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Using conditional inference forests to identify the factors affecting crash severity on
arterial corridors

Abhishek Das , Mohamed Abdel-Aty , Anurag Pande
a b s t r a c t
Introduction: The study aims at identifying traffic/highway design/driver vehicle information significantly
related with fatal/severe crashes on urban arterials for different crash types. Since the data used in this study
are observational (i.e., collected outside the purview of a designed experiment), an information discovery
approach is adopted for this study. Method: Random Forests, which are ensembles of individual trees grown
by CART (Classification and Regression Tree) algorithm, are applied in numerous applications for this
purpose. Specifically, conditional inference forests have been implemented. In each tree of the conditional
inference forest, splits are based on how good the association is. Chi square test statistics are used to

measure the association. Apart from identifying the variables that improve classification accuracy, the
methodology also clearly identifies the variables that are neutral to accuracy, and also those that decrease it.
Results: The methodology is quite insightful in identifying the variables of interest in the database (e.g.,
alcohol/ drug use and higher posted speed limits contribute to severe crashes). Failure to use safety
equipment by all passengers and presence of driver/passenger in the vulnerable age group (more than
55 years or less than 3 years) increased the severity of injuries given a crash had occurred. A new variable,
‘element’ has been used in this study, which assigns crashes to segments, intersections, or access points
based on the information from site location, traffic control, and presence of signals. Impact: The authors were
able to identify roadway locations where severe crashes tend to occur. For example, segments and access
points were found to be riskier for single vehicle crashes. Higher skid resistance and k factor also contributed
toward increased severity of injuries in crashes.
1. Introduction

Principal and minor arterial corridors with partially limited access
experience a significant proportion of severe/fatal crashes. These
corridors account for 43.4% of the fatal crashes in Florida (National
Highway Traffic Safety Administration [NHTSA], 2007) resulting in
1,478 fatalities during 2006. The objective of the study is to identify
contributing factors related to severe/fatal crashes occurring on the
high speed (speed limit greater than 45 mph), multilane (more than
one lane in each direction of travel) corridors in the state of Florida.
Many safety studies identify contributing factors and use various
modeling techniques for the same. Improvements in modeling
methodology lead to better detection of causal factors. In this study
the authors have not only introduced certain new variables (improve
ment in data), but also have adopted newdataminingmethodology to
better the understanding.
Approaches to safety onmultilane corridors have traditionally been
twofold. Brown and Tarko (1999), Abdel Aty and Radwan (2000), and
Rees (2003) treated the corridors in totality; while Milton and
Mannering (1998) and Miaou and Song (2005) divided the corridors
into segments and intersections. Abdel Aty and Wang (2006) have
shown a spatial correlation between crash patterns of successive
signalized intersections,whichmay be attributed to the characteristics
of the segments joining them.

Though both approaches have worked well for investigation
purposes, the issue that still remains is how to assign crashes to the
segments and the intersections. There is no uniformity in the
influence area of an intersection among the states. For example, in
Florida, all the crashes occurring within 250 ft. from the center of an
intersection are categorized as intersection related crashes, as has
been reported by Abdel Aty and Wang (2006) and Wang, Abdel Aty,
and Brady (2006). Recently Das, Pande, Abdel Aty, and Santos (2008)
showed that proximity only is not the best way to assign crashes.
Wang, Abdel Aty, Nevarez, and Santos (2008) used frequency
modeling for crashes with fixed as well as varying influence distance
and found a different set of significant factors. Apart from the above
research, it is also common knowledge that the way the crashes are
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reported varies among different administrative units. The authors
investigated several crash reports and came up with an innovative
approach to assign crashes, the details of which are given in the next
section which explains the data used in the study.

As previously mentioned, it is important not only to find the
contributing factors but also to improve on the methodology adopted.
Pande and Abdel Aty (2008) in their work on association rules point
out that data mining techniques remain underutilized for analysis of
crash. The underutilization is especially noteworthy since most
studies use observational data collected outside the purview of an
experimental design. Simple data mining tools like classification and
regression trees have traditionally been used to identify variables of
importance in safety studies (Pande & Abdel Aty, 2008). A decision
tree, with all its simplicity and handling of missing values, can be very
unstable. However, if instead of one tree, an ensemble of trees
(commonly referred as forest) is used, the outputs become much
more stable. The robustness of the forests makes them a better choice
than the use of single trees. In this regard, Random Forests, developed
using the Classification and Regression Trees (CART) algorithm, have
been used by the authors (Abdel Aty, Pande, Das, & Knibbe, 2008)
recently to identify variables of significance and then develop neural
network classifiers. However, the method has been shown to have
selection bias as shown by Strobl, Boulesteix, Zeileis, and Hothorn
(2007). The selection bias is in favor of variables that are continuous
or have higher number of categories. At the root of this selection bias
is the application of ‘Gini’ index criterion to split a node (while
building the tree) as well as for variable selection (generally based on
the frequency a variable was chosen for the split). Details of the ‘Gini’
index criterion and the resulting bias have been provided in the
‘Modeling Methodology’ section. Hence, in this study conditional
inference trees, developed by Hothorn, Hornik, and Zeileis (2006),
and their forests have been used for the purpose of variable selection.
The authors are of the belief that the application of this new
methodology will improve traffic safety research. Details of how this
algorithm is different (and better suited for the application at hand)
than the CART have been given in the methodology section.

The authors included new variables like ‘element,’ in this study,
which assigns crashes to segments, intersections, or access points
based on the information from site location, traffic control, and
presence of signals. The authors were able to identify roadway
locations where severe crashes tend to occur. Failures to use safety
equipment by all passengers and presence of driver/passenger in the
vulnerable age group (more than 55 years or less than 3 years) were
also other new variables that were included in the data. The details of
how the inclusion helped in a better understanding of the severity
aspect has been discussed in the ‘Analysis and Results’ section later on
in the paper.

Crash data from the high speed multilane arterials with partial
access control in Florida have been collected. These arterials have
been divided into groups based on their lengths and roadway design
standards (urban/suburban and rural). The following section will
focus on the details of the data collection and aggregation. It is
followed by the methodology section where conditional inference
trees and forests will be discussed. The results and analysis section
will explain the results from the conditional inference trees and the
forests. While the random forests provide a more robust set of
variables associated with severe/fatal crashes, individual tree helps in
making relevant inferences about the relationship.

