
Brovine: Mammary Gland Gene Database

Therin C. Irwin
tcirwin@calpoly.edu

Cal Poly, San Luis Obispo

June 21, 2013

Abstract

Brovine is used by the Animal Science department at Cal Poly to
catalog and analyze genetic information. Brovine, or the Mammary
Gland Gene Database, is a system used to store and categorize genetic
information which is gathered through experimentation and through
TESS, a web application that lets users search through catalogs of
similar genetic information. This document describes the purpose,
use, and maintenance of Brovine.

Contents

1 Biological Overview 1
1.1 How Experiments are Performed 1

2 Using Brovine 4
2.1 Navigating Through Data . 4
2.2 View Features . 4
2.3 Editing and Adding Data . 5
2.4 Account Management . 5

2.4.1 Privilege Types . 5
2.4.2 Adding and Removing User Accounts 5
2.4.3 Changing your Password or Display Name 6

2.5 View Descriptions . 6
2.5.1 Experiment Hierarchy 6
2.5.2 Transcription Factor Search 6
2.5.3 Transcription Factor Subtract 8
2.5.4 Gene Summary . 8
2.5.5 Transcription Factor Summary 11
2.5.6 Gene Search . 11
2.5.7 Transcription Factor Popularity 13
2.5.8 Frequent Transcription Factors 13

3 Technical Overview 14
3.1 Server-Side . 15
3.2 Client-Side . 15
3.3 Cache Control . 16
3.4 Javascript Architecture . 16
3.5 New Javascript Architecture . 17
3.6 Server Configuration . 18
3.7 Apache Configuration . 18
3.8 MySQL Configuration . 18
3.9 FAQ . 18

4 Frequent Itemset Generator 19
4.1 Use . 20
4.2 Customizability . 20
4.3 API Reference . 20
4.4 Available Algorithms . 21

5 Development Environment Setup 21
5.1 Prerequisites . 22
5.2 Install Brovine . 22
5.3 Install Frequent Itemset Generator 23

i

6 SQL Schema 24
6.1 Table Descriptions . 24
6.2 ER Diagram . 24
6.3 Table Schemas . 26

6.3.1 Comparison Types . 26
6.3.2 Genes . 26
6.3.3 Factor Matches . 26
6.3.4 Experiments . 27
6.3.5 Regulatory Sequences . 27
6.3.6 Promoter Sequences . 27
6.3.7 Study Pages . 27
6.3.8 Users . 27

6.4 Code Listing . 28

7 Glossary 32

ii

Acknowledgements

I would like to thank Dr. Alexander Dekhtyar for advising this project, Dr.
Dan Peterson for making the project possible, and Sterling Hirsh, Trevor
DeVore, and Ryan Schroeder for working on the first iteration of Brovine.

iii

1 Biological Overview

To give a brief overview of the scope of the problem the researchers are
attempting to solve, we first discuss the biology of the processes they are
studying. Physiological function in multicellular organisms requires differ-
ent cells to have different specific functions and characteristics, and the
attainment of these specialized characteristics is called differentiation. Dif-
ferentiation is achieved in part when proteins, called “transcription factors”
interact with regions of DNA called “promoter regions.” When transcription
factors bind to the promoter regions of DNA, the transcription of the gene
is “activated,” which means that the gene is expressed in the cell. Differ-
entiation involves a myriad of regulatory events that lead to structural and
functional organization of the genome to allow expression and regulation of
the appropriate set of proteins for the specialized functions of that cell type.

Proteins are made up of amino acids, whose order is determined by
a sequence of nucleotides in DNA. The proteins that characterize a cell’s
phenotype are strings of amino acids bound together whose order is coded by
the sequence of nucleotides in a messenger RNA (mRNA) that is transcribed
from DNA in the nucleus. The process of transcription (production of the
mRNA from DNA sequence) of these protein coding genes is regulated in
part by the interaction of regulatory proteins called transcription factors
(TF) with specific sequences (called regulatory elements) within a region of
DNA adjacent to the protein coding gene called the promoter (Figure 1).

Understanding the regulatory events that lead to differentiation of differ-
ent cell types is a critical step in understanding normal biological function
as well as understanding what errors underlie dysfunctions such as cancer.
The researchers have been studying the differentiation of mammary epithe-
lial cells by identifying a subset of the proteins whose abundance changes
during the transition from a mammary precursor cell to a functional mam-
mary cell. The promoter region of each of the genes coding for these proteins
has been analyzed to identify many potential regulatory elements (hundreds)
that may have contributed to their differential expression. It is likely that
few, if any, of these elements were actually involved, making critical analysis
of the probability of their involvement very important. The sheer number of
potential elements makes analysis “by hand” impractical, and is the reason
for constructing Brovine.

1.1 How Experiments are Performed

Dr. Peterson’s approach is to study what changes occur in mammary cells
from different sources during the transformation from one state to another
state (e.g. pregnancy to lactation in mice, or undifferentiated to differen-
tiated in the MAC-T bovine cell line). This is done by comparing global
protein expression in the two states and identifying a subset of the proteins

1

Figure 1: Schematic showing the promoter region of a gene with three reg-
ulatory elements (RE) each bound by their respective transcription factor
(TF) contributing to the activation of transcription of the gene.

2

Figure 2: Several types of differentiation (cell transforming from one type
to another) that will be used.

that change in abundance with the transformation from one state to the
other. The data that we will begin with is from a cell line (MAC-T) from
one species (cow, or “Bovine”). For each species, we will also be including
more than one comparison based on the different sources of cells we are
comparing. For example, within the Murine species, we will be comparing
pregnant to lactating, nonpregnant to pregnant, and undifferentiated to dif-
ferentiated HC11 cell line (3 separate comparisons). In figure 2, each arrow
corresponds to a comparison. From each comparison, we generate a list of
proteins that change in abundance as well as their direction and magnitude
of change (though we are not including magnitude in our database). These
proteins determine the genes present in Brovine - they are the genes the
researchers are interested in studying.

The gene promoters: Remember that each protein is the result of a
gene being “expressed”, and that the gene expression is regulated in part
by sequences in the gene promoter interacting with activating proteins or
“transcription factors”. Once the list of proteins that changed in abundance
(up or down) in our comparison is obtained, the researchers search for the
gene for each protein in a genome database and find its promoter sequence.
The researchers then copy 2000 bases of that promoter sequence for analysis
of the sequence to identify potential regulatory sequence elements within
the 2000 base sequence.

