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Abstract: A treatment of internally constrained mixtures of elastic continua at a common temperature is de
veloped. Internal constraints involving the defonnation gradient tensors and the common mixture temperature 
are represented by a constraint manifold, and an internally constrained mixture ofelastic continua is associated 
with each unique equivalence class ofunconstrained mixtures. The example of intrinsic incompressibility of 
each constituent first proposed by Mills is discussed. 

1. INTRODUCTION 

An internal constraint is usually regarded as a restriction on the possible motions that a 
material may experience. In this paper, an internal constraint for a mixture ofelastic continua 
at a common temperature is defined as a restriction on the possible processes that the mixture 
constituents may experience. The general form of the internal constraint considered here, 
which involves both of the deformation gradient tensors, is motivated by the constraint of 
intrinsic incompressibility of each constituent in a saturated mixture introduced by Mills [1]. 
In particular, this constraint simultaneously restricts the possible values of the constituent 
densities. The partial time derivative of this incompressibility condition was simplified by 
Mills using the continuity equations and introduced into a mixture entropy inequality with a 
Lagrange multiplier to derive restrictions on the constitutive equations. Several authors [2-6] 
have studied the special constraint of intrinsic incompressibility using the approach ofMills. 
However, there does not exist a systematic procedure in mixture theory for introducing more 
general internal constraints, such as inextensibility or temperature-dependent compressibili~ 

The first general theory of thermomechanical constraints was developed by Green, 
Naghdi, and Trapp [7]. Recently, Casey [8] developed a new approach to internally 
constrained elastic materials, which has been extended to include thermoelastic materials 
by Casey and Krishnaswamy [9]. In [9], an internal constraint is represented as a constraint 
manifold in strain-temperature space and is used to define an equivalence relation on the set 
of unconstrained materials. In addition, the authors provided a prescription for the entropy, 
an approach that was advocated by Rivlin [10-11] and Day [12]. In a more recent paper, 
Krishnaswamy and Batra [13] developed prescriptions for the partial entropies of a mixture 
of an elastic solid and a viscous fluid at a common temperature. 



In the present paper, the method of [9] is extended to internally constrained mixtures 
of elastic continua at a common temperature. The basic equations for mixtures are given 
in Section 2, and constitutive equations for an unconstrained mixture of elastic continua 
at a common temperature are derived in Section 3 where the method of [13] is used 
to obtain prescriptions for the partial entropies. An equivalence class associated with an 
internal constraint for a mixture of elastic continua is defmed in Section 4, which leads to 
a definition of a constrained mixture of elastic continua. The internal constraint of intrinsic 
incompressibility is discussed in Section 5. 

2. PRELIMINARIES 

Consider a mixture C of two elastic constituents ca , with the superscript a = 1, 2 being 
used to designate each constituent (the summation convention is not used on a). A mixture 
of elastic continua naturally includes the case of a mixture of an elastic solid and an inviscid 
fluid, as an inviscid fluid may be regarded as an elastic material for which the free energy 
function only depends on the deformation gradient tensor through its determinant. A material 
particle of Ca occupies a position X a in a fIXed reference configuration 1\,0 and a position 
xa in a present configuration 1\,. It is assumed that there exists one particle of each Ca at 
each point x in the mixture such that x = X l = X 2. The motion of Ca and the common 
temperature of the mixture are defmed by sufficiently smooth mappings 

() = 8 (Xa 
, t) , (2.1) 

respectivel~ where ()(> 0) is the absolute temperature of the mixture. The pair {Xa , 8} is 
referred to as a process for Ca 

• 

The density pa of Ca is considered to be the average mass density of Ca over a small 
mixture volume. The density of the mixture is defmed as 

(2.2) 

The velocity of Ca is 

da 

va = -Xa (Xa t) (2.3)
dt " 

where the material time derivative da 
(. ) / dt following the motion of Ca is given for scalar 

or vector functions ((x, t) and w(x, t) by 

da ( a( daw aw
 
- = - + (grad() . va -;It = iii + (grad w) va · (2.4)

dt at ' 

The material time derivative d( .)/ dt following the mean mixture motion is defmed as 

d( a( dw aw
 
- = - + (grad () · v dt = iii + (gradw)v, (2.5)

dt at ' 



where the mean, or barycentric, velocity v is defmed by 

(2.6) 

aA diffusion velocity u and a relative velocity a are defmed as 

(2.7) 

