block. This is the form in which there is an inner loop controller which controls

the roll and pitch angles as well an outer loop controller for airspeed, altitude, and

course heading. This system architecture will serve well to describe the approach

taken in previous works as well as the approach presented here. In [61], where

Figure 3.1: A baseline representation of a UAV control system archi-
tecture.

the author investigates the algorithms and associated stability of a formation

flight control scheme to emulate migrating geese, he utilized a simplified system

architecture reflecting his assumptions.
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Figure 3.2: A system architecture for formation flight using a rule-
based algorithm and simplified dynamics, presented in [61].

Figure 3.2 shows a representation of his system architecture so that it may be

compared with the architecture in Figure 3.1. The author’s architecture is best

described by sub-dividing the path planning block into two distinct sub-blocks:

one for implementing leader-follower swarm organization and one for generating

commands based on relative distances. With the author’s assumptions and sim-

plifications, the commanded values are tracked perfectly, removing several blocks

from the architecture. Furthermore, with the assumptions of perfect state esti-

mation and simplification of the dynamics, the only other block in the author’s

system architecture is the flock member dynamics using two degrees of freedom.

This architecture is appropriate for high level algorithm development, but must

be expanded upon in order to simulate this control scheme in a real world appli-

cation.

In [86], the author’s goal was to integrate the concepts from reference [61] with

a simulated aircraft model, expanding upon those concepts to demonstrate how

formation flight may be accomplished with a real aircraft. The addition of a lin-
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earized six degree of freedom aircraft model and limited actuator models required

a more complex system architecture to control each member of the formation.

Figure 3.3 shows a representation of the system architecture utilized in reference

[86]. As was the case in the system architecture presented in reference [61], it

is useful to discuss the path planning block as a combination of two sub-blocks,

separated in the same fashion. With the leader-follower swarm organization block

integrated relatively unmodified, the only change here is the potential function

guidance block, responsible for generating the autopilot commands. The au-

topilot block is included in the author’s system architecture to account for the

altitude, velocity and heading controllers necessary to carry out the respective

commands generated by the potential function guidance algorithm. Lastly, the

UAV block represents the 6DOF linearized plant model and constrained actuator

models for a well documented business jet included in the simulation.

Figure 3.3: A system architecture for formation flight simulation using
a 6DOF aircraft model, presented in [86].
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With a focus on translating the algorithm from reference [61] and not neces-

sarily representing some of the constraints that would be applied in a real-world

flight demonstration, the author makes some simplifications, reducing the com-

plexity of their system architecture when compared with the standard presented

in [22].

Shane Wallace and Mike Manuel, authors of [88] and [58] respectively, took

the concept of potential function guidance in a different direction. With a focus

on navigation and terrain or object collision avoidance, they used a system archi-

tecture more representative of the architecture presented by Beard and McLain.

Figures 3.4a and 3.4b represent the architectures utilized by these studies, pre-

sented side by side to highlight the slight differences between the two approaches.

(a) A system architecture for terrain

avoidance, presented in [88].

(b) A system architecture for obstacle

avoidance, presented in [58].

Figure 3.4: System architectures presented in previous works utilizing
a common thread of PFG for terrain and obstacle avoidance
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In [88], the author used a control architecture centered around the use of a

commercially-available waypoint navigation based autopilot system, wrapped by

a custom terrain avoidance system. While he was never able to fully demonstrate

the developed hardware, his control algorithm operated by adding waypoints into

a pre-existing queue that would theoretically navigate the vehicle around a terrain

obstacle. The potential function guidance algorithm served as the path planner,

and was used to place these additional waypoints. The Piccolo autopilot, repre-

sented by the next three blocks in the system architecture, simply followed the

resulting path as if it was a pre-planned waypoint mission. To sense the terrain,

Wallace experimented with a gimballed laser range finder, which is included as

a sub-block in the state-estimation block, with the HIL simulated sensor suite

making up the second sub-block of the state estimation block.

In [58], the author took on a different approach focusing more on demonstra-

tion, and less on the detection hardware. While his final configuration has not

been detailed, his original approach utilized a RC aircraft modeled after Aerovi-

ronment’s Raven, represented by the UAV block, and ArduPlane, an open-source

autopilot software that is designed to operate on the ArduPilot Mega (APM)

hardware, represented by the lower level system blocks. While using the APM

sensor suite for state estimation, the author injected an artificial object, repre-

sented by the simulated detector sub-block, in order to demonstrate the control

system’s ability to successfully navigate the aircraft around the obstruction au-

tonomously. Instead of adding waypoints to a growing queue, the author im-

plemented a ”virtual” waypoint sub-block in the path planning system block,

where a new waypoint is generated during each cycle, determined by the output

of the PFG sub-block directly above. The virtual waypoint provides a clever

way to avoid some of the lag and uncertainty in the decision process which was
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encountered by the author of reference [88] during his HIL simulations. While

this strategy allows for use of the core functionality of a commercially-available

waypoint-based autopilot system, it is slightly more invasive than simply adding

waypoints to the queue. This extra complexity is necessary, especially when ob-

stacles in motion, like other members of the formation, drive down the control

system’s tolerance of lag.

The largest difference between a “virtual” waypoint and a conventional way-

point is that, in theory, the aircraft is never allowed to reach the virtual waypoint.

All of the waypoint path-following algorithm are used for guidance, which are usu-

ally built into a commercially-available autopilot system, but the waypoint itself

is being redefined at a relatively high frequency, placing the new waypoint a pre-

defined distance in front of the aircraft with a bearing defined by the potential

function guidance algorithm.

Combining requirements derived from the above previous works, and consid-

ering real world demonstration of formation flight with a commercially-available

autopilot system, the necessary control system architecture components can be

identified as shown in . At the highest level, in the path-planning block, some

form of swarm logic must be present to organize the members. The other two sub-

blocks in the path planning system block include a block to generate commands

based on relative states of members, and a block to translate those commands

into something usable by the highest level of a commercially-available autopilot

system. The path manager, path following and autopilot blocks will be furnished

by the chosen commercially-available autopilot system, with a slight addition to

the path following block that will include a velocity matching sub-block. Because

of the decentralized approach, the control system architecture only includes one

UAV system block, not a block for each UAV system in the formation. However,
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the state estimation block for a formation flight controller must be subdivided

into two blocks: one to estimate the state of the UAV with respect to inertial

space, and one to estimate the state of the UAV with respect to the other UAV

formation members.

Figure 3.5: A general control system architecture for formation flight
demonstration.
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3.15 Control System Architecture Presented

The specific control system architecture presented in this study was con-

structed based upon a few assumptions which heavily influenced its final form.

First, in an effort to maintain continuity with previous work, the backbone of

the presented architecture was dictated by some of the decisions made in those

works. The goal was to not diverge from the methods presented in the previous

works, except in matters that concerned feasibility during flight testing. Second,

as seen in references [88] and [58], using a commercially-available autopilot sys-

tem was a top priority to manage the scope of the project and encourage focus

at a higher level of control instead of getting bogged down in the development

of the lower level autopilot systems. Autopilot development from scratch is the

subject of entire senior projects or theses, depending on the strategy chosen.

With the use of commercially-available autopilot systems, a modular approach

encourages adaptability and preserves software that has been rigorously debugged

and tested, making troubleshooting more manageable during the final stages of

the project. Limiting the number of variables during testing is always a positive

goal. ArduPlane, which was the initial autopilot system selection in reference [58],

is capable of being modified heavily because of its open-source software. However,

another goal set during the implementation of formation flight capability into

the ArduPlane code was to limit modifications to the existing code as much as

possible. Keeping the other modes fully functional despite the addition of the

optional formation flight mode would make gain tuning and debugging more

feasible during testing, which was highly desirable. Accomplishing this desired

modularity often resulted in a more complicated library development process,

requiring agreement between established conventions and structure. However,
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this lead to faster error identification and more efficient debugging, as well as

the ability to use tools such as HIL simulation interfaces that had already been

developed to work with the ArduPlane conventions. The last assumption that

was made when designing the control system architecture was that the state

information for all of the UAVs participating in the formation will be available to

each UAV. This information could be furnished in a variety of ways, which will

be discussed in more detail later, but the assumed formation member knowledge

is key in the architecture development.

Figure 3.6 shows the detailed control system architecture presented for this

project. The architecture presented meets all the requirements set forth for a

formation flight control system presented in the previous sections, and borrows

specific implementation strategies from the related previous work.

3.16 Near-Field and Far-Field Considerations

As discussed in references [61] and [86] it is also beneficial to design the for-

mation flight controller for use in two distinct ”regimes” of the formation process.

When the UAV is far away from its local leader, it is considered to be in the far-

field regime. As the UAV moves closer to its local leader, and the relative distance

becomes less than the regime threshold, χ, the UAV enters the near-field regime.

The specific method of determining χ will be discussed in section 3.20, but the

minimum threshold value is limited by the UAV’s manueverability. In general,

when the algorithms are developed to operate in the far-field regime, the focus

is finding the other formation members and meeting up with the formation. In

the near-field regime, the focus shifts to accomplishing both relative position and

relative velocity tracking, encouraging leader-follower convergence while avoiding

collisions with other formation members.
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Figure 3.6: The system architecture presented in this work.

3.17 Swarm Organization Algorithm

One of the common threads of the previous work in references [61] and [86]

was the adherence to decentralized control as much as possible. To adequately
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represent the original muse for these studies, migrating geese, there should be

no central controller. Instead, each UAV should be making their own decision

based on observable information such as relative position, both between other

formation members and a global landmark, and relative velocity.

Figure 3.7: The determination of global versus local leadership

The swarm organization logic proceeds as follows:

1. Identify who is participating in the formation and evaluate leadership

Case 1: If no other member is in front, the UAV becomes the global leader

Case 2: If there are members in front, pick the closest one, that is the

local leader

2. Choose the side on which to follow the local leader

Case 1: If there is more than one other member in the formation, the side

chosen will be opposite of the flock center

Case 2: If there is only one other member (the global leader), the side

will be chosen based upon the side in which the following UAV is

approaching.
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(a) (b) (c)

(d) (e)

Figure 3.8: Examples of side determination for swarm organization
logic

While the algorithm itself is the same whether the UAV is in the far-field or

near-field regime, it is not evaluated once the UAV has determined its local leader.

Because small fluctuations in relative distance is expected as each formation

member battles long-period modes to maintain their commanded relative state,

leadership changes based on those fluctuations should be avoided. Instead, the

algorithm is only evaluated if the UAV is currently the global leader, or if contact

is lost with the UAV’s local leader. This strategy allows the expected fluctuations

to occur without adding unpredictable leadership changes, while still maintaining

the desired dynamic response to changes in formation membership.

This swarm logic is based heavily on the logic developed by Mehiel in reference

[61] who shows that the emergent behavior of this strategy results in a V, or

half-V formation when combined with a controller maintaining relative distances

between the leader-follower pair.
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One major difference in the swarm logic developed for this work is the addition

of a reference system for global leadership. The assumption made in references

[61] and [86] is that there exists a global reference to define the concept of one

agent “in front” of another. The obvious solution is to use a cardinal direction,

as birds do when they migrate. However, for the purpose of flight testing, it is

not feasible to simply have the test aircraft head North. Instead, the formation

members will converge while the global leader follows a large,circular loiter orbit

around the test area at the Cal Poly Experimental Flight Range (EFR). This

will ensure that the aircraft have enough time to achieve formation without the

risk of the UAVs flying beyond the line of sight of the RC pilots who must

constantly monitor the UAVs during the flight tests in order to manually recover

the aircraft if that were to become necessary. Unfortunately, this solution removes

the meaningfulness of a traditional global reference, like North. A circle neither

has a beginning nor an end, so the concept of being “in front” while flying in

a circular orbit is undefined. Therefore, the concept of a “spooled” global goal

was implemented to reconcile the swarm logic already developed with the use of

a circular loiter for the global leader’s flight path during flock convergence. To

visualize this concept, consider a spool of thread. The thread represents the path

to be traveled, with one end representing a reference location and the opposite

end serving as the goal. As the thread is wound around the spool, the distance to

the goal (along the thread) remains the same, but the center of the spool moves

closer to the reference location for each new winding. This spooled global goal

can be described mathematically by

∆global goal =

 ∆0 + ∆Xgoal wp, ∆Xgoal wp > rgoal loiter

∆0 + rgoal loiter(1−
∫

∆Ψdt), ∆Xgoal wp ≤ rgoal loiter

(3.17.1)

44



Where r is a radial distance and ∆X is the magnitude of a relative distance

vector. Integrating the change in the heading angle, Ψ, during a loiter allows for

the approximation of arc length when multiplied by the loiter radius. The initial

spooled reference value, ∆0, is included so that the integrated arc-length can be

subtracted instead of accumulated. The global reference value, ∆global goal, is ul-

timately what determines the order of leadership, with the member broadcasting

the lowest reference value becoming the global leader.

3.18 Potential Function Guidance Algorithm

The potential function algorithm presented in this project was based primarily

on the functions used by Tsuruta in [86] and Wallace in [88] in order to maintain

continuity between similar studies as well as limit the scope of the project.

3.18.4 Attractive Potential Functions

A slightly different approach towards the attractive potential function was

taken in this study compared to the work done by Tsuruta. First, the calculation

of the local goal location is more involved when the lead UAV is flying in a circular

loiter pattern instead of in a straight direction. Relative position information is

calculated in the NED frame, but the formation offset must be applied with

respect to the local leader. Therefore, a transformation of the relative position

vector from NED to the local leader’s LNAV frame is required to incorporate

the offset. Once the local goal location is adjusted for both offset distance and

commanded side, the updated relative position vector must be transformed back

into the NED frame to be used in the PFG algorithm. Second, instead of a single

quadratic potential function serving as the goal function for the entire domain of
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relative distances between a leader-follower pair, two different forms of potential

functions were included.

In the far-field regime, a linear attractive potential function serves well be-

cause the gradient magnitude is constant. This provides saturation of the attrac-

tive potential function and ensures that there are no large gradient magnitudes

that will eclipse the repulsive potential functions’ gradient values, something that

is necessary to provide collision avoidance capability even when the goal is far

away. The linear attractive potential function is described by

Φatt(x̄, x̄goal) = |λ(x̄− x̄goal)| . (3.18.2)

where λ is a diagonal matrix of weighting parameters which will be discussed

later.

In the near-field regime, a quadratic attractive potential function is used.

A quadratic potential function has a gradient magnitude that approaches zero

smoothly, which is a desirable quality when considering the output of the function

as controller input command. This type of potential function is described by

Φatt(x̄, x̄goal) = (x̄− x̄goal)Tλ(x̄− x̄goal) (3.18.3)

In order to match the two functions at the regime threshold, the linear potential

function must be adjusted by multiplying it by a constant equal to the quadratic

function gradient magnitude evaluated at the regime threshold, χ, and then offset

by the quadratic function magnitude at χ. Therefore the attractive potential

function in the far-field regime can be described by

Φatt(x̄, x̄goal) = 2χ
∣∣λTλ(x̄− x̄goal)

∣∣ .− 2λχ2 (3.18.4)

Figure 3.9 shows an example of a two-dimensional attractive potential field that

combines both the linear and the quadratic functions, transitioning from one to

the other at χ.
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Figure 3.9: A 2D representation of an attracitve potential field which
combines a linear and quadratic potential function

3.18.5 Repulsive Potential Functions

The Gaussian repulsive potential functions used in this study were also mod-

eled after those used by Tsurutu in [86] and can be expressed by

τj = τ0,j exp
[−1
σj

(x̄−x̄j)T I(x̄−x̄j)]
(3.18.5)

where τ0,j is a repulsive strength parameter and σ is a sizing parameter, both of

which will be described in section 3.20.

The total potential field in either regime can be described by the superposition

of the attractive and repulsive potential fields, such that

Φtotal = Φatt +
N∑
j=1

τj (3.18.6)

3.18.6 PFG commands

The potential functions themselves are actually quite useless from a command

generation perspective. They provide a bridge for real-world analogies and can

generate a visual representation of the total potential field, but the do not serve a

purpose when it comes to issuing meaningful commands to a control system. To

generate such commands, the gradient equations are used instead of the scalar
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function equations. The gradient vector,

∇Φtotal = 〈Φx,Φy,Φz〉 (3.18.7)

is generated directly using the set of equations

Φx = 2χ
λx(x−xgoal)
|λ(x̄−x̄goal)|

+
∑N

j=1
−2τ0,j(x−xj)

σj
exp

[−1
σj

(x̄−x̄j)T I(x̄−x̄j)]

Φy = 2χ
λy(y−ygoal)
|λ(x̄−x̄goal)|

+
∑N

j=1
−2τ0,j(y−yj)

σj
exp

[−1
σj

(x̄−x̄j)T I(x̄−x̄j)]

Φz = 2χ
λz(z−zgoal)
|λ(x̄−x̄goal)|

+
∑N

j=1
−2τ0,j(z−zj)

σj
exp

[−1
σj

(x̄−x̄j)T I(x̄−x̄j)]


(3.18.8)



Φx = 2λx(x− xgoal) +
∑N

j=1
−2τ0,j(x−xj)

σj
exp

[−1
σj

(x̄−x̄j)T I(x̄−x̄j)]

Φy = 2λy(y − ygoal) +
∑N

j=1
−2τ0,j(y−yj)

σj
exp

[−1
σj

(x̄−x̄j)T I(x̄−x̄j)]

Φz = 2λz(z − zgoal) +
∑N

j=1
−2τ0,j(z−zj)

σj
exp

[−1
σj

(x̄−x̄j)T I(x̄−x̄j)]


(3.18.9)

Where equation 3.18.8 is used while the formation member is considered in the

far-field regime and equation 3.18.9 is used once the formation member enters

the near-field regime.