2. Data collection and preparation

2.1. Study area and available data

The crash data available were from the Crash Analysis and
Reporting (CAR) system of the Florida Department of Transportation
(FDOT). The Roadway Characteristics and Inventory (RCI) data were
also made available to us through the FDOT. The data used are for the
years 2004 through 2006 for all the state roads of Florida. The datasets
have information regarding traffic, roadway geometric, and driver
related factors. The datasets were merged and the parameters were
modified to suit the data mining methodology being implemented in
the study. The corridors, which were originally divided according to
administrative units (i.e., roadway ids based on county boundaries),
were logically combined to form continuous sections based on design
standards. The details of the applied design standards are given in the
next sub section.

2.2. Data Preparation

As mentioned earlier, the corridors available for the study were
logically combined into continuous sections based on their design.
Corridors with continuous urban/ sub urban design were grouped
together and so also the ones with rural design. However, it should be
noted that in the present study the authors focus only on the urban/
suburban corridors. Since the corridors are of variable lengths it was
logical to cluster them based on the same parameter before further
analysis on severity could take place. The optimum number of clusters
was found based on the Partitioning around the Medoids (PAM)
algorithm proposed by Kaufman and Rousseeuw (1990). In the PAM
algorithm, which operates on the average dissimilarity, a ‘medoid’ is
an object of the cluster whose average dissimilarity to all the objects
in the cluster is minimal. Once the medoids are identified, all the
objects are assigned to the nearest medoid. The objective function is
the sum of the dissimilarities of all the objects to the nearest medoid.
The algorithm terminates when the interchange of an unselected
object with an already selected object no longer minimizes the
objective function. The optimum number of clusters was found to be
four. The following are the length of the corridors in each cluster:
Cluster 1 (1.009 2.89 miles); Cluster 2 (2.898 5.729 miles); Cluster
3 (5.762 10.556 miles); Cluster 4 (10.644 78.293 miles).

Different types of crashes occur on the corridors and the
contributing causes for the different types also vary. Even though
the overall safety of the corridor is being analyzed, the approach to
investigate different crash types separately would shed more light.
The crashes were grouped into five major types as follows: (a) angle/
turning movement; (b) rear end; (c) head on; (d) sideswipe; and
(e) crashes involving single vehicles.

The conditional inference trees used in this study helps us in
identifying the contributing factors associated with the severity of the
crashes that occurred along a corridor. However, too many parameters
lessen the discriminating ability of the models as the overall degrees of
freedom available for the model development decrease. Hence only a
subset of the available factors should be chosen formodel development.
Milton, Shankar, andMannering (2008)havealsopointedout that event
specific variables are least desirable in developing injury severity
models. Hence, for the analysis a few variables were chosen based on
engineering judgment and taking into consideration that event specific
factors are not in use to a relatively large extent. The variables were
broadly based on two different categories: (a) environmental and road
geometric factors; (b) driver and vehicle related factors. The variables
used in the study are described in Table 1. They have been derived
directly from the datasets or a combination of parameters. Both these
sets of parameters have their application values.

The variables illustrated in Table 1 are mostly derived from the RCI
database. Many variables have too many categories, in the raw form, to
start off with. Hence, level reduction in variables is not only critical but
also simplifies themodel andmakes themmore readily explainable. For
example, vehicle movement, vehicle type, roadway conditions, vision
obstruction, surface condition, surface type, and type of median are
some of the variables with many categories. Also, the proposed
methodology (conditional inference trees/forests) uses Chi square test
statistic to identify the relationship between a particular parameter and



Table 1 Table 1 (continued)
Dependent / Independent Variables used in the analysis. Variable Name Variable Description Urban / Sub-urban

Variable Name Variable Description Urban / Sub-urban

Target or Dependent Variable
Sev Severity Binary (1=incapacitating

injuries/ fatalities; 2=possible/
non-incapacitating injuries)

Environmental and Roadway Geometric Parameters
pavecond Pavement condition 4 levels (poor, fair, good and very

good)
surf_type Type of surface Binary (1=black top surface;

2=other)
surface_width Surface width Continuous
shld_t Type of shoulder Binary (1=paved; 2=unpaved)
max_speed Maximum posted speed limit Continuous
park Presence of parking Binary (1=no; 2=yes)
skid_f Friction resistance Skid b=34

34bskid b=38
SkidN38

median Types of median 9 levels (0=no median;
1=painted; 2=median curb
b=6”; 3=median curb N6”;
4=lawn; 5=paved; 6=curb
b=6” and lawn; 7=curbN6” and
lawn; 8=other)

ACMANCLS_num Type of median openings 7 levels (0=no median opening;
2=restrictive opening w/ service
roads; 3=restrictive median;
4=non restrictive median;
5=restrictive median with
shorter directional openings;
6=non restrictive median with
shorter signal connection;
7=both restrictive and non-
restrictive median types)

road_cond Road condition at time of crash Binary (1=no defects;
2=defects)

vision Vision obstruction Binary (1=no; 2=yes)
shld_side Shoulder + sidewalk width Continuous
curvclass Horizontal degree of curvature 6 levels (curveb4′; 4b= curve

b=5′; 5bcurve b=8′; 8bcurve
b=13′; 13bcurve b=27′;
curveN27′

surf_cond Surface condition Binary (1=dry; 2=other)
light Daylight condition Binary (1=daylight; 2=other)
ADT Annual daily traffic ADT b=31000

31000bADT b=40000
40000bADT b=52500
ADTN52500

t_fact Average truck factor t_fact b=4.05
4.05b t_fact b=5.895
t_factN5.895

k_fact Average k - factor k_fact b=9.85
k_factN9.85

dayandtime Combination of the day of week
and time of day

Afternoon Peak Weekday
Morning Peak Weekday
Friday or Saturday Night
Off-peak

trfcway Vertical curvature Binary (1=level; 2=upgrade/
downgrade)

element/
element 1

Assignment of crashes to
roadway elements

Ternary (1=segment;
2=intersections; 3 = access
points) / Binary (1=segments/
access points; 2=intersections)

LIGHTCDE Street lighting Ternary (Y = full lighting; N= no
lighting; P = partial lighting)

Driver and Vehicle related Parameters
age_gr Age group of the at fault driver Age b =25; 25 b age b=35; 35 b

age b=45; 45 b age b=55;
55bage b=65; 65bage b=75;
AgeN75

veh_type1 At-fault type of vehicle 4 levels (1=automobiles;
2=light trucks; 3=heavy
vehicles; 4=light slow moving
vehicles)

