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Abstract

We introduce the notions of viscosity super- and subsolutions suitable for sin-
gular diffusion equations of non-divergence type with a general spatially inhomo-
geneous driving term. In particular, the viscosity super- and subsolutions support
facets and allow a possible facet bending. We prove a comparison principle by a
modified doubling variables technique. Finally, we present examples of viscosity
solutions. Our results apply to a general crystalline curvature flow with a spatially
inhomogeneous driving term for a graph-like curve.

1. Introduction

As a continuation of [17,21] this paper studies a degenerate nonlinear parabolic
equation (in one space dimension) whose diffusion effect is very strong at particular
slopes of unknown functions. We are particularly interested in an equation, where
the driving force term is spatially inhomogeneous. A typical example, which we
have in mind, is a quasilinear equation

ut = a(ux )[W ′(ux )x + σ(t, x)], (1.1)

where W is a given convex function on R but W may not be of class C1 so that
its derivative W ′ may have jump discontinuities. Here a is a given non-negative
continuous function and σ is a given smooth function depending on x and also on
t , where ut and ux denote the time and the space derivative of u = u(t, x).

As explained in detail in [17] the equation is viewed as an evolution law of the
graph of u moved by an anisotropic mean curvature flow V = M(n) (κγ +σ)with
a singular interfacial energy density γ , where κγ is a weighted curvature and M is
mobility; V denotes the normal velocity of the evolving curve in the direction of n
(the quantity κγ formally equals (γ ′′ + γ )κ with curvature κ and γ = γ (θ) is an
interfacial density as a function of the argument θ of n = (cos θ, sin θ)).
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Our eventual goal is to establish a kind of the theory of viscosity solutions for
a class of equations including (1.1) as a particular example so that we are able
to construct a global-in-time solution, for instance for periodic initial data. In this
paper we give a new notion of viscosity solutions for (1.1) and we establish a
comparison principle.

If σ in (1.1) is independent of x , the theory of viscosity solutions has been
already established in [17,21]. Even in this simpler case the quality

(
W ′(ux )

)
x turns

to be nonlocal so the conventional viscosity theory does not work. For example if
W (p) = |p|, then W ′′(p) is two times the delta function so that (1.1) becomes

ut = a(ux )[2δ(ux )uxx + σ(t)] (1.2)

which is, of course, not a classical partial differential equation. If u = u(t, x)
has a flat part (called a facet) with a zero slope, then it is expected to move with
speed ut = a(0)[2χ/L + σ ] provided that a facet persists and it does not break.
Here L is the length of a facet (which is a nonlocal quantity) and χ = ±1, 0 is a
transition number of the facet depending upon local behavior of u near the facet. For
example, if u is ‘concave’ near the facet, then χ should be −1. When σ is spatially
homogeneous, the hypothesis that a facet does not break is justified either by the
viscosity theory developed by [17,20] or by the subdifferential theory [14] (in the
case σ ≡ 0), in the sense that such a solution is an appropriate limit of solutions to
strictly parabolic problems. When W is piecewise linear and σ is independent of
x , then (1.1) is analyzed in [1,38] for a very restrictive class of unknown functions,
which are piecewise linear, with slopes belonging to jump discontinuities of W .
Their ‘admissible’ solution is actually a solution in a viscosity sense [17] and also
in a variational sense [12,14].

If σ depends on the space variable, the hypothesis that all facets do not
break is no longer true. For example, if we postulate this hypothesis, then the
speed, ut , of a facet with the slope equal to zero when u is a solution of (1.2) is
a(0)[2χ/L + −

∫
σ dx], where −

∫
denotes the average over the facet. As noticed in

[19], if we assigned the speed in this way the solution may not in general enjoy the
comparison principle. This shows that such a ‘solution’ is not obtained as a limit
of approximate problems satisfying the comparison principle. On the other hand
if |σx | is sufficiently small compared with the length of facets, such a solution is
known to enjoy a comparison principle [3].

If a is a constant, say a ≡ 1, and σ is independent of t , (1.1) can be viewed as
a subdifferential formulation

ut ∈ −∂ϕ(u), (1.3)

where ϕ is an energy which formally equals

ϕ(u) =
∫

T
[W (ux )− σ(x)u] dx;

for simplicity, we assume here a periodic boundary condition so that T = R/ωZ.
As observed in [18] for (1.3), a general theory of subdifferential equations in the
Hilbert space L2(T) provides not only the unique existence of the solution but also
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the value of right derivative du+/dt (of u as a function with value in H ). A general
theory further yields

d+u/dt = −∂0ϕ(u),

where ∂0ϕ is the canonical restriction of a closed convex set ∂ϕ (u(t)), that is

∂0ϕ(u) = arg min{|| f ||H | f ∈ ∂ϕ(u) ⊂ H}.
In [18], it is observed that ∂0ϕ can be calculated by solving an obstacle problem.
Let us review those observations. Since the condition

f ∈ −∂ϕ(u)
is equivalent to

f (x) = ηx (x)+ σ(x), η(x) ∈ ∂W (ux (x)), almost every where x ∈ T,

the quantity

− ∂0ϕ(u) =
{(

W ′(ux (x))
)

x + σ(x) if ux /∈ P

η0
x (x)+ σ(x) if ux ∈ P,

(1.4)

where P is the jump discontinuity of W ′ and u is assumed to be of class C2 and
P-faceted [17]. Here, η0 minimizes

{∫

F
|ηx + σ |2 dx ; η ∈ ∂W (ux (x))

}
(1.5)

under a suitable boundary condition at the end of facet F depending on whether u
is ‘convex’ or ‘concave’ near F . This is a convex minimizing problem so a unique
minimizer always exists. Moreover, if σ is independent of x, ηx must be constant
and η0

x +σ = χ/L +σ . If σ depends on x , η0
x +σ may not be a constant over F and

this is one reason why the speed may not be a constant on F when σ depends on
x . The subdifferential equation (1.3) can be approximated by a smooth parabolic
problem, so we expect the comparison principle to hold. Thus, it is natural to guess
that η0

x + σ gives a candidate for the value of

ΛσW (u)(x)) = (
W ′(ux )

)
x + σ(x) (1.6)

when W ′ has jump discontinuities. Note that this quantity agrees with the minimal
velocity profile proposed by [36], as observed in [18].

Unfortunately, a general equation (1.1) cannot be viewed as a subdifferential
equation (1.3). However, we still use (1.4) to define (1.6). We establish a notion
of viscosity solutions by assigning the value ΛσW by (1.4) for test functions which
we call admissible. The class of test functions is the same as [17] so a facet of
a test function never vanishes or breaks. The idea of the proof of the comparison
principle is similar to that of [17] except for a simplified handling of end points of
facets observed by [21] and the use of continuity of ΛσW (u) under the translation
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of a faceted region which is obvious when σ is constant. So we have to study an
obstacle problem in this paper carefully. Let Λ(F)(x) be a quantity defined by

Λ(F)(x) = η0
x (x)+ σ(x), x ∈ F,

where η0 is the minimizer of (1.5). In particular, we prove that

Λ(Fμ) (x − μ) → Λ(F) (x)

as μ → 0, where Fμ = F − μ = {x |x + μ ∈ F} provided that σx is bounded.
Moreover, the convergence is uniform with respect to F provided that F is bounded.
This problem can be viewed as a stability problem for (1.5) with respect to pertur-
bations of σ . Since our obstacle problem is convex, it is not difficult to prove these
facts. We also need comparison results (maximum principle) forΛσW to see that this
quantity behaves like curvature or usual second derivatives. It is often convenient
to consider ξ = η+ ∫ x

σ as a variable, instead of η itself, so we shall use variable
ξ . We warn the reader that in Section 5 we will use differently defined ξ .

To establish the comparison principle we argue by contradiction using the dou-
bling variables technique. Let u be a subsolution and v be a supersolution. We are
interested in the maximizers of

u(t, x)− v(s, y)− Bε(x − y)− (t − s)2/δ − γ /(T − t)− γ /(T − s)

for small ε, δ, γ > 0. Here Bε = εB(x/ε) , B(x) � x2 for large x and B is
a (non-negative) faceted C2 convex function with B(0) = 0. This choice of a
test function B is different from [17] and this choice simplifies the argument. We
use sup-convolutions with a faceted function to regularize the problem as in [17].
Quantity ΛσW behaves like a usual second derivative in the sense that it satisfies
the maximum principle. At the final stage we have to compare Λ(Fμ) and Λ(F)
which is trivial when σ is constant, because it is independent of μ.

Although this paper focuses on the comparison principle for (1.1), as observed
in [21], the method developed here is fundamental to establish a level set method
for V = M(n) (κγ + σ) when σ depends on x . For a standard level set method
for smooth γ see [10,13,16]. Also a stability result is expected [20] but we do
not intend to include any progress in this direction in the present paper. A general
existence result through Perron’s method is almost the same as the one in [17],
though we do not state it explicitly. Instead, we give a couple of examples of
solutions. An existence result based on Perron’s method and using the comparison
principle established in the present paper was established in [25].

Recently, besides examples in [18], several semi-explicit variational solutions
are constructed for (1.1) for special choices of M , σ and γ by solving a free
boundary problem [27,29,30]. Their variational solutions are expected to be our
viscosity solutions. In this paper we shall confirm this consistency at least for some
typical examples.

We do not know much about surface evolutions. In surface evolving problems
a facet may not stay as a facet even if σ ≡ 0 see for example [5–8].

After this paper was submitted, we were informed of a very recent work [9] by
Chambolle and Novaga, where they established a local-in-time unique solution
for a closed curve with spatially inhomogeneous σ .
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A notion of a generalized solution is established and a comparison principle
is proved in [4], see also [3]. However, the existence of a solution is known only
when the initial surface is convex, see [2]; note that their problem is formulated as
V = γ κγ where the mobility parallels the interfacial energy.

The bibliographies of review papers [15,22–24] include several articles deal-
ing with anisotropic curvature flow equations with singular interfacial energy or
singular diffusion equations. Here, we only mention a few recent works related to
this topic but not included in the papers mentioned above. In particular, we have in
mind the approach developed by Mucha and Rybka, which is based on an orig-
inal definition of a composition of multivalued operators, see [32,34]. So far, it is
restricted to one dimension but allows one to study facet evolution for quite general
data as well as the regularity of solutions.

This paper is organized as follows. We first study an obstacle problem in Sec-
tion 2. In Section 3, we establish a notion of viscosity solutions. In Section 4, we
prove our main comparison theorem. In Section 5 we shall prove that the semi-
explicit solutions in [29] are indeed solutions in our viscosity sense.

2. Variational Properties of Nonlocal Curvature with a Nonuniform Driving
Force Term

We shall give a variational characterization of the quantity ΛσW , which is for-
mally defined by

ΛσW (u) (x) = (W ′(ux ))x + σ(x), (2.1)

by means of solving an obstacle problem. This characterization enables us to derive
various important properties to establish the theory of viscosity solutions for sin-
gular diffusion equations.