An additional correction to the total potential function is applied to the near-

field attractive potential function gradient vector in order to reconcile the virtual

waypoint implementation, detailed in section 3.19, with abrupt sign changes in

the attractive potential function gradient values as the UAV oscillates around the

goal location. Inspired by the simple rules presented in reference [75], heading

matching between the leader and follower pair is fused with goal location tracking

and the attractive potential function gradient magnitude to ensure a directional

command that encourages convergence towards the goal, is sympathetic to the
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direction of travel of the leader, and still allows for the repulsive potential function

gradient to overtake the attractive, steering the follower away from a collision with

other formation members. As depicted in figure 3.10, this is accomplished, first,

Figure 3.10: The process used for the near-field correction of the at-
tractive potential function gradient values

by defining an extrapolated goal location, offset by a constant value in a direction

parallel to the heading of the leader. Adding the vectors pointing to the original

goal and this extrapolated goal produces a vector which points in the desired

heading command defined by

Ψc = tan−1(
x̄cN
x̄cE

) (3.18.10)

To ensure that the repulsive potential function is not eclipsed by this correction,

the original magnitude of the attractive potential function gradient is used in

conjunction with the extrapolated heading command direction to calculate a new

corrected attractive potential function gradient vector

∇Φattc = 〈|∇Φatt|sin(Ψc), |∇Φatt|cos(Ψc), 0〉 (3.18.11)

Because this corrected attractive potential function gradient vector is used only

for the generation of the North and East offsets of the next virtual waypoint, and

not the altitude command, the “Down” component of this vector is simply set to
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zero. Both the corrected and uncorrected attractive potential function gradient

vectors are retained and added independently to the summation of repulsive po-

tential function gradient vectors, producing two distinct total potential function

gradient vectors

∇Φ = ∇Φatt +
∑
∇τj

∇Φc = ∇Φattc +
∑
∇τj

(3.18.12)

In order to transform these into useful command vectors, the total potential

function gradient is normalized, producing a unit vector pointing towards the

potential field minima,

Û = ∇Φ
|∇Φ|

Ûc = ∇Φc
|∇Φc|

(3.18.13)

guiding the UAV into formation, while preventing collision with other members.

3.18.7 PFG Algorithm Parameters

In order to fine-tune the potential function guidance algorithm, several pa-

rameters are included in the various equations:

λ̄ is a diagonal matrix,


λx 0 0

0 λy 0

0 0 λz


comprised of weighting parameters for the attractive potential function. This

weighting is used to control the relative strength of the attractive potential func-

tion in each axis of the NED coordinate frame. The best example of when weight-
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ing could prove beneficial is found when taking into account a fixed-wing aircraft’s

ability to maneuver. Tracking the velocity and altitude of a leader is much more

difficult to accomplish than tracking the heading of a leader, due to a constant

battle between the controller and the low-frequency modes of the UAV dynamics.

Therefore, it may make sense to weight the altitude attractive potential function

relatively higher, to compensate for the limitations in maneuverability. It is worth

noting that reference [86] states that λ̄ must be positive definite for the attrac-

tive algorithm to function properly, meaning that each weighting parameter, λ

should be positive. This makes sense, considering the physical interpretation of

this parameter.

For the repulsive function, there are two explicit parameters and one derived

parameter that must be determined. σ is the repulsive function shaping param-

eter, directly relating the region for which the repulsive function influences the

total artificial potential field. A larger σ will cause the repulsive function to be

“seen” from a larger relative distance between two formation members, which

would increase the amount of time the UAVs have to avoid a collision, but could

negatively affect the UAV’s ability to settle in the desired formation structure.

τ0 is the repulsive potential strength constant, determining the maximum value

of the repulsive potential, when x̄− x̄j = 0. This value plays an important role in

the superposition of the attractive and potential functions, but is mostly tuned

based on the derived parameter, τ0
σ

. While τ0 is the parameter which sizes the

repulsive potential function, τ0
σ

is what ultimately sizes the gradient of the re-

pulsive potential function. Because, it is the gradient of the total potential field

that translates into the controller command, this ratio becomes crucial for the

ability of the UAV to avoid other formation members when the attractive po-

tential function component of the gradient is large (when the UAV is far from
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the goal). While attractive potential gradient saturation is applied in the far-field

case, which was discussed in more detail earlier in this section, the derived param-

eter τ0
σ

must be sized so that the repulsive component of the potential function

gradient exceeds the maximum attractive potential function gradient value at a

reasonable relative distance between two formation members. To better visualize

(a) Attractive potential field with

λx = λy

(b) Attractive potential field with

λx 6= λy

(c) Repulsive potential field with

small σ

(d) Repulsive potential field with

large σ

(e) Combined attractive and repul-

sive potential fields with a small τ0

for the repulsive field

(f) Combined attractive and repul-

sive potential fields with a large τ0

for the repulsive field

Figure 3.11: Examples of the effect of various potential function pa-
rameters
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these trade-offs, Figure 3.11 shows two dimensional representations of several pa-

rameter configurations and their effect on the individual potential function, the

potential field, and the gradient of that field.

3.19 Virtual Waypoint Placement and Airspeed Commands

As discussed in the previous section, taking the normalized gradient of the

total potential field provides a useful unit vector, pointing in the direction of

the potential field minima. With so many inputs and outputs of the presented

control system architecture based in the NED coordinate frame, it was convenient

to evaluate the potential function gradients in the NED coordinate frame as

well. Generally, the virtual waypoint was placed by multiplying a pre-determined

constants, ∆VWP and ∆VWPZ , by the unit vector components to come up with

the desired offsets, 
∆North = ∆vwpÛN

∆East = ∆vwpÛE

∆Altitude = −∆vwpz ÛD

 (3.19.14)

determining the coordinates of the virtual waypoint by extrapolating the reported

position by these offsets.

For the application presented in reference [58], which inspired the selection of

this virtual waypoint strategy, there was no need for distinction between far-field

and near-field regimes; the goal was always treated as if it were far away from the

UAV. However, when applied to formation flight, the near-field regime requires

some modification of the strategy in order to prevent erratic behavior. Tracking

both airspeed and altitude while combating wind disturbances and sensor error

tend to induce low frequency oscillations about the goal, which are difficult to

damp out. Often times, the unit vector meant to place the next waypoint will
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point in a direction that is behind the UAV, presenting a logic problem for virtual

waypoint strategy, directing the UAV to “turn around” which is accomplished by

the commanding the maximum bank angle allowed. The necessary correction to

the potential function guidance algorithm was discussed in the previous section,

and translates into the virtual waypoint algorithm such that∆North = ∆vwpÛcN

∆East = ∆vwpÛcE

 (3.19.15)

Additionally, the altitude command is no longer generated using the command

unit vector, but instead by the direct altitude error between the leader and fol-

lower.

In the far field regime, the airspeed command is simply set to the maximum,

steady-level airspeed which is limited by the maximum allowed throttle. However,

in the near field regime, airspeed commands are dictated by a velocity matching

controller and the original potential field gradient, before it is corrected for the

near-field virtual waypoint algorithm. The velocity matching is a product of

the swarm logic which is necessary for formation flight, as discussed in [61]. By

driving the relative airspeed error between the leader-follower pair of UAVs to

zero, the formation will move at a uniform airspeed, dictated by the global leader.

Because the virtual waypoint algorithm is limited to control in the y-z plane of

the LNAV frame, the second component of the airspeed command is generated

by the x component of the original potential function gradient in the LNAV

frame. These two command reference values are combined into a unified airspeed

command using what could be interpreted as a proportional-integral controller,

such that

∆Vaspdcom = K∆V ∆V +KΦΦx (3.19.16)

Care must be taken to make sure the maximum overshoot of the airspeed con-
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troller is small enough to avoid coming too close to the local leader, prompting

the repulsive potential function to overtake the attractive potential function and

steer the UAV away from an eminent collision.

3.20 Algorithm Parameter Selection

3.20.8 Near-Field and Far-Field Regime Threshold

The point at which the control scheme switches from the far field to the near

field regime is an important parameter because it heavily influences both the

performance of the UAVs as they aim to reach the formation from relatively large

distances as well as the convergence of the UAVs as they track the commanded

relative distance from their local leader and maintain formation. To determine

this factor in three dimensional space, it is best to discuss the relative energy

height of the leader-follower pair

∆Z = ∆hgc +
1

2
∆V 2 (3.20.17)

as well as the distance required to dissipate the relative energy height. At the

assumed formation conditions, the time and therefore the distance required to

bring the aircraft into formation can be approximated by

∆tdis ≈
∆Z

d
dt

(∆Z)max
(3.20.18)

χ ≈ (
Vaspd,max + Vaspd,form

2
)∆tdis (3.20.19)

where d
dt

(∆Z)max is directly related to the maximum amount of drag the UAV

can generate at the formation flight condition.
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3.20.9 Potential Field Parameters

In reference [86], Tsuruta does not present a methodology for assigning the

various parameters included in the potential functions he outlines, but does speak

to some of the trades between the various parameters. In reference [88], Wal-

lace develops several methods to solve for the parameters based on approximate

performance limitations. Continuing along the lines of what Wallace suggested,

equations were derived to translate meaningful metrics into the potential function

parameters discussed in section 3.18

Three new metrics provide a proxy for the potential function guidance al-

gorithm parameters, allowing for the selection of more intuitive values. These

metrics include: The threshold radius, Xtr, the repulsive peak radius, X∇repmax ,

and the repulsive magnitude maximum, ∇repmax .

The metric Xtr serves to tie in the UAV’s minimum turning radius, taking in

to account the UAV’s ability to avoid collision with a planar maneuver. X∇repmax

is term that is necessary due to the properties of a Gaussian repulsive poten-

tial function. With a Gaussian function, the gradient of that function has a

maximum that is not at the center of the function, meaning that the maximum

repulsive command will be issued at some distance away from the center of the

function, with that command weakening as the gradient is evaluated closer to

the center of the function. An aircraft is not a point-mass, and therefore, the

strongest repulsive command should not be at the center of gravity of the air-

craft, but rather around the perimeter of the aircraft. Therefore, X∇repmax is set

as the representative radius around the aircraft, promising the highest repulsive

command near the point of physical collision. ∇repmax is a somewhat arbitrary

number that simply scales the range of values used in the algorithm process. For
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an embedded system, where this algorithm is intended to run, the use of small

data types and integer scaling could factor into the selection of a lower number

for this parameter.

Figure 3.12: The physical interpretation of the new potential function
guidance algorithm sizing metrics

Figure 3.12 shows how these parameters relate to total gradient magnitude

with respect to the UAV’s distance behind the leader. The figure gives an example

of the extreme case of another formation member in the far-field regime, where

the attractive potential function gradient is at its maximum.

The first potential function guidance algorithm parameter calculated is for

the repulsive function’s “influence” parameter, σ, where

σ = 2X2
∇repmax (3.20.20)

The next parameter to be calculated is the total repulsive function magnitude,

τ0, such that

τ0 = ∇repmaxX∇repmaxe
1
2 (3.20.21)

With both of the parameters calculated for the repulsive potential function equa-

tion, the next step is to determine the values for λx, λy, and λz. This process
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begins by interpreting the physical limitations of the UAV flying at the conditions

expected during formation flight. Substituting an equation for a steady turn ra-

dius, a conservative approximation for the minimum turn radius required as a

function of relative velocity and maximum roll angle, Φmax. This relationship is

described to be

Xtr =
∆V 2

gctanΦmax

(3.20.22)

In order to ensure that the collision avoidance algorithm functions in far-field

regime, where the attractive potential function gradient magnitude reaches its

maximum, a method was derived to set that maximum gradient magnitude di-

rectly. By setting∇attmax , the attractive potential function gradient is guaranteed

not to eclipse the repulsive potential function gradient inside of the threshold ra-

dius, Xtr. This maximum is set by

∇attmax =
2τ0Xtr

σ
e

−X2
tr
σ (3.20.23)

With a set maximum desired value for the attractive potential function gradient,

the corresponding sizing parameter for the attractive potential function, λ can

be calculated by

max(λx, λy, λz) =
∇attmax

2χ
(3.20.24)

It is worth noting that this equation only constrains the maximum lambda. Po-

tential function weighting can still be accomplished using different values of λ, so

long as they do not exceed the calculated maximum.
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4 Achieving Relative Situational Awareness

The difficulties of achieving situational awareness with UAVs was introduced

in section 2.8. While achieving absolute situational awareness is necessary for

many applications, and is necessary for any realistic implementation of formation

flight, the form of situational awareness that successful formation flight is most

dependent on is relative situational awareness. Achieving this relative situational

awareness is not a trivial problem, and many studies are focused solely on methods

which could be used for this purpose.

Considering purely decentralized approaches, the most promising technique

involves the use of computer vision. Natural inspiration shows that vision is of-

ten a key sense employed by animals of all shapes, sizes, and complexity, used

to interpret their surroundings, and establish some sense of relative situational

awareness. Although making significant progress in recent years, vision systems

are still too complex and have not reached a level of maturity that could provide

a cheap, robust way for a small UAV to achieve relative situational awareness.

Nature also demonstrates that several other techniques can be employed to in-

terpret the environment an animal is operating in. Active localized sensing like

echolocation provides inspiration for using sonar, radar, or laser range sensors to

develop a map of the environment and its inhabitants in order to achieve some

sense of situational awareness. While many sonar sensors are available in a cheap

form factor, complicated algorithms are required to map surroundings, and lim-

itations of range and accuracy make them difficult to employ over a wide range

of possible distances. Radar and laser technologies have developed significantly,

but are still too costly and often too heavy to integrate in to a small UAV. Addi-

tionally, even radar and laser mapping require complicated algorithms to process
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detected terrain and obstacles.

Moving away from purely decentralized approaches, there are also a few op-

tions for distributed or centralized methods that could provide some form of

relative situational awareness. Independent observation is the common denom-

inator for most of these methods, which relies on some form of communication

of the observations to the UAVs. Favored by many academic institutions for its

accuracy and robust performance, motion capture systems have been employed

for many multiple UAV applications to provide relative state information to the

vehicles, such as the systems described in section 2.11. These systems, however,

are limited to use indoors. When considering applications which must be ob-

served outdoors, the most likely candidate to provide situational awareness is

GPS.

Ultimately, this project proceeded in a direction that acknowledged that

decentralized formation member observation was not within the scope of this

project. Therefore, an independent observer strategy was desired to achieve rel-

ative situational awareness. Accordingly, to relay the independently observed

observations among all of the UAVs, a strategy for communicating each forma-

tion member’s observed state was developed.

4.21 Communication of Observed States

4.21.10 Network Topologies

While network topologies are often protocol dependent, understanding and

selecting the right topology to share formation member states was an important

factor in deciding the final communication strategy. In this discussion, network

topology refers to the way in which one formation member communicates to

60



another, ignoring the distinction between different protocol layers that enable

that form of communication. With that in mind, the available wireless network

topologies include the following: Point-to-Point, Point-to-Multipoint, Peer-to-

Peer, and Ad-Hoc Mesh.

(a) Point-to-Point Network (b) Point-to-MultiPoint Network

(c) Peer-to-Peer Network (d) Ad-hoc Network

Figure 4.1: Examples of various communication network configura-
tion options for a state-sharing strategy to achieve relative situational
awareness

Illustrated in Figure 4.1a, the simplest form which can be implemented is a

point-to-point topology configured in either full duplex or half duplex, depending

on whether or not each node waits for the other to stop “talking” before it begins.

Many telemetry links for monitoring UAVs use this topology because it is simple

to set up and many radios come pre-configured for this use. Figure 4.1b shows

the point-to-multipoint topology, sometimes referred to as a star topology. Many
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half duplex radios that support point-to-point also support point-to-multipoint

configuration. This topology allows multiple nodes to communicate with each

other, but all communication is routed through a central coordinator. Figure 4.1c

shows the Peer-to-Peer topology, where each node is able to communicate with

all the nodes directly, without a central coordinator. However, by removing the

coordinator, complexity is added, and the number of network connections follows

the n2 approximate proportionality model. Figure 4.1d depicts the Ad-Hoc Mesh

topology which uses the peer-to-peer concept, but enables each node to route

communication intended for another node as well as the ability for nodes to join,

leave, and rejoin the network without causing destabilization[27].

4.21.11 Requirements for Formation Flight Demonstration

From the standpoint of network topology, the communication requirement of

formation flight utilizing the state-sharing method discussed is relatively simple:

Each UAV must be able to communicate with every other UAV in the formation.

For many practical applications, including demonstration, it is also necessary to

monitor each UAV and send commands. Therefore, an additional requirement

can be added: Each UAV must be able to communicate with the ground station.

With the decentralized control strategy developed, a decentralized communica-

tion network should be put in place to mirror the control strategy and remove

communication dependencies from a central coordinating node. This is accom-

plished by adding the requirement: The network must not be dependent on a

central router for communication. Lastly, one of the major benefits attributed to

decentralized control of multiple UAVs is the inherent tolerance to the loss of a

formation member, even the global leader. Therefore, a network that is able to

accommodate the same fluctuation of formation members has the requirement:
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Any potential formation member may join or leave the communication network

freely. While not required for this project, considering larger scale implementa-

tions leads to two more desirable network capabilities: 1) Any UAV in range of

at least one other UAV should be able to communicate with all of the UAVs in

formation, and 2) Network communication links should be developed intelligently

to avoid saturating the network when a large number of nodes are present.

4.22 Detailed State-Sharing Strategy

4.22.12 States based on GPS

For this project, in order to limit scope and reduce the number of variables

introduced into demonstration, a GPS-based approach to understanding relative

states was adopted. Accordingly, each UAV will simply broadcast their GPS-

reported state to the other UAVs participating in the formation, providing all of

the UAVs with the information required to determine their state relative to each

of the other formation members. Specifically, each UAV will broadcast

• UTC Time

• Longitude and Latitude

• Absolute Altitude and Relative Altitude, determined with the on-board

altitude sensor

• Velocities VX ,VY , and VZ , in the NED coordinate frame

• Heading

While GPS filtering could be implemented to offset some of the error associated

with this method, it was not included in the scope of this work.
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4.22.13 Ad-Hoc Mesh Network

To meet all of the requirements listed in the previous section, truly embrace

the decentralized approach, and accommodate the desirable capabilities for fu-

ture scalability, the best choice of network topology is an ad-hoc mesh. Ad-hoc

networks allow for

• All formation members to communicate freely with no central ground sta-

tion required for routing

• Potential formation members to join or leave the network at any time

• Communication through “hops” removing the requirement of direct con-

nections between UAVs

– At a larger scale, UAVs could still communicate with all formation

members even if some are out of its range

– With many more UAVs, intelligent routing through hops could help

to keep a large communication network manageable

Despite the ability of Ad-Hoc networks to meet all of the requirements and desir-

able capabilities, early hardware tests demonstrated that the complexity, required

configuration, and number of variables to adjust made this network topology in-

convenient for demonstration at this scale. Therefore, the desirable capabilities

for scalability were abandoned in favor of a less complicated topology that still

met the requirements.

4.22.14 Peer-to-Peer Network

With the peer-to-peer network topology, all UAVs are able to communicate

directly without being routed through a central node, they are still able to com-

municate with the ground station, and they may still come and go from the net-

work as they please. Hardware testing demonstrated that setup of this network
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was substantially easier, with fewer variables to adjust while trouble-shooting er-

rors. With only three UAVs being used in this demonstration, it is expected that

all UAVs will be in range of each other and the ground station, and the network

will not be overloaded with too many connections.