Driver and Vehicle related Parameters
alcohol_use Alcohol/ drug use of the at-fault 3 level (1=no use; 2=use;

driver 3=no information)
vuln_age Presence of vulnerable age Binary (1=yes; 2=no)

group passengers in the vehicle
(ageb5 or ageN55)

more Presence of more than 5 Binary (Y = yes; N = no)
passengers inside either of the
involved vehicles

sfty Use of safety equipment in the Binary(1=yes; 2=no)
vehicle by driver/passengers

gender Gender of the at-fault driver(s) 3 levels (1=male; 2=female;
3=both)

veh_move1 Vehicle movement of the at- 4 levels (1=straight ahead;
fault vehicle 2=turning movements;

3=changing lanes; 4=other)
target variable. Each category of the variable should have a sufficient
number of observations in the contingency table for the Chi square to be
evaluated as discussed by Das et al. (2008). Continuous variables like
annual daily traffic (ADT), percentage of trucks, and K factor (design
hour volume as a percentage of ADT) and skid (friction resistance
multiplied by a factor of 100) were also divided into categories. Their
relationships with severe/fatal crash occurrence may not be mono
tonous in nature. Time of crash, alongwith day of week, were combined
into onevariable representing dayofweekand timeof day. Theweekend
night times were not treated as off peak hours as there may be higher
instances of alcohol impaired driving.

The authors have introduced some new variations to the traditional
parameters. Traditionally the site location variable has been used by
researchers to assign crashes to the three roadway elements (segments,
intersections and access points). However a detailed review of several
hundred crash reports suggested that the ‘site location’ variable by itself
was aweak indicator for the same. For example, itwasobserved that it is
possible for a crash to not be attributed to a signalized intersection even
if it may have occurred very close to one. In fact, ‘traffic control’ in
combination with the ‘site location’ along with the information of the
presence or absence of signal, did a superior job in attributing crashes to
one of the three roadway elements. Based on these three independent
parameters, a variable ‘element’was created to assign the crashes to the
three roadway elements, namely segments, intersections, and access
points. However it was also observed and verified through the study of
crash reports that distributing crashes to the three roadway elements
worksfinewith all types of crashes except for the angle / turning related
crashes. Most of such crashes occur at the signalized intersections. The
crashes that occur on the segments were observed to have occurred
mostly on auxiliary lanes (right / left turning lanes). Hence these could
be either way attributed to the segment or access points. Therefore for
angle / turning related crashes the ternary variable ‘element’ takes the
form of binary ‘element1’ where the crashes either belong to the
signalized intersection or to segment/ access points. This new variable
appears in certain tree results (developed along with conditional
inference forests for relevant inference) and also positively contributes
to model development in the forests.

Zhang, Lindsay, Clarke, Robbins, andMao (2000) found that non use
of seat belts increased the risk of severe injuries. In this study, the
parameter for safety equipment in use is for all the passengers. This is
different from the traditional approach as it is more useful to look at the
overall safety of all the passengers rather than just focusing on the safety
equipment use of the driver. The importance lies in the fact that there
are a lot of crashes in which the drivers may not be injured at all. The
vulnerable age group binary variable points out the presence of children
or elderly passengers inside the vehicle. The physical fragility of the
people belonging to these age groups described in Table 1 makes it an
interesting variable and the results also show interestingpattern related
to severity.



The median types were combined into nine levels. It does the two
fold job of not only giving a sense of the median obstruction imposed
but also gives an idea as to how far apart the opposing directional
roads could be. The authors observed that the median width was a
variable that is really dependent on the median type. Hence the
median width was sufficiently represented within the variable
median type. A new variable called ‘shld_side’ has been created that
simply represents the total width of the outside shoulder and the
sidewalk. This variable gives a more realistic idea of the side space
available for the vehicles traveling in the outer lane, especially in the
urban areas where the shoulder width sometimes is negligible as
compared to those available in rural settings. Hence, the original
information on shoulder width and the sidewalk width were replaced
with this new variable.

The target variable of severity is binary. The first level represents
fatalities and incapacitating injuries. They are combined into one level
for two reasons; first, the relatively small frequency of fatal crashes
compared to other injury severity levels. For example, the Chi square
tests may not be valid due to low expected cell frequency. The second
reason is that the crashes that involve incapacitating injury could
easily have been fatal and vice versa possibly due to vulnerability of
the subjects involved (Das et al., 2008). The second level includes
crashes with possible injuries and non incapacitating injuries. The
crasheswith no injurieswere not included as these are likely expected
to be incomplete. This issue has been well investigated and
documented by Abdel Aty and Keller (2005). Yamamoto, Hashiji,
and Shankar (2008) also have discussed the issue of possible under
reporting of such crashes and the bias resulting from it. Hence, in the
present study the authors have included those crashes with injury
severity level of at least a possible injury or higher.

It should be noted here that the conditional inference forests,
which have been used to calculate the variable importance score, do
not accept missing values. Hence, the data set has no missing data.
Hence the introduction of random parameters to account for missing
data, as done by Milton et al. (2008), is not required in this study. As
mentioned earlier the crashes have been grouped into five types,
namely: (a) angle/ turning movement; (b) rear end; (c) head on; (d)
sideswipe; and (e) crashes involving single vehicles. The number of
crashes in each of the crash categories are 6,231, 5,532, 1,261, 2,204,
and 2,404, respectively, for the models developed for environmental
and roadway geometric factors, whereas for the models developed for
driver and vehicle related factors the number of crashes are 7,759,
6,775, 1,583, 2,612, and 2,879, respectively. As no missing data record
could be used, the records deleted for the environmental and roadway
geometric factors’ models are 31,973. This accounts for 6.6% of the
three years of Florida crash data used. Similarly, for the driver and
vehicle related factors’ models, the crash records that were deleted
were 27,997, which accounts for 5.8% of the three years of Florida
crash data used.