2.1. An Obstacle Problem

Let Z be a real-valued C2 (or C1,1) function, defined in a bounded interval I ,
where I = (a, b). For a given� > 0 let K Z

χlχr
be the set of all ξ ∈ H1(I ) satisfying

Z(x)−�/2 � ξ(x) � Z(x)+�/2 for x ∈ I (obstacle condition) (2.2)

and

Z(x)−�/2 � ξ(x) � Z(x)+�/2 for x ∈ I (obstacle condition). (2.3)

Here, χl and χr take values ±1. Let J Z
χlχr

be the functional on L2(I ) defined by

J Z
χlχr

(ξ) =
{∫ b

a |ξ ′(x)|2 dx, ξ ∈ K Z
χlχr

∞, otherwise.

In this subsection, we suppress the dependence with respect to Z since we fix Z .
By the definition of Jχlχr , it is easy to see that inf Jχlχr is the H1-homogeneous
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distance from zero to the convex closed set Kχlχr in H1. Thus, Jχlχr admits a unique
absolute minimizer denoted by ξχlχr . Evidently, ξχlχr ∈ H1(I ) ⊂ C1/2(I ) by the
Sobolev embedding. In fact, it is C1,1, as proved in [33, Chap II, Theorem 7.1] (in
[33], the regularity of the multidimensional obstacle problem is also discussed). In
our one-dimensional case, as discussed below, it is easy to prove that ξχlχr is C1,1

since the obstacle is C1,1 and the coincidence set is closed.
For ξ ∈ H1(I ) let D±(ξ) be the coincidence set defined by

D± = D±(ξ) = {x ∈ I | ξ(x) = Z(x)±�/2}.
We say that D+ is the upper coincidence set while D− is the lower coincidence set.

Definition 1. We say that ξ ∈ Kχlχr satisfies the concave–convex condition if ξ is
concave on each connected component of the complement of the upper coincidence
set D+ and convex on each connected component of the complement of the lower
coincidence set D−, that is, ξ ′′ � 0 outside D+ and ξ ′′ � 0 outside D−. In
particular, ξ is C1,1 in I and ξ ′′ = 0 outside D− ∪ D+.

Proposition 1 (A characterization of the minimizer). The function ξ ∈ Kχlχr

is the minimizer of Jχlχr if and only if ξ fulfills the concave–convex condition. In
particular, ξχlχr is C1,1 in I and

sup
x∈I

|ξ ′′
χlχr

(x)| � sup
x∈I

|Z ′′(x)|. (2.4)

Proof. By the convexity of Jχlχr and the uniqueness of the minimizer, ξ ∈ Kχlχr

is the absolute minimizer if and only if ξ is a local minimizer of Jχlχr that is,
∫

Dc+
ξ ′ϕ′ dx � 0,

∫

Dc−
ξ ′ψ ′ dx � 0

for all ϕ ∈ H1(I ) satisfying ϕ(a) = ϕ(b) = 0 and ϕ � 0 in Dc+ = I\D+ and
for all ψ ∈ H1(I ) satisfying ψ(a) = ψ(b) = 0 and ψ � 0 in Dc− = I\D−
by the obstacle condition (2.2) and the boundary condition (2.3). These conditions
are equivalent to the concave–convex condition. We refer to Schwartz [37] or
Hörmander [31] for the equivalence of convexity in the distribution sense and the
strong convexity.

The remaining statement is a simple consequence of the concave–convexity
condition. 	


As a trivial application we give two cases, where the minimizer is explicitly
written.

Corollary 1. (i) If the concave hull Zcave of Z in I is smaller than Z +�, that is,
Zcave � Z +� in I , then ξ+− = Zcave −�/2.

(ii) If the straight line function ξ(x) = ξ(a)+ (Z(b)− Z(a)+�) (x − a)/(b − a)
fulfills the obstacle condition (2.2), then it is the minimizer of J++ provided
that ξ(a) = Z(a) − �/2 and ξ(b) = Z(b) + �/2. Here, J++ = Jχlχr when
χl = χr = 1.



A Comparison Principle for Singular Diffusion Equations 425

2.2. Comparison Principle

So far, we have fixed interval I to define ξχlχr . We shall study the dependence
of ξ ′

χlχr
upon I . To clarify this, we write Jχlχr , I instead of J Z

χlχr
and ξχlχr , I instead

of ξ Z
χlχr

. We set

ΛZ ′
χlχr

(x, I ) = dξχlχr , I (x)

dx
. (2.5)

It is easy to observe that this quantity agrees with η0
x +σ when Z equals a primitive

of σ . It is sufficient to take ξ = η+ Z . The reason we write Z ′ instead of Z is that
the derivative of ξ Z

χlχr
depends on Z only through its derivative. We suppress Z ′ in

(2.5) when we fix Z . We shall write Λ−+ etc. instead of writing Λ{−1},{+1}.

Theorem 1. (Comparison principle) Assume that I1 and I2 are bounded open inter-
vals.

(i) If I2 ⊂ I1, then

Λ−−(x, I2) � Λ±±(x, I1) � Λ++(x, I2) for x ∈ I2.

(ii) If a � c < b � d for I1 = (a, b), I2 = (c, d), then for x ∈ (c, b)

Λ±−(x, I1) � Λ+±(x, I2), Λ−±(x, I2) � Λ±+(x, I1).

This can be proved by a comparison principle for parabolic equations by an
approximation, as is done in Giga–Gurtin–Matias [28]. However, since the problem
is one dimensional, we give instead an elementary proof, which is based on the
following simple observation.

Lemma 1. (Elementary Lemma) Let us suppose that ϕ,ψ ∈ C1,1([a, b]) are such
that ψ � ϕ. Functions ξ, ζ ∈ H1(a, b) are minimizers of

∫ b

a

∣∣∣∣
du

dx

∣∣∣∣

2

dx

satisfying the following constraints ψ � u � ϕ and the boundary conditions,

ξ(a) = A = ζ(a), ξ(b) = B > B ′ = ζ(b).

Then ξ ′(x) � ζ ′(x) almost everywhere in (a, b).

Proof. It is very easy to see that ξ(x) � ζ(x) for x ∈ [a, b]. We have to show
that function ξ − ζ is increasing. For this purpose we will see that ξ − ζ may
attain neither local maximum nor minimum in (a, b). In fact, the lack of local
maxima implies impossibility of local minima. Thus it is sufficient to see that no
local maximum of ξ − ζ is possible.

Let us suppose the contrary, that is, there exists a point x0 ∈ (a, b)where ξ − ζ
attains a local maximum, that is there is a positive δ, such that (x0 − δ, x0 + δ) ⊂
[a, b] and

(ξ − ζ )(x0) � (ξ − ζ )(x) for x ∈ (x0 − δ, x0 + δ),
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where the inequality is strict for x = x0 ± δ. We will consider a number of cases
upon the lower coincidence set

D−(ζ ) = {x ∈ [a, b]| ζ(x) = ψ(x)}.
They are:

(i) (x0 −δ, x0 +δ) ⊂ (D−(ζ ))c, that is ζ is a line segment over (x0 −δ, x0 +δ);
(ii) (x0 − δ, x0 + δ) ⊂ D−(ζ );

(iii) x0 ∈ D−(ζ ) ∩ (D−(ζ ))c.

We begin with the first case, which is illustrated in Fig. 1.
Let us denote the slope of ζ by α. Since we assumed that ξ is a minimizer, then

we deduce from Proposition 1 that ξ ∈ C1,1([a, b]). For a sufficiently small η > 0,
the line

�(x) = α(x − x0)+ ξ(x0)− η (2.6)

intersects ξ in (x0 − δ, x0 + δ). Thus, function h(x) := min{�(x), ξ(x)} satisfies

ζ(x) � h(x) � ξ(x), h(x0 ± δ) = ξ(x0 ± δ).

We will see that
∫ x0+δ

x0−δ
|h′(x)|2 dx <

∫ x0+δ

x0−δ
|ξ ′(x)|2 dx (2.7)

which contradicts the minimality of ξ .
Indeed,

∫ x0+δ

x0−δ
|h′(x)|2 dx =

∫

{h=ξ}
|h′(x)|2 dx +

∫

{h<ξ}
|h′(x)|2 dx

=
∫

{h=ξ}
|ξ ′(x)|2 dx +

∑

J

∫

J
α2 dx,

Fig. 1. The slope of ζI and � is the same
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where J ’s are the connected components of the set {h < ξ}. We notice that h = ξ

on ∂J . Since the linear function minimizes the functional
∫

J
|u′(x)|2 dx

among H1-functions with given Dirichlet data, we conclude that
∫

J
α2 dx <

∫

J
|ξ ′(x)|2 dx .

Hence, 2.7 follows, and as a result the Lemma holds in case (i).
Let us consider case (ii). If it occurs, then ζ(x) = ψ(x) for x ∈ (x0 −δ, x0 +δ).

But first of all, ξ ′(x0) = ζ ′(x0) =: α and we define � in a similar way as in 2.6.
Since x0 is a local maximum, then ξ ′(x) � ζ ′(x) for x ∈ (x0−δ, x0), ξ ′(x) � ζ ′(x)
for x ∈ (x0, x0 + δ). Thus, for a sufficiently small η > 0 the line � intersects ξ .
From now on, we proceed as in the case (i) to show the impossibility of the local
maximum.

The last case, (iii), uses the same kind of argument, as soon as we realize
that the solution to the minimization problem with an obstacle meets the obstacle
tangentially. This follows from the convexity-concavity condition in Proposition 1.
The details are left to the interested Reader. This finishes the proof of the Lemma.

	

We may now turn our attention to the proof of Theorem 1

Proof. It suffices to prove

(a) Λ++(x, I1) � Λ++(x, I2), Λ−−(x, I2) � Λ−−(x, I1) for x ∈ I2 ⊂ I1,
(b) Λ−+(x, I1) � Λ++(x, I1), Λ−−(x, I1) � Λ−+(x, I1) and

Λ+−(x, I1) � Λ++(x, I1), Λ−−(x, I1) � Λ+−(x, I1) for x ∈ I1.

We begin with the proof of (a). Since the argument is symmetric, it is sufficient to
prove the first inequality. We may assume that one of the end points of I1 and I2 is
the same. By symmetry, it suffices to prove that

Λ++(x, I1) � Λ++(x, I2), x ∈ I2 (2.8)

with I1 = (a, c), I2 = (a, b) for c (� b). Let us set ξ := ξ++,I2 , where ξ ′++,I2
=

Λ++(x, I2) and ζ := ξ++,I1 , where ξ ′++,I1
= Λ++(x, I1). Due to the definition of

J Z
χlχr ,I

and K Z
χlχr

we conclude that

ξ(a) = ζ(a), ξ(b) � ζ(b).