4.23 Limitations of Strategy

While the proposed state-communication does satisfy the requirements for

accomplishing formation flight, there are several limitations associated with the

strategy. One of the most problematic limitations lies in that all of the rela-

tive state information that is calculated is derived from the GPS data in one

way or another. As discussed earlier, GPS error can be significant, especially

with respect to the scale of the test-bed aircraft. This reliance on GPS for

state communication makes the relative states calculated only as accurate as the

combined GPS accuracy of the formation members. Another drawback to the

state-communication strategy proposed is the reliance on a network to achieve

that communication. Any network failures will cause members to disappear from

simulated “view”, disconnecting the UAV’s perceived reality from the physical

world. The last major limitation of this state-sharing strategy is that it is not

possible to form a completely decentralized control system architecture, free of

dependencies on other UAVs to determine its own desired state. This form of

control strategy reaches its full utility when there are no observable transmissions

and no dependencies on any other external systems. Only a full vision system

could make that dream a reality. While the state-sharing strategy does not allow

the full control system to be decentralized, the way in which the strategy has

been implemented serves as a place-holder, should an appropriate vision system

be developed in the future.
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5 Hardware

5.24 Selection Methodology

Embedded system design is not a trivial task, with entire studies conducted

to evaluate emerging trends in the field and suggest improvements to the process.

Conventional wisdom suggests that hardware selection be conducted only after

a full, detailed prototype of the software has been completed, insuring that the

selected hardware will meet the requirements of the software.

In the relatively new era of cheap, ubiquitous prototyping boards such as the

Arduino Mega, Beagle Board, or Rasberry Pi, to name only a few, there is an

alternative to the traditional design process for embedded systems, ideal for fast-

paced research applications where the embedded system is just a means to an

end, and not the focus of the work itself.

With a basic understanding of the software requirements, gleaned from a

high-level prototype, such as a Matlab or Simulink implementation, a platform

can be selected which roughly fits the requirements of a system. The drawback

to this approach is that without an in-depth understanding of the software, as

it must be realized for an embedded system, there is always a chance of running

up against a limitation of the platform chosen, and end up having the hardware

push back on the software requirements. For research where the objective is not

to use a specific form of an algorithm or technique, this hardware push-back can

usually be accommodated.

Best described as a “hacker” methodology, this process can greatly acceler-

ate research where an embedded system is required to accomplish the study’s

objective, but does not constitute the main focus of the project.
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5.25 Requirements

The requirements derived for the FLOC project hardware selection were heav-

ily influenced by the objectives of the project, laid out in Section 1.3. One of the

largest driving requirements for hardware was the selection of low cost compo-

nents that would be easy to obtain, repair and replace. This requirement spans

the entire system from the RC aircraft test-bed to the communication hardware

to the autopilot. Another driving requirement is the flexibility and customization

of the hardware. The hope is that this hardware will support, not only the FLOC

project, but future multiple UAV control work as well. Selecting flexible hard-

ware that can be altered for various uses will help maintain continuity between

studies and minimize the learning curve associated with applying this hardware

in multiple UAV control studies.

Figure 5.2 shows the requirements flow-down for hardware selection. Many

of these, such as the RC aircraft requirements, are somewhat arbitrary, consid-

ering the number of solutions that satisfy the requirements. Some requirements

to highlight are the stable platform and efficient, long endurance requirement.

Stability is important to narrow the scope of this problem: It is unnecessary

to have to consider stabilizing the vehicle in addition to accomplishing forma-

tion flight. Long endurance is a requirement due to the nature of multiple UAV

flight testing, and the need to allow time to launch and recover the UAVs safely.

“Long” is intended to be relative to traditional RC flight times, referring to flight

times on the order of 15-30 minutes as opposed to 5-10 minutes, which is com-

mon among high-performance RC aircraft. The communication requirements are

derived from the state-sharing method of achieving relative situational aware-

ness, discussed in Section 4.22, as well as from telemetry logging and parameter
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alteration support required for flight testing. Additionally, range requirements

reflect the test range used and the regulations requiring RC aircraft to fly below

400 feet. Figure 5.1 shows the approximate dimensions of the test field area to

be utilized. Combined with the 400 foot altitude limitation, a worse-case range

requirement can be found to be ≈ 1900 feet, or about 0.36 miles. Another impor-

Figure 5.1: The approximate dimensions of the test area expected to
be utilized for flight testing

tant requirement is the communication hardware’s ability to accommodate the

necessary data rates. With no video feedback requirements, the data throughput

required is relatively light. However, for high fidelity logs, telemetry data must

be sent at a high rate.

The autopilot hardware requirements are heavily driven by the stated goal to

use low-cost commercially available autopilots that support open-source software.

The type of autopilots that can meet those goals must be customizable, well

documented, readily available, and cheap. The selected autopilot must also be

capable of supporting the software required to enable formation flight.
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Figure 5.2: Flow-down for system hardware requirements
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5.26 Communication Options

As discussed earlier, the development and miniaturization of wireless technolo-

gies have made wireless communication ubiquitous in the span of two decades.

With so many wireless devices, requirements can range from short distance, low

data rate for applications such as a smart home thermostat, to long range, high

data rate for applications such as real-time surveillance video from a UAV. While

investigating appropriate strategies for this application, it was found that most

wireless devices are classified by the standard or protocol for which they are de-

signed. Without considering options intended for more extreme applications, the

options for communicating each UAV’s observed state to other members of the

formation include the following standards:

• GSM/UMTS/LTE (Cellular 2G/3G/4G)

• IEEE 802.11 (WiFi)

• Bluetooth

• IEEE 802.15.4 (ZigBee, MiWi)

Figure 5.3 shows how devices which are designed for each standard generally

compare with respect to range and data rates. Cellular device technologies have

all but replaced wired telecommunications, encouraged by feasible infrastructure

requirements due to its long range. With each generation, data transfer rates

have increased and have now reached a level rivaling other technologies designed

for internet-scale data rates [15]. Despite the rise of 3G and 4G mobile devices,

WiFi has long been the face of wireless internet access due to its high data

throughput. It has moved beyond businesses and residences through the spread of

“hot spots”, enabled by cheap wireless routers, which compensate for the limited

range [45]. Generally, Bluetooth devices are designed for applications such as
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Figure 5.3: Typical range and data rates for various wireless technolo-
gies

personal computer interface accessories, cellular phone hands-free accessories,

and many other applications where the required range is relatively small [85].

Less well known are the devices that use IEEE 802.15.4 based protocol such as

ZigBee devices. Often found in low power applications, these devices have found

a niche in sensor networks of all kinds. Also, because of the relatively low cost and

simplicity of the devices, hobby robotics applications often turn to this solution

for wireless communication. While not capable of internet-scale data throughput,

these devices are ideal for moderately distanced applications exchanging sensor

data on a power budget [85].
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5.27 Selected Hardware

5.27.15 Airframe Selection

The airframe serving as the test-bed for this project is the Sky Surfer 1400,

produced by X-UAV and distributed in the United States by ReadyMadeRC as

an ARF kit that includes integrated servos, an ESC, and a brushless motor.

Derived from the classic 3 channel Multiplex EasyStar, the Sky Surfer is one

Figure 5.4: The Sky Surfer 1400

of several 4 channel clones that comes highly recommended for basic UAV and

FPV platforms by the DIY Drones community and other RC enthusiast message

boards. The specifications for the Sky Surfer 1400 airframe are shown in table

5.1. This airframe meets all of the requirements listed in the previous section,

making it a good candidate for use not only in this work, but in future multiple

UAV studies.

Intended to be flown by beginner pilots, this airframe is a very stable platform.

Constructed out of EPO foam, the aircraft is durable enough to take a hard
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Table 5.1: Sky Surfer Specifications

Material EPO

Wing Span 54 in

Wing Area 410.5 in2

Empty Weight 22 oz

landing, and in the event of a crash, can be repaired easily. Hand-launched

and belly-landed, the aircraft provides flexibility in test facilities, as it does not

require a runway. At approximately $50 for the airframe alone, the Sky Surfer

is cheap enough to replace in case of a total loss. The Sky Surfer’s configuration

also resembles that of a motor-glider, making it an efficient airplane, capable of

flying at low speeds with relatively long endurance. Payload capacity and internal

volume is suitable for the electronics required for this project, with enough space

and capacity left over to accommodate future studies that require additional,

similarly sized hardware. Lastly, the popularity of this airframe as well as the

many other EasyStar clones out there, such as the Hobby King Bixler, guarantee

that the Sky Surfer or something very similar will be available well into the future.

5.27.16 RC Equipment Selection

A portion of hardware included in the test-bed are not unique to an au-

tonomous UAV, but necessary for all RC aircraft to operate. Many of these

components were supplied in the ARF kit, while others were selected with con-

sideration for supporting the autopilot hardware, described in the next section, as

well as consideration for the applicable hardware requirements outlined in Section

5.25, such as cost and reliability. Suggestions from the DIY Drones community
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and RC enthusiasts at Cal Poly were taken into consideration during the selection

process as well. Table 5.2 lists all of the traditional RC components acquired for

Table 5.2: RC Equipment Selected

Transmitter (Tx) 2.4 GHz Spektrum Dx6i

Receiver (Rx) 6 Channel Spektrum AR26210

Motor* 1900 Kv 2620 Brushless Outrunner

ESC* 20A

Servos* 9g

Battery 2200 mAh Turnigy 3S 25C LiPo

BEC 3DR Power Module

*Included in the Sky Surfer ARF kit

this project. The Spektrum Dx6i provides a balance between cost, reliability, and

utility. Six channels are the minimum number required to control a 4-channel

airplane as well as support the capacity to select several autopilot flight modes

during flight. The receiver was included with the transmitter, but one of the

selling points of Spektrum products is that receivers can be quickly interchanged

with a simple binding procedure. Furthermore, the Dx6i supports the storage of

the multiple receiver profiles and transmitter configurations within its on-board

memory. This is a nice feature to have, especially if there are multiple projects

running in parallel, where the relatively expensive transmitter must be shared.

A larger capacity battery was selected, despite the recommendation of the

manufacturer, to increase the endurance of the aircraft. Any extra time in the air

is quite valuable, especially when considering the time it takes to launch and re-

cover three aircraft safely. To account for the increased battery size in the weight

and balance of the aircraft, several metal washers serving as counterweights were
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removed from the nose of the aircraft.

Lastly, an external Battery Eliminator Circuit (BEC) is included in the test-

bed, selected based on the autopilot selection discussed in the next section. These

components serve to remove the requirement of a second battery pack, dedicated

to powering the receiver and servos on the aircraft, and are now typically built

in to the ESC. However, the power coming from the BEC that is integrated in to

the cheap ESC included in the Sky Surfer ARF kit, rarely produces clean power,

with wide variations in voltage supplied when under different loading conditions.

While these fluctuations are usually within the tolerance of the relatively robust

receiver and servos, more sensitive hardware, such as an embedded control system,

require a cleaner, more reliable source of power. The BEC provides this, along

with some extra redundancy in the event that the cheap ESC were to fail during

flight.

5.27.17 AutoPilot Selection

The autopilot selected for use in this project is the ArduPilot Mega 2.0,

often simply referred to as the APM 2.0. During the course of this project,

improvements were made to the design of the APM 2.0 solely for manufacturing

purposes, which left all of the components more or less the same, but changed

the over-all layout of the board. The new board with the modified layout was

named APM 2.5, and production of APM 2.0 was ceased. Therefore, a mixture

of APM 2.0 and APM 2.5 boards are used in this project. This autopilot was

selected based on recommendations from previous work done in reference [58] as

well as high praise from the DIY Drones community, which has heavily shaped

the development of this hardware since its inception.

The APM 2 meets all of the requirements set forth in the previous section for
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Table 5.3: Specifications of the APM 2

µC
ATMega 2560 (Processing)

ATMega 32U-2 (USB functions)

6-axis Accel/Gyro Invensense MPU-6000

3-axis Digitial Compass Honeywell HMC5883L-TR

High Resolution Altimeter MEAS MS5611-01BA03

GPS Receiver MediaTek MT3329

Airspeed Sensor*
3DR Pitot Tube

Freescale MPXV7002DP

Data Storage
4MB MicroSD (APM 2.0)

4MB Dataflash (APM 2.5)

*Optional Sensors

a suitable autopilot for multiple UAV control research at Cal Poly. With a price

tag that is almost 1% of the reported cost of the Cloud Cap Piccolo autopilot,

which is a high-end autopilot used in previous work at Cal Poly, cost represents

a dominant factor in the selection of this autopilot. While it is well understood

that the Piccolo retains its high price tag for a reason, vastly improved low-end

sensors produced for consumer products have begun to close the gap between

high-end products like the Piccolo, and these relatively new APM autopilots.

Additionally, it is not feasible to purchase and sustain the number of autopilots

required for a successful multiple UAV control program if high-end autopilots like

the Piccolo are selected over the cheaper alternatives like the APM 2.

The APM 2 is highly customizable, both in the sense of hardware and soft-

ware. While the software is discussed in more detail in the next section, the open

source APM printed-circuit-board (PCB) designs and publicly available compo-
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nent and sensor details, mean that any custom software can be written to utilize

the various sensors included on the board. In the sense of hardware, the APM

2.0 and 2.5 both have numerous unused digital I/O pins, as well as SPI and I2C

ports and an unused UART serial port, which allows for the addition of a number

of extra components and sensors. Because the PCB schematic and layout files

are open source, the board design can even be altered relatively easily to accom-

modate a custom piece of hardware, and then printed from a third-party PCB

manufacturer.

Due to the fact that the board design and modifications have been born out of

the DIY Drones community, the APM 2 has extensive documentation and support

between a project wiki and the community forum, where even representatives of

the manufacturer routinely answer questions from users. While there has been so

much demand for this autopilot, and availability has been limited, it seems that

the manufacturer has worked out the kinks in the supply chain, and availability

is much improved. Furthermore, the publicly-available PCB design files insure

that the board can continue to be produced by a third-party manufacturer if 3D

Robotics halts its production of the board.

Lastly, using the “hacker” model discussed earlier, the most difficult aspect

to evaluate at the early stages of hardware selection is whether or not the system

meets the predicted software requirements. The ATMega 2560, the brain of the

APM 2, is an 8 bit, 16 MHz microprocessor that has 256 KB of flash storage and

8 KB of SRAM (memory) [12]. While these specifications do not lavish the APM

with heaps of untapped performance, there is enough of a reserve of storage and

capability to be considered a good fit for the prototyping needs of this project,

with software performance requirements that are not precisely known, but can

be ball-parked with some certainty.
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5.27.18 Communications

The communication hardware selected is split into two distinct sets of radios:

For the FCOM inter-UAV network, 2.4 GHz XBee Pro 802.15.4 (S1) radios were

selected, and for the dedicated telemetry link, the 900 MHz 3DR Radios were

selected.

Table 5.4: Specifications for the selected communication hardware

3DR Radio XBee Pro 802.15.4

Frequency Range 915 MHz 2.4 GHz

Range ∼1 Mile ∼1 Mile

Power Usage 100 mW 60 mW

Data Throughput Up to 250 kbps Up to 250 kbps

Network Topology Point-to-Point

Point-to-Point

Point-to-MultiPoint

Peer-to-Peer

The XBee modules selected meet all of the requirements set forth for com-

munication, set forth in Section 5.25. With a range up to 1 mile, they meet the

specific requirements derived for flight tests at the Cal Poly EFR as well as the

throughput requirements for the FCOM inter-UAV network. Capable of config-

uration for point-to-point, point-to-mulitpoint, and peer-to-peer, these modules

are well suited for an inter-UAV network that requires a distributed peer-to-peer

topology. Most importantly, the XBee modules are easy to configure and are well

documented. While these modules offered compatibility to the ground control

station software in a point-to-point, transparent mode configuration, the peer-
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to-peer network, necessary for the FCOM network to function, requires that the

data intended to be transmitted be integrated into an XBee-defined API packet.

Details about the XBee API protocol can be found in the XBee documentation

[13].

The standard ground control station software, which will be discussed in the

next section, offers a streamlined data logging and in-flight parameter adjustment

interface, but unfortunately does not support reading the XBee API packet, nor

can it handle multiple UAV telemetry transmission through a single radio at this

time. Therefore, the vital telemetry monitoring and logging, as well as the in-

flight parameter and waypoint functionality is, instead, enabled through the use

of a second RF module, the 900 MHz 3DR Radio. This point-to-point radio offers

the same range and data throughput as the XBees, and is also relatively easy to

set up.
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6 ArduPlane

6.28 The ArduPlane project

When the first ArduPilot board was made available for purchase on Sparkfun

in 2009, There was no distinction between hardware and software, with both

referred to simply as “ArduPilot”. During the explosive development over the

last four years, both the hardware and software have come so far that they hardly

resemble their humble origins. One exception is the root of their name, Ardu,

which pays homage to the Arduino platform they grew from (and, ironically, have

recently outgrown).

Over the course of development, the hardware, now called ArduPilot Mega,

has become a universal autopilot, capable of controlling any vehicle, given that

the appropriate software is loaded. New software developed for several different

classes of vehicles, coupled with the growing confusion from referring to both

hardware and software by the same name, the ArduPilot Mega software for fixed

wing applications was renamed ArduPlane. Similarly, software for multi-copters

and land vehicles were renamed ArduCopter and ArduRover respectively. Since

August, 2011, when ArduPlane branched off of ArduPilot, 25 versions of the

software have been released by the development group. Almost every single

release has added new functionality, improved performance, or both.

The version of ArduPlane serving as the foundation for this work is ArduPlane

v2.66, released on October 30th, 2012. Since then, 7 new versions of the software

have been released. The rapid development and dramatic increase in autopilot

performance is a testament to what community-driven, open source projects can

achieve.
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In addition to the ArduPlane software, developers in the DIY Drones com-

munity have also released several tools to support testing and simulating with

ArduPlane and the ArduPilot Mega. These tools include various Arduino test

sketches, SIL simulation support through FlightGear, and HIL simulation sup-

port through both FlightGear and X-Plane.

6.29 Standard Functionality

To give the reader perspective on the modification made to ArduPlane for

formation flight functionality, a rough summary of the standard v2.66 code is

presented in this section. For a more detailed explanation of the standard code,

the ArduPlane project wiki [1] is well documented, and regularly updated to

reflect changes in the software.

The flight modes supported in ArduPlane v2.66 include

• Stabilize

• Fly-By-Wire A/B

• Automatic Take off and Landing

• Autonomous Waypoint Mission

• Guided

• Loiter

• Return-to-Launch

ArduPlane also supports telemetry communication based on the MAVLink

protocol [6], which can be used to display pertinent data, change on-board pa-

rameters, or even directly control the aircraft movement in guided mode, all from

a ground control station. Datalogging of sensor, performance, command, and

many other values is supported as well, both on-board and through the ground

control station.
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The Micro Air Vehicle communication protocol, MAVLink, “is a very lightweight,

header-only message marshaling library for micro air vehicles” [6], and is the com-

munication protocol of choice for many open source autopilot projects. The pro-

tocol details can be found on the MAVLink project wiki [6], but some elements

of the MAVLink project are worth mentioning in this discussion of ArduPlane,

as it ties in to some of the software modifications discussed in the next section.