Regulatory sequence search (TESS): The researchers then use an online
program called Transcription Element Search System (TESS) that analyzes
their input DNA sequence (the 2000 base promoter) and identifies short
sequences that have been known to interact with a transcription factor to
activate gene expression. The results of this search can be downloaded in a
Microsoft Excel for each gene promoter that is used as a query. These Excel
documents are the documents that are inserted into Brovine for analysis.
To learn more about these Excel files, view the PDF [4].

3

2 Using Brovine

Brovine uses a log-in system to keep genetic data private and to keep ma-
licious users from editing data. To start using Brovine, you need to get
an account. Currently, the registration for Brovine is closed, so an account
must be created for you by an administrator. To get an account, contact
the person in charge of Brovine.

After you get an account and log in, you will be presented with the
Experiment Hierarchy page, as well as a navigation bar at the top of the
page. Click the Navigation link to see a list of views available. Each view is
explained in section 2.5.

Clicking on your display name in the navigation bar will display a menu
of options that affect your user account. If you have sufficient access to
Brovine, the Upload link will also appear in this menu. The settings link
on this menu allows you to change your password or your display name.
Finally, the log out link is in this menu.

2.1 Navigating Through Data

Most pages contain many tables where genetic data is displayed. These ta-
bles can be clicked with the mouse to select rows of data that you would like
to see more information about. For example, on the Experiment Hierarchy
page if you select Bovine in the Species table, the Comparison table next to
it will be populated only with comparison types involving Bovine species.
Additionally, some tables in Brovine allow the user to select multiple table
rows at the same time. In this case, hold down Ctrl (Windows) or Command
(Mac) to select multiple rows of data.

In general, the flow of each page is from left to right, then top to bottom.
This means that to use each view, you must start with the table in the top-
left corner and work right and then down to get more specific genetic data.

2.2 View Features

Quality Filter: Some pages, like the Transcription Factor Search page,
contain some extra search options for regulatory sequences. These search
options are labeled Regulatory Sequence Filter Options, and they let you
search using minimum and maximum values for quality filters (La, La/, Lq,
Ld), position of factor in promoter sequence, and sense.

Table Search: Each table in Brovine is equipped with a search box that
searches through all of the data in the table, displaying only rows which
contain each word you search for. The search box is located above each
table.

Regulation Filter: Some pages, such as the Gene Summary page, let you

4

filter genes by regulation type. This box will appear above the table that it
filters, next to a “Filter by Regulation” label.

Export Buttons: Tables that have an “Export” button below them can
be exported as a CSV file.

2.3 Editing and Adding Data

To edit or hide data in Brovine, see the Experiment Hierarchy page.

Adding Data to Brovine is accomplished with the Upload button under
your user menu (click your display name in the navigation bar to access
this menu). Once on the Upload Data page, click the “Select Files” link to
choose files to upload into Brovine. To select multiple files, hold down the
Shift key and select another file after selecting the first one. Currently, only
CSV spreadsheets from the TESS system are supported. Be sure to include
all three TESS files related to each gene, or Brovine will not upload any
data about that gene.

2.4 Account Management

Each user of Brovine must have an account in order to access any views
or to edit or hide any data. There are several different types of access, or
privileges, which may or may not be granted to a user. Visitors to Brovine
can only view the Help pages.

2.4.1 Privilege Types

Admin: This type of user can browse, edit, and hide data in Brovine. In
the future, this type of account will be able to add and remove other user
accounts.

Modify: This type of user can browse the data in Brovine and can also
hide or edit data using the Experiment Hierarchy page. They can also add
new data using the Upload page.

Read: This type of user can do nothing except browse the data available
in Brovine.

2.4.2 Adding and Removing User Accounts

Currently, user accounts can only be added or removed by Brovine’s software
developer.

5

2.4.3 Changing your Password or Display Name

After logging in, a user can change his or her password or display name
using the Settings page. This page is linked in the menu under your display
name.

2.5 View Descriptions

2.5.1 Experiment Hierarchy

See figure 3. How to use this view:

I. Select a Species from 1. All comparisons which are about the selected
species will populate the next table.

II. Select a Comparison from 2. All experiments which use the selected
comparison will be present in the next table.

III. Select an Experiment from 3. All genes in the selected experiment will
be present in the next table.

IV. Select a Gene from 4 All of the gene’s transcription factors will appear
in the next table.

V. Select a Transcription Factor from 5. All regulatory sequences which
match the transcription factor selected will appear in the next table.

VI. Select a Regulatory Sequence from 6. The Sequence Info section will
appear, with all information about the sequence you’ve selected, as
well as similar sequences and matching factors in 7 and 8.

There is a regulation filter for 4 and a quality filter for 6.

On this page, comparisons, experiments, genes, and regulatory sequences
can be edited using the “Edit” and “Hide” buttons. Additionally, a user
can choose to see previously hidden rows (“Show Hidden” above 1) or color
edited and hidden rows differently than the rest (“Color Edited and Hid-
den”). Edited rows will show up yellow and hidden rows will show up red.

2.5.2 Transcription Factor Search

See figure 4. How to use this view:

I. Select one or more Species from 1 . All comparisons for any selected
species will populate the next table.

II. Select one or more Comparisons from 2. All experiments which use
any of the selected comparisons will be present in the next table.

6

Figure 3: The experiment hierarchy page.

7

III. Select one or more Experiments from 3. All genes in any of the selected
experiments will be present in the next table.

IV. Select one or more Genes from 4 All transcription factors present in
any gene selected will appear in the next table.

V. Select a Transcription Factor from 5. All regulatory sequences which
match the transcription factor selected will appear in the next table.

VI. Select a Regulatory Sequence from 6. The Sequence Info section will
appear, with all information about the sequence you’ve selected, as
well as similar sequences and matching factors in 7 and 8.

2.5.3 Transcription Factor Subtract

Finds transcription factors that are in any gene selected from 4 and which are
not in any gene selected in 5. For example, imagine gene A has transcription
factors M, N, and O, while gene B has transcription factors O, P, and Q. If
A was selected in 4 and B selected in 5, then 6 would show M and N only.

See figure 5. How to use this view:

I. Select one or more Species from 1 . All comparisons for any selected
species will populate the next table.

II. Select one or more Comparisons from 2. All experiments which use
any of the selected comparisons will be present in the next table.