However, when ξ(b) = ζ(b), then there is nothing to prove, so we assume that
ξ(b) > ζ(b). Thus, we may apply the Elementary Lemma, to deduce that ξ ′ � ζ ′
in I2, that is, 2.8 holds.

We next prove (b). By symmetry it suffices to show one of four inequalities.
We shall prove that

Λ−−(x, I1) � Λ−+(x, I1). (2.9)
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Let ζ = ξ−−,I1 be the minimizer such that ζ ′ = Λ−−(x, I1) and let ξ = ξ−+,I2)

be the minimizer such that ξ ′ = Λ−+(x, I2). By the structure of minimization
problems, we see that ξ(a) = ζ(a) and ξ(b) � ζ(b). We may directly apply the
Elementary Lemma, to deduce that 2.9 holds. 	


2.3. Stability of Curvature like Quantity

Our goal in this section is to show that the curvature like quantity Λχlχr (x, I )
defined by (2.5) is ‘continuous’ with respect to the change of the interval I . The
stability result forΛ of the convex obstacle problem with respect to Z is essentially
known in the literature for example [35, p.156, Chapter 5, Theorem 4.5 and Remark
4.6]. However, we give a proof for the reader’s convenience since the situation is
slightly different.

We recall several stability properties of Jχlχr . Let {Zk}∞k=1 be a sequence of
real-valued C2 (or C1,1) functions in I , where I = (a, b). In this subsection we fix
χlχr , as a result we often suppress its dependence and simply write J Z

χlχr
for J and

J k instead of J Zk

χlχr
.

Proposition 2 (Lower semicontinuity). Assume that Zk uniformly converges to Z
as k → ∞, that is, Zk → Z in C(I ). Assume that ξk weakly converges to ξ in
L2(I ) as k → ∞. Then J (ξ) � lim infk→∞ J k(ξk).

Proof. We may assume that ξk ∈ K Zk
. Since ξ k − Zk converges to ξ − Z weakly

in L2(I ) and the sign is conserved through the weak limit, then we observe that
ξ ∈ K Z . The desired conclusion now follows from the lower semicontinuity of
H1-norm with respect to L2-weak convergence. 	

Proposition 3 (Approximability). Assume that Zk converges to Z, with its first
derivative, uniformly in I as k → ∞, that is, Zk → Z in C1(I ). Then for each
ξ ∈ L2(I ), there is a sequence ξk → ξ in L2(I ) such that J (ξ) = limk→∞ J k(ξk).

Proof. We may assume that ξ ∈ K Z since otherwise ξ /∈ K Zk
for sufficiently large

k. We set ξk = ξ − Z + Zk and observe that ξk is in K Zk
by (2.3) and (2.4). Since

Zk → Z , (Zk)′ → Z ′ uniformly in I as k → ∞, the convergence J (ξk) → J (ξ)
and ξk → ξ (as k → ∞) in L2(I ) is easily verified. 	


These two above Propositions say that J k converges to J in the sense of Mosco,
that is, both strong and weak Γ − limits of J k equal J . Thus we easily obtain the
convergence of minimizers.

Proposition 4 (Convergence of minimizers). Assume that Zk → Z with its first
derivative uniformly on Ī , that is Zk → Z in C1(I ). Let ξ k

χlχr
be the minimizer of

J k
χlχr

. Then ξ k
χlχr

converges to ξχlχr in L2(I ) which is the minimizer of Jχlχr .

Proof. We deduce from [33, Theorem 7.1]

Lip(ξ k
χlχr

) � max
x∈ Ī

|Zk
x (x)| � max

k∈N

‖Zk‖C1 < ∞.



A Comparison Principle for Singular Diffusion Equations 429

This implies that {min J k}∞k=1 is bounded. Since H1(I ) is compactly embedded in
L2(I ), then upon extracting a subsequence ξ k

χlχr
(not relabeled) converges to an

element ζ ∈ L2(I ) as k → ∞. By Proposition 2, we observe that

J (ζ ) � lim inf
k→∞ min J k .

For any ξ ∈ L2(I ), due to Proposition 3, there is always a sequence ξk → ξ in
L2(I ) such that J k(ξk) → J (ξ) as k → ∞. Thus

J (ξ) � lim inf
k→∞ min J k .

Therefore, J (ζ ) � J (ξ) so ζ must be the unique minimizer of J . Thus ξ k
χlχr

converges ξχlχr without taking a subsequence. 	

We define Λk

χlχr
(x, I ) by (2.5) where Z is replaced by Zk . We simply write

Λk
χlχr

in place ofΛk
χlχr

(x, I ) andΛχlχr instead ofΛZ ′
χlχr

(x, I ) in the next Theorem.

Theorem 2 (Continuity with respect to Z ′). Assume that

sup
k�1

sup
x∈I

|(d/dx)2 Zk(x)| < ∞ and (Zk)′ → Z ′ in C(I ).

Then Λk
χlχr

→ Λχlχr in C(I ) as k → ∞.

Proof. We may assume that Zk → Z in C1(I ) by adding a constant to fix a value at
some point of I , for example Zk((a+b)/2) = 0, Z((a+b)/2) = 0. By Proposition
4 we observe that ξ k

χlχr
→ ξχlχr in L2(I ). By Proposition 1, our assumption on

the bound of the second derivative of Zk implies that |(d/dx)2ξ k
χlχr

| is bounded by

(2.4). Thus ξ k
χlχr

→ ξχlχr in C1(I ) so Λk
χlχr

→ Λχlχr in C(I ). 	

We are now in position to state the continuity of Λχlχr with respect to I . This

notion will be explained below.

Theorem 3. (i) Let Z be a C2 (or locally C1,1) function on R. Then ΛZ ′
χlχr

(x, I )
is continuous with respect to I .

(ii) Assume furthermore that |Z ′′(x)| is bounded in R. Then for each r > 0

lim
μ→0

sup
0<b−a<r

sup
a<x<b

|ΛZ ′
χlχr

(x, (a, b))−ΛZ ′
χlχr

(x − μ, (a − μ, b − μ))| = 0.

(The convergence is uniform in Z ′ for Z such that |Z ′′| � M0 for a given
constant M0 > 0).

We have to clarify the continuity with respect to I . For two bounded intervals
I = (a, b) and J = (c, d) there is a unique affine map A: x 
→ y = αx + β

(dilation and translation) with α > 0 such that A(I ) = J . Assume that an open
interval I k converges to I as k → ∞, that is, the end points ak, bk of Ik = (ak, bk)

tend to a and b, respectively. Let F be a mapping: I 
→F(I ) ∈ C(I ). We say that F
is continuous with respect to I if F(Ik)◦ Ak converges to F(I ) in C(I ), as k → ∞
for any I k → I , where Ak is the affine map which maps I to I k .
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Proof. These assertions easily follow from Theorem 2, once we compare
ΛZ ′
χlχr

(x, I ) with ΛZ ′
χlχr

(Ak(x), Ik), both defined on I , here Ak is the affine trans-
formation mapping I to I k, when I k → I (in the assertion (ii) this affine map is
just a translation). 	


2.4. Nonlocal Curvature with a Nonuniform Driving Force Term

In order to define the nonlocal curvature ΛσW (u), formally given by (2.1), we
recall basic assumptions on W as in [17] and a class of function u, so that ΛσW (u)
is well-defined.

(W) Let W be a convex function on R with values in R. Assume that W is
of class C2 outside a closed discrete set P and that W ′′ is bounded in any
compact set except all points in P .

We shall always assume (W) in this paper. By definition, the set P is either a
finite set or a countable set having no accumulation points in R. If P is nonempty,
P is of form {p j }m

j=1, {p j }∞j=−∞, {r j }−1
j=−∞ or {p j }∞j=1 with lim j→∞ p j =

∞, lim j→−∞ r j = −∞, where the p j ’s and r j ’s are arranged in strictly increasing
sequences p j < p j+1, r j < r j+1 and m is a positive integer.

We recall a notion of a faceted function. LetΩ be an open interval. A function
f in C(Ω) is called faceted at x0 with slope p onΩ (or p-faceted at x0) if there is
a closed nontrivial finite interval I (⊂ Ω) containing x0 such that f agrees with an
affine function

�p(x) = p(x − x0)+ f (x0) in I

and f (x) �= �p(x) for all x ∈ J\I with some neighborhood J (⊂ Ω) of I . The
interval I is called a faceted region of f containing x0 and is denoted by R( f, x0).
A function f is called P-faceted at x0 if it is p-faceted at x0 for some p ∈ P .

We introduce the left transition number χl = χl( f, x0) and the right transition
number χr = χr ( f, x0) by

χl =
{

+1 if f � �pi in {x ∈ J |x � x0}
−1 if f � �pi in {x ∈ J |x � x0}

χr =
{

+1 if f � �pi in {x ∈ J |x � x0}
−1 if f � �pi in {x ∈ J |x�x0}

if f is pi -faceted at x0. The quantity χ = (χl + χr )/2 is called the transition
number describing the sign of ΛσW when σ ≡ 0.

Definition 2. We assume that σ is a real-valued Lipschitz function on an open inter-
val Ω and Z is its primitive, moreover, (W) holds. We assume that f ∈ C(Ω) pi -
faceted at x0 ∈ Ω with pi ∈ P . Then we define the nonlocal curvature ΛσW by

ΛσW ( f ) (x0) = ΛZ ′
χlχr

(x, I );
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the right hand side is defined by (2.5) with� = W ′(pi + 0)− W ′(pi − 0) and I is
the faceted region R( f, x0). If f is twice differentiable at x0 and f ′(x0) /∈ P , we
set, as expected,

ΛσW ( f ) (x0) = W ′′ ( f ′(x0)
)

f ′′(x0)+ σ(x0).

Remark 1. If σ is a constant, so that Z is an affine function, the minimizer ξχlχr of
J Z
χlχr

is always a straight line function (cf. Corollary 1 for the case χ = 1 or −1).
Thus, it is easy to observe that

ΛσW ( f ) (x0) = χ�/L( f, x0)+ σ(x0)

when f is pi -faceted at x0, where L( f, x0) is the length of the faceted region
R( f, x0). In particular, our new quantity agrees with the weighted curvature
ΛW ( f, x0), defined in [17] when σ ≡ 0. LikeΛW ( f, x0), the quantityΛσW depends
on W only through its second distributional derivative.

We conclude this section by rewriting the Comparison Principle and Continuity
with respect to translation in terms of ΛσW . Let C2

P (Ω) be the set of f ∈ C2(Ω)

such that f is P-faceted at x0 whenever f ′(x0) ∈ P . For such a class of function
the nonlocal curvatureΛσW ( f ) (x) is well-defined for all x ∈ Ω provided that σ is
locally Lipschitz. The next two results are immediate consequences of Theorem 1
and Theorem 3, respectively.