The MAVLink project distributes a library generator that takes an input

KML file, with a formatted list of message definitions, and generates all of the

necessary C++ header and source files to fully integrate the protocol into soft-

ware. ArduPlane v2.66 uses MAVLink v1.0, which is a standardized build that

supports all of the message types for ArduPlane to communicate telemetry data

to the ground control station, as well as receive parameter changes and waypoint

commands, the format for which is also defined by the MAVLink protocol.

The generated library also supplies “convenience functions”, which Ardu-

Plane uses to encode and decode telemetry payload packets, as well as prepare

the packet header and calculate the packet checksum prior to sending. It should

be noted, however, that the MAVLink library does not provide a direct inter-

face to the ArduPlane software. This is achieved through through ArduPlane’s

GCS library and the GCS MAVLink Arduino Sketch, which is responsible for the

preparation and the handling of the the MAVLink message payload.

6.30 Software Process Flow

Figure 6.1 is a high-level graphical description of how the ArduPlane v2.66

code is organized. There are four primary loops: The fast loop, medium loop, slow

loop, and one-second loop, running at 50Hz, 10Hz, 31
2
Hz, and 1Hz respectively.
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Figure 6.1: The loop-oriented process flow for ArduPlane v2.66

In general, functions are organized into loops according to bandwidth require-

ments. An example in the fast loop is the functions reading the transmitter and

setting the servos. These functions should be called at the highest rate to emulate

hardware-like throughput of commands while in Manual mode. Another example

in the fast loop is the inner-most control loop function stabilize. Because it is

the most inner-loop controller, the rest of the control loops are bandwidth-limited
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by the rate it is executed. Attitude sensors are updated in this loop along with

the Direction Cosine Matrix and various other state estimates and corrections.

The medium loop houses most of what is required for the outer-loop control of

the UAV, such as the Navigation PID controller and the Attitude PID controller.

Autonomous missions are also processed in this loop, using GPS updates to

evaluate when waypoints have been reached. The GPS and airspeed sensor are

updated in this loop, and a majority of the data logging occurs in this loop as

well.

The slow loop and the one-second loop contain functions that are meant for

redundancy or only used in specialized cases which do not require high-rate execu-

tion. An example of this is the HEARTBEAT MAVLink message that is transmitted

from the one-second loop, and serves as part of MAVLink’s convention to verify

that a system is still connected.

6.31 Controller Implementation

The control architecture nested inside the various loops can be best described

as a cascading PID control system. Figure 6.2 shows how each tier interacts

with the others. Different levels of autonomy use select levels of the controller:

STABILIZE only uses the Attitude PID controller, converting it into a regulator by

setting the command inputs to zero. FBW, or Fly-By-Wire mode, Also only uses

the Attitude PID controller, but the command inputs are set on the transmitter

stick deflections. Only in the fully autonomous modes, such as AUTO and GUIDED,

do commands proceed through the Navigation PID controller, which in turn feeds

commands into the Attitude PID controller.

More recent versions of ArduPlane have included optional alternative con-
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Figure 6.2: The PID control structure used in ArduPlane v2.66

troller schemes, moving away from the simple cascading PID. Early reports from

developers and community members have indicated that controller performance

has increased with these additions, but inclusion of these new control schemes is

the subject of future work.

6.32 Compatible Ground Control Stations

The APM Mission Planner is ground control station software that serves

both as a traditional ground control station and as a configuration utility for

the APM and associated firmwares. The software was written by a member of

the DIY Drones community and is primarily intended for use with the APM

system. Because of its primary focus on the APM ecosystem, it provides the

most straight-forward and intuitive interaction with ArduPlane. Included in the

software is the ability to load new firmware, update parameters, and access a

command-line interface for more advanced functionality. As the name implies,

fully autonomous waypoint missions can be designed and uploaded to the APM
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hardware. When connected to an RF link, telemetry data can be displayed

during flight, as well as logged for later analysis. Furthermore, the APM Mission

Planner acts as a bridge between the APM hardware and supported simulation

environments, providing a straight-forward means to perform HIL simulation.

From the standpoint of Multiple UAV control, there is one crucial element

lacking from the current version of the Mission Planner software: The ability to

connect to more than one UAV in the same instance of the the executable. While

this summary provides some point of reference on the Mission Planner software,

a more detailed description can be found on the ArduPlane project wiki [1].

Because ArduPlane utilizes the MAVLink protocol, which has become a stan-

dard in the open source autopilot community, there are several other ground

control stations that are compatible with ArduPlane, including

• HappyKillmore GCS

• QGroundControl

• MAVProxy

The drawback of these ground control station options is that due to their abil-

ity to accommodate many different systems, the interface is not fine-tuned for

ArduPlane, making them less intuitive for use with the software.
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7 Modification to ArduPlane for Formation Flight

One of the main objectives for the software development portion of this project

is to build on top of, not replace, existing open-source autopilot software. By

leaving the core of the standard ArduPlane v2.66 software intact, a common

thread is established for future UAV work using a similar system architecture,

not necessarily confined to a formation flight application. To accomplish this,

the modular nature of the original software was mirrored when creating new

libraries and Arduino sketch files. Object-oriented programming is modular by

nature, making this process convenient for new libraries that can reference and

inherit classes from the standard ArduPlane libraries to maintain conventions

and increase compatibility.

Besides the convenience of having building blocks in place and maintaining a

common thread that is suitable for general UAV work, another benefit of building

on top of the existing software is that several versions of this software are flown

by hundreds of amateur hobbyist, and have been rigorously tested and debugged

by developers and members of the DIY Drones community. This helps to limit

the possibility of bugs popping up outside of new or modified libraries, making

debugging more manageable overall in the later stages of the project.

There is a downside to using the source code for a relatively complex sys-

tem: the architecture and interface conventions must be thoroughly understood

in order to make meaningful additions to the software. Furthermore, making

modifications to existing libraries requires a certain level of understanding about

the dependencies of that library in order to avoid introducing bugs or causing

compiling errors. Many of the interfacing problems can be addressed by respect-

ing and mirroring the conventions already put in place wherever it is possible,
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maintaining conventions such as:

• Function name conventions

• Variable name conventions

• Access to variables

• Data structures

• Variable scope

• Pointers and references

• Macros and pre-processors

• Integer representation of decimals and significant digits

Starting a project from scratch can give more freedom to the programmer to

put in place conventions they find more intuitive, removing the need to reverse-

engineer some of the more subtle conventions and their intended purpose. How-

ever, as discussed before, having debugged, flight-tested code to begin with dras-

tically outweighs the steep learning curve associated with adopting a foreign set

of conventions in the long run.

7.33 New Classes

With the tiered structure of ArduPlane, most of the code written to interface

hardware suites, sensors, and optional functionality can be found in the included

libraries in the form of C++ classes . This is intended to promote maintainability

and limit the impact of changes to the hardware or supported functionality on

the main arteries of the code: The Arduino sketches that tie everything together.

During initialization, many class objects are instantiated to represent phys-

ical sensors, such as gps and airspeed, which are instances of the AP GPS and

AP AIRSPEED classes respectively. In some cases, class objects are instantiated to
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represent more abstract elements that often inherit methods from sensor classes

to interface with the physical world, but also include methods intended to per-

form corrections, conversions, rotations, and approximations to the data collected

by sensors to generate values that are not directly measurable. A good example

of this type of class is the AP AHRS class. The new classes introduced in this

work are similar to the AP AHRS example in that they do not represent a direct

interface to a physical hardware entity.

The flock member class is an addition to ArduPlane that allows for the

local representation of each formation member. The methods included in the

flock member class are intended to comply with existing ArduPlane conven-

tions, providing access to set and retrieve protected variables. In that manner,

the information relevant to formation flight for each member is stored within

their instance of the flock member class. Such information includes

• State information

– Latitude

– Longitude

– Altitude

– Velocity

– Heading

• Local leadership

• Global reference value

• Last communication

The local member class is a more specialized form of the flock member class,

intended to represent the UAV itself. local member inherits the entirety of the

flock member class, which allows for the convenient storage of the same type

of information required to represent the other formation members. Additionally,

local member contains methods for the management of its local interpretation of
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the flock architecture, as well as methods to perform the relative state estimation

required for the presented formation flight control scheme.

Flock management methods include methods that add or remove other mem-

bers from the local member’s relative state calculations. When called externally,

usually by the FCOM message handling function, which is discussed in next sec-

tion, the member ID, as well as a pointer to the local flock member instance

representing that member, are both added to arrays referenced when performing

relative state estimation. These arrays are kept up to date, adding or removing

member information, based on external interpretation of whether or not those

members are participating in the formation.

The relative state estimation methods use the state information stored in

the relevant flock member objects, the UAV’s state stored in the local member

object, and the available leadership information to calculate relative positions

and velocities with respect to the other formation members and the UAV’s local

leader.

Because position state information is stored in the form of latitude, longi-

tude, and altitude, great circle approximations, already built in to the ArduPlane

libraries, were used to obtain relative position values. Furthermore, to avoid

numerous rotations, requiring computationally expensive trigonometry, relative

state calculations are all carried out in the NED reference frame.

The pf field class provides ArduPlane with the ability to employ the po-

tential function guidance algorithm with virtual waypoint implementation. An

instance of the pf field class, when given access to the local member object,

uses the relative state information stored inside the local member object to gener-

ate virtual waypoint and airspeed commands. Methods included in the pf field
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class serve to update the potential function guidance algorithm, retrieve a new

virtual waypoint command, retrieve a new airspeed command, and retrieve values

that give transparency to the algorithm for use in monitoring and debugging. All

of the potential function guidance calculations are performed in the NED frame,

with rotations to and from the LNAV frame when goal offsets are applied. Func-

tions included in existing ArduPlane libraries are used to extrapolate the new

virtual waypoint coordinate from the current location coordinate and calculated

North and East offsets. Similar functions are employed to perform the near-field

region correction discussed in section 3.18.6.

7.34 New Arduino Sketches

In line with the discussion of code structure in the previous sections, two

new Arduino sketches are included in order to weave the new formation flight

functionality together, and fold it in to the main ArduPlane code structure.

Included in the formation flight sketch, functions are implemented for for-

mation management, swarm organization logic, and command updates. At this

level in the code structure, these functions have top-level scope, and greater access

to variables used directly by the PID controllers. It is in this sketch that

• The local state is updated

• The global reference value is re-evaluated

• The presence of other formation members is monitored

• Global leadership, or a suitable local leader is established through the de-

veloped swarm organization logic

• Navigation commands,directing towards either a virtual waypoint or pre-

defined global goal, are set, depending on the UAV’s leadership role
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The FCOM MAVLink sketch is modeled after the standard GCS MAVLink sketch,

and includes functions to prepare, send, and handle all of the messages intended

for the FCOM inter-UAV network. In the interest of maintaining convention,

the MAVLink protocol discussed in section 6.29 is used for the FCOM net-

work as well. While two standard MAVLink messages, the HEARTBEAT and the

GLOBAL POSITION INT messages, are used to establish membership presence and

exchange state information, A third, custom message type, FLOCK STATUS, was

developed to share necessary formation status information, such as each mem-

ber’s global reference value and their local leader’s ID. This custom message type,

and others discussed in section 7.37 were realized with the MAVLink library gen-

erator, briefly discussed in section 6.29. The new MAVLink library generated

serves as a replacement to the standard library, providing encoding, decoding,

and packaging support for the new message types along with all of the standard

message types as well.

The functions responsible for sending the FCOM messages resemble those

defined in the GCS MAVLink sketch. Message deferment and MAVLink packaging

process are almost identical, but unlike telemetry communication, messages in-

tended for the FCOM network must accommodate XBee API requirements. The

XBee library available for use on Arduino platforms requires some modification

to the serial interface in order to work with the ArduPlane software. With these

modifications in place, the revised library, dubbed AP XBee, is used to instantiate

an object to interface with the local XBee module. Methods incorporated into

this AP XBee class include: address specification, broadcasting options, and pay-

load packaging to meet the API protocol requirements. The FCOM network uses

the available Serial2 port, initialized during the ArduPlane setup for the FCOM

network instead of a telemetry link, to communicate with the XBee module.
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Message handling occurs in a similar fashion to the message handling defined

in GCS MAVLink. The fcom object is an instance of the GCS MAVLink class, as-

signed the MAVLINK COMM 1 channel, and therefore, message receiving from the

serial buffer occurs in exactly the same fashion that it would for messages received

from a ground control station. After receiving, the difference between the two lies

in a modification of the standard GCS library. Messages coming from any system

ID other than the ID assigned to the ground control station are intercepted and

redirected to be handled by a function in the FCOM MAVLink sketch. The different

messages received can be handled to update member states, request that a new

member be added to the formation, and update information used for leadership

determination.

7.35 New Configuration Files and “common” Header Files

The ArduPlane convention uses two formats to give variables global scope:

variables are either included in the global variable structure or defined using a

pre-processor macro. Variables that require the ability to change during run-time,

like parameters, are usually included in the global variable structure. Variables

that change fundamental aspects of the way ArduPlane is compiled or runs, such

as the HIL configuration variable, are defined as pre-processor macros. Addi-

tionally, variables that do not change value during run-time are also defined as

pre-processor macros.

A drawback to using pre-processor macros, and global variables in general,

is that the variable could be used anywhere in the code, and therefore could

introduce bugs by using unintended values that were assigned for an unrelated

purpose. Additionally, defining a pre-processor macro in more than one place

will cause errors during compiling. To address this problem, the ArduPlane
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convention is to group these pre-processor macros into configuration files and

“common” or “defines” header files.

Adding formation flight functionality to ArduPlane involves the addition of

several new global variables in the form of pre-processor macros. Mirroring the

conventions in place, variables created to alter the way that the new functionality

operates during run-time are grouped into two configuration files: APM config

and APM config formation flight.

In general, variables in these files serve to enable the formation flight function-

ality, define the formation member, define FCOM and new log parameters, define

potential function guidance algorithm parameters, and define the global goal. Ad-

ditionally, new global variables that do not fundamentally alter the process of the

code, or new interface data types can be found in the formation common header

file.

One specific configuration worth highlighting is the selection of the forma-

tion member for which the compiled firmware is intended. Several aspects of the

control scheme depend on an assumption that the participating systems are ho-

mogeneous. A single line of code separates the firmware loaded on one autopilot

from the others, enforcing this homogeneous assumption, and making firmware

updates more manageable.

7.36 New Control Modes

Included in APM config formation flight is the addition of two new mode

macros: Formation Flight, and Manual in Formation. Each of these modes are

defined with macros corresponding to a numeric value, consistent with the con-

vention used for modes already defined for the standard version of ArduPlane.
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7.36.19 Formation Flight

The majority of new capability added to ArduPlane is executed while the

autopilot is in Formation Flight mode. In this mode, each flock member is com-

municating on the FCOM network, broadcasting their state and updating the

locally-stored states of other flock members based on information sent over the

network. Also while in this state, the swarm organization algorithm, potential

function guidance algorithm, and virtual waypoint algorithm are all engaged.

Lastly, the “formation health” is monitored in this mode, tracking the heartbeat

communications from other members and deciding when they are no longer par-

ticipating in the formation. This mode is a fully-autonomous mode where the

UAV uses prescribed logic to decide to either go to the global goal or follow a

local leader.

7.36.20 Manual in Formation

This mode is included as a way to accomplish interesting experiments with

the formation “on-the-fly”. In this mode, the UAV maintains its current lead-

ership role (global, local, or none) and continues to broadcast its state, but is

under manual control. This allows for observing what happens when a formation

member diverges from the global goal and how their leadership role alters the

response of the rest of the formation members.

7.37 New Additions to Assist in Software Debugging, Test Trans-

parency, and Post-Test Analysis

Early simulation and testing revealed the need for greater transparency into

the code, real-time feedback of algorithm performance, and more data specific to
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the new formation flight functionality. Accordingly, several additions are included

in the modified ArduPlane to accommodate this need, such as

• Real-time debugging mode for HIL simulation

• Additional custom MAVLink messages for transmission to the ground con-

trol station

• Additional logs specific to the new formation flight algorithms

Microsoft Visual Studio 2010 was used throughout this project as the pri-

mary IDE for code development. With the VisualMicro plug-in [7], this IDE

combines helpful utilities, such as intelisense, with support for the Arduino lan-

guage and associated hardware. Furthermore, the Visual Micro plug-in supports

a convenient debugging mode that allows trace points to be added to the soft-

ware that is loaded on the hardware, which enable streaming variable values and

debugging messages real-time through an open serial port. This type of debug

support offers improved flexibility that is easier to implement and requires less

memory than a traditional debugging scheme for embedded systems. In order

to stream the debugger messages back from the APM board, a serial port is re-

quired to interface with Visual Studio on the monitoring PC. In the developed

configuration, the often-unused serial port, Serial2, is occupied by the XBee

module serving as the transmitter and receiver for information on the FCOM

network during HIL simulation. Therefore, new functionality is included in the

initialization process to re-calibrate the port typically used for interfacing with

the GPS receiver, Serial1, which is not required for HIL simulation due to sim-

ulated GPS data streaming from the simulator through the standard simulation

interface connected to Serial0.

The new custom MAVLink messages

• FF PF FIELD
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• FF VWP

• FF REL STATE

were designed with greater transparency during flight testing in mind. Values

for the potential field gradient vectors, coordinates for the virtual waypoint, and

values for the relative state vector used in calculations are included in these

messages. These new messages are included in the custom MAVLink library

generated, supporting their use in the ArduPlane code.

Unlike the other messages intended for the FCOM network, these messages

are addressed to be sent directly to the ground control station XBee module,

included to serve as a ground-based monitor for the FCOM network. Support for

these new messages on the ground requires a custom version of QGroundControl

software, with the source code edited to include the custom MAVLink library,

and then re-compiled for use on a PC. An additional benefit associated with using

QGroundControl to monitor the formation during flight testing is the support of

multiple UAVs in its interface. Therefore, not only can the custom MAVLink

messages be interpreted and monitored in their MAVLink widget, but markers

for all three UAVs appear on the main map, giving a bird’s-eye-view to evaluate

formation convergence during testing.