3. Modeling methodlogy

3.1. Conditional inference trees

The modeling approach adopted herein is the conditional
inference trees and the forests developed there from. The focus of
the study is to find out parameters that are related to the injury
severity. The trees not only give the variables of importance, but also
help us to better interpret the results. In severity analysis the
advantage in using trees is that it helps us determine the values of
parameters that contribute more to the severity of crashes. Hence
from a safety aspect this is critical as it can help determine what
changes need to bemade in the design and/ or policies to improve the
safety. Conventional classification and regression trees have always
been used to select variables of importance. According to Strobl et al.
(2007), the CART trees have a variable selection bias toward variables
that are continuous or with higher number of categories. The most
common splitting criterion in the CART tree is the Gini Index to find a
favorable split. The Gini Index checks for the purity of the resulting
“daughter” nodes in the tree. According to Breiman, Friedman, Olshen,
and Stone (1984), for a given node‘t’ with estimated class probabil
ities ‘p(j|t)’, j=1, ….., J, the node impurity ‘i(t)’ is given by:

ð Þ = Φ p 1 jtÞ ÞÞi t ð ð ; ::::::; p Jð jt ð1Þ

A search is made for the most favorable split, one that reduces the
node or equivalently tree impurity. If the adopted form is Gini
diversity index then ‘i(t)’ takes up the form:

X
i t p jð jtÞp i jt ð2Þð Þ = ð Þ

j ≠ i

The Gini index considered as a function ‘Φ(p1,……,pJ)’ of the p1,
……,pJ is a quadratic polynomial with nonnegative coefficients.
Therefore for any split ‘s,’ ‘δ(s, t) N=0.’ Since the criteria looks for a
favorable split, the chances to find a good split increases if the variable
is continuous or has more categories. Therefore even if the variable is
not informative, it could sit higher up on the tree's hierarchical
structure. Hence in this study the researchers have used conditional
inference trees (Hothorn et al., 2006) where the node split is selected
based on how good the association is. The resulting node should have
a higher association with the observed value of the dependent
variable. The conditional inference tree uses a chi square test statistic
to test the association. Therefore, it not only removes the bias due to
categories but also chooses those variables that are informative.

The key to this recent algorithm is the separation of variable
selection and splitting procedure. The recursive binary partitioning
that is the basis of the framework is given below.

The response ‘Y’ comes from sample space ‘Y,’ which may be
multivariate. The m dimensional covariate vector X = (X1,….,Xm) is
taken from a sample space X = X1,⁎……⁎Xm. Both the response
variable and the dependent variables may be measured at any
arbitrary scale. The conditional distribution of the response variable
given the covariates depends on the function of the covariates.

D Y jXÞ = D Y jX1; :::::;XmÞ = D Y j f X1; :::::;XmÞ ð3Þð ð ð ð

For a given learning sample of ‘n’ iid observations a generic
algorithm can be formulated using nonnegative integer valued case
weights w = (w1,….,wn). Each node of a tree is represented by a
vector of case weights having nonzero elements when the corre
sponding observations are elements of the node and are zero
otherwise. The generic algorithm is given below:

(1) For case weights w the global null hypothesis of independence
between any of the covariates and the response is tested. The
step terminates if the hypothesis cannot be rejected at a pre
specified nominal level ‘α.’ Otherwise the jth covariate Xj with
the strongest association to the response variable is selected.

(2) Set A ⊂ Xj, is chosen to split Xj, into two disjoint sets. The case
weights wleft and wright determine the two subgroups with
wleft,i = wiI(Xji 2 A) and wright,i = wiI(Xji ∉A) for all i=1,….,n
and I( ) denotes the indicator function, which indicates the
membership of an element in a subset.

(3) Recursively repeat the steps 1 and 2 with modified case
weights wleft and wright, respectively.

The separation of variable selection and splitting procedure is
essential for the development of trees with no tendency toward
covariates withmany possible splits. For more details of the algorithm
the readers are directed to the paper by Hothorn et al. (2006).



Table 2 (a)
Conditional Inference Forest sample result for environmental and roadway geometric
factors.

Variable Name Variable Importance Score

Shoulder + Side 0.000358
Pavement condition 0.00026
Median Openings 0.000163
Median type 0.000163
Truck factor 0.00013
Vision obstruction 6.50E-05
Skid (friction resistance) 6.50E-05
Roadway condition 0
Horizontal Degree of Curvature 0
Surface condition 0
Parking type 0
Traffic-way character 0
Surface width -9.76E-05
K factor -6.50E-05
Day of the week and time of the day -6.50E-05
Surface type -3.25E-05
Daylight condition -3.25E-05
Roadway element -0.00013
Maximum posted speed limit -0.00026
ADT -0.00029
Shoulder type -0.00036

Table 2 (b)
Conditional Inference Forest sample result for driver and vehicle related factors.

Variable Name Variable Importance Score

Alcohol usage 0.004544
Age group 0.004488
Vehicle movement 0.000309
Safety equipment use 0.00014
Vehicle type 5.61E-05
At fault driver gender 2.81E-05
Vulnerable age group 2.81E-05
Presence of more than 5 persons 0
� �

� � � �

3.2. Conditional inference forest

Forests that are a collection of multiple tree classifiers are used for
variable selection. A decision tree, with all its simplicity and handling
of missing values, can be very unstable. In other words, small changes
in the input variables might result in large changes in the output. In
this regard, forests are more robust variable selection tool. Random
Forests’ algorithm was developed by Breiman (2001), which works in
the framework of the classification and regression trees, but instead of
having one tree, they have multiple trees. The forests are most
important in calculating the variable importance measure. Recent
works in transportation by Abdel Aty et al. (2008) and Harb, Yan,
Radwan, and Su (2009) used the random forests algorithm to
determine the variables of importance. However Strobl et al. (2007)
showed that the bootstrapping method (sampling with replacement)
and the use of Gini index results in the biased selection of variables of
importance. The Gini index shows a strong preference for variables
with many categories or for the ones that are continuous. Variables
with more potential cut off points are more likely to produce a good
criterion value by chance. This variable selection bias that occurs in
each individual tree also has an effect on the variable importance
measure. In the previous sub section it was mentioned that the
algorithm for recursive binary partitioning uses the association tests
like chi square test to select informative variables. Therefore boot
strap sampling with replacement induces bias because the cell counts
in the contingency table are affected by observations that are either
not included or are multiplied in the bootstrap sample. Hence the
forests that we have used in this study comprise of the trees that have
developed in the conditional inference framework. The next subsec
tion describes the variable importance computation process.