Theorem 4 (Comparison). Assume condition (W) and that σ is locally Lipschitz
and in addition f, g ∈ C2

P (Ω) and x0 ∈ Ω . If maxΩ( f − g) = ( f − g) (x0), then
ΛσW ( f ) (x0) � ΛσW (g) (x0).

Theorem 5 (Continuity). Let us suppose that the hypotheses of Theorem 4 con-
cerning W and σ hold. We assume that f ∈ C(Ω) is pi -faceted at x0 − η and g be
pi -faceted at x0 − η and pi ∈ P. Assume moreover, R( f, x0)− η = R(g, x0 − η).
Then

ΛσW (g) (x0 − η) → ΛσW ( f ) (x0) as |η| → 0.

3. Definitions of Generalized Solutions

The goal of this section is to define generalized solutions (in the viscosity sense)
for evolution equations of the form

ut + F
(
t, ux ,Λ

σ
W (u)

) = 0 (3.1)

when W is a singular interfacial energy. Such a notion is given when σ ≡ 0 in [17].
Our definition will be a natural extension to the case when σ �≡ 0. In this section,
we shall also give several equivalent definitions for later use.
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3.1. Admissible Functions and Definitions

We first recall a natural class of test function. Let us set Q = (0, T )×Ω , where
Ω is an open interval and T > 0. Let AP (Q) be the set of all admissible functions
ψ on Q in the sense of [17] that is, ψ is of the form

ψ(x, t) = f (x)+ g(t), f ∈ C2
P (Ω), g ∈ C1(0, T ).

For our equation, we often assume that

(F1) F is continuous in [0, T ] × R × R with values in R,
(F2) (Monotonicity) F(t, p, X) � F(t, p,Y ) for X � Y, t ∈ [0, T ], p ∈ R,
(FL) (Lipschitz continuity.) There is a constant C = CF,T such that

|F(t, p, X)− F(t, p,Y )| � C(1 + |p|) |X − Y | for all t ∈ [0, T ], p, X,Y ∈ R.

(FT) (Uniform continuity in curvature and time.) For each K the function
F(t, p, X) is uniformly continuous in [0, T ] × [−K , K ] × R.

The third assumption is rather standard when W ≡ 0 and σ is Lipschitz so that
ΛσW (u) = σ . A typical example of (3.1) satisfying (F1), (F2), (FL) and (FT) is of
the form

ut − a(ux ) Λ
σ
W (u)− C(t) = 0 (3.2)

where

F(t, p, X) = −a(t, p)X−C(t);
here, a ∈ C(R) satisfies 0 � a(p) � C(|p| + 1) for all p ∈ R,C ∈ C[0, T ]. If
a(p) = (1 + p2)1/2 and C ≡ 0, then (3.2) says that the normal velocity V of the
graph of u equals the nonlocal curvatures, that is, V = ΛσW . The condition (FT) is
redundant if F is independent of t since (FL) implies (FT).

The driving force term σ may depend on t . Here is an assumption we often use.
(S) The function σ ∈ C

([0, T ] ×Ω
)

is Lipschitz in space uniformly in time, that
is there is a constant LT such that

|σ(t, x)− σ(t, y)| � LT |x − y|
for all t ∈ [0, T ], x, y ∈ Ω .

We are now in the position to give a notion of a generalized solution in the
viscosity sense.

Definition 3. Assume (W), (S), (F1), (F2). A real-valued function u on Q is a
(viscosity) subsolution of (3.1) in Q if the upper-semicontinuous envelope u∗ < ∞
in [0, T )×Ω and

ψt (t̂, x̂)+ F
(

t̂, ψx (t̂, x̂), Λσ(t̂,·)W (ψ(t̂)) (x̂)
)

� 0 (3.3)

whenever
(
ψ, (t̂, x̂)

) ∈ AP (Q)× Q fulfills

max
Q
(u∗ − ψ) = (u∗ − ψ) (t̂, x̂). (3.4)



A Comparison Principle for Singular Diffusion Equations 433

Here, ψ(t̂) is a function on Ω defined by ψ(t̂) = ψ(t̂, ·) and u∗ is defined by

u∗(t, x) = lim
ε↓0

sup{u(s, y)| |s − t | < ε, |x − y| < ε, (s, y) ∈ Q}

for (t, x) ∈ Q and u∗ = (−u∗). A (viscosity) supersolution is defined by replacing
u∗(< ∞) by the lower-semicontinuous envelope u∗(> −∞), max by min in (3.4)
and the inequality (3.3) by the opposite one. If u is both a sub- and supersolution,
it is called a viscosity solution or a generalized solution. Hereafter, we avoid using
the word viscosity. Functionψ satisfying (3.4) is called a test function of u at (t̂, x̂).

The monotonicity, that is (F2), and the convexity, that is (W), conditions show
that the equation is at least degenerate parabolic. Thus, by comparison (Theorem
4), it is easy to see thatψ ∈ AP (Q) is a subsolution in Q if (and only if)ψ satisfies

ψt (t, x)+ F
(

t, ψx (t, x), Λσ(t,·)W (ψ(t))(x)
)

� 0

for all (t, x) ∈ Q.

3.2. An Equivalent Definition

To show the comparison principle for sub- and supersolutions, it is convenient
to recall equivalent definitions. One of them is regarded as an infinitesimal version.
Such a definition is given in [17] when σ ≡ 0. It is simplified by [21]. We give a
definition which is a natural extension of the one in [21, Theorem 4.3].

We first recall upper time derivations on a faceted region. Let ϕ be a function
on Q and (t̂, x̂) ∈ Q. Assume that ϕ(t̂, ·) ∈ C(Ω) is p-faceted at x̂ ∈ Ω with
p ∈ P . We define

T +
P ϕ(t̂, x̂) = {τ ∈ R | there are a modulus

ω and three positive numbers δ, δ+, δ− such that
ϕ(t, x)− ϕ(t̂, x̂) � τ(t − t̂)+ p(x − x̂)+ ω(|t̂ − t |) |t − t̂ |

for (t, x) ∈ (t̂ − δ, t̂ + δ)× Ñ−1(ϕ(t̂, ·), t̂; δ+, δ−)},
where Ñ−1 denotes a semineighborhood of R(ϕ(t̂, ·), x̂), defined in [17]; by a
modulus ω we mean that ω : [0,∞) → [0,∞) is nondecreasing, continuous
with ω(0) = 0. For the reader’s convenience, we recall the definition of Ñ−1. Let
f ∈ C(Ω) be p-faceted at x0 ∈ Ω with p ∈ P . We set

Nχr ( f, x0; δ+)

=
{

{x ∈ Ω| sup R( f, x0) < x � sup R( f, x0)+ δ+} if χr ( f, x0) = −1,

∅ if χr ( f, x0) = 1

Nχl ( f, x0; δ−)

=
{

{x ∈ Ω| inf R( f, x0)− δ− � x < inf R( f, x0)} if χl( f, x0) = −1,

∅ if χl( f, x0) = 1

and the set Ñ−1 is defined by (Fig. 2)

Ñ−1( f, x0; δ−, δ+) = R( f, x0) ∪ Nχr ( f, x0; δ+) ∪ Nχl ( f, x0; δ−).
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f

x0

χ  = 1 = χ 
l r

~ −1
0 δ δ+N   (f,x  ;   ,     )=

− R(f,x  )0

f

x0

χ  = 1 = χ 
l r

~ −1
0 δ δ+−

−

N   (f,x  ;    ,     )

R(f,x  )0

Fig. 2. Various possibilities of Ñ−1( f, x0; δ−, δ+)

The set Ñ+1 is defined by

Ñ+1( f, x0; δ−, δ+) = Ñ−1(− f, x0; δ−, δ+).
An element of T +

P ϕ(t̂, x̂) is an upper time derivative at (t̂, x̂). The set of lower
time derivatives is defined by

T −
P ϕ(t̂, x̂) = −T +

−P (−ϕ) (t̂, x̂).

We next recall a class of functions (not necessarily admissible) for which the upper
time derivative is well-defined on a faceted region. The following definition is an
improved one in [21], not the original one in [17]. In [21] Q may not be noncylin-
drical but here, we consider a simple case Q = (0, T )×Ω .

Definition 4. Let ϕ : Ω → R be an upper-semicontinuous function. For (t̂, x̂) ∈ Q
assume that ϕ(t, ·) ∈ C(Ω) for t near t̂ . We say that ϕ is an (infinitesimally)
admissible superfunction at (t̂, x̂) in Q if one of the following three conditions
holds.

(A) The function ϕ(t̂, ·) is P-faceted (in Ω) at x̂ ∈ int R(ϕ(t̂, ·), x̂). The set
T +

P ϕ(t̂, x̂) is nonempty.
(B) There is (τ, p, X) ∈ P+ϕ(t̂, x̂) with p /∈ P , where P+ denotes the set of

parabolic semijets in Q [11,17].
(C) The function ϕ(t̂, ·) is P-faceted at x̂ but x̂ ∈ ∂R(ϕ(t̂, ·), x̂). There is an

element (τ, p, 0) ∈ (P+ϕ(t̂, x̂)) for some τ ∈ R.

We say that ϕ is an admissible subfunction at (t̂, x̂) in Q if ϕ is an admissible
superfunction with P replaced by −P . We implicitly assume that R

(
ϕ(t̂, ·), x̂

)

does not touch the boundary of Ω . We are now in the position to give a definition
of a subsolution in the infinitesimal sense.

Definition 5. Assume (W), (S), (F1), (F2). A real-valued function u on Q is a
subsolution in the infinitesimal sense of (3.1) (in Q) if u∗ < ∞ in [0, T )×Ω and
the following conditions are fulfilled. For (t̂, x̂), letϕ be an admissible superfunction
at (t̂, x̂) in Q such that ϕ is a test function of u at (t̂, x̂), that is, (3.4) holds. Then
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(i) τ + F
(

t̂, ϕx (t̂, x̂),Λσ(t̂,·)W (ϕ(t̂, ·))(x̂)
)

� 0 for all τ ∈ T +
P ϕ(t̂, x̂) if (A) in

Definition 4 holds;
(ii) τ + F(t̂, p,W ′′(p)X + σ(t̂, x̂)) � 0 for all (τ, p, X) ∈ P+ϕ(t̂, x̂) if (B) in

Definition 4 holds;
(iii) τ + F(t̂, p, σ (t̂, x̂)) � 0 for all (τ, p, 0) ∈ P+ϕ(t̂, x̂) if (C) in Definition 4

holds and

(u∗ − ϕ) (t̂, x) < max
Q
(u∗ − ϕ)

for all x ∈ R
(
ϕ(t̂, ·), x̂

) \{x̂} near x̂ .

The definition of the supersolution in the infinitesimal sense is given by replac-
ing u∗(< ∞) by u∗(> −∞), max by min in (3.4), superfunction by subfunction,
T +

P by T −
P ,P+ by P− and the inequalities in (i), (ii), (iii) by the opposite ones. It

turns out that Definitions 3 and 5 are equivalent.