Lastly, new functions to log data relevant to the formation flight algorithms

are defined and incorporated into the medium loop of the ArduPlane code. These

logs generally parallel the data included in the custom MAVLink messages sent

to the ground control station, making it easier to analyze the performance of the

various new algorithms introduced after testing, and determine improvements for

future iterations of the software.
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7.38 Implementation in to the ArduPlane v2.66 Process Flow

Figure 7.1: The Augmented process flow for ArduPlane v2.66 FLOC
Edition

Figure 7.1 shows where the various changes and additions to the standard

ArduPlane code are implemented in the custom, FLOC Project version. Pro-

cess blocks highlighted in red represent areas of the original ArduPlane v2.66

source code that were modified to support formation flight functionality. Process

blocks highlighted in blue represent new functionality added to ArduPlane, en-

abling formation flight control. The placement of these new processes in the flow

were determined by examining existing ArduPlane conventions for communica-

tion support, navigation, and event determination.
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8 GPS 2D Relative Error Testing and Evaluation

A significant number of the concepts and schemes presented in this work

rely on the assumption that there is some level of relative situational awareness

available to each UAV. As discussed in section 4, the method chosen for this

implementation scheme is a state-sharing approach, based on broadcasting GPS

data for the other formation members to use in their relative state estimate.

Furthermore, GPS provides the only feasible way to observe the UAVs during

flight testing in a way that can be quantitatively analyzed to evaluate leader-

follower convergence and formation cohesion. Such high dependency from both a

control scheme and observational perspective makes the GPS the linchpin of this

whole project.

The importance of understanding and quantifying the error expected from

GPS-based relative distance calculations was recognized early in the development

of the presented system architecture, as this error trickles down through the entire

control scheme, having a large impact on the upper-bound limit of convergence

expectation of the formation flight controller.

8.39 Source of GPS Error

Documentation[11] for the GPS receivers used in this work, the MediaTek

MT3329, cites a 2D RMS absolute position accuracy of 3 meters. However, abso-

lute position is not very relevant to a formation flight problem, which generally

deals more with relative positions. What is relevant is the relationship between

this absolute position error and the error associated with GPS-based relative dis-

tance calculations. GPS error is broken down in to several categories, based on

the source of that error[22]. These error sources include
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• Ephemeris Data

• Satellite Clock

• Ionosphere

• Troposphere

• Mutipath Reception

• Receiver Measurement

Several of these error sources are rooted in variables such as satellite visibility,

atmospheric interference, and hardware precision. With that in mind, it could be

conceived that two identical GPS receivers, placed in relatively close proximity,

would benefit with a reduction of relative error.

8.40 GPS 2D Relative Error Experiment

To understand the expected error that would be associated with relative dis-

tance calculations, an experiment was designed to quantify this error expectation

using the same hardware and firmware used in flight testing.

Based on the information stated in the previous section, a hypothesis was

developed for the results of this experiment: If the 2D RMS error associated with

a receiver’s reported absolute position is 3 meters, then a lower 2D RMS error for

relative distance measurements can be demonstrated by using identical receivers

in close proximity.

To test this hypothesis, static GPS tests were performed at the Cal Poly EFR.

Reference distances were established by taping markers, spaced 2 feet ± 1
4

inch

apart. Placing 19 markers, the set up supports relative distance measurements

between 2 feet and 36 feet. Two full sets of hardware were utilized, complete

with an APM 2, MediaTek GPS receiver, Tx/Rx combination, XBee RF module,
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3S LiPo, and BEC. Using flight-ready custom ArduPlane firmware, the relative

distance measurement process that is performed during flight was replicated on

the ground.

Figure 8.1 shows the set up of the experiment out at the Cal Poly EFR.

Figure 8.1: The GPS relative distance error evaluation test set-up at
the Cal Poly EFR

The following procedure was conducted during the experiment:

1. Both systems should be powered on, with the Tx mode set to Manual

2. The “leader” system should be placed at the center of the runway at the “0

ft” marker and the “follower” system should be placed down the runway at

the last marker, labeled “36 ft”

3. Allow for both systems to establish a 3D GPS lock, verifying their lock at

the ground control station
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4. Toggle both systems into Formation mode simultaneously by changing the

mode switches on their respective Txs. Leave in Formation mode for ∼60

seconds

5. Monitor the broadcast location and relative state messages from both sys-

tems at the ground control station. Also using the output from the GPS

receiver connected to the ground control station, record the satellite IDs,

HDOP value, and a reference UTC time for each trial

6. After each trial, toggle the systems in to Manual mode simultaneously, so

that data sets are differentiable later during log parsing

7. Move the “follower” system closer to the “leader” by placing it at the next

marker

8. Repeat steps 4-7 18 times, which will log the relative distance values calcu-

lated by the “follower” for actual relative distances between 36 feet and 2

feet.

While in Formation mode, the follower calculates the relative distance in

the same fashion it would during flight: Evaluating the difference between its

own GPS-reported position and the GPS position information received from the

leader over the FCOM network. That value is then logged as part of the new

REL log, integrated in to the custom version of ArduPlane developed for this

work. Obtaining a “measured” relative distance this way guarantees that the

error expectation developed from the analysis of this experiment will be directly

applicable to the error expected for relative distance calculations in flight.

To provide a reference point for analysis, standard error propagation tech-

niques were used to find the most probable error of the GPS-based relative dis-
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tance using the 2D-RMS error for the GPS’s absolute position measurements,

providing a baseline 2D RMS relative distance error of 3
√

2 meters.

Because GPS error is often discussed in terms of RMS value, this convention

was used to analyze the data for each trial point, using

2DRMS∆drel =

√∑N
i=1(dreli − drelmrk)2

N
(8.40.1)

Figure 8.2 shows the calculated RMS value for each trial point as the follower

is moved closer to the leader.

Figure 8.2: The calculated 2D RMS relative distance error value com-
pared to the derived 2D RMS relative distance error value.

As Figure 8.2 shows, there is a trend showing that as the systems get closer

together, the 2D RMS error increases. Unfortunately this trend does not show
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decreases in RMS error across the board, as was hypothesized. Upon further

research, it was found that with WAAS corrections now embedded into the GPS

signal, there is little actual correlation of errors between receivers, making the

original hypothesis il-posed. Trying to accomplish differential GPS (DGPS) with

two GPS receivers that work with pre-filtered data has been given the misnomer

“poor man’s DGPS” because, although it resembles a cheaper implementation of

a type of relative GPS technique, in order to really reap the accuracy benefits

of DGPS measurements, a higher-end GPS receiver that can work with the raw

psuedo range values must be used.

Despite the failure to demonstrate increased accuracy of relative GPS mea-

surements using the selected GPS receivers, this experiment was able to provide a

characterization of the relative position error expected during flight testing. From

the perspective of flight testing data analysis, Figure 8.2 does provide valuable

information about the error associated with each measurement, which must be

taken in to account when interpreting the flight test results. However, for control

scheme purposes, Figure 8.2 does not provide a straight-forward means to eval-

uate how close two UAVs can be commanded to fly together without risking a

collision due to GPS-related error. Instead, a better way to look at this problem

is through a lens of probability. Now the question is re-framed to be: If the UAVs

are flying at some distance apart, what is the probability that their GPS error is

larger than that distance, risking a collision? Based on the distribution of GPS

data[64], the probabilty equation can be written as

Probability(Error ≤ Distance) = 1− e−( Distance
RMSError

)2
(8.40.2)

This information is more useful because it’s talking about probable error, not

an error metric like RMS, which has several cases that lie outside its bounds.

Therefore, a certain level of risk can be quantified when commanding the UAVs to
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fly in formation a specific distance apart. Figure 8.3 shows the probability curves

Figure 8.3: The calculated probability curve for relative distance error
that is less than the relative distance itself

based on the derived RMS error and the experimental RMS values. While the

convergence goal error budget, discussed in section 1.3, is comprised of multiple

components, the GPS error contribution is the most significant. The error budget

presented in section 1.3 includes a GPS-based distance value that represents the

desire to avoid the possibility of mid-air collisions by chosing a high probability

for the GPS relative distance error to be less than the relative distance value

itself.
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9 Simulation

9.41 Requirements for Formation Flight Simulation

To aid in the simulation system design process and configuration selection,

several requirements were developed. These requirements varied from general re-

quirements for small UAV simulation to requirements specific to formation flight.

Figure 9.1 shows the requirement flow-down for simulation, grouped accordingly.

9.42 Simulation Approaches

9.42.21 Theoretical simulation with Matlab and Simulink

Matlab and Simulink provide a powerful set of tools for control system design

and prototyping at multiple levels of fidelity. In [86], the proposed control system

and formation flight simulation script was all built inside a Matlab and Simulink

environment. This work closely follows the implementation strategy of the PFG

algorithm presented in [86], therefore preliminary simulation was conducted for

this work based on a variant of the simulation tool developed by Tsuruta in

[86]. The objectives of this preliminary simulation work were somewhat limited,

due to the distinct differences between the complete control system architecture

presented in this work and that which is presented in [86]. However, by integrating

a new aircraft model, valuable insight into the sensitivities of the PFG algorithm

was gained. Specifically, parameter changes to due the flight regime of the aircraft

or its maneuverability developed a better understanding of the algorithm.
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Figure 9.1: Flow-down for multiple UAV simulation requirements
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9.42.22 HIL simulation with X-Plane

With the focus of this project heavily weighted towards hardware integration

and flight testing, less simulation was devoted to high-level algorithm develop-

ment and control system prototyping. Because of this, HIL simulation was more

appropriate than theoretical simulation throughout most stages of this project.

Accordingly, the objectives for HIL simulation were much more extensive than

those for Matlab and Simulink simulation. HIL simulation, as employed in this

work, has the capability to test ≈ 75% of the embedded control system software,

running real-time during the simulation. The goals of HIL simulation revolve

around the ability to test the customized version of the embedded control system

software in the environment in which it is meant to run. These goals include the

testing of code functionality and performance on the hardware during real-time

operation. Another benefit of HIL simulation is that the additional hardware

components are included as part of the set-up. The functionality of the commu-

nication modules, as well as the RC receiver and transmitter can be verified, to

some extent, using HIL simulation. The last goal is to provide a tool for gain

tuning and serve as a predictor for flight-test performance. This goal must be

interpreted loosely. The scope of this project does not include a proper validation

of simulation, and the simulation and flight test process discussed here resembles

more of an open-loop relationship, not the type of closed-loop relationship which

would improve simulation based on flight test results and build more confidence in

the simulation output. From this perspective, it is not the goal of HIL simulation

to match flight test results, but it is expected that the fidelity of the simulation

will provide results that resemble the results of flight tests. At least enough to

make relevant conclusions regarding system functionality using simulation output

alone.
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9.43 Aircraft Model

Simulation results are only meaningful if they are interpreted within the con-

text of the system model fidelity. Constructing an accurate model of the system

is a difficult task that often becomes iterative as some system behaviors are often

unknown until discovered during testing. However, a lower fidelity model does

not render the simulation useless as long as the model deficiencies are well un-

derstood and the underlying purpose of the simulation does not hinge on a high

fidelity representation of the system. The Matlab/Simulink simulation conducted

during the early stages of the project utilized an aircraft model in the linearized,

decoupled state-space form described by the equations shown in Figure 9.2.

Figure 9.2: State Space Equations for a Linearized Aircraft Model

These systems of equations are commonly used to represent an aircraft model

during analysis, especially as the “plant” for control system design. The coef-

ficients in the equations are often referred to as stability derivatives, and are a

way to represent the dynamics of the system at a specific condition, often a trim

point for the aircraft. These stability derivatives are well understood for aircraft

models with a long history of use in academic examples or validation cases, such

as a Cessna 172. However, for a new design, or an aircraft that has not yet

been modeled, these derivatives must be generated. There are many ways to go
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about obtaining these values. References [67] and [81] present several analytical

methods which rely on certain assumptions about configuration and use degen-

erated representations of the geometry to approximate these values; AVL[2] and

XFLR5[9] are capable of outputing many of these derivatives with reasonable ac-

curacy based on a vortex-lattice approach. A program called Datcom+[37] uses

the Digital Datcom software to combine analytical approximations with correc-

tions based on flight testing conducted by the United States Air Force. In some

cases, coefficients can be approximated based on similar systems that have been

well documented and modeled. Ultimately, the best source of these derivatives

come from detailed testing, either in a wind tunnel or through flight test.

9.43.23 Sky Surfer Model

For the Sky Surfer model used in this project, as described in section 5, many

of these sources ended up being utilized to approximate the stability derivatives of

the system, with the exceptions being Datcom+, wind tunnel testing, and flight

testing. According to documentation[37], Datcom methods begin to break down

at Reynold’s numbers lower than 600,000 where the Sky Surfer has a Reynold’s

number on the order of 150,000 at cruise conditions. Wind tunnel testing is well

beyond the scope of this work, but could be the subject of a future project, es-

pecially if the Sky Surfer continues to serve as the test-bed for multiple UAV

projects at Cal Poly. Flight test data is difficult to distill into representative

stability derivatives at the RC aircraft scale because obtaining decent approxi-

mations during flight testing relies on reaching a steady trim condition; something

very difficult to accomplish with a small, light RC aircraft. Published works have

shown that algorithms can be employed to deal with this problem, but this process

is also well outside the scope of this work. The majority of the stability deriva-
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tives for the Sky Surfer were approximated using XFLR5, which relies on AVL for

most of its calculations, but also includes approximations from XFOIL[10] for air-

foil section drag approximation, something AVL does not account for. XFLR5 is

well documented in [30] which shows that there is reasonable agreement between

its approximations and validation cases. Figure 9.3 shows the model generated

Figure 9.3: The Sky Surfer model constructed using the XFLR5 inter-
face, used to calculate stability derivatives

through the XFLR5 interface to represent the aerodynamically-dominant com-

ponents of the Sky Surfer: the wing and the empenage. In addition to airfoil

cross-section and surface geometry, mass properties were also required in order

to approximate the stability derivatives through XFLR5. The process to obtain

the moments of inertia empirically from a physical model is described in [40].

While these “swing tests” were conducted for the model, shown in Figure 9.4,

the calculated moments of inertia were not reasonable. It was decided that at this

scale, and without a system for measuring the oscillation period precisely, this

method is too susceptible to measurement errors, making it difficult to produce

an accurate approximation. Instead, a component build-up was used, calculating

the moments of inertia for each component, approximated by simple geometries,
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of which the moment of inertia equations are well known, and then applying

the parallel axis theorem to approximate the total moments of inertia for the

Sky Surfer. Fortunately the Sky Surfer comes disassembled, making this process

relatively straight forward. This inertia matrix was input into XFLR5, and the

stability derivatives were generated for the expected cruise velocity of 10 m/s.

While the interface for XFLR5 supports an intuitive way to include elevator

deflections, generating reasonable coefficient values for other control surface de-

flections proved to be more difficult. Therefore, analytical approaches described

in [67] were used to calculate the control surface derivatives for the Sky Surfer.

Lastly, one of the most difficult aspects of an RC sized aircraft to model is the

propulsion system. It was decided that replicating the propulsion model from a

similar aircraft, documented in [22], was a more efficient route.

Figure 9.4: ”Swing Test” performed to determine inertial properties
of the SkySurfer
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9.43.24 Extending the Sky Surfer Model for use in HIL Simulation

As stated before, the goals of theoretical Matlab simulation in this project

were limited, and developing a model that could be integrated into a HIL simula-

tion proved to be much more useful. Briefly, Flight Gear [4] and JSBSim [5] were

considered for use during HIL simulation, providing an intuitive transition from

the Sky Surfer model developed in Matlab into a form usable by JSBSim. JSBSim

uses look-up tables populated with stability derivatives and relevant coefficients,

evaluated at various flight conditions. The same approach used to construct the

Matlab-based model of the Sky Surfer was simply repeated at several flight con-

ditions and the resulting stability derivatives and coefficients were placed in the

KML input file for JSBSim.

As the project progressed, it was discovered that X-Plane [8] would provide

a more suitable interface, with built in support for multiple aircraft visualization

and more documentation on the HIL set-up for ArduPlane and APM hardware.

X-Plane, however, uses a completely different approach to simulating the aerody-

namic forces on the system, computing the solution at each time-step based on

aircraft geometry and Blade Element Theory. The details of this approach can

be found in documentation for [? ], but what is important to distinguish is that

instead of using previously calculated coefficient and stability derivative look-up

tables, capturing the geometry of the system is what will define the accuracy of

the model.

9.43.25 HilStar17f

Fortunately, the DIY Drones community forum lead to a well-supported model

for the Hobbyking Bixler, a close cousin to the Sky Surfer, developed by Mike
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Pursifull [73]. While the model is still under development, and not all aspects of its

performance have been fine-tuned to reflect real flight-test results, great care has

been taken to compare simulation data against flight test data in order to improve

agreement between the X-Plane model and the actual system. More importantly,

these comparisons have lead to relatively well-documented deficiencies in the

model, which is extremely valuable when attempting to extrapolate simulation

results and predict flight test results.

The model, titled the HiLStar 17F, gets part of its name from the scaling

that was introduced to accommodate the limitations of X-Plane’s implementation

of Blade Element Theory. According to the model documentation in [73], the

light weight of the aircraft is what causes computational problems with X-Plane.

Therefore, to increase to weight of the aircraft, but still maintain accurate flight

performance, the geometry of the aircraft was scaled by a factor of 1.733, and the

propulsion system was also scaled accordingly. Many of the model characteristics

were tweaked in X-Plane’s Planemaker to show better agreement with empirical

testing of the system, with specific emphasis on wing aerodynamics, propulsion,

and cruise performance. Thankfully, the documentation does point out that the

model lacks consideration of matching the control surfaces and that the real

aircraft cruises at a higher velocity for the same throttle setting. Additionally,

the documentation highlights that the lag introduced into the system with the

HIL interface, causes discrepancies between the optimal controller gain values

between simulation and flight testing. Therefore, at this point, the gains tuned

during HIL simulation should not be trusted for use in flight tests. While there

is plenty of room for improvement, the HiLStar 17F provides a valuable, well

documented, and continuously supported model for simulating the Sky Surfer in

X-Plane, especially for the HIL simulation objectives outlined in section 9.42.22.
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10 HIL Simulation

The HIL set-up with X-Plane allows for testing of ≈ 75% of the software,

compiled and running real-time on the actual flight hardware. What is not com-

piled are the libraries and processes that support the various sensors, translating

their analog or digital signals into meaningful variable assignments to be used by

the higher-level logic of the control system. The HIL set-up utilized in this work

relies on an interpretation of the simulated physics and environment in order to

set those variables directly, bypassing the libraries and processes typically used.

10.44 HIL Simulation Set-up

The standard configuration of the HIL simulation, designed for simulation of

one UAV, can be discussed in terms of three distinct sets of components and the

interfaces that are put in place to allow these components to interact. Figure 10.1

shows a diagram of the software configuration for a single UAV and Figure 10.2

shows diagrams of the hardware configuration.

The aircraft itself is simulated in X-Plane with the HiLStar 17f model. Al-

though X-Plane is typically used as an ”all-in-one” flight simulator, it can easily

be used for developing external flight software. X-Plane can be set up to take

in control surface deflection and throttle commands and output relevant state

information such as forces and moments, GPS position, and airspeed.