III. Select one or more Experiments from 3. All genes in any of the selected
experiments will be present in the next table.

IV. Select one or more Genes from 4 . The transcription factors present in
these genes will be included in 6.

V. Select one or more Genes from 5 . The transcription factors present in
these genes will be excluded, by name, from 6.

2.5.4 Gene Summary

See figure 6. How to use this view:

I. Select a Gene from 1.

II. All experiments with the Gene that was selected will appear in 2.

8

Figure 4: The transcription factor search page.

9

Figure 5: The transcription factor subtract page.

Figure 6: The gene summary page.

10

Figure 7: The transcription factor summary page.

2.5.5 Transcription Factor Summary

See figure 7. How to use this view:

I. Select a Transcription Factor from 1.

II. All genes with the Transcription Factor that was selected will appear
in 2.

2.5.6 Gene Search

See figure 8. How to use this view:

I. Select one or more Species from 1 . All comparisons for any selected
species will populate the next table.

II. Select one or more Comparisons from 2. All experiments which use
any of the selected comparisons will be present in the next table.

III. Select one or more Experiments from 3. All genes in any of the selected
experiments will be present in the next table.

IV. Select one or more Transcription Factors from 4. Genes which have any
of the selected transcription factors will be shown in the next table.

V. Select one or more Genes from 5 . Experiments which contain all of
the genes selected will be shown in 6 .

11

Figure 8: The gene search page.

12

Figure 9: The transcription factor popularity page.

2.5.7 Transcription Factor Popularity

See figure 9. How to use this view:

I. Select a Species from 1. All comparisons which are about the selected
species will populate the next table.

II. Select a Comparison from 2. All experiments which use the selected
comparison will be present in the next table.

III. Select an Experiment from 3. All genes in the selected experiment will
be present in the next table.

IV. Select a Transcription Factor from 4. All occurrences of the transcrip-
tion factor selected, from any gene in the experiment selected, will be
displayed in 5.

2.5.8 Frequent Transcription Factors

This view allows users of Brovine to discover the most commonly occur-
ring transcription factors or sets of transcription factors for all genes in the

13

Figure 10: The frequent transcription factor search page.

database. You can select the minimum and maximum percentage of genes
a set can show up in, to limit the results of the search. For example, the
factors AP-2alphaA and AP-2alphaB occur together in approximately 86%
of all genes currently in the database - so if you choose 85% as the minimum
and 92% as the maximum, this set of transcription factors would appear.
Upon reaching this view, 1 will have a loading spinner, indicating that the
data is being loaded from Brovine.

Note: Select the Minimum and Maximum percentages wisely. Choosing
too wide of a range, or selecting maximum greater than 96%, may not yield
any results. Try to choose a range close to the default (85 - 95%).

See figure 10. How to use this view:

I. If 1 is loading data, wait until data is loaded. If it has been loading for
a long time, try refreshing the page.

II. Select minimum and maximum percentage above 1, then click Go.

III. All sets of transcription factors which are present in a percentage of
genes within the range will be displayed in 1.

3 Technical Overview

The Brovine gene database is built upon the CodeIgniter framework on
the backend, an MVC framework written in PHP. This runs on an Apache
HTTP server, and it uses a MySQL database to store all of the genetic data.
On the front end, the application is entirely in Javascript, using several open
source projects, including JQuery, DataTables, and TokenInput.

Each page, which represents a view which the customers find useful,
contains tables that display the genetic data to the user, as well as let the
user drill down to more specific data. For example, on each page there are
tables which show the species and experiments the customers have uploaded

14

to the application. Customers can select one or more species, and Brovine
will filter the experiment table to show only experiments with the selected
species.

The source code for Brovine and the Frequent Itemset Generator are
available on GitHub under the MIT License. [3][1]

3.1 Server-Side

CodeIgniter is a powerful MVC framework that Brovine uses. Almost all of
the data transfer is done using AJAX, which gives the user the effect of a
seamless desktop application with few complete page reloads.

Brovine‘s MySQL data store is a highly joined set of tables that represent
the complicated client data. Most queries require a join of four or five tables.
Details about the database implementation are explained on the SQL schema
help page.

Genetic data, which is represented by a series of CSV files, is uploaded
using the Uploadify plugin. Uploadify is a Flash plugin that provides safe,
seamless upload of data files to a server with minimal effort required of the
user. It also lets the user track the progress of the file uploads, upload multi-
ple files at one time, and cancel any uploads if necessary. Brovine stores tem-
porary files from Uploadify into the /brovine/genedata-uploads folder
while the system converts the files into data usable by Brovine.

The data itself is received from TESS as a set of Excel files. There is a
set of example files downloadable as a zip file. Each gene that the researcher
analyzes has its own set of 3 files which must all be uploaded to Brovine if
the gene is to be committed into the system:

• Job parameters: contains information about the experiment con-
ducted, and the gene; populates the experiment, comparison type, and
gene tables.

• Sequences: contains information about the promoter sequence for
the gene; populates the promoter sequence table

• HITS1: contains information about the regulatory elements discov-
ered in prior research; populates the regulatory sequences, factor matches,
and study pages tables.

3.2 Client-Side

The following libraries are used to enhance the user experience:

• JQuery1: a powerful Javascript client library

• DataTables2: a JQuery plugin that provides extensive table support

1http://jquery.com
2http://datatables.net

15

http://jquery.com
http://datatables.net

• TokenInput3: a small but powerful JQuery plugin which enhances
text boxes. The plugin searches through a set of pre-defined strings
given a user input, which the user can then select.

• Bootstrap4: a front-end HTML5 framework that makes web design
simpler by offering basic styles for tables, lists, navigation, layout, and
more.

Each user view is a set of tables that allow the user to drill down to
specific data points they want to see. For example, on the Transcription
Factor Summary page, the user is interested in finding all genes in which
a specific transcription factor occurs. So the first table lets the user select
a transcription factor by name, and the second table shows all genes which
have the selected factor.

Each table is populated on the back end by a method in the ajax con-
troller, which is located at /brovine/application/controllers/ajax.php .

The DataTables library handles searching (via the search box above each
table), sorting, and filtering on the client side.