Theorem 6 (Equivalence). Assume (W ), (S), (F1), (F2). A real-valued function
u on Q is a subsolution (resp. supersolution) of (3.1) in Q if and only if u is a
subsolution (resp. supersolution) of (3.1) in Q in the infinitesimal sense.

The proof essentially parallels that of [17, Theorem 6.9] and [21, Theorem 4.3].
In the proof of the ‘only part’, (iii) follows from the zero-curvature lemma [21,
Lemma 4.2], with a trivial modification. We give a modified version of this lemma
for reader’s convenience. We do not repeat the tedious details of the proof of the
‘only if’ part. The proof of the ‘if’ part is easier and written in the proof of [21, Theo-
rem 4.3]; of course we need trivial modifications, for exampleΛW

(
ψ(t̂, ·), x̂

)
< 0

should be replaced by χ
(
ψ(t̂, ·), x̂

)
< 0.

Lemma 2 (Zero curvature). Let u be a subsolution of (3.1) in Q. Assume that
ϕ ∈ AP (Q) and that

max
Q
(u∗ − ϕ) = (u∗ − ϕ) (t̂, x̂)

for (t̂, x̂) ∈ Q. If x̂ is an end point of a faceted region R
(
ϕ(t̂, ·), x̂

)
with ϕx (t̂, x̂) ∈

P and (u∗ − ϕ) (t̂, x) < (u∗ − ϕ) (t̂, x̂) for all x ∈ R
(
ϕ(t̂, ·), x̂

)
near x̂ , then

ϕt (t̂, x̂)+ F
(
t̂, ϕx (t̂, x̂), σ (t̂, x̂)

)
� 0.

4. Comparison Principle

We state our main comparison result for equation (3.1).

Theorem 7. (Comparison) Assume that condition (W ), (S), (F1), (F2), (F L)
and (FT ) hold. Assume that P is a finite set. Let u and v be respectively sub- and
supersolutions of (3.1) in Q = (0, T )×Ω , where Ω is a bounded open interval.
If u∗ � v∗ on the parabolic boundary ∂p Q(= [0, T )× ∂Ω ∪ {0} ×Ω) of Q, then
u∗ � v∗ in Q.
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The proof will be given in the remaining part of this section. The basic strategy is
in finding suitable test functions of u and v to obtain a contradiction after having
assumed that the conclusion u∗ � v∗ had been false. This basic strategy is the
same as in [17]. However, the nonlocal curvature may depend on x even if x is in a
faceted region. So one should be careful on this issue. This is a new aspect of the
problem. On the other hand since the infinitesimal version of definitions of sub- and
supersolutions are simplified in comparison with [17], we need not avoid handling
the case where functions take a maximum value at the end points of faceted regions.
In fact, it is mentioned in [21] that the proof of [17] is simplified.

4.1. Doubling Variables

As usual, we double the variables. For z = (t, x), z′ = (s, y) ∈ Q, we set

w(z, z′) = u(z)− v(z′).

We take a barrier function which is different from the one in [17]. Let B ∈ C2
P (R)

be a function such that B is convex, x B ′(x) � 0 for all x ∈ R with B(0) = 0 and

0 < lim|x |→∞B ′(x)/x, lim|x |→∞B ′(x)/x < ∞.

Moreover, the length of all faceted regions is the same. It is easy to find the derivative
B ′ of such a function by modifying y = x , so that B is obtained as its primitive. We
consider its rescaled version: Bε(x) = εB(x/ε) for ε > 0. Clearly, Bε ∈ C2

P (R)
and satisfies the same properties as B’s. We consider ‘barrier functions’ of the
diagonal z = z′:

�(z, z′; ε, δ, γ, γ ′) = Bε(x − y)+ S(t, s; δ, γ, γ ′)
S(t, s, δ, γ, γ ′) = (t − s)2/δ + γ /(T − t)+ γ ′/(T − s)

for positive parameters ε, δ, γ, γ ′ (in [17] we use |x − y −ζ |2/ε2 instead of Bε(x −
y), where ζ is an extra shift parameter used to avoid the situation when a point that
we are dealing with is an end point of faceted regions). We often write�(z, z′) and
S(t, s) instead of showing the dependence on all positive parameters. As usual, we
shall analyze the maximizers of

Φ(z, z′) = w(z, z′)−�(z, z′).

4.2. Choice of Parameters

We shall choose ε, δ, γ, γ ′ sufficiently small, as usual. The next statement for
the behavior of the maximizer of Φ is rather standard in the process of doubling
variables; see for example, [16], [17, Proposition 7.1], [26].

Proposition 5. Assume that u and −v are upper-semicontinuous in [0, T ) × Ω

with values in R ∪ {−∞} and u = u∗, v = v∗ including {T } ×Ω , where Ω is an
open set in R. Assume that m0 = supz∈Q w(z, z) > 0.
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(i) For each m′
0, (0 < m′

0 < m0), there are γ0, γ
′
0 > 0 such that supQ×Q Φ > m′

0
for all ε > 0, δ > 0, γ0 > γ > 0, γ ′

0 > γ ′ > 0.
(ii) (Behavior of a maximizer) Let (ẑ, ẑ′) = (t̂, x̂, ŝ, ŷ) be a maximizer of Φ over

Q × Q. Then

|t̂ − ŝ| � Mδ1/2, Bε(x̂ − ŷ) � M

with M = supQ×Q w for all ε > 0, δ > 0, γ0 > γ > 0 and γ ′
0 > γ ′ > 0.

Moreover, |t̂ − ŝ|2/δ → 0, Bε(x̂ − ŷ) → 0 since M → m as ε → 0, δ → 0.
(iii) (Effect of boundary condition) Assume that u � v on ∂ p Q(= ∂p Q) and thatΩ

is a bounded open interval. Then, there are ε0, δ0 such that (ẑ, ẑ′) is an (interior)
point of Q × Q for all 0 < ε < ε0, 0 < δ < δ0, 0 < γ < γ0, 0 < γ ′ < γ ′

0.

Remark 2. Since w is upper-semicontinuous, we may assume in (iii) that for each
ξ > 0

w(z, z′) � ξ for (z, z′) ∈ ∂ p Q × Q ∪ Q × ∂ p Q

satisfying Bε(x − y) < M, |t − s|2/δ < M with z = (t, s), z′ = (s, y).

In the sequel, we assume that m0 > 0 with ξ = 1
4 m0, m′

0 = m0 − ξ/2 and we
fix ε0, δ0, γ0, γ

′
0 so that all properties (i)-(iii) and those in Remark 2 hold.

4.3. Maximizers in a Faceted Region of Test Functions

We shall consider three cases depending on the location of maximizers (ẑ, ẑ′) =
(t̂, x̂, ŝ, ŷ) of Φ over Q × Q.

Case A: p̂ = B ′
ε(x̂ − ŷ) ∈ P and x̂ − ŷ ∈ int R(Bε, x̂ − ŷ).

Case B: p̂ = B ′
ε(x̂ − ŷ) /∈ P .

Case C: p̂ = B ′
ε(x̂ − ŷ) ∈ P and x̂ − ŷ ∈ ∂R(Bε, x̂ − ŷ).

Proposition 6. Assume the conditions of Case A for (ẑ, ẑ′) = (t̂, x̂, ŝ, ŷ)∈Q × Q.
Let u0 and v0 denote

u0(t, x) = u(t, x)− p̂x, v0(s, y) = v(s, y)− p̂y

with p̂ = B ′(x̂ − ŷ). Then u0(t̂, ·), −v0(ŝ, ·) take their local maxima at x̂ and ŷ
respectively. Moreover,

u0(t, x)− v0(s, y)− S(t, s) � u0(t̂, x̂)− v0(ŝ, ŷ)− S(t̂, ŝ)

for all (x, y) ∈ Σκ, t, s,∈ [0, T ] for sufficiently small κ > 0 where

Σκ = {(x, y) ∈ Ω ×Ω | |x − y − (x̂ − ŷ)| < κ}.
This follows from the definition since Bε is a P-faceted function (we do not

even invoke Proposition 5).
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Proposition 7 (No touching of faceted region on the boundary). Assume the
conditions of Case A for (ẑ, ẑ′) and choose parameters ε0, δ0, γ0, γ

′
0 as in Remark 2.

Assume that 0 < ε < ε0, 0 < δ < δ0, 0 < γ < γ0, 0 < γ ′ < γ ′
0. Let Ω denote

Ω = (a, b). Then there is x1 ∈ (x̂, b1) or y1 ∈ (ŷ, b2) such that

u0(t̂, x1) < u0(t̂, x̂) or v0(ŝ, y1) > v0(ŝ, ŷ)

with η = x̂ − ŷ, b1 = min(b, b + η), b2 = min(b, b − η). The same assertion
is valid if (x̂, b1) and (ŷ, b2) are replaced by (a, x̂) and (a2, ŷ) respectively, with
a1 = max(a, a + η), a2 = max(a, a − η).

For the proof, we invoke Remark 2. The proof depends on the boundary condi-
tion (Proposition 5 (iii)) and it parallels that of [17, Proposition 7.10].

4.4. Existence of Admissible Superfunctions

Unfortunately, functions u0 and v0 may not be faceted at x̂ and ŷ. We have to
regularize them by taking sup-convolution with faceted functions. For ρ > 0 let
ϑ(x, ρ) denote

ϑ(x, ρ) =

⎧
⎪⎨

⎪⎩

(x − ρ)2/ρ, x > ρ,

0 |x | � ρ,

(x + ρ)2/ρ x < −ρ.
We consider sup-convolutions of u0 and −v0 by ϑ . For α > 0 let uα0 be the sup-
convolution of u0 in the x-direction, that is,

uα0 (t, x) = (u0(t, ·))α = sup{u0(t, ξ)− ϑ(ξ − x, α); ξ ∈ R}
where we use the convention that u0 = −∞ if ξ /∈ Ω . The inf-convolution of v0 is
defined by v0ρ = −(−v0)

β for β > 0. Functions uα0 , v0β are defined in [0, T ]×R.
Based on these regularizations and the maximum principle for faceted sub- and
supersolutions, the desired admissible super- and subfunctions are constructed.
The proof is essentially the same as in [17, Proposition 7.12-7.15]. Although it is
highly nontrivial, we do not repeat the proof.

Theorem 8. Assume the condition of Case A and choose parameters ε0, δ0, γ0, γ
′
0,

as in Remark 2. Let 0 < ε < ε0, 0 < δ < δ0, 0 < γ < γ0 and 0 < γ ′ < γ ′
0.

Then, there exists an admissible superfunction U at (t̂, x̂) in Q and an admissible
subfunction V at (ŝ, ŷ) in Q satisfying the following properties.