The APM Mission Planner serves as the bridge between the hardware and

software. With the data it collects from X-Plane, The APM Mission Planner

generates MAVLink packets containing the relevant information to be decoded

by the software on the APM autopilot board. MAVLink serves well as the pro-
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Figure 10.1: HIL simulation software setup for a single UAV using
XPlane v9, APM Mission Planner v1.2.32, and ArduPlane v2.66

tocol standard because it is already used to transmit telemetry data, and the

library contains messages designed to enable a HIL simulation environment. The

APM Mission Planner also constructs and decodes packets intended for X-Plane,

based on the X-Plane custom protocol. Furthermore, the APM Mission Plan-

ner maintains unit consistency between X-Plane and the APM sensor libraries.

X-Plane and the APM Mission Planner can be running on a single computer,

or on multiple PCs. In the configuration used throughout this project, a single

desktop computer was used to run an instance of APM Mission Planner and

X-Plane. The two programs communicate through UDP ports, assigned in the

configuration settings for each program.

The third set of components are made up of all the ground-testable hardware:

The APM board, RC reciever, and RC transmitter. All the hardware components

are hooked up as they would be during flight, but the APM board is connected to

the desktop PC via USB. This USB connection serves as the link to transmit the

simulated sensor outputs from the APM Mission Planner software, but also takes

the place of the stand-alone telemetry link. All of the communication to the APM
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board is framed in MAVLink packets. With the board receiving inputs from the

simulated physics, as well as inputs from the RC transmitter, the software runs

in much the same way as it would while it is flying. The outputs from the board,

usually servo rotation commands or ESC throttle commands, are translated and

forwarded to X-Plane by the APM Mission Planner.

Figure 10.2: HIL simulation hardware setup for a single UAV

While requiring a significant amount of additional hardware, extrapolating

the HIL set-up from one to three UAVs was more or less straight forward. As

Figure 10.3 shows, the hardware requirements were effectively multiplied by three:

three desktop PCs, three APM boards, and three RC Tx/Rx pairs. Added to the

system for formation flight capability and observation were three XBee modules,

one for each APM board, as well as an additional module, connected to a fourth

computer: the laptop which serves as a ground control station during testing. A

beneficial feature of X-Plane is its support of a “multi-player” mode over a LAN

connection. This allowed for the other aircraft to appear in the visualization of

each HIL set-up, providing useful visual feedback during the simulation process.
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The set-up allowed for the integration of the inter-UAV network in the same way

as during flight-testing, but the dedicated telemetry links, included in the second

iteration of the communication system design, were replaced by the USB link to

the desktop PC. In this fashion, each UAV was simulated independently, sharing

their state information as they would during flight. By having all three UAVs

interacting in the same environment, both digitally and visually, this multiple-

UAV HIL simulation tool served as a cornerstone for meaningful debugging and

evaluation of the custom software implemented into the system.

Figure 10.3: HIL simulation hardware setup for 3 UAVs

10.45 HIL Simulation Procedures

Running HIL simulation on three HIL stations simultaneously while monitor-

ing FCOM and debugger output proves to be somewhat confusing for a single

operator, making the establishment of a set of HIL simulation procedures helpful

to streamline the process and ensure that run cases are performed as desired.
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As shown in Figure 10.3, there are five separate connections that must be in

place for simulation data to stream properly:

1. HIL Station to HIL Station over LAN

2. XPlane to APM Mission Planner over UDP

3. APM Mission Planner to APM over USB Serial

4. APM to APM over XBee API 2.4 GHz

5. APM to Tx thru Rx 2.4 GHz

Before initiating a test, these connections are tested to make sure the simulation

results are produced under the right circumstances, as the leading cause of HIL

simulation malfunction found using this implementation is a bad connection. A

major benefit of the simulator is the pause button: it is much easier for one

operator to run these simulation cases when the simulator can be paused and

unpaused at will. With all three HIL stations connected, each instance of XPlane

is initialized with a pre-set scenario, placing the HilStar17f model at the Cal

Poly EFR at an altitude of 130 meters, removing the need to take off and fly

each simulator manually for each run. Once loaded in position, the simulator is

paused while the following checks are performed:

1. The Tx to Rx connection is verified visually by observing that the Rx has

a steady orange LED, signaling a healthy connection with the Tx to which

it is bound.

2. The APM to APM connection is verified visually by toggling the mode

switch on all three Txs to Formation mode, and observing that the XBee

adapter boards flash both mounted LEDs for the Tx and Rx lines at a rate

of ≈10Hz.

3. The APM to APM Mission Planner connection is verified by toggling the

mode switch to various modes on the Tx and observing that the HUD

displays the changes in flight mode correctly
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4. The APM Mission Planner to XPlane connection can be verified by un-

pausing the simulator and flying the model manually, observing that the

stick inputs correlate to the expected attitude changes for the model.

5. The HIL station to HIL station LAN connection can be verified visually by

panning the camera around the model and ensuring that all three models

are present in each HIL station visualization of the environment.

Once these checks have been performed, each simulation test point can be run

without concern for connection functionality.

10.45.26 HIL Simulation Run Matrix

Several test points were conceived in order to test different aspects of the

custom software functionality and observe the behavior of the algorithm in various

situations and configurations. Table 10.1 lists each test as well as their objective.

Table 10.1: Matrix of simulation run cases and intended purpose
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10.45.27 Start Locations and Goal Location

In the hope relating simulation results back to flight testing, a set of stan-

dardized start locations were developed to be used, both in HIL simulation and

flight testing. Although the UAVs would never start in precisely the same loca-

tion, these distinct start locations make each run case more repeatable and much

easier to differentiate. In addition to standardized start locations, a standardized

(a) Start Location A (b) Start Location B (c) Start Location C

goal location was developed to provide repeatability to HIL simulations as well

as provide a way to directly compare simulation and flight test results. This goal

location and loiter radius, shown in Figure 10.5, is the same goal location and

loiter radius used during flight tests.

Figure 10.5: Goal location for leader loiter flight path
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10.45.28 Algorithm Parameters

For the simulation run cases, inner-loop controller gains were tuned through

trial and error, with variation in gain values between HIL stations, despite the

use of an identical model. The reasons for different gain sets will be discussed

in the next section, however it is worth noting here that they are not identical

among all the HIL stations, or even among all the run cases.

Remaining constant, however, were a set of outer-loop gains and parameter

values which had minimal dependency on the variations in HIL station perfor-

mance. These gains and parameter values are summarized in table 10.2.

Table 10.2: Algorithm parameter values used during HIL simulation
cases

Parameter Description Value

χ Near field/Far field Threshold 30 meters

τ Repulsive Sizing Parameter 50

σ Repulsive Influence Parameter 8

λx,y,z Attractive Weighting Parameters .2

∆Xgoal LNAV X-axis Goal Offset 10 meters

∆Ygoal LNAV Y-axis Goal Offset 10 meters

∆VWP VWP 2D Distance Offset 60 meters

∆VWPZ VWP Altitude Offset 2 meters

Trformation Throttle Setting for Formation Leader 60%
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10.46 HIL Simulation Results

The first HIL simulation run cases performed aimed to verify basic leader-

follower convergence and global leadership determination based on start location.

Figure 10.6 shows the convergence of Huey and Dewey in a leader-follower con-

figuration, with Dewey assuming the global leadership goal. With Huey starting

at location B, shown in Figure 10.4b, and Dewey starting at location A, shown

in Figure 10.4a, global leadership determination was logical, and Figure 10.6

shows that Huey does indeed converge to the desired distance trailing Dewey.

Something interesting to note is the convergence rate as Huey crosses the near-

Figure 10.6: HIL Simulation: Convergence of Huey and Dewey in
leader-follower formation, with Dewey leading

field/far-field threshold, χ, at 30 meters. At this point, the near-field control
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laws dictate throttle commands in addition to heading. As this throttle control

kicks in to gear, an initial divergence is caused, but ultimately Huey converges

as a more controlled rate, avoiding an overshoot of the goal distance. While the

short period of divergence is not necessarily desirable, it is better than a large

overshoot of the goal which, during flight testing, could result in a disastrous

collision.

The ground track for Huey and Dewey during the later stages of their con-

vergence is shown in Figure 10.7.

Figure 10.7: HIL Simulation: Ground track for Huey and Dewey in
leader-follower formation, with Dewey leading

To provide a better concept of scale and relative distance, the ground track

is plotted in a reference frame that is centered at the global goal loiter coordi-
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nate, depicted in Figure 10.5. The axes of this reference frame are aligned with

the North and East directions, with the listed values representing relative de-

viations, in meters, from global goal loiter coordinate in those directions. This

convention is used to present the ground track data throughout the rest of this

discussion instead of the traditional latitude and longitude coordinate values.

Two-dimensional ground tracks were selected over three-dimensional trajectory

paths in order to present the results in a more digestible manner, and with mini-

mal deviations in altitude, very little value is lost in the reduction of the presented

dimensionality.

While performing different variations of leader-follower simulations, an inter-

esting trend was uncovered, which will help to explain some of the difficulties

in obtaining perfect algorithm and controller performance in simulation, despite

the luxury of idealized sensor inputs. Figure 10.8 shows convergence plots for the

same class of simulation, leader-follower convergence verification, but configured

such that the “follower” for each of the represented simulations is supported by

a different HIL station PC. While there are a number of variables which could

affect the overall convergence for two separate simulation runs, it is difficult to

account for the offsets such as the one shown in Figure 10.8 without considering

the influence of the HIL station itself. The most probable cause for the poor per-

formance is controller tuning. In theory, if two identical control systems are used

to control two identical models in relatively identical simulated environments, the

controller gain set for the two systems should also be identical. However, it was

discovered during the course of this project that HIL latency has a significant

impact on the controller performance, and that this latency not only varies be-

tween HIL stations, but can also vary depending on uncontrolled computational

load, affected by things such as scheduled virus scans or background applications
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running during the simulation. These observations are corroborated by the ob-

servations noted in the HiLStar17f documentation[73]. Therefore, even controller

gains tuned for a specific HIL station could exhibit poor performance somewhat

sporadically, making it difficult to evaluate the simulation results in an absolute

sense. A solution to this problem lies in a more robust HIL implementation

scheme, which is not in the scope of this work, but is discussed in slightly more

detail in section 13.57.

Figure 10.8: HIL Simulation: The effect of HIL station differences on
convergence of Huey and Dewey in leader-follower formation

Moving beyond simple leader-follower formations, HIL simulations were con-

ducted with all three formation members: Huey, Dewey, and Louie. Several

simulation cases were run to evaluate the leadership determination logic and
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total formation convergence when the members’ start locations were varied. Fig-

ure 10.9 shows a convergence plot for a simulation run where Huey, Dewey, and

Louie started at locations A, B, and C respectively. As expected, based on

start location proximity to the global goal, Louie assumes global leadership, and

Figure 10.9 shows the convergence data for Huey and Dewey. There are some

interesting anomalies that can be seen in the figure that are worth highlighting.

Figure 10.9: HIL Simulation: Formation convergence of Huey, Dewey,
and Louie with leader-follower relationships dictated by the decentral-
ized swarming algorithm

In order to enable dynamic leadership changes to support the event of losing

one or more of the formation members, part of the swarm organization algorithm

includes the ability to “forget” one’s current local leader if they have not received

any communication from them for a pre-determined amount of time. If this

127



occurs, a new leader is chosen based on a comparison of global reference values,

and if there is no suitable leader, global leadership is assumed. Between the time

frame of 33-66 seconds into the simulation run, the convergence data shows a

discontinuous portion of relative distance values, which corresponds to a brief

change of leader following from Louie to Huey and then back to Louie, supported

by the local leader ID data logged by Dewey. The most logical explanation

for this leadership change is a brief communication failure, more likely due to

corrupted data or dropped packets than range issues, given the proximity of the

XBee modules during HIL simulation runs.

Additionally, it is important to note the convergence performance gap between

Dewey and Huey. Huey, which was supported on HIL Station A, consistently

performs better than both Dewey and Louie during simulation runs, noted in

Figure 10.9 by his ability to adjust to the near-field control laws better than

Dewey once he crosses the relative distance threshold of 30 meters. HIL station

A is actually a higher performance PC than station B or C’s PC towers, which

helps to explain why latency issues would be less problematic for Huey’s control

system than for Dewey’s or Louie’s.

While the plot in Figure 10.9 shows how each leader-follower pair converges

independently, it does not provide an intuitive indication of what the formation

distribution looks like throughout this process. The concept of formation “cohe-

sion” is presented here, intended to measure how tight or loose the formation is

at any one point in time. This formation cohesion value is determined by

CF =

∑N
i=1 |X̄i − X̄FC |

N
(10.46.1)

Where X̄FC is the flock center coordinate, and N is the number of formation

members. This cohesion value, CF , is really just an expression of the average
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distance the members are from the centroid of the formation, or “flock center”.

For an ideal “V” formation with identical relative offset values of 10 meters, the

cohesion value would be equal to 8.89 meters. This value is shown as the ideal

reference value on Figure 10.10, which plots the formation cohesion value as a

function of time for this three member simulation case.

Figure 10.10: HIL Simulation: Formation cohesion of Huey, Dewey,
and Louie

While the formation cohesion improves, as expected, as the members converge,

it never reaches the ideal cohesion. This is due to less-than-desirable convergence

of the following members, as well as the fact that converging to a V formation

while the leader is maintaining a steady loiter is somewhat difficult, especially

for the member attempting to converge towards the outer track in the loiter
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formation.

The ground track for this simulation case is shown in Figure 10.11, again in a

reference frame that is relative to the global goal center. This ground track plot

further exemplifies the difficulty of reaching the outer track position relative to

the leader’s loiter path, which is what Dewey is attempting to do throughout the

simulation.

Figure 10.11: HIL Simulation: Ground Track for Huey, Dewey, and
Louie three-member formation test

After some analysis, it was determined that this issue is caused by a combi-

nation of the constant heading changes necessary to follow a loiter path and the

leader throttle setting. Admittedly, a redesign of the experiment could mitigate
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some of these issues, such as a leader path that included longer straightaways.

However, these problems were fully understood at a later stage in the project,

and could not be corrected prior to the scheduled flight testing. Despite some

of the unfortunate byproducts of the experimental design, Figure 10.11 does

verify basic formation flight functionality, with the algorithms performing their

desired duties, albeit constricted by the flawed experimental design. Leadership

determination, based on relative positions and the global reference value system,

functioned as expected, and multiple leader-follower pairs converged simultane-

ously. The leadership flexibility built into the control scheme also has an inherent

susceptibility to communication failure, which was demonstrated briefly in this

simulation.

This leadership flexibility was built into the formation flight control scheme

for a reason: to take advantage of a decentralized control scheme’s ability to

repair itself. When a formation member legitimately disappears, for whatever

reason, it is desired that the formation can repair itself, re-establish the global

leadership role, and continue on towards the global goal. To test this functional-

ity, a simulation run was conducted where communication was intentionally cut

from the global formation leader. After a certain level of convergence, the global

leader was switched from the standard Formation mode to the Manual mode,

which does not allow the broadcast of state information to the other formation

members, effectively causing the global leader to “disappear”. The ground track

of this simulation is plotted in Figure 10.12 and shows that the formation fully

recovers from the loss of the global leader, who in this case is Dewey. Surpris-

ingly, Louie assumes global leadership instead of Huey, who was actually closer

to Dewey at the time of his departure from the global leader role, according to

the simulation data. This behavior can be explained, however, by the details of
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the “spooled” global goal concept, detailed in section 3.17. The global reference

value, calculated by equation 3.17.1, is a combination of both proximity to the

global goal center and integrated arc-length of the loiter path already followed

by the formation member. Therefore, even though Huey was physically closer

to Dewey, Louie had been following Dewey around the loiter path for a longer

period of time, accumulating a greater sum of loiter distance traveled, and ef-

fectively placing him second-in-line for global leadership. This behavior was not

necessarily anticipated or intended, but the simulation shows that the algorithm

is robust enough to handle this oddity, recovering the formation, while only in-

conveniencing Huey by asking him to double back and fall in line behind Louie’s

global leadership.

To test the collision avoidance aspect of the guidance algorithm, an experi-

ment was designed to force a near-collision between two formation members to

see how they respond. A three member simulation was run, with Dewey assuming

global leadership, followed by Huey and Louie. After a steady state was reached,

Louie was toggled into Manual in Formation mode so that he could be manu-

ally guided on a collision course, but still seen by the other formation members,

allowing them to react to his proximity. Figure 10.13 shows the ground track of

this simulation after Louie was switched in to Manual in Formation mode, with

the heading commands issued by Huey’s PFG controller superimposed on to his

ground track.

The 82s marker shows the first collision attempt, where Louie was flown to

approach Huey directly from behind. As the plotted command vectors show,

Huey makes minimal effort to avoid the collision, only generating a diverging

command vector when Louie drifts to one side. This response actually makes

sense taking in to account one of the assumptions of the PFG-based collision
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Figure 10.12: HIL Simulation: Ground Track for Huey, Dewey, and
Louie during formation leadership recovery test

avoidance. For this algorithm, the burden of avoiding collision is primarily placed

on the follower, not the leader. In the the far-field region, the PFG commands are

only interpreted as heading commands, having no impact on the throttle setting,

which is set to the maximum allowed while the formation member attempts to

“catch up” to his local leader. While Louie is approaching from directly behind

Huey, the heading command pointing towards the goal behind Dewey is simply

made stronger, depriving Huey of any means to avoid Louie’s approach. Because

the assumption of collision avoidance being the trailing member’s responsibility,

this behavior is entirely acceptable. In the second collision attempt, noted on

Figure 10.13 with the marker for Time = 88s, Louie cuts Huey off, having sped
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Figure 10.13: HIL Simulation: Ground Track for Huey, Dewey, and
Louie during formation collision avoidance test

up and approached from the the side. Huey’s commanded heading can be seen

to change dramatically, going to the extent of commanding Huey to turn around

when Louie is at the closest proximity. Once the collision is successfully avoided,

the command vectors plotted in Figure 10.13 show that Huey is directed to rejoin

the formation. This simulation shows that the collision avoidance algorithm does

indeed command the formation members to avoid the other members in the event

that they drift too close together.
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10.47 Data Collection and Reduction Techniques

Data for HIL simulation is collected in the same manner as the data collected

during flight testing: the data is logged on-board during the simulation, and

downloaded later to be parsed and analyzed. The parsing and analysis process

makes use of the FLOC APM Log File Parser GUI, shown in Figure 10.14, and

is comprised of basic log parsing scripts, written in Matlab by two Cal Poly

Graduate Students, Michael Darling and Adam Chase, as well modifications and

additional Matlab scripts to support the needs of formation flight data analysis.