There are other Brovine features worth mentioning. The Filter by Regu-
lation box is an example of a TokenInput text box. The purpose of this text
box is to allow users to filter their results by regulation. As the user starts
typing, the TokenInput library sends whatever prefix they have typed to
the getRegHints method on the ajax controller, which attempts to match
their prefix term with any of the regulation types in the database.

3.3 Cache Control

Another feature of Brovine is the cache control mechanism. All static files
(JS and CSS) have a timestamp appended to their name using the Apache
mod rewrite module. The timestamp is the last modify time on the file,
so each time a static file is modified, the browser will think it is a brand
new file and download the new version. This eliminates issues where cached
versions of static files are used by the client’s browser.

3.4 Javascript Architecture

Each view has its own javascript file - for example, the ExperimentHierarchy
javascript code is held inside experimentHierarchy.js. All Javascript code is
located in the /brovine/js folder.

Here is a list of views and their corresponding Javascript code:

• Experiment Hierarchy: experimentHierarchy.js

3http://loopj.com/jquery-tokeninput
4http://twitter.github.io/bootstrap

16

http://loopj.com/jquery-tokeninput
http://twitter.github.io/bootstrap

• Transcription Factor Search: tfSearch.js

• Transcription Factor Subtract: See the next section

• Gene Summary: geneSummary.js

• Transcription Factor Summary: tfSummary.js

• Gene Search: geneSearch.js

• Transcription Factor Popularity: tfPop.js

• Frequent Transcription Factors: experimentHierarchy.js

In addition to each view’s javascript code, there are helper scripts. The
file common.js holds methods useful for all of the views. It contains the
updateSelectList and updateMultiSelectList methods, which set up event
handlers and handle the AJAX calls for each table.

The file scripture.js is responsible for the local download function-
ality which is present on some Brovine views - the Transcription Factor Sub-
tract page, for example. Instead of generating a file on the server and sending
it back to the user, this Javascript code generates a data:octet-stream

link which lets the user extract the data without making another AJAX call.
The file upload.js talks to the Uploadify flash software to notify the

user about the status of file uploads on the Upload page.

3.5 New Javascript Architecture

The creators of Brovine recognized that the current Javascript code is a huge
mess, but under the weight of deadlines found no time to change the design.
However, a significant effort has been made to create a system that is more
reasonable. This effort is located in /brovine/js/commonjs . Currently,
the Transcription Factor Subtract page is the only view to use the new
Javascript architecture.

This new architecture uses CommonJS Modules and browserbuild to cre-
ate a modular Javascript system that greatly increases code reuse and main-
tainability within Brovine. Javascript files that are shared among pages be-
long in the lib folder, while view-specific files belong in the init-pages

folder. Each Brovine view still has its own Javascript file, but the file size
per page is much smaller. Finally, Browserbuild5 lets us concatenate and
minify all necessary files into one unit, which reduces load time for the user.

5https://github.com/LearnBoost/browserbuild

17

https://github.com/LearnBoost/browserbuild

3.6 Server Configuration

Brovine is currently hosted on a VM managed by the Cal Poly Computer
Science department. Check with the CSL sysadmins to get access to the
box via the shell. Its web address is http://brovine.csc.calpoly.edu. On the
VM is the usual LAMP stack plus Java:

• MySQL.

• PHP.

• Apache.

• phpMyAdmin. Unnecessary; simply for database manipulation.

• Java Runtime Client (JRE).

The machine hosting Brovine needs to have a Java runtime client in-
stalled to run the Frequent Itemset Generator - see section 4. The generator
runs as a standalone Java client that calculates the most common transcrip-
tion factors among the genes selected. The data generated is displayed on
the Frequent Transcription Factors page.

On the box, the server root is located at /var/www/html .

3.7 Apache Configuration

Brovine and CodeIgniter use the mod rewrite package to edit incoming
URLs. This enables CodeIgniter to shorten the final URL that the user sees
and uses to access the service. It also enables Brovine to serve versioned
CSS and JS documents, which stops browsers from using outdated files (see
section 3.3).

3.8 MySQL Configuration

The MySQL configuration for Brovine is simple - just create the database
using SQL schema and import the database backup. The username pass-
word, server name, and port that are used for Brovine are stored in the
passwd.php file, which is not uploaded to the repository. There is an
example of the file in the repository’s README.

3.9 FAQ

What are we looking to get out of this project? - We’re really looking
for the ability of something to compare “the list of stuff” from one gene to
another (how strong of a match)

18

For our purposes, what is a gene? - A gene is the 2000 base pairs that
we get, for our purposes (even though this is not actually the case, the 2000
base pairs are the promoter region in front of the gene)

Could a factor have the same Beg, Sns, Len and a different Reg-
ulatory Sequence? - No

Can there be a different beg/len for the opposite sns that would
still match? - No

What are L factors in the Factor Match table used for? - These
are different measures of the probability of this seq actually interacting with
this factor.

4 Frequent Itemset Generator

The frequent itemset generator is a Java service that finds statistically sig-
nificant sets of frequent items in large datasets. For example, let’s say we
have a database of supermarket transactions, or baskets, each containing
a number of grocery items. If we want to find the frequent grocery items
in this database, we’re finding the grocery items which are most frequently
purchased together: the “frequent itemsets.”

Generally we want the sets of items to occur in at least m transactions.
We’ll call this the minimum support number. The minimum support num-
ber allows us to specify how frequent an itemset must be to be included
in the final output - obviously, a set of items that does not occur in any
transactions, or even a small number of transactions, is insignificant to the
user of the system. The minimum support generally must be tuned for each
specific dataset to determine what will give the user plenty of data, but not
so much data that the output becomes excessive.

To this end, we also include the maximum support number, which caps
the number of possible transactions any set in the final output can have.
Imagine that at a specific supermarket, nearly every customer buys milk
when they buy anything else. Then, it is not very significant to include
milk in the final output, since the item is so commonly purchased. Thus
we can use the maximum support to filter out items like this. As with the
min support, this number will also vary wildly between datasets. If you end
up using the max support metric (less than 100% of course) for a dataset,
this indicates that you should probably use the FPGrowth algorithm, as
this algorithm runs much quicker on datasets with a large number of similar
items between transactions.

19

4.1 Use

This service was built to find the genetic transcription factors (proteins)
which most frequently occur together in one gene. However, you can add
your own dataset if you want to use it for a different purpose. To edit and
recompile the Frequent Itemset Generator, you must have Groovy6 installed.
Use make to recompile.