(i) U and V are test functions of u and v at (t̂, x̂) and (ŝ, ŷ) respectively. In fact,

max
Q
(u − U ) = (u − U )(t̂, x̂) = 0, min

Q
(v − V ) = (v − V )(ŝ, ŷ) = 0.

(ii) U (t̂, ·) is p̂-faceted at x̂ ∈ int R
(
U (t̂, ·), x̂

)
and T +

P U (t̂, x̂) � St (t̂, ŝ);
V (ŝ, ·) is p̂-faceted at ŷ ∈ int R

(
V (ŝ, ·), ŷ

)
and T −

P V (ŝ, ŷ) � Ss(t̂, ŝ).
(iii) R

(
(U (t̂, ·), x̂

) = R
(
V (ŝ, ·), ŷ

) + (x̂ − ŷ). In particular, L
(
U (t̂, ·), x̂

) =
L

(
V (ŝ, ·), ŷ

)
.

(iv) χ
(
U (t̂, ·), x̂

) + χ
(−V (ŝ, ·), ŷ

)
� 0.
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The function uα0 + p0x is essentially an admissible superfunction so we are
tempted to set U = uα0 +p0x . However, the faceted region may contain the boundary
point of ∂Ω . Since

uα0 (t, x)−v0α(s, y) � uα0 (t̂, x̂)−v0α(ŝ, ŷ)+ϑ
(

x − y − η,
λ0

2

)
+S(t, s)−S(t̂, ŝ)

on ([0, T ] × R)2 for sufficiently small α as observed in [17, Proposition 7.13], we
are able to apply the maximum principle for faceted functions [17, Corollary 4.6]
to construct U . The properties (ii)–(iv) are obtained by the comparison principle
for ΛσW (Theorems 1, 4).

4.5. Proof of Comparison Theorem

We are now in position to prove Theorem 7. Suppose that the conclusion were
false. We may assume that u and v satisfy the assumptions of Proposition 5, by
considering u∗ and v∗ on Q. In particular, we may assume m0 > 0. We shall fix
ε0, δ0, γ0, γ

′
0, as in Remark 2, and assume that 0 < ε < ε0, 0 < δ < δ0, 0 < γ <

γ0 and 0 < γ ′ < γ ′
0. Since Q is compact and u and −v are upper-semicontinuous,

there is always a maximizer (ẑ, ẑ′) = (t̂, x̂, ŷ, ŝ) of Φ over Q × Q and it is in
Q × Q by the choice of parameters (Proposition 5 (iii) and Remark 2). We shall
fix γ and γ ′. We divide the situations into three cases.

Case I. For sufficiently small ε, δ(> 0) say ε < ε1(< ε0), δ < δ1(< δ0), there is
a maximizer (ẑ, ẑ′) such that Case A occurs (for x̂ and ŷ).

Case II. There is a sequence ε j → 0, δ j → 0, such that there is a maximizer
(ẑ, ẑ′), such that Case B occurs.

Case III. There is a sequence ε j → 0, δ j → 0 such that there is a maximizer (ẑ, ẑ′)
such that Case C occurs and there is no maximizer (ẑ, ẑ′) such that either Case
A or Case B occurs.

In Case I, we invoke Theorem 8. Since U is an admissible superfunction at (t̂, x̂)
in Q and since u is a subsolution, by Definition 4 and Theorem 8 (i), (ii) we have

St (t̂, ŝ)+ F
(

t̂, p̂,Λσ(t̂,·)W (U (t̂, ·))(x̂)
)

� 0. (4.1)

Similarly,

− Ss(t̂, ŝ)+ F
(

ŝ, p̂,Λσ(ŝ,·)W (V (ŝ, ·))(ŷ)
)

� 0. (4.2)

By Theorem 8 (iv), we have

Λ
σ(t̂,·)
W (U (t̂, ·))(x̂) = Λ

σ(t̂,·)
χU

l χ
U
r
(x̂, IU ) � Λ

σ(t̂,·)
χV

l χ
V
r
(x̂, IU ), (4.3)

IU = R(U (t̂, ·), x̂), (4.4)

where χU
l and χU

r denote the transition numbers of U (t̂, ·) on IU and χV
l and χV

r
denote the transition numbers of V (ŝ, ·) on IV = R(V (ŝ, ·), ŷ). Since we have



440 M.-H. Giga, Y. Giga & P. Rybka

assumed that P is a finite set, there is K such that P ⊂ [−K , K ]. Thus, by (FT)
and (F2), inequalities (4.1) and (4.3) yield

St (t̂, ŝ)+ F

(
ŝ, p̂,Λσ(t̂,·)

χV
l χ

V
r
(x̂, IU )

)
− ωK (t̂ − ŝ) � 0 (4.5)

with some modulus ωK . By definition, inequality (4.2) can be rewritten as

− Ss(t̂, ŝ)+ F

(
ŝ, p̂,Λσ(ŝ,·)

χV
l χ

V
r
(ŷ, IV )

)
� 0. (4.6)

Subtracting (4.6) from (4.5) yields

γ

(T − t̂)2
+ γ ′

(T − ŝ)2
+ F

(
ŝ, p̂,Λσ(t̂,·)

χV
l χ

V
r
(x̂, IU )

)
− F

(
ŝ, p̂,Λσ(ŝ,·)

χV
l χ

V
r
(ŷ, IV )

)

� ωK (|t̂ − ŝ|).
This implies

(γ + γ ′)/T 2 � C(1 + K )|Λσ(t̂,·)
χV

l χ
V
r
(x̂, IU )−Λ

σ(ŝ,·)
χV

l χ
V
r
(ŷ, IV )| + ωK (|t̂ − ŝ|)

(4.7)

by (FL). By Theorem 8(iii), we know IU = IV + x̂ − ŷ. Sending ε to zero, we
observe that x̂ − ŷ → 0 by Proposition 5 (ii). By (S), we know that σx (s, ·) is
uniformly bounded. We now invoke continuity results (Theorems 2 and 3 (ii)) to
get

Λ
σ(t̂,·)
χV

l χ
V
r
(x̂, IU ) → Λ

σ(t,·)
χV

l χ
V
r
(x, I ),

Λ
σ(ŝ,·)
χV

l χ
V
r
(ŷ, IV ) → Λ

σ(s,·)
χV

l χ
V
r
(x, I ) (4.8)

as ε → 0, where x(= y), t, s is a subsequent limit of x̂, ŷ, t̂, ŝ as ε → 0 and I is
a subsequent limit of IU which is the same as the limit of IV . Note that U and V
depend ε, so do IU and IV . However, the convergence is uniform with respect to the
interval and σ , so we are able to obtain (4.8). Applying Theorem 2 and Theorem
3(ii) again to (4.8), we let δ → 0 and observe that the right hand sides of (4.8)
converge to the same value. We now send ε → 0 and then δ → 0 in (4.7) to get
(γ + γ ′)/T 2 � 0, which is a contradiction.

Case II is rather standard [11,16,17]. The assumptions (FL) and (S) are useful
in this step. Case III is essentially the same as Case I (or even easier) if one admits
the zero curvature lemma (Lemma 2). 	


4.6. Periodic Version

As noted in [17] a similar argument yields the comparison principle under
spatially periodic boundary conditions. In fact, the argument is even simpler because
there is no lateral boundary of Q = (0, T )×T, T = R/ωZ,ω > 0. For the reader’s
convenience, we state the comparison principle for the periodic boundary condition.
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Theorem 9 (Comparison). Let us assume that the conditions (W ), (S), (F1), (F2),
(F L) and (FT ) hold and in addition set P is finite. Let u and v be respectively
sub- and supersolutions of (3.1) in Q = (0, T )× T, T = R/ωZ with period ω. If
u∗ � v∗ at t = 0, then u∗ � v∗ in Q.

Remark 3. As usual, Theorems 7 and 9 can be extended to the case when F =
F(u, t, p, X) depends explicitly also on u, provided that u 
→ F(u, t, p, X) +
ku =: F̃ is nondecreasing for some k � 0 and F̃ is continuous as a function of
(u, t, p, X). Of course, assumptions (FL) and (FT) should be uniform for all u
with |u| � K for a given K . If k = 0, the proof is the same except for the trivial
modification to the way of comparing (4.5) and (4.6). If k > 0, we have to introduce
a new variable ũ = u exp(−kt) and reduce the problem to the case k = 0. Note
that, differently from the standard case [16], when singularity set P is empty, our
singular set (jump discontinuity) for ũx depends on time, which apparently yields
an extra difficulty. However, we are able to circumvent this difficulty by using old
variables to calculate Λ and the slope, while using new variables ũ and ṽ to find a
maximizer of Φ.

5. Examples of Solutions

In [27,29,30] we constructed variational solutions to

βV − κγ = σ, (5.1)

while increasing generality of the setting, where β = M−1 is the kinetic coefficient.
We considered graphs, possibly satisfying an additional boundary condition, and
simple closed Lipschitz curves, which we called bent rectangles. We will show that
the variational solutions to (5.1) for the evolution of graphs are viscosity solutions
in the sense of the present paper. For the sake of illustration the theory, we will
not consider the general case of [27] but only simple ones presented in [29]. To
be precise, we are going to deal here with a simplification of the case studied in
[29], where we investigated graphs of functions defined over a finite interval J .
We considered solutions having exactly three facets and two of them touched the
boundary at the right angle. Here, we study a graph over R, with some restrictions
on the data.

We expect that the results of the present paper may be applied to closed curves,
but we will not elaborate upon this.

The advantage of studying graphs in the parametric approach is that the set of
parameters is independent of time. Thus, the main difficulty is interpreting (5.1) in
a local coordinate system. We present the setting after [29].

We specify the surface energy density (or anisotropy function) by the formula

γ (p1, p2) = |p1|γΛ + |p2|γT , γΛ, γT > 0;
we assume a simplifying form of the kinetic coefficient β = 1/M

β(n1, n2) = 1

max(|n1|, |n2|) , (5.2)

for n2
1 + n2

2 = 1. Subsequently, β is extended by 1-homogeneity to R2.
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5.1. Graphs over R

We consider the evolution of graph Γ (t) = {(x, y) ∈ R2 : y = d(t, x)}, where
d(t, ·) : R → R+. For the sake of simplicity we assume that function d(t, ·) is
admissible (in x) for all t � 0. We shall say that function d is admissible provided
that:

(a) d is Lipschitz continuous;
(b) d is even;
(c) it is bounded;
(d) (λ0,+∞) � x 
→ d(x) is strictly increasing, for a positive λ0;
(e) {dx = 0} = (−λ0, λ0).

The last condition means that we consider a simple yet nontrivial case when
d has exactly one faceted region. We stress, however, that facet (−l0, l0) may be
strictly included in (−λ0, λ0). This results from solving the minimization problem
with constraints, see Fig. 3 below.