Figure 10.14: FLOC APM Log Parser Tool

The nature of the data contained in the log files made these data sets ideal

candidates for conversion in to Matlab Timeseries objects, which provide built-in

support for data re-sampling, synchronization, isolation, statistical analysis, and
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more. During the process of simulation data analysis, three bugs were discov-

ered which ultimately complicated the data synchronization and analysis process.

1)The GPS UTC timestamp, which is used as the primary means to synchronize

data between the three UAVs, is improperly converted during transfer from X-

Plane to the APM board. Fortunately, the issue was discovered to be a variable

overflow problem, which can be corrected upon reading in the logged value. 2)The

GPS UTC times are not fully synchronized between each HIL station running sep-

arate instances of X-Plane. Therefore, although visually in the same place at the

same time, there is an offset in the time recorded in the logfiles. This problem

caused a larger headache, requiring each data set to be manually adjusted so that

the offset is eliminated. Thankfully, switching all three members into Formation

mode at essentially the same time made these offset values easier to identify.

3)While running in real-time with the flight-ready firmware, the timing of the

software loops is provided by the digital sensors, which sample data at 200Hz

and trigger the 50Hz loop after every fourth sample. Unfortunately, during HIL,

the emulated sensor data provided by X-Plane does not stream in at a constant

rate, causing log file entries that are sampled irregularly. This irregular sample

rate is corrected with the robust re-sampling method built into the Timeseries

objects, using linear interpolation or zero-order holds, depending on the type of

data, to re-sample the data so that is represented at the expected rates. With

these corrections in place, the HIL simulation data very closely resembles the

type and format of data collected during flight testing. For the purpose of anal-

ysis and plot generation, the HIL simulation data is re-sampled to provide all

of the values at a rate equivalent to 5Hz. Accordingly, error is introduced into

the presented data in the form of uncertainty attributed to the data corrections,

filtering, reduction, and extrapolation techniques.

136



11 Flight Testing

Besides the challenge of working with hardware and embedded systems, which

generally apply implementation limitations and can be prone to failure, simula-

tion is often preferred over flight test demonstration in academia due to the

amount of risk involved in these tests and the organization required for success.

11.48 Requirements

Flight test demonstration of not just one but multiple UAVs must have clear

test requirements defined in order to achieve success. References [49] and [89]

provide valuable insight and suggestions for flight testing requirements and pro-

cedures, which have been incorporated in to this work. Many of the requirements

shown in Figure 11.1 are straight-forward. However, in some cases, a brief dis-

cussion will provide greater clarity with respect to their necessity.

In terms of hardware requirements, the need for data collection and in-flight

monitoring is self-evident. However, as suggested by reference [49], data should

be logged in two forms: On-board and through a telemetry link. This adds

redundancy to the data collection process, ensuring data is protected against

corruption or loss. Required support equipment is also listed under hardware,

and could include a power supply for the ground control station and battery

charger, as well as any equipment needed to take relevant measurements, such

as a weight scale, multi-meter, etc. The software requirements are driven by a

need for an interface to monitor multiple UAVs all at once and be able to modify

parameters in flight for each UAV. Additionally, for flight tests which utilize the

concept of “virtual leadership”, a portable HIL simulator is required.
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Figure 11.1: Flow-down for formation flight testing requirements
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One of the most significant differences between flight test demonstration and

simulation demonstration, from an operational standpoint, is the personnel re-

quirement for flight testing. For testing N UAVs, a minimum of 2N + 1 people

are required to support the test: N pilots, N support members, and a test man-

ager. To fully document the test with photos and video, more support personnel

is required as well. Another concern that does not surface in simulation-based

studies is the requirement for a suitable test environment, which includes test field

location, openness, and liability coverage. Good weather is another important re-

quirement due to the disproportionate effect that atmospheric disturbances have

on small UAVs compared to larger aircraft.

Lastly, documentation requirements ensure the proper controls are in place,

maximizing the opportunity for success. Other aspects of documentation include

the observations, audio recordings, photographs, and video that gives some con-

text to the analysis and presentation of results.

11.49 Test Stages

One of the recommendations implemented in this work from [89] is the or-

ganization of flight tests into a modular format, incrementally introducing new

functionality, therefore minimizing the size of the risk matrix representing the

combination of unknowns. It would not be beneficial to use an untested au-

topilot communication over an untested airframe. Therefore, flight tests were

performed in stages. Table 11.1 shows the various stages of flight tests and the

specific tests that make up that stage.

Airframe testing was performed to evaluate the quality of the kit construction

as well as test the included RC components. Inner-loop and outer-loop controller
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Table 11.1: Various stages of flight testing

tuning was accomplished with the standard autopilot software, ArduPlane v2.66,

and the standard modes. The Stabilize and FBW modes were used for for inner-

loop gain tuning, while a prescribed waypoint mission was used to tune the

outer-loop controller gains. Figure 11.2 shows the ground-track of an outer-loop

tuning mission.

Figure 11.2: The ground track of a mission flown to tune the outer-loop
navigation PID gains

Sub-system tests were conducted to ensure functionality of individual com-

ponents before integrating them all together. Communication functionality and

range was tested for both the dedicated telemetry link as well as the FCOM net-
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work. Autopilot hardware performance testing was introduced after learning a

valuable lesson the hard way: through a crash. Power supply and memory usage

were tested through an entire mission profile for the board without any actuators

connected. This process helped to replicate the conditions of flight testing that

may compromise the performance of the autopilot, but without putting the rest

of the UAV at risk of a board failure-related crash.

Three different flight tests were developed to test the implemented control

strategy, all with different objectives and different levels of risk. 1) The virtual

leader test, while ultimately unsuccessful due to significant differences in modeled

and actual performance, provided a way to test the control strategy with only

one UAV in the air, removing the risk of collision. 2) Leader-follower flight tests

allowed for the testing of just the convergence aspects of the formation flight

control strategy without the added complexity of swarm organization logic. 3)

Complete formation flight testing with three UAVs tested the control strategy

from the highest level possible, adding in the final component of swarm logic,

used to establish leadership, as well as peripheral formation member collision

avoidance.

11.50 Formation Flight Test Set-up

Formation flight testing is performed at the Cal Poly EFR, which is ideal for

small UAV testing as it is a large open space that is owned by Cal Poly, and

already supports flying small-to-medium sized RC aircraft. A minimum of seven

people are present during testing: three pilots, three “spotters” supporting the

pilots, and the test manager. Typically, however, more volunteers are present,

assisting with support tasks, checklists, photography and video.
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The ground control station consists of a standard laptop PC with three 3DR

Radio modules to support the dedicated telemetry links and an XBee module

to support monitoring the FCOM network. On the ground control station lap-

top, three instances of APM Mission Planner v1.2.32 are run in parallel to sup-

port three independent telemetry links and provide HUD visualization as well as

telemetry logging. Additionally, a modified version of QGroundControl v1.0.4,

compiled from source with the custom MAVLink library included, is run simul-

taneously with the instances of APM Mission Planner, providing support for

visualizing the locations of all three UAVs and monitoring the custom messages

broadcast over the FCOM network. Power for the ground control station and

battery charging station is provided by a standard car battery and AC inverter.

11.51 Standardized Checklists

In order to mitigate errors, standardize the process, and properly document

the flight tests, various checklists are used to ensure proper hardware integration,

software configuration, and pre-flight procedure.

Hardware integration checklists, complete with picture examples, provide a

stream-lined method to ensure that all of the subsystems are properly connected

and placed where they belong on the airframe. These checklists also serve as

instructions for volunteers who are less familiar with the hardware. The most

recent version of this checklist can be found in Appendix A.

Software configuration checklists help to verify that the proper firmware is

loaded onto the hardware, with configurations set for flight testing. Because

HIL simulation requires several changes to the code, this system helps to make

sure the various settings are changed to their proper values for flight testing.
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Additionally, hard-coded values, such as the global goal location and the home

location should be verified. An example of the software configuration checklist

used is included in Appendix A.

Lastly, pre-flight checklists are a common necessity for all aircraft, but have

some clear distinctions when designed for a small UAV as opposed to a manned

aircraft. The purpose of the pre-flight checklist is to verify that all of the sub-

systems function well together, but also to ensure that the aircraft is safe to fly,

whether or not the autopilot is engaged. Furthermore, these checklists serve as

documentation to track the exact configuration that is put up in the air, should

that information be needed later for troubleshooting purposes. The pre-flight

checklist used during the last formation flight attempt is included in Appendix

A.

11.52 General Flight Procedures

Specific procedures were developed prior to each flight test, and examples of

some of these detailed procedures can be found in Appendix A.

In general, formation flight testing proceeded in the following fashion:

1. All checklists should be completed and verified for each aircraft, ensuring

proper configuration as well as healthy telemetry and FCOM links.

2. Each aircraft is launched by the “spotter”, or support member, with the

pilot flying the UAV manually until achieving sufficient altitude.

3. Pilots toggle the UAVs into Start Positions mode, which guides the

UAVs autonomously to one of three pre-defined start position waypoints,
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where the UAV will loiter until all of the formation members are in place

at their respective start positions.

4. Once all formation members are in place, pilots are instructed to toggle the

UAVs into Formation mode.

5. Pilots observe as the UAVs execute the formation flight control strategy,

keeping a close eye on the aircraft in order to ensure there are no malfunc-

tions in the software or sensors that could result in loss of the aircraft.

6. “Spotters” also help keep an eye on the UAVs and note observations about

the control system performance.

7. Location, telemetry, and FCOM network communication for all three UAVs

are monitored by the flight test manager from the ground control station,

keeping a close eye on the command values produced from the PFG algo-

rithm, as well as the swarm organization logic.

8. Once the test is completed, each UAV is landed manually, and the log files

are retrieved from the on-board data storage.
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12 Flight Test Results

Through the course of this project, four separate attempts were made to

demonstrate the formation flight control strategy presented in this work through

flight testing. Only in the fourth, final attempt was satisfactory leader-follower

convergence achieved, and unfortunately, due to hardware malfunction during

flight testing, no successful formation flight attempts were able to be demon-

strated with all three UAVs. Table 12.1 summarizes the best results observed

in each formation flight attempt along with the types of issues uncovered either

during the flight testing or later through analysis of the data logs.

Table 12.1: Summary of results and observed issues for the flight test
demonstration attempts

12.53 Initial Demonstration Attempts

During the first formation flight attempt, fundamental errors in the algorithm

implementation were identified, leading to drastic changes between the first and

second iteration of the control system software. GPS lock problems also led to

a change in the configuration for the UAVs, disabling the board-mounted GPS
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module and replacing it with an external module, flashed with newer firmware,

and mounted in a way that it would have greater exposure to the open sky with

less interference from other electrical components. The communication setup in

the first iteration relied on a single peer-to-peer XBee network for both FCOM

communications and telemetry, which ultimately saturated the network. This

discovery led to the use of a dedicated telemetry link in future iterations. De-

spite these issues, leader-follower tracking was observed. Louie was incapacitated

by an inability to achieve a good GPS lock for himself, but Huey and Dewey

managed to track eachother’s movements, albeit with an altitude offset caused

by a bad altitude measurement during the initial GPS lock. Figure 12.1 shows

a photograph of Dewey tracking Huey with the previously-mentioned altitude

offset.

The problems uncovered during the first round of flight testing led to a second

iteration of the software, which added a substantial amount of code to make

corrections to the algorithms and provide safeguards for more robust formation

flight control. The control software was verified with HIL simulation, but a

crucial detail was overlooked: firmware intended for HIL simulation does not

include the sensor libraries when compiled, reducing the memory requirements

of the software. However, when the flight-ready firmware is loaded, and these

additional libraries are compiled and included, the RAM available is not enough

to meet the requirements of the software. This results in a series of autopilot

resets mid-flight, which unfortunately cuts off manual control from the pilot as

the board re-initializes. Huey’s crash within the first 10 minutes of the 2nd

planned series of flight tests inspired another iteration of software, with greater

attention payed towards memory allocation and the requirements of the firmware

when compiled for flight.
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Figure 12.1: Photograph of Huey and Dewey in a leader-follower for-
mation with Dewey tracking Huey

The third attempt, intended to be the last for this project, was performed with

firmware verified extensively through HIL simulation, and pre-tested under flight

test conditions before connecting the airframe actuators to the autopilot out-

put. Additionally, standardized checklists were developed to mitigate hardware

issues, and provide the best opportunity for success. Ultimately, flight testing

did not proceed as expected, with Huey and Dewey seemingly ignoring the nav-

igation commands, which were verified from the ground control station, for all

fully-autonomous modes, including the formation flight mode. Leader-follower

convergence was briefly achieved, with Louie, the only UAV cooperating in fully

autonomous formation flight mode, following Huey, who was flown manually, but

still broadcasting his state. Figure 12.2 shows Huey and Louie’s leader-follower
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formation during the process of convergence with no unexpected offsets like the

altitude offset observed during the first demonstration attempt. During the anal-

Figure 12.2: Photograph of Huey and Louie in a leader-follower for-
mation with Louie tracking Huey

ysis of the data intended to be included in the final results for this work, a small

bug was discovered in the input parameter files for both Huey and Dewey, but not

Louie. Because separate input parameter files must be used for HIL and flight

testing, the bug did not surface during the extensive HIL simulation run cases.

The bug: a parameter which limits the commanded roll angle, meant to be set in

units of centidegrees, was accidentally set in degrees. Accordingly, roll commands

for both Huey and Dewey were limited to 0.3◦ instead of the intended 30◦ limita-

tion, which explains why they seemed to “ignore” navigation commands, unable

to bank and turn. Such a basic fix inspired a last-minute additional formation
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flight attempt.

12.54 4th Demonstration Attempt

During the first flight of the fourth attempt, the FCOM network was not func-

tioning for any of the UAVs in the air. After bringing all three down for trouble-

shooting, Huey and Dewey began to cooperate, but Louie’s FCOM broadcast

refused to engage, knocking him out of commission for formation flight testing

because each UAV is reliant on a good FCOM network connection to receive the

state information of the other UAVs in the formation. Even with the FCOM net-

work functioning for Huey and Dewey on the ground, communication problems

plagued the entire day of flight testing.

Figures 12.3a and 12.3b show how persistent communication losses prevented

Huey and Dewey from achieving fully-autonomous leader-follower convergence.

The formation flight specific data logged on each UAV was analyzed to find the

cause behind the follower’s inability to track the leader without completely over-

shooting the leader’s loiter trajectory before banking to correct its heading. It

was discovered that communication disruptions effectively froze the location of

the leader as far as the follower was concerned, leading to a commanded heading

directed towards where the goal behind the leader was at the time of the com-

munication failure. These times were identified in the log files and mapped on

to the ground tracks shown in figures 12.3a and 12.3b. These markers show that

each overshoot did indeed corresponded with a loss in communication, evident by

the follower’s trajectory aimed almost perfectly at where the ground track shows

the leader at the time of communication loss. Exacerbating the problem was

poor design of the experiment, already noted in section 10.46. With the leader

pursuing a loiter path, constantly changing their heading, there is minimal for-
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(a)

(b)

Figure 12.3: Ground Track plots for fully-autonomous formation flight
test attempt with Huey and Dewey in a leader-follower formation
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giveness for issues such as poor controller tuning or the observed communication

failures. If the leader had longer, uninterrupted straightaways, short disruptions

in communication would not be so detrimental to leader-follower convergence.

The ground tracks presented in figures 12.3a and 12.3b and all the subse-

quent ground track plots presented in this section are plotted with respect to the

global goal center instead of latitude and longitude, keeping with the convention

established in section 10.46. With regard to error, these plots are generated with

GPS data received at 5Hz and logged at 10Hz. Accordingly, the error associated

with the ground track plotted in these figures and all of subsequent ground track

plots in this section is the same error associated with the absolute GPS position

accuracy, which is ±3 meters. Additionally, the data used to identify the time

when communication failures occur is logged at a rate of 1Hz, leaving room for

some uncertainty in the precise position where communication failures occurred.

During the last flight of the fourth attempt, a more forgiving leader flight path

was executed by the global leader being flown in Manual-in-Formation mode.

A racetrack-like flight path was flown with long straightaways, allowing for sat-

isfactory leader-follower convergence, despite persistent communication disrup-

tions. Figure 12.4 shows the leader-follower convergence of Huey and Dewey,

with Dewey leading in Manual-in-Formation mode.

While never reaching a steady-state convergence value at the goal, it is clear

that convergence is indeed occurring. The significant spike around the 70 sec-

ond marker can, once again, be attributed to a communication failure that leads

Huey astray during one of the turns. Convergence data is recorded locally, and is

calculated using the magnitude of the relative distance vector of the follower with

respect to its leader. Accordingly, the most probable error associated with this

relative distance magnitude is derived from the errors associated with each rela-
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Figure 12.4: Convergence of Huey and Dewey in a leader-follower for-
mation with Dewey in the lead, flown manually

tive distance measurement. The two dimensional relative distance error is based

on the relative GPS error discussed in section 8. Including the error associated

with altitude measurements, the most probable error of the relative distance

values reported is ±5.2 meters. This error is relevant to the values reported in

Figure 12.4 as well as all of the subsequent convergence plots which report relative

distance magnitudes.

Figure 12.5 shows the ground track for the majority of this flight, noting where

there is evidence of communication loss 68 seconds in to the test and restoration

of communication 5 seconds later. Something obvious from this ground track

plot is that Huey weaves behind Dewey, a response typically observed when the
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proportional roll gain is too high, causing excessive oscillation about a command.

Had there been another opportunity to flight test after analyzing the data pre-

sented here, this gain could have been modified to determine if this was indeed a

contributing factor.

Figure 12.5: Ground track for Huey and Dewey in a leader-follower
formation with Dewey in the lead, flown manually

From Figure 12.4, it is clear that there are two distinct regions of conver-

gence during this flight, separated by a communication failure. The region with

the best example of convergence, shown towards the end of the flight test, was

isolated for further analysis and is presented in Figure 12.6. This figure shows

that convergence does occur but fails to meet the stated goal of steady-state

convergence of 15 meters ± 10 meters from the leader. There are several valid

explanations for this failure to reach the desired goal, with most centering around
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poor controller tuning and non-ideal test conditions. Despite not reaching the

goal, this level of convergence was deemed satisfactory considering the obstacles

overcome to achieve any form of convergence at all.

Figure 12.6: Best example of convergence for Huey and Dewey in a
leader-follower formation with Dewey in the lead, flown manually

Figure 12.7 is the ground track for this isolated portion of leader-follower

convergence, showing the weaving behavior of Huey as he follows Dewey.