4.2 Customizability

• class BasketIterator : Implement BasketIterator to create your
own dataset.

• class ItemsetGenerator : Implement ItemsetGenerator to create
your own. algorithm.

• file lib/passwd.groovy : Password file - holds database configura-
tion information.

4.3 API Reference

Get request: get [minSup:decimal:0-1] [maxSup:decimal:0-1]

Returns a list of the itemsets between the min and max support values.
time is always 0 on FAILURE. maxSup must be less than minSup, obviously.
Both are decimal values indicating the percent support an itemset must have
to be included.

Returns:

1 {
’ res ’ : ”(SUCCESS | FAILURE) ” : s t r i ng ,
’ item−cnt ’ : ” i n t e g e r i n d i c a t i n g the number o f unique items⤦

Ç ” : in t ege r ,
’ reason ’ : ”Reason f o r f a i l u r e i f FAILURE, r eques t type i f ⤦

Ç SUCCESS . ” : s t r i ng ,
’ message ’ : ”Explanation o f f a i l u r e i f f ’ res ’ == ’FAILURE⤦

Ç ’ . ” : s t r i ng ,
6 ’ time ’ : ” i n t e g e r i nd i c a t i n g the time i t took to f i nd ⤦

Ç i t emse t s ” : i n t ege r ,
’ data ’ : ”map with the i t emse t s and t h e i r f requency counts ; ⤦

Ç ex : [[one , two] : 1 3 8] ” :map
}

Set request: set [BasketIterator] [ItemsetGenerator]

Changes the algorithm and the dataset used when computing frequent item
sets.

6http://groovy.codehaus.org/

20

http://groovy.codehaus.org/

If the request is successful, res will be set to SUCCESS and reason will
be “SET”. Any subsequent queries by client will use the BasketIterator and
ItemsetGenerator specified. Both Set values must be fully-qualified Java
class names.

Returns:

{
2 ’ res ’ : ”(SUCCESS | FAILURE) ” : s t r i ng ,

’ reason ’ : ”Reason f o r f a i l u r e i f FAILURE, r eques t type i f ⤦
Ç SUCCESS . ” : s t r i ng ,

’ message ’ : ”Explanation o f f a i l u r e i f f ’ res ’ == ’FAILURE⤦
Ç ’ . ” : s t r i ng ,

’ time ’ : 0 ,
}

4.4 Available Algorithms

Apriori algorithm: Iterates through every transaction (supermarket bas-
ket) and candidate to find the most frequent sets of items. A candidate
is any one subset of items in the entire set of items (in our example, every
item in the supermarket). So we start with candidates with one item (Bread,
milk, cheese), then we look for baskets with two items ([Bread, milk], [milk,
cheese], [cheese, bread]), and so on until we’ve searched every subset. At
worst case, this algorithm is exponential, as there are 2n subsets for n items.
But the trick is that we drop from consideration all larger subsets containing
an infrequent item. For example, if we know that bread is in m − 1 baskets
(one less than our minimum support) then we know bread is never a fre-
quent item, so we can drop [Bread, milk], [cheese, Bread], and [bread, milk,
cheese] from our consideration. This optimization significantly speeds up
the algorithm for reasonable minimum support values (if you set the mini-
mum support to 0, every item set will be frequent and you’ll have to iterate
through every set).

FPGrowth algorithm: Based on the FPTree data structure [5]. This
algorithm builds a tree representing your dataset. The more items each
transaction has in common, the smaller the tree will be and thus the faster
this algorithm will process all frequent itemsets. See chapter 6 of [5] for an
overview and description of the algorithm.

5 Development Environment Setup

Development on a local machine is required for those who are performing
major changes to the site. Using the VM to test is not acceptable for a live
system, where users could be using the features you’re testing! Follow these
steps to set up Brovine on your local box.

21

5.1 Prerequisites

• A Linux or Mac machine. Windows will probably work, but I haven’t
tried.

• A working LAMP stack. For Mac users, I’ve heard MAMP is a good
solution.

• The Java Runtime Environment (JRE) installed.

5.2 Install Brovine

1. Clone the code for Brovine into your development directory.

g i t c l one https : // github . com/brovine −deve l ope r s /⤦
Ç teambrovine

2. Edit Apache’s httpd.conf to support CodeIgniter’s clean URLs.

You have to enable mod rewrite , which lets you define rules in
.htaccess files that modify incoming request URLs:

LoadModule rewr i te module / usr / l i b /apache2/modules/⤦
Ç mod rewrite . so

3. Start Apache and MySQL. Check that you can reach the log in page of
Brovine. If you can’t, try changing the file attributes and group. Each
folder in Brovine should be in the group which the Apache HTTPD
user is in. This is generally www :

chown −R : www /brov ine

All folders should have rwx access for group; files at least r:

chmod −R g+rwx / brov ine

4. Create a database named brovine in MySQL.

5. Make sure at least one user has the following privileges to the database:
insert, update, delete, select, index (preferrably not root)

6. Copy the sample passwd.php file from the repository’s README

into the /brovine/application/config directory.

7. Edit the file to match the settings you used in the previous step.

8. Get the SQL schema (section 6.4) and the database backup. [2]

9. Import both files into the brovine database you created earlier.

22

10. Insert a new user into the users table using a SHA1 hash of your
password of choice, username, display name, and privilege set to 20 ,
which gives you administrator access to Brovine.

11. Log in to Brovine and check that all of the required tables are present
and populated (see the SQL schema description for more information).

5.3 Install Frequent Itemset Generator

This standalone service generates data for the Frequent Transcription Fac-
tors page.

1. Clone the frequent itemset generator code. into your development
directory.

g i t c l one https : // github . com/brovine −deve l ope r s / f req −⤦
Ç i temset −gen

2. Start the service: make start

On startup, the service opens port 8100 and waits for messages - see the
API for how to get data or test the service manually.

23

6 SQL Schema

Table and column descriptions and an ER diagram of the database. All
tables have an auto-increment ID field which were omitted from the column
descriptions.