We have to explain the definition of κγ . Formally,

κγ = −divS(∇ζ γ (n)), (5.3)

where n is the outer normal to Γ and for γ , given by (5.3), we have,

∇γ (p1, p2) = (γΛsgn(p1), γT sgn(p2)).

G(x)+

G(x)−

γ

γΛ

Λ

−l0

l0 x

0 0

i0−i0

I = (− i  , i  )

ζ
I

=            − ξG(x)

Fig. 3. Graph of G − ξ restricted to I ⊃ (−l0, l0)
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In the present case n = (−dx , 1)/
√

1 + d2
x . Thus, we immediately obtain

β(n)dt√
1 + d2

x

= σ + γΛ
∂

∂x

(
d

d p1
|dx |

)
. (5.4)

This is exactly equation (1.1) with W (p1) = γΛ|p1| and a(p1) = max{|p1|, 1},
hence our theory applies.

In [29] we interpreted (5.1) differently. Namely, we replaced gradient ∇ζ γ ,
which is defined only almost everywhere by the subdifferential, ∂ζ γ , which is well
defined for all p ∈ R2, because γ is convex. However, we had to consider sections
ξ of the subdifferential, that is ξ(x) ∈ ∂ζ γ (n(x)). That is here, where we change
notation as compared with the Introduction and Section 2. In the Introduction our
present ξ was denoted by η. On the other hand, writing ξ(x) ∈ ∂ζ γ (n(x)) is
consistent with the papers that are the source of our examples.

As a result, we end up with

β(n)dt√
1 + d2

x

= σ − τ · ∂ξ
∂τ
, (5.5)

where τ is a unit tangent, (see [29, eq. (2.3)]).
In order to select ξ we introduce a functional

E(ξ) = 1

2

∫

Γ (t)
|σ − divSξ |2 dH1

defined over D,

D = {ξ ∈ L∞(Γ ) : ξ(x) ∈ ∂γ (n(x)), divSξ ∈ L2(Γ )}.
The graph of Γ (t) has the infinite one-dimensional Hausdorff measure. But condi-
tion divSξ ∈ L2(Γ ) does not introduce additional unexpected restrictions, because
outside of the facets we have ξ = ∇γ (n), where n �= nΛ,nR and nΛ = (1, 0),
nR = (0, 1).

We call a couple (Γ, ξ) a variational solution to (5.1), provided that Γ is the
graph of an admissible function d, as described above, and at each time instant t ,
the vector field ξ(t, ·) : Γ → R2 is a minimizer of E , that is

E(ξ) = min{E(ζ ) : ζ ∈ D}. (5.6)

We can show that under natural conditions on σ , equation (5.1) takes a form
which is suitable for the analysis.

We notice that if ξ is a solution to (5.6), then the boundary of the coincidence
set ±l0 need not coincide with boundary of the flat region ±λ0, postulated by
the definition of the admissible function, thus l0 � λ0. For the sake of notational
simplicity, we shall write

R0 := d|(−l0,l0).

Once we settle the notation, we establish the following fact.
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Proposition 8. We assume that σ, σx ,∈ C(R+ × R) and σ satisfies the following
conditions:

σ(t,−x) = σ(t, x), x
∂σ

∂x
(t, x) > 0, for x �= 0. (5.7)

Let us suppose that (Γ, ξ) is a variational solution to (5.1), where Γ = Γ (d) is
the graph of d, such that at each time instant t � 0 d(t, ·) has exactly one faceted
region, (−l0, l0). Furthermore, for all t � 0 function d(t, ·) is piecewise C1. Then,

(a) We have the following formula for ξ1 for each time t � 0

ξ1(t, x) =
⎧
⎨

⎩
x

(∫ x

0
− σ(t, s) ds −

∫ l0

0
− σ(t, s) ds

)
− x

l0
γ (nΛ) for x ∈ [0, l0);

−γ (nΛ) for x ∈ [l0,∞);
(5.8)

where we write
∫

A− f dμ = 1
μ(A)

∫
A f dμ. In addition, Ṙ0 > 0.

(b) Equation (5.1) (and hence (5.5)) takes the following form,

Ṙ0 =
∫ l0

0
− σ(t, s) ds + γ (nΛ)

l0
on (−l0, l0);

dt = σ on [l0,∞). (5.9)

Remark 4. The above result is based upon [29, Proposition 2.5], [30, Proposition
3.2] derived for graphs over [−L , L] having three facets, two of them touching
the boundary of [−L , L]. In the absence of the additional facets the argument gets
simpler than in [29] and [30] and it is omitted.

Let us warn the reader that we use the notion ‘faceted region’ in the sense
defined in the present paper. In [29] and [30] its meaning is different.

It turns out that l0(·) is a genuine free boundary. We obviously need information
about its behavior. Without it, the above system is not closed.

Let us suppose that t � 0. The necessary and sufficient condition for continuity
of the function given below

χ[0,l0(t)] R0(t)+ χ(l0(t),∞)d(t, x),

is the following matching condition

R0(t) = d(t, l0). (5.10)

In addition, since we have a faceted region, the coincidence set of the obstacle
problem (5.6) may not be empty. By definition, ±l0 forms its boundary, that is,
l0 � λ0, then at such a point

∂ξ

∂x
(l0) = 0. (5.11)

We shall say that (Γ, ξ) satisfies the tangency condition at l0.
However, if d+

x (l0(t), t) > 0, then we just have a boundary condition at this
point and (5.11) does not hold.

We have the following two existence results.
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Theorem 10. Let us assume (5.2) and consider system (5.9), augmented with initial
condition (Γ0, ξ0), where

Γ0 = {(x, y) ∈ R2 : x ∈ R, y = d0(x)},
d0 is an admissible function, satisfying |d0,x (x)| < 1 for all x ∈ R. In particular,
real, positive numbers l00 R00 = d|(−l00,l00) are given. We assume that σ satisfies
(5.7). Moreover, we impose the following conditions:

(a) d0 ∈ C1(R \ (−l00, l00)) and for all x ∈ R \ (−l00, l00) the derivative d0,x is
different from zero;

(b) there is exactly one faceted region of d0, where Γ (0) = Γ (d0), namely it is
(−l00, l00);

(c) the matching condition (5.10) holds at t = 0, that is R00 = d0(l00);
(d) the tangency condition (5.11) is satisfied at t = 0, that is

σ(0, l00) =
∫ l00

0
− σ(0, s) ds + γ (nΛ)

l00
,

(e)

Σ0 =
∫ l00

0
−σt (0, y) dy − σt (0, l00) < 0.

Then,

(i) There exists a unique local in time solution to (5.9), R0 and d(t, ·) ∈
C1((−∞,−l0] ∪ [l0,∞)) and d(t, ·) is strictly increasing and its derivative
dx (t, x) never vanishes for x ∈ R \ (−l0(t), l0(t));

(ii) The matching (5.10) and tangency (5.11) conditions hold for all times t > 0,
that is if we extend d(t, ·) to R by

d̄(t, x) =
{

d(t, x) if |x | ∈ [l0,∞);
R0(t) if |x | ∈ [0, l0),

then d̄(t, ·) is Lipschitz continuous on R (subsequently we drop the bar over
the extension).

(iii) If ξ1(t, x) is given by formula (5.8) for x > 0 and we set ξ1(t, x) = −ξ1(t,−x)
for x < 0, then (Γ (d(t, ·)), ξ(t, ·))t∈[0,T ) is a variational solution to (5.1),
provided that ξ(t, ·) = (ξ1(t, ·), γ (nR)).

Remark 5. Let us stress again that l00 is defined as the boundary of the coincidence
set

{x : |ξ1(x)| = γΛ},
where ξ is a solution to variational problem (5.6). We note that in general

[−l0, l0] ⊂ {x : dx (t, x) = 0}
and the inclusion may be strict.
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Theorem 11. Let us suppose that all the assumptions of Theorem 10 hold, except
(d), that is tangency condition (5.11) and the inequality sign in (e) are reversed,
that is we have

Σ0 > 0.

Instead of (5.11) the following inequality is satisfied

σ(0, l00)−
∫ l00

0
− σ(0, s) ds + γ (nΛ)

l00
< 0.

Moreover, we assume that d0 ∈ C1,1([l00,∞)), the right derivative d+
x (0, l00) is

positive and σ ∈ C1,1. Then, there is a unique local in time solution to (5.9), such
that at no time t > 0 tangency condition (5.11) holds. Subsequently, if ξ(t, ·) is
defined, as in Theorem 10, (iii), then (Γ (d(t, ·), ξ(t, ·)) is a variational solution to
(5.1).

Remark 6. We note that l0 is a genuine free boundary; its behavior is determined
by σ . For instance if σ is independent of time and σ = σ(x), then l0(t) = l00.
The type of behavior of the interfacial curve is determined by Σ0, this quantity is
defined by [30, eq. (3.14)] and the properties of l0 are presented in [30, Proposition
3.4].

These two Theorems are based upon [29, Theorem 2.10] and the analysis of
[30, Section 3.1]. The present statements are easier than the original ones in [29,
Theorem 2.10] and in [30, Section 3.1], because we deal with a single facet for a
graph of an admissible function, but the main difference is that here we have an
unbounded domain. For the sake of completeness, we offer a sketch of the proof in
the Appendix.

5.2. Variational Solutions are Viscosity Solutions and They are Unique

Here, we shall see that our variational solution over R can be regarded as the
viscosity solutions. Hence, they will be unique. The comparison principle has been
shown for equations on a bounded domain, but our sub- and supersolutions are
fully determined for large values of |x |, thus a comparison principle for bounded
|x | is sufficient. We will explain it in Corollary 2 following Theorem 12.

Theorem 12. Under the conditions specified above, the variational solutions, con-
structed in Theorem 10 and in Theorem 11, are viscosity solutions in the sense of
the present paper, as long as |dx | � 1.

Proof. Of course equation (5.4), augmented with the initial condition, may be
written as

{
dt − a(dx )Λ

σ
W (d) = 0,

d(x, 0) = d0(x)

where ΛσW (d) = d
dx ζχlχr is given by (2.5) and the signs of χr , χl depend upon the

point we are considering. We will show that if (Γ (d), ξ) is a variational solution,
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then ΛσW (d) = σ − ∂ξ
∂x , where ξ is given by (5.8) in Proposition 8. The interval

(−l0, l0) is the inverse image of a faceted region of Γ in the language of [29,30],
it is the faceted region in the present paper sense. If I is any interval containing
(−l0, l0), then ξ̄ = ξ |I is a solution to the minimization problem,

min{EI (ζ ) : ζ ∈ DI }. (5.12)

We write, ΓI (t) = {(x, y) ∈ Γ (t) : x ∈ I } and

EI (ζ ) = 1

2

∫

ΓI (t)
|σ − divSζ |2 dH1,

DI = {ζ ∈ L∞(ΓI ) : ζ(x) ∈ ∂γ (n(x)), divSζ ∈ L2(ΓI ), ζ = ξ |∂ I }.
Indeed, if there existed ζI , a solution to (5.12), such that EI (ζI ) < EI (ξI ),

then this indicates that ξ is not a solution to (5.6), which is not possible. Thus,
if (−l0, l0) ⊂ I , then ±l0 form the boundary of the coincidence set, where the
solution ξ to (5.6) attains −γΛ, that is on the coincidence set ζI (x) = G(x)+ γΛ.
Here, G(x) denotes

∫ x
0 σ(s) ds. The situation is illustrated in Fig. 3 above.