3.3. Variable importance

The basis of the variable importance in forests is as follows. By first
randomly permuting the predictor variable Xj, the original association
with the response variable Y is broken. When the permuted variable
along with other non permuted variables is used to predict the
response for the out of bag observations the classification accuracy
decreases substantially if the permuted variable is associated with the
response. Hence the variable importance of a variable is the difference
in the prediction accuracy before and after permutation of the variable
Xj, averaged over all trees. Out of bag observations are those that the
method excluded while developing the trees. They form an internal
test data set and there is no need to allocate a test data set separately.
Let B(t) be the out of bag sample for a tree‘t’, with t {1,.....,ntree}. The
variable importance of one tree is then given by the following:

�
^
� �

^
�P Pð Þt tð Þ

ð Þ I yi = y ð Þ I yi = y� � iaB t i iaB t i;πjð ÞVI t xj = ð Þ j − ð Þ j ð4ÞjB t jB t

^ ðtÞ f ðtÞð=Where y xiÞ is the predicted classes for observation ‘i’ before
^ t ð Þ xi;πj
ð Þand yi;πj

= f t is the predicted classes for observation ‘i’ after

permuting its value of variable. The raw variable importance score for
each variable is then computed as the mean importance over all trees
and is given by:

Pntree ð Þ
t = 1 VI

t xj
VI xj = ð5Þ

ntree

Since the individual importance scores VI(t)(xj) are computed from
‘ntree’ independent bootstrap samples, a simple test for the relevance
of variable Xj can be constructed based on the central limit theorem
for the mean importance of VI(t)(xj). If individual importance has a
standard deviation σ, then the mean importance from ‘ntree’p
replications has a standard error of σ = ntree.

The next section emphasizes on the results of the random forests
results for the various severity models developed on the urban/sub
urban and rural corridors according to the various crash types.

4. Analysis and results

4.1. Conditional inference forest variable importance results

This section deals with the results of conditional inference forests
that typically illustrate the variables of importance. In the present
study the conditional inference forests generated for the models, with
the binary severity variable as the target, gives the variable
importance score for all the variables in themodel. The sign (positive/
negative) of the importance score indicates whether the presence or
absence of a variable in the model will improve or degrade the
efficiency of the model. To exemplify the variable importance score
the authors tabulate the results for a particular cluster (in this case
Cluster 3 for angle/ turning movement crashes) in Tables 2a and 2b.
As mentioned earlier in the section Data Collection and Preparation,
the variables have been categorized into two. Hence for each cluster
and crash type two models had been developed, one for the
environmental and roadway geometric and the other for driver and
vehicle related characteristics. Results in Table 2a are for the model
with only environmental and roadway geometric factors and those in
Table 2b are for the driver and vehicle related characteristics’ model.
As a reminder to the readers, Table 1 has the explanation of the
variables.

It should be noted that Tables 2a and 2b are examples of the output
of a condition inference forests. The variables with a positive variable
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 importance score are the most important for the severity model

developed here in the example. Their association with the target
variable is the maximum and their absence would decrease the model
performance. The variables with zero importance score are believed to
have no effect on the model performance, while the ones with
negative importance (as highlighted in Table 2a) are the ones
decreasing the model performance. Readers may note that the
variable LIGHTCDE has not been included in Table 2a; this is because
it had only one level and can not be used for split during tree
development. The same is the reason for no information on LIGHTCDE
in some of the cells of Table 3a as well. It is critical to distinguish the
significant from non significant. As the dataset change (i.e., a new
model is being developed), the importance score may also change. A
particular variable may improve the model efficiency in one group
whereas it may decrease in another group, while being neutral in
some other. All the conditional inference forests results were
developed at 90% confidence level.

Tables 3a and 3b tabulate the conditional inference forests results
developed for all severity models in the study. For certain types of
crashes (i.e., head on, sideswipe, single vehicle involved, slowmoving
vehicles involved) the number of crashes in the urban clusters 1 and 2
were not sufficient for the trees to develop. Hence for these types of
crashes the clusters 1 and 2 were combined. All the results were
developed with the use of the statistical software package ‘R.’ The
package ‘party’ developed by Hothorn et al. (2008) was used to
generate the conditional trees and forests results. Key for Tables 3a
and 3b is:

‘+’: variables which increase the model efficiency,
‘ ’: variables which decrease the model efficiency,
‘0’: variables which are neutral to model efficiency.

It should be noted that in Tables 3a and 3b there could be certain
blank cells (i.e., they do not have any of the three symbols mentioned
above). For example, the variable LIGHTCDE does not appear in
Table 3a in a number of cells. The reason for the exclusion is that the
variable was not used for that particular model development, as it had
only one level.

As mentioned earlier, the variables with “+” sign in the boxes are
the variables with higher importance (i.e., they improve the model
efficiency more than the other variables for the given model). The
ones with “0” means they are neutral for the severity model. The
variables with “ ” are the ones with least effect on the corresponding
model. It must, however, be understood that the “+” sign need not
necessarily mean that the variable is positively associated with
severity. For better interpretation of the variable's influence on the
severity, single conditional inference trees were developed for the
models. And depending on how the variables split, the approach to
severe/fatal crashes would be clearer. The next subsection deals with
the individual conditional inference tree results.
5. Conditional inference trees results

5.1. Example of conditional inference trees and how to interpret them

The conditional inference trees are critical to observe which
parameters are relatedmore to severity and also how they are related.
Before moving to the details of the results, the authors would like to
exemplify certain individual conditional inference tree results
through Fig. 1(a) and (b). The trees shown in the figures are for
angle/ turningmovement crashes in Cluster 1. Fig. 1(a) represents the
tree model for environmental and roadway geometric factors,
whereas Fig. 1(b) is the model for driver and vehicle related factors.