6.1 Table Descriptions

Table Name Used For
comparison types Stores all differentiation types the researchers are

studying. The key is species, celltype, transition.
experiments Stores each experiment that the researcher per-

forms, each of which has a distinct comparison
type and species. The key is a automatically as-
signed experiment id.

genes Stores a gene that the researcher studies, which
can be present in multiple experiments. Keyed by
gene name.

regulatory sequences Stores a sequence of nucleotides that affect the ex-
pression of a specific gene. See the glossary entry
for more details.

factor matches Stores transcription factors that other researchers
have studied. Each transcription factor can be as-
sociated with multiple regulatory sequences, and
each regulatory sequence can match multiple fac-
tor matches.

study pages Stores research paper references that the factor
matches were retrieved from. Not currently used
in the Brovine system.

promoter sequences Stores the sequence of nucleotides which contain
all possible regulatory sequences for a specific
gene.

apriori staging Stores temporary data for the Frequent Itemset
Generator.

users Stores user data for Brovine - usernames, pass-
word hashes, etc.

6.2 ER Diagram

See figure 11 for an entity-relationship diagram of the data modeled with
Brovine, as well as the relationship names and table unique keys.

24

Figure 11: An E-R diagram modeling Brovine’s database. Underlined labels
indicate the unique keys of each table. In MySQL, each table also has a
primary auto-increment key to simplify table joins.

25

6.3 Table Schemas

6.3.1 Comparison Types

Column Name Type Description
species varchar The species that the researcher is studying.

celltype varchar The differentiation (from one cell type to an-
other) that the researcher is studying.

6.3.2 Genes

Column Name Type Description
genename varchar the name of this gene.

chromosome int the chromosome which this gene is on.
start int the start nucleotide of this gene on the chro-

mosome.
end int the end nucleotide of this gene on the chromo-

some.
experimentid int the experiment that this gene was studied on.

geneabbrev varchar the abbreviation of the gene name.
regulation varchar the expression of the gene in the experiment.

6.3.3 Factor Matches

Column Name Type Description
seqid varchar indicates the sequence which this factor

matches.
study varchar the biological study which this factor match

was obtained from (indirectly through TESS).
transfac varchar the name of this factor

la double a factor quality indicator (how reliable the re-
lationship between this factor and its related
sequence are).

la slash double a factor quality indicator.
lq double a factor quality indicator.
lq double a factor quality indicator.
ld double a factor quality indicator.

lpv double a factor quality indicator.
sc double a factor quality indicator.

sm double a factor quality indicator.
spv double a factor quality indicator.
ppv double a factor quality indicator.

26

6.3.4 Experiments

Column Name Type Description
label varchar The experimenter-designated name for

the experiment.
comparisontypeid int Specifies the comparison type and species

that this experiment is performed on.
tessjob varchar The TESS job number assigned to the ex-

periment’s results.
experimenter email varchar Email address of the experimenter who

performed the experiment.

6.3.5 Regulatory Sequences

Column Name Type Description
beginning int start nucleotide on the promoter sequence where

this regulatory sequence begins.
length int number of nucleotides in this regulatory se-

quence.
sense char direction of regulation of this sequence

geneid int gene which this sequence regulates.

6.3.6 Promoter Sequences

Column Name Type Description
geneid int the gene ID of this promoter sequence.

sequence varchar the 2000 base pair nucleic acid sequence that
is the promoter region for this gene.

6.3.7 Study Pages

Column Name Type Description
pageno varchar the page identifier for the study.

seqid int the sequence which this page is referenced in.

6.3.8 Users

Column Name Type Description
username varchar login name for the user.
password varchar the SHA1 hash of the user’s password.

display name varchar when the user is logged in, this name is dis-
played in the navigation bar.

privileges int indicates what privileges the user have. Read
= 0, Write = 10, Administrator = 20. For
more information on privileges, see the ac-
count management page.

27

6.4 Code Listing

Dump of t ab l e a p r i o r i s t a g i n g

DROP TABLE IF EXISTS ‘ a p r i o r i s t a g i n g ‘ ;
4

CREATE TABLE ‘ ap r i o r i s t a g i n g ‘ (
‘ id ‘ i n t (11) NOT NULL AUTO INCREMENT,
‘ geneid ‘ i n t (11) NOT NULL,
‘ t f c a r t ‘ t ex t CHARACTER SET l a t i n 1 NOT NULL,

9 PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=ut f 8 b i n ;

Dump of t ab l e compar i son types
14

DROP TABLE IF EXISTS ‘ comparison types ‘ ;

CREATE TABLE ‘ comparison types ‘ (
‘ comparisontypeid ‘ i n t (11) unsigned NOT NULL AUTO INCREMENT,

19 ‘ sp e c i e s ‘ varchar (64) COLLATE ut f 8 b i n NOT NULL,
‘ c e l l t yp e ‘ varchar (255) COLLATE ut f 8 b i n NOT NULL,
‘ hidden ‘ t i n y i n t (1) NOT NULL,
‘ date ed i t ed ‘ i n t (11) NOT NULL,
PRIMARY KEY (‘ comparisontypeid ‘) ,

24 UNIQUE KEY ‘ spe c i e s ‘ (‘ s p e c i e s ‘ , ‘ c e l l t yp e ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=ut f 8 b i n ;

Dump of t ab l e exper iments
29

DROP TABLE IF EXISTS ‘ experiments ‘ ;

CREATE TABLE ‘ experiments ‘ (
‘ exper imentid ‘ i n t (11) unsigned NOT NULL AUTO INCREMENT,

34 ‘ l abe l ‘ varchar (255) COLLATE ut f 8 b i n NOT NULL,
‘ t e s s j ob ‘ varchar (255) COLLATE ut f 8 b i n NOT NULL,
‘ comparisontypeid ‘ i n t (11) unsigned NOT NULL,
‘ exper imenter emai l ‘ varchar (255) COLLATE ut f 8 b i n NOT NULL,
‘ s to rage t ime ‘ t ex t COLLATE ut f8 b in ,

39 ‘ s e a r c h t r a n s f a c s t r i n g s ‘ t i n y i n t (1) DEFAULT NULL,
‘ s e a r c h my s i t e s t r i n g s ‘ t i n y i n t (1) DEFAULT NULL,
‘ s e l e c t ed ‘ t i n y i n t (1) DEFAULT NULL,
‘ s e a r ch t r an s f a c ma t r i c e s ‘ t i n y i n t (1) DEFAULT NULL,
‘ s earch imd matr i ce s ‘ t i n y i n t (1) DEFAULT NULL,