Figure 12.8 shows a photograph of Huey following Dewey while Dewey is

flown manually from the ground. Further exemplifying the various causes of the

convergence of observed, Figure 12.9 breaks down the relative distances between

Huey and Dewey by each axis of Dewey’s LNAV reference frame. Figure 12.9

shows that convergence in the LNAV z-axis, or “down axis”, is relatively good,
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Figure 12.7: Ground track for the best example of convergence for
Huey and Dewey in a leader-follower formation with Dewey in the
lead, flown manually

and not a primary contributor to the high steady state convergence error. The

changes in relative distance along the y-axis further support the evidence of a

high proportional roll gain, showing that Huey oscillates significantly about the

goal ∆y offset value of 10 meters. Another telling aspect of Figure 12.9 is the

relative distance values along the x-axis, which corresponds more with throttle

control and the ability to match velocity. This axis shows the highest steady

offset, signaling that Huey struggled to keep up with Dewey. A better performing

throttle controller could possibly mitigate this offset. Another solution would
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Figure 12.8: Photograph of Huey and Dewey in a leader-follower con-
figuration, with Dewey leading while being flown manually from the
ground

be to revert to a control scheme used more often in larger scale UAVs, where

pitch commands are determined by velocity errors and throttle commands are

determined by rate of climb error. For a UAV at this scale, this control scheme

can result in higher oscillations holding altitude, but may also produce more

precise ∆x convergence. Rotations of relative distances into the LNAV reference

frame utilize a heading angle that has its own associated error. Therefore, the

error associated with the reported relative positions rotated into the LNAV frame

is ± 5%, which is a relative error instead of absolute, as the relative distance

error introduced by angular measurement uncertainty grows proportional to the

relative distance itself.

Something worth noting, which is apparent in both figures 12.6 and Fig-
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ure 12.9 is a brief moment around the 103 second marker, where convergence

approaches zero very quickly, and then spikes significantly. This occurrence in-

advertently provides the means to evaluate the functionallity of the PFG-based

collision avoidance algorithm during flight, something that would have been very

difficult to coordinate on purpose without risking a mid-air collision. As shown

Figure 12.9: Best example of convergence for Huey and Dewey in
a leader-follower formation, broken down by dimension in Dewey’s
LNAV reference frame

in Figure 12.10 the collision avoidance algorithm performs as designed, with the

repulsive function kicking in to high gear as Huey quickly converges towards

Dewey’s position. Made more clear on Figure 12.9, this rapid convergence occurs

mostly along the x-axis of Dewey’s LNAV reference frame, but is coupled with

the y-axis crossover as well, bringing the two UAVs much too close together.
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Because there is rapid convergence along the x-axis, probable causes include air-

speed changes made by Dewey or a brief tail-wind gust. A GPS position reading

jump could have also occurred, however it would be a large coincidence to have

the jump occur primarily along the x-axis of Dewey’s LNAV reference frame. The

Figure 12.10: An example of the collision avoidance algorithm built in
to PFG doing its job

communication problems mentioned earlier prevented meaningful demonstration

of leader-follower convergence using the pre-defined loiter for the leader’s flight

path. By flying the leader manually in an exagerated racetrack pattern, longer

straightaways made the follower less succeptable to communication losses, but

also added another layer of complexity to the experiment. It is much more diffi-

cult for a human on the ground to fly the UAV along a steady flight path than

it is for a moderately well-tuned autopilot to perform relatively simple altitude
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and velocity hold control. Figure 12.11 shows that the leader does in fact have

substantial velocity changes throughout the flight, which makes the followers job

that much more difficult as he tries to track and converge on a leader that is not

steady himself. While a robust controller could handle these fluctuations in speed,

Figure 12.11: The relationship between leader velocity changes and
follower convergence

these were not the conditions expected or tested in HIL simulation. Overlaying

Dewey’s velocity data on Huey’s convergence data, it can be seen that larger

fluctuations in velocity make it more difficult to converge. Notable exceptions

are during turns, where dramatic changes in ground speed could be explained

by wind directions, which are experienced by both the leader and follower, and

therefore should not affect the convergence as substantially as velocity changes

during the straightaway sections.
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12.55 Data Collection and Reduction Techniques

The data collection process and reduction techniques used for the flight test

data logs was similar to the process described in section 10.47, but without the

many of the descrepencies regarding timing and sampling frequency that were

found in the HIL simulation data logs. Having real GPS data meant that as

long as there was a GPS lock, all the receivers had relatively identical UTC

time stamps. These time stamps were used to synchronize different log types

as well as synchronize the logs of different UAVs. As with the HIL simulation

data, the FLOC APM Log Parser tool was utilized to parse the log files, convert

the data to Matlab timeseries objects, and perform data reduction using linear

interpolation functions to provide data with a uniform sampling rate for analysis

and plotting. Error introduced through the data reduction process is the error

associated with techniques such as linear interpolation and a zero-order hold.

Data was preselected for reduction technique based on the type of value that was

represented by the data. Continuous values, such as latitude, longitude, altitude,

or velocity were all synchronized and reduced using linear interpolation. Discrete

values and reference values, such satellite count, fix type, reference frame, or local

leader ID were all synchronized and reduced with a zero order hold function, as a

decimal value produced through linear interpolation would be meaningless. Data

that was sampled at rates lower than the selected rate for data analysis and

plotting was extrapolated using the same criteria for method selection.
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13 Conclusion

Throughout this work, a formation flight control system architecture has been

detailed with a design that builds off of previous work done at Cal Poly, using an

implementation that utilizes a low cost, open source configuration, and demon-

strating these systems through HIL simulation and flight testing.

The control system architecture adapts concepts presented in previous works

to be integrated into the open source waypoint navigation-based autopilot soft-

ware, ArduPlane, designed to run on the low cost APM 2 hardware. Swarm orga-

nization into leader-follower configurations is included with a PFG algorithm to

provide commands to the Virtual Waypoint algorithm which interfaces with the

supported waypoint navigation. Two new modes were introduced into the stan-

dard ArduPlane v2.66 software, supporting fully-autonomous formation flight and

a manual flight mode designed to retain interaction with the rest of the forma-

tion. To make demonstration feasible in a flight test environment, the global goal

was redefined to utilize a “spooled” goal concept, with the UAVs using distance

traveled around the goal loiter to evaluate global leadership. Relative situational

awareness is achieved through a GPS-based state-sharing method, shared over

the inter-UAV FCOM network, which is enabled by XBee RF modules config-

ured for peer-to-peer communication. The FCOM network makes use of the

MAVLink protocol to send standard messages, as well as custom messages de-

signed for compliance with MAVLink conventions. A HIL simulation setup using

X-Plane 9 and the APM Mission Planner software was extrapolated to support

multiple UAV HIL simulation, where the custom formation flight software could

be verified. Several HIL simulation cases were presented in this work, verifying

leader-follower convergence, three-UAV formation flight, dynamic leadership as-
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signment and recovery, and collision avoidance. GPS testing was conducted to

characterize the expected GPS error associated with relative distances calculated

through the state-sharing method, providing guidance to establish a realistic error

budget for the formation goal positions. Flight tests were conducted in multiple

stages, starting with test-bed evaluation and ending with four separate attempts

at formation flight demonstration.

While full three-UAV formation flight was not demonstrated through flight

testing due to persistent hardware failures, several instances of leader-follower

tracking and convergence were observed. In the fourth and final flight, steady

convergence was observed with the follower UAV positioned at a relative distance

between 30 and 40 meters ± 5.5 meters offset from the leader, an error between

15 and 25 meters with respect to the desired offset distance. This convergence

was observed with the leader flown manually, instead of through using the pre-

determined fully autonomous loiter flight path. Persistent communication failures

plagued the final flight test, requiring the abandonment of the loiter-based global

goal in favor of the more forgiving racetrack-like flight path flown by the leader

UAV in manual control.

13.56 Lessons Learned

This work has provided intensive insight into the challenges of working in an

interdisciplinary environment with hardware, software, simulation, and testing.

While a significant amount of work was accomplished prior to this project, out-

lining a control scheme for formation flight, the jump from theoretical implemen-

tation to hardware implementation was not trivial. Even with some exposure to

the nuances of hardware integration, understanding how to trouble-shoot a wide

variety of problems that can arise due to poor power supply, individual compo-

162



nent failure, over-bearing memory requirements, or a number of other causes,

proves to be a difficult endeavor. HIL simulation proved to be arguably the most

important tool during this study, but developing an understanding of its limi-

tations was equally as valuable. With the basic HIL implementation presented

in this work, latency between the simulator and the autopilot control system

accounts for significant performance losses, and renders the gains tuned for simu-

lation relatively useless for flight testing purposes. A modular approach to flight

testing is necessary to limit the scope of the risk matrix: insuring that untested

hardware is not implemented with untested software on an untested airframe is

crucial to managing the sources of errors that inevitably appear during testing.

Standardized checklists help to mitigate many errors that can occur when at-

tempting to prepare three separate UAVs for flight testing, especially with the

help of others who are less familiar with the systems. More attention should be

paid to performance constraints while designing the flight test experiments, such

as reasonable throttle settings, loiter radii, maneuverability requirements, and

available flight endurance. In general, a better understanding of the personnel

required for flight test experiments should influence the size of group involved in

a multiple UAV control study. Luckily, significant volunteer support was given

to make this project possible, however future projects should include more team

members with equal investment into the outcome.

A major lesson learned through the failures experienced through flight testing

was that a robust control strategy, designed with redundancy, is priceless. A good

example is the communication failures which in turn caused navigation failures,

limiting the overall success of the flight testing. Having a persistent estimate

of the aircraft state and its relative state with the other UAVs is necessary to

mitigate the navigation failures caused by GPS and communication failures. Even
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a poor estimate is better than the UAV’s state effectively “freezing” during GPS

or communication failure. While coupled GPS-INS solutions were investigated,

they were evaluated from the perspective of increasing relative position accuracy,

not from a standpoint of redundancy. When increasing the relative position

accuracy was deemed outside of the scope for this work, the concept was soon

neglected. However, even a loosely coupled GPS-INS solution would provide the

type of state estimation that could have drastically improved the flight test results

in the face of the failures experienced. If such an estimation process was extended

to relative state estimation as well, through extended kalman filtering at best,

or dead-reckoning at worst, the communication problems experienced would not

have caused the navigation failures that derailed the loiter-based formation flight

tests.

13.57 Future Work

This work can be characterized by saying that it covers a lot of ground, but

does not focus intensely in any one particular direction. Much of the future work

that could be inspired from this project would revolve around taking one aspect

of this work and focusing on that concept with a greater level of depth.

Some obvious places to build off of this work include: enhanced modeling of

the UAV through system identification, replication of the control system archi-

tecture in a higher-level simulation environment like Simulink, a higher quality

HIL simulation environment that addresses the problematic latency associated

with the current implementation, and the development of a robust relative state

estimation technique to provide relative situational awareness.

Decentralized observation of the environment and other UAVs is a logical ex-
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tension of this work, removing the communication dependency completely. Ad-

ditionally, relative position accuracy increases could be investigated to enable the

possibility of tighter formations. State estimation through inertial navigation and

filtering could remove all dependency on GPS, further decentralizing the control

scheme.

A lot of interesting studies could be derived from this work, moving away

from the structured formation flight concept, focusing more on swarming tech-

niques and loose cooperation for tasks such as optimized search and mapping.

Additionally, more advanced control architectures could be investigated to move

beyond the simple PID control architecture currently utilized.

Ultimately, this project introduced one example of bringing a multiple UAV

control strategy from a theoretical implementation to a point where it can be

demonstrated through flight testing. There are as many examples of routes to

avoid as there are examples of promising directions taken. The hope is that this

work will encourage a continuing legacy of multiple UAV control work at Cal

Poly, focused more on realistic implementation than lofty theoretical solutions,

which is what Cal Poly’s “Learn By Doing” philosophy is all about.
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Date:  __/__/____ Hardware Integration Checklist 
Flights:  _________________ 

   

Huey / Dewey / Louie 
 

Autopilot Installation 

Autopilot Version:   _________      Additional Hardware: ________________________________________________ 

☐  External GPS installed 

  

☐  APM 2.x secured to chassis w/ nylon screws 

☐  APM is in the correct Orientation 

☐  3DR Radio mounted inside airframe 

 

 

☐  LiPo Connected to BEC (3DR or Castle) 

       

☐  LiPo Mounted inside Airframe  

(Positioned with one edge lined up with the back of the 

cockpit opening on the Sky Surfer) 

☐  Outputs connected correctly 

  

☐  Inputs connected correctly 

  

☐  Verify GND/Vcc/Serial connection for inputs    

       and outputs  

(Serial ALWAYS towards center of board) 



☐  3DR Radio connected to UART0 

 (APM 2.0: Pins/ APM 2.5: Socket) 

          

☐  XBee Radio connected to added UART2 pins 

          

☐  Verify wire color order match picture   

☐  Airspeed sensor connected to A0 pins 

☐  Verify cable is not shifted over by one pin 

☐  Airspeed sensor cable connected correctly to   

       differential pressure sensor (see picture) 

     

☐   Pitot Tube and Pressure Sensor secure  

☐   Pitot hoses secure, no kinks 

☐  All hardware is properly secured  

Notes: 



Date:  __/__/____ Software Checklist 
Flights:  _________________ 

   

Huey / Dewey / Louie 
 

Software Configuration 

Software Version:   ______________________________________________________________________________ 

☐  ”Formation Flight” ENABLED APM_Config.h

 

☐  Telemetry out of UART2 DISABLED 

☐  HIL mode DISABLED 

☐  HIL debug configuration DISABLED 

☐  Correct Airframe UNCOMMENTED 

APM_Config_Formation.h  

 

☐  Inter-AC Coms using UART2 ENABLED 

 ☐  Baud for FCOM set to 57600 

Monitoring Inter-AC Coms with Ground Control Station Yes / No 

☐  FCOM_GCS ENABLED 

 

☐  Verify 64 bit Address for GCS XBee   

Logging Formation Flight Data Yes / No 

☐  Formation Flight Data Log ENABLED 

 

☐   Desired logs ENABLED  



☐  EFR “Home” Location ENABLED 

 

☐  Verify GPS Coords/ Altitude for EFR 

☐  Verify GPS Coords/ Altitude for Goal 

 

☐ Verify Standard Flight Modes ☐  Verify PFG and VWP Parameters 

 

  

  

☐  Software Uploaded to board  

 



 

 

Date:  __/__/____ Flight Test Log 
Flight #:  ___ 

   

Test:  3 Flock Member Leadership Changes Crew:  ____________________________________ 

Configuration 

Airframe:   Huey I 

Auto Pilot Hardware:    ___________________________ Software:   ____________________________ 

Additional Sensors/Electronics:    ______________________________________________________________ 

Tx: ________________________ Mode1: ______________ Mode4: ______________ 

Rx: ________________________ Mode2: ______________ Mode5: ______________ 

Mode3: N/A Mode6: MANUAL 

Parameter File:    ______________________________________________________________________________ 

Start Location:   Start Location A 

Pre-Day 

☐Batteries Charged ☐Software Checklist ☐Logs Cleared ☐Hardware Checklist 

Pre-Flight 

☐Battery #:    ☐Verify CG Location:    ☐Verify TOGW:    

☐Visual Inspection of airframe for cracks in foam, mount separation, and tail alignment 

☐Verify control horns are securely mounted to control surfaces 

☐Verify wings are secured with rubber band 

☐Verify all components are secured to airframe 

 

Pre-Launch Procedures 

1. Turn on Transmitter 

2. Connect BEC power cable to AUX input on receiver (Do not plug flight battery into ESC yet) 

3. Hold airframe level until APM is finished initializing (Changes from Blue/Red flashing to solid orange 

with slow flashing blue light) 

4. In APM Mission Planner, connect Telemetry link 

☐  All parameters are retrieved   ☐  Attitude changes of airframe are shown in APM MP   



 

 

5. In the APM MP configuration tab, load parameter file 

6. Modify Mode 1 for “Stabilize” and then write parameter file 

7. Ensuring that throttle is off, and Tx in set to Manual Mode (Gear switch is ALWAYS 1), connect flight 

battery to ESC, and listen for the motor arming. 

8. Switch Tx into Stabilize Mode, which should be set to the Mode 1 slot (Gear = 0, Elev D/R = 0, Flap = 0) 

9. Rotate airframe and verify that Stabilize mode is providing deflections for corrective behavior, reverse 

deflections in the APM MP configuration tab as necessary 

10. Switch Tx back into Manual Mode, and verify manual deflections, reversing inputs on Tx as necessary 

11. In APM MP’s configuration tab, change Mode 1 back to Auto (10) and write parameter 

12. In APM MP’s Flight Planner tab, load start location WP file and write WPs 

13. If linking ground station to the Inter-AC communication network, connect XBee to QGCS 

14. Verify GPS lock and Communication Links 

☐  GPS LED is solid blue   ☐  XBee LEDs (Din and Dout) blinking at 1/2Hz (at least) 

☐  APM Mission Planner shows GPS 3D Lock   
If QGCS is linked to Inter-AC communication: 

☐  QGroundControl shows GPS Location of aircraft 

 

15. Test throttle and verify prop is spinning in the correct direction 

16. Note flight conditions: 

 

17. Other notes: 

 

 

 

 

 

 

 

 

 

 

 



 

 

Date: __/__/____ Flight Test Log 
Flight #:  ___ 

Flight Procedures:  

1. Take off and climb to ~ 120 meters AGL 

2. Trim Huey for 50-60% Throttle Setting 

3. Switch mode to “Start Location” 

4. Huey should proceed to this waypoint:  

 

Does he get there? YES NO 

5. Allow Huey to loiter in start location until Dewey and Louie are ready as well 

a. Keep an eye on altitude. If Huey is struggling to maintain altitude, you can help him out 

by bumping it up with elevator stick input. 

6. Once Dewey and Louie are also at their start position, wait for the signal, and then engage 

Formation Flight mode (all three at the same time). 

a. They should attempt to their formation around this loiter position: 

 

 



 

 

If Huey is not the leader, skip step 7 

If Huey is the leader 

7. When signaled, switch to manual, and steer away from formation 

 

If Huey does not become the leader, skip step 8-10 

If Huey becomes the leader after the original leader “disappears”: 

8. When signaled, switch to Manual-In-Formation mode  

9. Fly in a smooth pattern and try not to maneuver too aggressively. 

10. Try not to out-run the trailing aircraft 

Observations: 

Is Huey the original leader?  YES NO 

Does the formation re-converge? YES NO 

Does Huey become the leader? YES NO 

If not: 

- Does he follow the new leader?  YES NO 

- Does he pass the new leader? YES NO 

- Is he zig-zagging behind?  YES NO 

- Is he matching altitude  YES NO 

Other Observations: 

 

 

 

 

 

11. When the signal is given, switch to manual, and come back to land 

12. Unplug ESC from battery 

13. Unplug BEC cable from Rx 

14. Bring back to work area for log download 

☐  Logs are downloaded  ☐  Logs are cleared 

 