All the trees were developed at 90% confidence level. The p value in
the nodes of Fig. 1(a) and (b) denotes the actual significance level at
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 which the split has taken place. All the nodes are shown in white oval
shape, whereas all the terminal nodes (leaves) are shown in the
rectangular boxes. The small square boxes with numbers on both the
ovals and rectangles denote a unique numerical representation of
the node or leaf. In the white oval shapes the variables mentioned is
the split variable and the p value denotes the significance level. The
numbers on the lines connecting the nodes to other nodes or leaves
denotes the specific categories of variables or range of values of
variables that lead to the extension of that particular branchof the tree.
For example, in Fig. 1(b) the variable alcohol use splits the node and all
the cases of the variable taking up the value 1 (denoting no alcohol/
drug use) leads to the leaf, which is uniquely numbered as ‘2.’ For the
other branch the variable either takes the value 2 or 3 (denoting
alcohol use or pending test results) to reach the other leaf, uniquely
numbered as ‘3.’ The general direction of flow of the lines in any
conditional inference tree is top to bottom. It goes from one node to
other node/ leaf. As can be observed the leaf contains the information
about the number of cases in the particular leaf, denoted by n. The
proportion of non severe and severe crashes is also shown in the leaf,
through the numbers given by y. To exemplify, the authors again refer
to Fig. 1(b). The leaf, uniquely denoted by ‘2’ has n=1,849 cases,
whereas the proportion of non severe crashes was 0.851 while that of
severe crashes was 0.149 (denoted by y=(0.851, 0.149)). As can be
observed from Fig. 1(a) and (b), there are red ovals covering certain
leaves. These leaves have higher proportion of severe crashes than the
proportion of severe crashes in the particular dataset from which the
model had been developed. The path taken from the original parent
node to the particular leaf thus gives us the conditions that lead to
higher severity. The variables on the path, on which the splits have
been done, reflect which variables are associated with severity.

Fromhere on the resultswill be based on crash type and the relevant
results fromdifferent clusterswill be grouped together. The explanation
will include both the categories of models developed, namely: (a)
environmental and roadway geometric and (b) driver and vehicle
related. Theorderwill be adhered to for themost part of the explanation.

5.2. Angle/ turning movement crashes

As mentioned earlier the corridors in Cluster 1 (1.009 2.89 miles)
are the smallest in length. According to the environmental and roadway
geometric model for angle/ turningmovement crashes occurring in this
particular cluster's corridors, the severity is higher where the shoulders
are paved and the k factor is higher. Even though paved shoulders
leading to higher severity seems counterintuitive, the only reason could
be that better shoulders may be misused as additional lanes for
dangerous maneuvers. The higher k factor indicates that the higher
the peak hour volume, the higher risk it involves for angle/turning
movement crashes. With lower k factor but restrictive medians (with
longer distance between openings), the severity of the crashes is found
to be higher. Since angle/ turning movement crashes mostly occur at
intersections, it is interesting to note that Levinson (2000) pointed out
that even though restrictive medians provided better separation of
traffic andbetter pedestrian safety, however adequateprovisionshave to
be made for left and U turns to avoid an overwhelming increase in
movements at the intersections. Lack of adequate left or U turns could be
one of the reasons why this result was observed. For the same cluster
alcohol/drug use is also found to be associatedwith severe/fatal crashes
in the model for driver and vehicle related factors. The authors in a
previous study (Das et al., 2008) found similar results for alcohol/ drug
use. Wang and Abdel Aty (2008) found an increasing effect of alcohol/
drug use in severity of crashes. In Cluster 2 (2.898 5.729 miles) for the
environmental and roadway geometric model, posted speeds greater
than 45mph are found to be riskier. In a recent study byMalyshkina and
Mannering (2008), they foundhigher posted speed limit tobeassociated
with higher severity of injuries. For corridors where the posted speed
limits are less than 45mph and high k factor, conditions are suitable for



Fig. 1. (a): Conditional Inference Tree sample result for environmental and roadway geometric factors. Fig. 1(b): Conditional Inference Tree sample result for driver and vehicle
related factors.
crashes with higher injury severity. In the driver and vehicle related
factors’model, failure to use safety equipment and alcohol/drug use also
lead to severe/fatal crashes. Though much research highlights the seat
belt use and its obvious benefits (Evans, 1996; Derrig, Segui Gomez,
Abtahi, & Liu, 2000; Eluru & Bhat, 2007), very few discuss the effects of
other safety equipment in use inside the vehicle in general. Likewise for
Cluster 3 (5.762 10.556 miles) corridors, the model for environmental
and roadway geometric reflects that posted speeds of greater than
50 mph leads to higher severity, while the model for driver and vehicle
related factors show that the non use of safety equipment and alcohol/
drug use again lead to crashes that are more at threat to be severe.
However, for Cluster 4 (10.644 78.293miles) corridors, the twomodels
(environmental and roadway geometric factors’ model; and driver and
vehicle related factors’ model) were developed at only 70% and 75%
levels of confidence, respectively. Hence, the results are not reported
here. Summarizing the results reflects that angle/turning movement
crashes aremore severe under high speeds,whennosafety equipment is
in use, and while driving under the influence. The results are consistent
with the common perception.

5.3. Rear end crashes

The environmental and roadway geometric factors’ model for the
rear end crashes in Cluster 1 suggests that higher friction resistance
(skidN38) leads to higher severity of injuries given the crash has
occurred. This is counterintuitive as higher friction should be better at
preventing severe crashes. The result could provide insight to the
phenomenon that when the friction is higher and the vehicles can
brake within shorter distances, the internal movement could be
sudden and any internal/secondary collision (i.e. passengers hitting
something inside the vehicle) could lead to a severe injury. In the
model for driver and vehicle related factors it was observed that the
severe/fatal crashes are linked to light, slow moving vehicles like
cycles and mopeds. The higher severity level is intuitive, as any crash
with light vehicles will generally be severe. Huang, Chor, and Haque
(2008) found similar results in their investigation of traffic crashes at
intersections. The environmental and roadway geometric model for
Cluster 2 corridors indicate that the posted speed limit of greater than
50 mph leads to severe rear end crashes. Similarly, in a recent
technical report developed for NHTSA by Liu and Chen (2009) it was
observed that severe crashes aremore likely to occur at corridors with
posted speed limits of 50 mph or greater. On the other hand when the
speeds are less than 50 mph, crashes will be severe/ fatal when the k
factor is high. For the same Cluster 2 corridors, alcohol/ drug use leads
to crashes that are severe/ fatal as shown by the driver and vehicle
related factors’ model. It is observed that when there is no alcohol/
drug use by the responsible driver, the presence of a person in the
vulnerable age group (N55 yrs or b3 yrs) makes the crashmore severe
in general. While alcohol/ drug use is a case of irresponsible driving
behavior, the presence of a person in the vulnerable age group is a
clear case of physical fragility. People in the vulnerable age group
always tend to experience severe injuries resulting out of a crash. The
authors would like to reference a particular case reported by Batra and
Kumar (2008) in which an 84 year old man succumbs to injuries