44 ‘ s e a r c h cb i l ma t r i c e s ‘ t i n y i n t (1) DEFAULT NULL,
‘ s e a r ch j a spa r mat r i c e s ‘ t i n y i n t (1) DEFAULT NULL,
‘ search my weight matr i ces ‘ t i n y i n t (1) DEFAULT NULL,
‘ combine with ‘ t ex t COLLATE ut f8 b in ,
‘ f a c t o r a t t r 1 ‘ t ex t COLLATE ut f8 b in ,

49 ‘matches ‘ t ex t COLLATE ut f8 b in ,
‘ u s e c o r e p o s i t i o n s ‘ t i n y i n t (1) DEFAULT NULL,
‘max mismatch ‘ i n t (11) DEFAULT NULL,
‘ m in l o g l i k e l i h o od ‘ i n t (11) DEFAULT NULL,

28

‘ m in s t r l en ‘ i n t (11) DEFAULT NULL,
54 ‘ min lg ‘ double DEFAULT NULL,

‘ g r oup s e l e c t i on ‘ t ex t COLLATE ut f8 b in ,
‘ max lg ‘ i n t (11) DEFAULT NULL,
‘ min core ‘ double DEFAULT NULL,
‘ min matrix ‘ double DEFAULT NULL,

59 ‘ secondary lg ‘ i n t (11) DEFAULT NULL,
‘ c oun t s i g n i f i c a n c e ‘ double DEFAULT NULL,
‘ pseudocounts ‘ double DEFAULT NULL,
‘ use at ‘ double DEFAULT NULL,
‘ e x p l i c i t a c g t ‘ t ex t COLLATE ut f8 b in ,

64 ‘ handle ambig ‘ t ex t COLLATE ut f8 b in ,
‘ hidden ‘ t i n y i n t (1) NOT NULL,
‘ date ed i t ed ‘ i n t (11) NOT NULL,
PRIMARY KEY (‘ experimentid ‘) ,
UNIQUE KEY ‘ l abe l ‘ (‘ l abe l ‘) ,

69 KEY ‘ comparisontypeid ‘ (‘ comparisontypeid ‘) ,
CONSTRAINT ‘ expe r iment s ib fk 1 ‘ FOREIGN KEY (‘⤦

Ç comparisontypeid ‘) REFERENCES ‘ comparison types ‘ (‘⤦
Ç comparisontypeid ‘)

) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=ut f 8 b i n ;

74 # Dump of t ab l e f ac to r matches

DROP TABLE IF EXISTS ‘ factor matches ‘ ;

CREATE TABLE ‘ factor matches ‘ (
79 ‘matchid ‘ i n t (11) unsigned NOT NULL AUTO INCREMENT,

‘ seq id ‘ i n t (11) unsigned NOT NULL,
‘ study ‘ varchar (255) COLLATE ut f 8 b i n NOT NULL,
‘ t rans f ac ‘ varchar (32) COLLATE ut f 8 b i n NOT NULL,
‘ la ‘ double NOT NULL,

84 ‘ l a s l a s h ‘ double NOT NULL,
‘ lq ‘ double NOT NULL,
‘ ld ‘ double NOT NULL,
‘ lpv ‘ double NOT NULL,
‘ sc ‘ double NOT NULL,

89 ‘sm ‘ double NOT NULL,
‘ spv ‘ double NOT NULL,
‘ ppv ‘ double NOT NULL,
‘ hidden ‘ t i n y i n t (1) NOT NULL,
‘ date ed i t ed ‘ i n t (11) NOT NULL,

94 PRIMARY KEY (‘ matchid ‘) ,
UNIQUE KEY ‘ seq id ‘ (‘ seq id ‘ , ‘ study ‘ , ‘ t r ans f a c ‘) ,
KEY ‘ tfKey ‘ (‘ t r ans f ac ‘ , ‘ study ‘ , ‘ seq id ‘) ,
CONSTRAINT ‘ f a c t o r mat che s i b f k 1 ‘ FOREIGN KEY (‘ seq id ‘) ⤦

Ç REFERENCES ‘ r egu l a to ry s equence s ‘ (‘ seq id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=ut f 8 b i n ;

99

Dump of t ab l e genes

DROP TABLE IF EXISTS ‘ genes ‘ ;

29

104
CREATE TABLE ‘ genes ‘ (

‘ geneid ‘ i n t (11) unsigned NOT NULL AUTO INCREMENT,
‘ genename ‘ varchar (255) COLLATE ut f 8 b i n NOT NULL,
‘ chromosome ‘ sma l l i n t (2) NOT NULL,

109 ‘ s ta r t ‘ i n t (11) NOT NULL,
‘ end ‘ i n t (11) NOT NULL,
‘ exper imentid ‘ i n t (11) unsigned NOT NULL,
‘ geneabbrev ‘ varchar (32) COLLATE ut f 8 b i n NOT NULL,
‘ r egu l a t i on ‘ varchar (20) COLLATE ut f 8 b i n NOT NULL,

114 ‘ hidden ‘ t i n y i n t (1) NOT NULL,
‘ date ed i t ed ‘ i n t (11) NOT NULL,
PRIMARY KEY (‘ geneid ‘) ,
UNIQUE KEY ‘ exper imentid ‘ (‘ exper imentid ‘ , ‘ genename ‘) ,
CONSTRAINT ‘ gene s i b f k 1 ‘ FOREIGN KEY (‘ experimentid ‘) ⤦

Ç REFERENCES ‘ experiments ‘ (‘ exper imentid ‘)
119) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=ut f 8 b i n ;

Dump of t ab l e promoter sequences

124 DROP TABLE IF EXISTS ‘ promoter sequences ‘ ;

CREATE TABLE ‘ promoter sequences ‘ (
‘ geneid ‘ i n t (11) unsigned NOT NULL,
‘ sequence ‘ t ex t COLLATE ut f 8 b i n NOT NULL,

129 PRIMARY KEY (‘ geneid ‘) ,
CONSTRAINT ‘ promote r s equence s ib fk 1 ‘ FOREIGN KEY (‘ geneid ‘)⤦

Ç REFERENCES ‘ genes ‘ (‘ geneid ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=ut f 8 b i n ;

134 # Dump of t ab l e r e gu l a t o ry s equenc e s

DROP TABLE IF EXISTS ‘ r egu l a to ry s equence s ‘ ;