We have to justify the possibility of taking the boundary conditions in the
definition of DI . We know that ξ is a solution to the obstacle problem (5.6) and
(−∞,−l0) ∪ (l0,∞) is the coincidence set. Using the argument of the proof of
[29, Proposition 2.5], [30, Proposition 3.2], one can show that ξ |(−∞,−l0] = γΛ and
ξ |[l0,∞) = −γΛ. Thus, ξ restricted to each connected component of the I \[−l0, l0]
is constant.

Let us now calculate ΛσW . For points of the coincidence set, it is clear that
ΛσW = σ , as desired. Let us consider interval [−l0, l0]. By the definition, see (2.5),
ΛσW = d

dx ζχlχr ,I , where ζχlχr ,I is a solution to the following obstacle problem,

min
{

J Z
χlχr

(ω, I ) : ω ∈ K Z
χlχr

}
, (5.13)

where Z(x) = ∫ x
0 σ(t, s) ds and for [−l0, l0], we have χl = +1 = χr ,

K Z++ = {ω ∈ H1(−l0, l0) : Z(x)− γΛ � ω(x) � Z(x)+ γΛ, ω(±l0) = Z(±l0)

±γΛ}.
Since the boundary conditions in K Z++ are that of D[−l0,l0], we immediately con-
clude, by previous considerations, that ζ defined by Z − ξ is the solution to (5.13).
Hence, ΛσW = σ − ∂ξ

∂x .

After these preparations, we may check that a variational solution is a viscosity
solution. First, we shall see that d is a supersolution. For this purpose, we take a
test function ϕ ∈ AP (Q), such that d − ϕ attains a minimum at (x0, t0), where
t0 ∈ (0, T ). We have to show that

ϕt −ΛσW � 0. (5.14)

Inequality (5.14) (and (5.16) below) is to be checked at each point. We have to
consider two cases for the interfacial curves: (a) the free boundary l0 is a tangency
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curve; (b) the free boundary l0 is a matching curve and the tangency condition is
violated.

In addition, in the course of proving (5.14), we will consider three cases sepa-
rately:
(i) |x0| > l0(t0), (ii) |x0| ∈ [0, l0(t0)), (iii) |x0| = l0(t0).

We begin with (i). Since we assumed that d0 ∈ C1, we know (see Theorem 10
or Theorem 11) that at (x0, t0) function d is differentiable. Hence, for ϕ(x, t) =
f (x)+ g(t) with d − ϕ � 0 in a neighborhood of (x0, t0), we have

dx (x0, t0) = f ′(x0), dt (x0, t0) = g′(t0).

Due to Definition 2, we have ΛσW (ϕ) = σ = ΛσW (d). As a result,

0 = dt − σ = g′ −ΛσW (ϕ) = ϕt −ΛσW (ϕ),

as desired.
Now, we look at (ii). The argument depends on the type of the interfacial curve

l0. Let us first assume that l0 is a tangency curve.
In the considered case, d is also differentiable at (x0, t0). If ϕ is a test function,

such that d − ϕ attains its minimum at (x0, t0), then

dx (x0, t0) = 0 = f ′(x0), dt (x0, t0) = g′(t0).

Since f ∈ C2
P (Ω), we immediately see that I = R( f, x0), the faceted region of ϕ

at (x0, t0), must contain [−l0, l0]. Let us suppose that ξI is the solution to

min{EI (ω) : ω ∈ DI }.
By the geometric interpretation of the obstacle problem (5.6), [29, Proposition 2.3],
the coincidence set is I \ (−l0, l0). This is the place where we use the fact that the
tangency condition holds at x0.

As a result of the above observation, we have ΛσW (d) = ΛσW (ϕ). Moreover,

ΛσW (d) = σ − ∂ξ

∂x

=
∫ l0

0
− σ(t, s) ds + γ (nΛ)

l0
.

Thus, by (5.9)

0 = Ṙ0 −
∫ l0(t0)

0
− σ(s) ds − γ (nΛ)

l0(t0)
= dt −ΛσW (d) = ϕt −ΛσW (ϕ),

as desired.
Let us note that this argument works well for (x0, t0) = (l0(t0), t0) if the

tangency condition holds, so (iii) holds in this case.
We continue our analysis of case (ii). We have to consider the situation when

l0 is a matching curve. We will have to compare ΛσW (d) and ΛσW (ϕ). One way is
to invoke Theorem 4, but we think it is instructive to check it directly.
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Let us suppose that I = [−a, b] is the faceted region ofϕ containing (x0, t0).We
consider the minimization problem (5.13) defining ζI on that interval. Without the
loss of generality, we may restrict our attention to a subinterval [μ0, μ1] ⊂ [−a, b],
such that dζI

dx is constant on [μ0, μ1]. Let us first consider that situation when

μ0 = −μ1. We have to compare velocities dζI
dx and dξ

dx on [−l0, l0]. Since the
tangency condition is violated at l0, then there is a possibility of bigger faceted
regions containing [−l0, l0]. Moreover, dζI

dx is a slope of a line connecting 0 and

Z(μ1)+ γΛ, while dξ
dx is a slope of a line connecting 0 and Z(l0)+ γΛ. Since Z is

strictly increasing, we deduce that dζI
dx <

dξ
dx . The same observation applies when

we want to compare slopes of minimizers to (5.13) on [−a, b] and [−μ1, μ1] and
a = μ1 or b = μ1 but [−a, b] ⊃ [−μ1, μ1]. Thus, we have

ϕt −ΛσW (ϕ) � dt −ΛσW (d)

= Ṙ0 −
∫ l0

0
− σ(t, s) ds − γ (nΛ)

l0
(5.15)

= 0.

(iii) In order to complete the discussion of the facet, we have to consider the
case when at the interfacial point the tangency condition is violated. Let us suppose
that this happens at x0 = l0 (the case x0 = −l0 is analogous). At this point d(t0, x0)

need not be differentiable with respect to x . Hence, if ϕ is a test function such that
d − ϕ attains its minimum, then d−

x (l0(t0), t0) = 0 and d+
x (l0(t0), t0) � 0.

The point (l0(t0), t0) belongs to the faceted region of d, hence it belongs to the
faceted region of the test function ϕ. As a result, the above consideration onΛσW (ϕ)
is valid. Hence, the series of inequalities (5.15) is valid too.

We also have to check that d is a subsolution. For this purpose we take a test
function ϕ ∈ AP (Q), such that

max(d − ϕ) = d(t0, x0)− ϕ(t0, x0).

We shall show that

ϕt −ΛσW � 0. (5.16)

We consider the same three cases. They are handled in an analogous way, we exploit
the fact that d(t, ·) is a C1 function on (−l0, l0) and on R \ [−l0, l0].

The case (i) is handled as before, because of differentiability of d and ϕ at
(x0, t0).

(ii) If |x0| < l0(t), then the faceted region of ϕ is contained in [−l0(t0), l0(t0)].
By the previous analysis, we conclude that ΛσW (ϕ) � ΛσW (d). Hence,

ϕt −ΛσW (ϕ) � dt −ΛσW (d) = 0.

Case (iii) is handled in a completely analogous way, as before. We omit the
details. 	

Corollary 2. Let us suppose that the assumptions of Theorem 12 hold. The varia-
tional solutions constructed in Theorems 10 and 11 are unique, as long as |dx | � 1
and the initial condition d0 is strictly increasing on [l00,∞).
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Proof. Let us suppose that (Γ (di ), ξ i ) are two variational solutions, with initial
data Γ (d0), where d0 is admissible. We notice that it is sufficient to show that
d1 = d2.

Let us set A = maxt∈[0,T ) l0(t)+1. Due to (5.7), by formula (6.2), we conclude
that di

x (t, x) �= 0 for all (t, x) ∈ (0, T ) × (A,∞). Since we solve an ODE for
|x | > A, by the inspection of equation (6.1) we immediately see that if v := d1 is
a supersolution and u := d2 is a subsolution to (6.1), then v � u. Subsequently,
by interchanging the roles of d1 and d2, we conclude that d1 = d2 for (t, x) ∈
[0, T )×R\ (−A, A). As a result, we can see that an application of the Comparison
Principle on (−A, A) yields that d1 = d2 for all (t, x) ∈ [0, T )× R. 	
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Appendix

Here we give a sketch of proof of Theorems 10 and 11 by pointing to the main differences
with [29, Theorem 2.10] and [30, Section 3.1].

In [29], we considered equation (5.5) on a bounded interval J . The initial condition,
hence the solution, had three facets, two of them touching the endpoint of J . Here, we
consider (5.5) on R and that the data d0 has a single facet, hence the same will hold for the
solution. We have to check the existence of a solution for all x ∈ R for all t ∈ [0, T ]. Here,
the limitations arise from the constructions of the free boundary l0 performed in [30, Section
3.1]. We have already mentioned that the construction essentially depends upon the sign of
Σ0, but it is local in the sense that it uses the data from a neighborhood of l00.

Thus, we have to make sure that we can solve (5.5)2, that is,

dt (t, x) = σ(t, x), d(0, x) = d0(x) (6.1)

for all large x , for example x > A > l00 for a constant A and all t ∈ [0, T ]. This problem
can be solved for all x � l00 uniformly in t > 0,

d(t, x) =
∫ t

0
σ(s, x) ds + d0(x), (6.2)

since we assumed that σx ∈ C(R+×R). Moreover, the solution will be Lipschitz continuous
if for all t � 0 we have that Lip (σ (t, ·)) � L .

We notice that for all t > 0 function d(t, ·) is not only strictly increasing in x , but also
the derivative dx (t, x) is positive for all x > l00.

We also have to check that the Cahn-Hoffman vector ξ , specified in the statements of
Theorems 10 and 11, is a unique minimizer of E . This task is left to the reader. Hence,
(Γ (d(t, ·), ξ(t, ·))t∈[0,T ) is a variational solutions.
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Remark 7. We notice that the same kind of the argument shows that Theorem 10 and 11
are valid also if σ = σ(x1, x2) satisfies an extension of condition (5.7) for functions of two
variables, that is

σ(±x1,±x2) = σ(x1, x2),
∂σ

∂xi
(x1, x2)xi > 0 for xi �= 0.

Moreover, by Remark 3, the Comparison Principle (Theorem 7) holds in this case, too.
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