Table 4 (b)
Significant factors for Rear-end crashes.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Environmental
and Roadway
Geometric
Factors

Skid
resistanceN38

Posted speed
limitN50 mph;
posted speed
limitb50 mph
and k factorN9.85

Lower ADT
(b31,000)

Skid resistance
N34; Skid
resistance b34 and
surface width
N32 ft and
presence of
median curb

Driver and
Vehicle
Related
Factors

Light slow
moving
vehicles

Alcohol/drug use;
No Alcohol/ drug
use and presence
of person in the
vulnerable age
group (N55 yrs
or b3 yrs)

Alcohol/
drug use

Older drivers
N55 yrs
resulted in a low velocity collision. In this particular case the injury
was a subaxial cervical spinal cord injury that was triggered by the
airbag deployment, and interestingly the driver was not wearing a
seat belt. The authors cite this particular example as it was observed
that under relatively slower speeds (b50 mph) severe injuries can
occur if the safety equipment is not properly used and it also confirms
the observation that the presence of a person in the vulnerable age
group will succumb to injuries that become more apparent due to
physical fragility. On Cluster 3 corridors, lower ADT leads to higher
severity crashes while the driver and vehicle related factors’ model
indicate alcohol/ drug use leads to severe/fatal crashes. Lower ADT
could mean higher speeds that more often lead to severe/ fatal
crashes. For even longer corridor groups (i.e., Cluster 4), higher
friction resistance (skidN34) leads to severe rear end crashes by the
environmental and roadway geometric factors’ model. The explana
tion was given at the beginning of this subsection. For lower friction
resistance, greater surface widths (corresponding to 3 or more lanes
per direction) and the presence of median curb increase the severity
level of crashes. The increase in surface width should traditionally
reduce severity (Petritsch, Challa, Huang, & Mussa, 2007), however
this result might seem counter intuitive. This could be explained in
the following way. Higher surface width may result in higher speeds
and more driver comfort, which might cause some drivers to be less
cautious. Hence the increase in speeds and less attention by the
drivers could lead to crashes with severe injuries. Das et al. (2008) had
found similar results. On the same corridor group, older drivers
(N55 yrs) also are involved in severe rear end crashes. The longer the
corridors, the more the exposure of the driver and the older the driver
the more prone is he/she to make an error. Marshall (2008) states
that prevailing medical conditions and impairments associated with
old age leads to deteriorating fitness and hence to higher crash risk for
the older driver.

5.4. Head on crashes

For head on type of crashes on corridors belonging to Clusters 1
and 2 combined, crashes on dry surface condition were found to be
more severe/ fatal from the environmental and roadway geometric
model. However, the model for driver and vehicle related factors was
developed at a lower confidence level of 70%, hence the results are not
reported here. Dry surface conditions probably indicate fine weather
and more vehicles on the road. Hence improper maneuvers could
result in head on collisions, especially when the highways are
undivided, resulting in severe crashes. In a related study by Yan,
Harb, and Radwan (2008) it is shown that slippery road conditions
lead to a higher probability of crash avoidance maneuvers as drivers
will drive more cautiously during unfavorable conditions. Hence, the
results in this study indicate that drivers could be less attentive when
driving in good weather and road conditions. In Clusters 3 and 4,
alcohol/drug use is the primary reason for severe head on crashes.
Table 4 (a)
Significant factors for Angle/ turning movement crashes.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Environmental
and Roadway
Geometric
Factors

Paved shoulders
and k factorN9.85;
Paved shoulders
and k factorb9.85
and restrictive
median

Posted speed
limitN45 mph;
posted speed
limitb45 mph
and k factorN9.85

Posted speed
limitN50 mph

No
significant
results

Driver and
Vehicle
Related
Factors

Alcohol/ drug use Non-use of safety
equipment and
alcohol/ drug use

Alcohol/ drug
use

No
significant
results
5.5. Sideswipe crashes

In sideswipe crashes, restrictive medians are more threatening on
shorter corridors (Cluster 1) as shown by the environmental and
roadway geometric model. While on longer corridors (Cluster 3),
straight ahead movement is crucial as observed from the driver and
vehicle related factors’ model. For all other types of movements,
severe sideswipe crashes occur when slow moving vehicle type and
light trucks are involved. Research by Anderson (2008) indicates that
the increase in the light truck traffic increases the number of fatalities
on the road. In the same work it was indicated that up to 80% of the
increased deaths can be assigned to occupants in other vehicles and
pedestrians. For severe/fatal sideswipe crashes involving slowmoving
vehicles, turning movements along with changing lanes are the
significant parameters on Cluster 3 corridors. The more the lane
changing maneuvers, the higher the probability of crash severity as
many of the maneuvers will be risky.

5.6. Single vehicle crashes

For crashes involving single vehicles, higher friction factor leads to
increased severity in crashes on shorter length corridors (Cluster 1
and 2 combined) according to the environmental and roadway
geometric factors’ model. On the other hand, the driver and vehicle
related factors’ model for the same corridors indicate straight vehicle
movement related crashes are found to be more severe. For the single
vehicle type of crashes occurring on Cluster 3 corridors that are
related to segments or access points, the crashes tend to be more
severe at stretches where the posted speed limits are 45 mph or
greater. The driver and vehicle related factors’ model shows that
failure to use safety equipment in slow moving vehicles also leads to
severe injuries in crashes. In Cluster 4 the crashes are more at risk to
be severe when the posted speed limit is greater than 50 mph. The
driver and vehicle related factors’ model for this cluster indicate that
slow moving vehicles (e.g., cycles, mopeds) tend to be involved in
severe crashes. This could be explained by the fact that on corridors
with 50 mph posted speed, slow moving vehicles pose a risk as they
will create speed variance on the roadways. Collisions with slow
vehicles would likely be severe.
Table 4 (c)
Significant factors for Head-on crashes.

Clusters 1 and 2 Cluster 3 Cluster 4

Environmental and Roadway
Geometric Factors

Dry surface
condition

No significant
results

No significant
results

Driver and Vehicle Related
Factors

No significant
results

Alcohol/ drug
use

Alcohol/ drug
use



Table 4 (d)
Significant factors for Sideswipe crashes.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Environmental
and Roadway
Geometric
Factors

Restrictive
medians

No
significant
results

No significant results No
significant
results

Driver and
Vehicle
Related
Factors

No
significant
results

No
significant
results

Straight ahead movement of
the vehicle; turning
movements along with
changing lanes and slow
moving vehicles

No
significant
results
5.7. Results summary

The results discussed in the preceding subsections are summarized
in Tables 4a 4e. The variables in the cell represent those that increase
severity along with the range or categories. The blank cells indicate
that the results could not be developed with the 90% confidence level.
These tables will help the reader to have a comparative understanding
of the variables entering a particular tree model and how they affect
safety. Tabulating the results helps to better understand the results;
particularly in this study where the results are brought together and
compared across crash types and corridor clusters.