CREATE TABLE ‘ r egu la to ry s equence s ‘ (
139 ‘ seq id ‘ i n t (11) unsigned NOT NULL AUTO INCREMENT,

‘ beginning ‘ i n t (11) NOT NULL,
‘ length ‘ i n t (11) NOT NULL,
‘ sense ‘ char (1) COLLATE ut f 8 b i n NOT NULL,
‘ geneid ‘ i n t (11) unsigned NOT NULL,

144 ‘ hidden ‘ t i n y i n t (1) NOT NULL,
‘ date ed i t ed ‘ i n t (11) NOT NULL,
PRIMARY KEY (‘ seq id ‘) ,
UNIQUE KEY ‘ geneid ‘ (‘ geneid ‘ , ‘ beginning ‘ , ‘ length ‘ , ‘ sense ‘) ,
CONSTRAINT ‘ r e gu l a t o r y s e qu en c e s i b f k 1 ‘ FOREIGN KEY (‘ geneid⤦

Ç ‘) REFERENCES ‘ genes ‘ (‘ geneid ‘)
149) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=ut f 8 b i n ;

Dump of t ab l e study pages

154 DROP TABLE IF EXISTS ‘ study pages ‘ ;

30

CREATE TABLE ‘ study pages ‘ (
‘ pageno ‘ char (7) COLLATE ut f 8 b i n NOT NULL,
‘ seq id ‘ i n t (11) unsigned NOT NULL,

159 PRIMARY KEY (‘ seq id ‘ , ‘ pageno ‘) ,
UNIQUE KEY ‘ pageno ‘ (‘ pageno ‘ , ‘ seq id ‘) ,
CONSTRAINT ‘ s tudy page s i b f k 1 ‘ FOREIGN KEY (‘ seq id ‘) ⤦

Ç REFERENCES ‘ r egu l a to ry s equence s ‘ (‘ seq id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=ut f 8 b i n ;

164
Dump of t ab l e u s e r s

DROP TABLE IF EXISTS ‘ users ‘ ;

169 CREATE TABLE ‘ users ‘ (
‘ id ‘ i n t (11) unsigned NOT NULL AUTO INCREMENT,
‘ username ‘ varchar (20) CHARACTER SET ut f8 NOT NULL DEFAULT ⤦

Ç ’ ’ ,
‘ password ‘ varchar (128) CHARACTER SET ut f8 NOT NULL DEFAULT ⤦

Ç ’ ’ ,
‘ da te c reated ‘ timestamp NOT NULL DEFAULT CURRENTTIMESTAMP,

174 ‘ p r i v i l e g e s ‘ t i n y i n t (4) NOT NULL DEFAULT ’0 ’ ,
‘ display name ‘ varchar (60) CHARACTER SET ut f8 NOT NULL ⤦

Ç DEFAULT ’ ’ ,
PRIMARY KEY (‘ id ‘)

) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=ut f 8 b i n ;

31

7 Glossary

promoter region: a region of DNA that initiates transcription
of a particular gene.

differentiation: the process by which a less specialized cell
become a more specialized cell type.

gene: a set of instructions that code for a specific
protein or function within an organism.

transcription factor: a regulatory protein that binds to a specific
sequence of DNA and controls the number of
mRNA that are transcribed.

regulatory sequence: a segment of DNA which is capable of con-
trolling the expression of a gene within an
organism.

protein: one or more chains of amino acids that per-
form various functions for cells.

transcription: the process of creating messenger RNA by
copying the DNA strand. mRNA subse-
quently exits the nucleus and is translated
into a working protein.

activation: refers to the initiation of transcription of a
particular gene.

mammary gland: an organ in female mammals that produces
milk to feed young offspring.

messenger RNA (mRNA): RNA molecules that carry genetic informa-
tion from the nucleus, where DNA is, to the
cytoplasm, where proteins are made.

sense: the direction of translation that is associated
with a regulatory sequence. Can either be
normal or reverse.

32

References

[1] Therin Irwin. Frequent Itemset Generator - GitHub Repository. https:
//github.com/brovine-developers/freq-itemset-gen, June 2013.

[2] Therin Irwin, Sterling Hirsh, Ryan Schroeder, and Trevor Devore.
Brovine Database SQL Schema. http://brovine.csc.calpoly.edu/

files/brovine_schema.sql, March 2012.

[3] Therin Irwin, Sterling Hirsh, Ryan Schroeder, and Trevor De-
vore. Brovine - GitHub Repository. https://github.com/

brovine-developers/teambrovine, June 2013.

[4] Dan Peterson. Gene Promoter Database Description. http://brovine.
csc.calpoly.edu/files/project-goals.pdf, January 2012.

[5] Pang-Ning Tan et al. Introduction to data mining. Pearson Education,
2007.

33

https://github.com/brovine-developers/freq-itemset-gen
https://github.com/brovine-developers/freq-itemset-gen
http://brovine.csc.calpoly.edu/files/brovine_schema.sql
http://brovine.csc.calpoly.edu/files/brovine_schema.sql
https://github.com/brovine-developers/teambrovine
https://github.com/brovine-developers/teambrovine
http://brovine.csc.calpoly.edu/files/project-goals.pdf
http://brovine.csc.calpoly.edu/files/project-goals.pdf

	Biological Overview
	How Experiments are Performed

	Using Brovine
	Navigating Through Data
	View Features
	Editing and Adding Data
	Account Management
	Privilege Types
	Adding and Removing User Accounts
	Changing your Password or Display Name

	View Descriptions
	Experiment Hierarchy
	Transcription Factor Search
	Transcription Factor Subtract
	Gene Summary
	Transcription Factor Summary
	Gene Search
	Transcription Factor Popularity
	Frequent Transcription Factors

	Technical Overview
	Server-Side
	Client-Side
	Cache Control
	Javascript Architecture
	New Javascript Architecture
	Server Configuration
	Apache Configuration
	MySQL Configuration
	FAQ

	Frequent Itemset Generator
	Use
	Customizability
	API Reference
	Available Algorithms

	Development Environment Setup
	Prerequisites
	Install Brovine
	Install Frequent Itemset Generator

	SQL Schema
	Table Descriptions
	ER Diagram
	Table Schemas
	Comparison Types
	Genes
	Factor Matches
	Experiments
	Regulatory Sequences
	Promoter Sequences
	Study Pages
	Users

	Code Listing

	Glossary