6. Conclusions

The application of conditional inference trees and forests leads to the
identification of an unbiased set of variables significantly related with
severity. The advantage of the new algorithm of tree/forest develop
ment over the traditional CART tree/forest is that it prevents the
uninformative variables from being identified as significant just by the
virtue of having a higher number of categories or being continuous in
nature. The novel way of separating the split criteria from the variable
importance selection while developing a tree is what makes the
conditional inference trees unique. The chi square test is used to
determine the strength of association with the target variable, in the
present application it is the binary severity variable. Once a variable is
selected at a particular tree level for split, the split can then be decided
based on any criteria, including those used in the CART algorithm. The
conditional inference forests on the other hand calculates individual
variable importance of each variable for every tree by first breaking the
association with permutation and then testing the tree with out of bag
estimates. In the forests, the variable importance is based on the result
from multiple trees, thus avoiding the instability of individual trees.

Among the results from the analysis, alcohol/ drug use is asso
ciated with increased severity of crashes irrespective of the length of
the corridors or the type of crashes. Since the drivers are less likely to
be in control, it invariably leads to severe crashes. Failure to use safety
equipment has lead to increased severity of single vehicle as well as
angle/turning movement related crashes. In this regard, conclusions
drawn by Abdel Aty and As Saidi (2000), by analyzing the zip codes of
the offenders for better targeting the education programs, may be of
renewed interest. Older at fault drivers are found to be more at risk of
getting involved in a severe crash, especially in a rear end collision on
Table 4 (e)
Significant factors for Single vehicle crashes.

Clusters 1 and 2 Cluster 3 Cluster 4

Environmental
and Roadway
Geometric
Factors

Skid resistance
N38

Crashes related to segments and/
or access points and posted speed
limitN45 mph

Posted
speed limit
N50 mph

Driver and Vehicle
Related Factors

Straight ahead
movement of
the vehicle

Non-use of safety equipment and
slow moving vehicles

slow
moving
vehicles
longer corridors. On similar corridors, a crash is more likely to have a
severe injury where there is a person in the vulnerable age group
(more than 55 years or less than 3 years).

Slow moving vehicles like cycles and mopeds have been observed
to be involved in severe injury crashes. Many of these severe crashes
occur at signalized intersections. It indicates that the designs of the
intersections need to improve with respect to the slow moving
vehicle and possibly even pedestrians. For shorter length corridors,
higher k factor is a significant parameter for increased severity
crashes. Higher k factor essentially means that the corridor is
designed for handling higher volume during peak hour. It in turn
has the potential not only to reduce rear end crashes during the peak
hour (due to improved congestion situation), but also to increase
speeds due to better design during off peak periods. Since rear end
crashes tend to be less severe, higher k factor leads to increased
likelihood of severe crashes.

On longer corridors, like those in Cluster 3, severity of rear end
crashes increases when the posted speed limit is greater than 50 mph.
Lowering the posted speed limit may not be the best strategy from an
operations point of view, but it may lead to reduction in severity of
crashes. Lower ADT also leads to severe rear end crashes on Cluster 3
corridors, especially for rear end crashes. Severe/fatal crashes involving
single vehicles are more likely to be associated with access points on
longer corridors. Reducing the number of access points may not always
be feasible; however, design changes such as improvedmergingmay be
adopted for these issues.

Corridors of smaller lengths (generally less than 5 miles) have
been observed to have problems of increased severity if crashes occur
on corridors with high skid resistance values. Shorter corridors also
have problems when the posted speed limit is greater than 45 mph.
Since most of these small urban/ suburban corridors are located
between longer stretches of rural corridors, they have lower speed
limits compared to adjacent sections. However, since the congestion is
not high on the rural sections, some drivers will tend to speed and
thus create a larger variation in prevailing speeds. This variation could
lead to more severe crashes on shorter length corridors. Restrictive
median openings on shorter corridors have also been found to be
problematic. The variable indicating the presence of vulnerable age
group also came out significant on shorter corridors rather than on
longer corridors. On longer length (greater than 5 miles) corridors,
speed limits of greater than 50mph are a cause of concern. Non use of
safety equipment is also more pronounced in contributing toward
severity on longer corridors. In a recent paper by Eluru and Bhat
(2007) the question of the endogenous relationship between seat belt
use and injury severity is raised. There is a possibility of intrinsically
unsafe drivers not wearing the seat belt and being the ones to be likely
involved in high injury severity crashes because of their unsafe
driving habits. In the present study, however, the researchers observe
the overall safety equipment in use in the vehicle. Results also show
that the failure to use the safety belt in single vehicle crashes and
crashes involving a slow vehicle lead to higher severity crashes. Thus
the present study is not only in line with concurrent research but also
goes a step further in identifying the type of crashes that are more
likely to be affected by the underlying endogenous relationship.

Due to these observed differences, the decision to cluster the
corridors has been justified. The subtle differences are highlighted
when the groups are logically made. The clusters that were originally
made based on the length actually shed light on the factors and a lot of
new significant variables come into the picture.

The results from the forest and the trees are intuitive and their
associationwith severitymaybe explained. Certain knownresults about
severity of crashes have been confirmed,while somenew information is
discovered about others. Alcohol/ drug use along with higher speed
limits tend to result in more severe/fatal crashes. The new variable
“element,” which uses information from site location, signal type in
formation, and traffic control was also insightful in identifying locations



that are more critical from the severity aspect. Drivers of vehicles with
passengers in thevulnerable age group rangesmust alsobemore careful
while driving, as the physical fragility of these subjects tends to make
the injuries more severe. The authors also used the safety information
for all passengers seated in the car. That particular variable also was
significantly associated with severity of crashes. Hence, it is critical that
internal safety should be a concern for the law enforcement agencies if
they are intended to reduce the occurrences of severe/fatal crashes on
the arterials of Florida.
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