From (2.4-2.5) and (2.7), we obtain the useful relationships 

dP( p d( a"dt + (grade) · (va - v ) = dt + (grade) · u , 

dPw dw adt + (grad w) (va - v P) = dt + (grad w) u . (2.8) 

For each Ca 
, the deformation gradient tensor is 

(2.9) 

where 

(2.10) 

The velocity gradient tensor and the rate of deformation tensor are 

La = ava lax, (2.11) 

respectivel~ where the superscript T denotes the transpose operator. 
Assuming that internal mass exchange among the constituents is zero, the spatial forms 

of the balance ofmass, linear momentum, angular momentum, and energy equations for Ca 

take the form [14] 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where T a is the partial Cauchy stress tensor, 1t"a is the diffusive force, b a is the partial 
aexternal body force, Aa is the internal body couple, ea is the partial internal energ)', r is the 

partial external heat suppl)', qa is the partial heat flux, and p a is the internal energy suppl~ 



The balance ofmomentum for the mixture requires that 

(2.16) 

The balance of angular momentum for the mixture requires that 

(2.17) 

so that the total stress in the mixture is symmetric, that is, 

(2.18) 

When writing the balance of energy for the mixture, partial Helmholtz free-energy 
functions lfIa are introduced as lfIa = ea - 1J a 0, where 1J a is the partial entrop~ for which 
a prescription will be given in Section 3. The mixture quantities lfI, e, r, and 1J are defmed as 

(2.19) 

Without loss of generali~ the partial stresses and diffusive forces can be written as 

(2.20) 

where 

(2.21) 

and the parts ofthe partial stresses and diffusive forces in which 4J a appears do not contribute 
to the balance equations.! With these defmitions, the balance of energy for the mixture can 
be expressed as [16] 

2
 
dlfl dO dYJ · * a a - a a
P -+1J-+ 8- ) -pr+dlvq + ~(1T ·v -T ·L ) =0 (2.22)

( dt dt dt Lt ' 
a=l 

where 

2 

q* = q + Lpa YJ a()Ua , (2.23) 
a=l 

Using (2.8) and (2.12), we ma~ for a scalar function defmed forbothCa and C as in (2.19)4, 
derive the useful relationship 



(2.24) 

A superposed rigid-body motion of the mixture is defmed by 

t+ = t + c, (2.25) 

where Q(t) is a proper-orthogonal second-order tensor, c(t) is a vector, and c is a constant. 
The quantities (Q(t), c(t), c) for each Ca are equal. Under a superposed rigid-body motion 
ofan unconstrained mixture at fixed temperature, it can be shown that the following kinematic 
quantities transform as 

a+ =a, (2.26) 

while it is assumed that 

a+ Q a a
1r = 1r, e 

+
= ea. (2.27) 

From (2.15) and (2.26-2.27), it can be concluded that 

(2.28) 

3. ENTROPY AND RESTRICI10NS ON CONSTITUTIVE EQUATIONS 

The approach taken in this paper to develop prescriptions for the partial entropies is based on 
the work of Krishnaswamy and Batra [13]. In particular, these authors applied an approach 
advocated for materials with memory [10-11] and thermoelastic materials [9] to a mixture of 
an elastic solid and a viscous fluid. In this approach, a special process is defined and Part I 
ofthe Second Law ofThermodynamics is invoked to obtain the entropy prescriptions. Then, 
restrictions on the constitutive equations are derived from the mixture energy equation, and 
further restrictions are derived from invoking the Clausius-Duhem inequality as a statement 
of Part II of the Second Law of Thermodynamics. 

We adopt the notation 

(3.1) 

where Ga = GradFa; a can be considered to be a point in a 73-dimensional Euclidean 
space R 73. Without loss of generali~ it is assumed that 

fa = i a (a, a) =0 i a (a) +e i a (a, a) (3.2) 
T a = fa (a, a) =0 fa (a) +e fa (a, a) , (3.3) 



where 

oia (a) = ia (a,O) , eia (a, 0) = 0 (3.4) 

oTa
(a) =Ta

(a,o), eTa (a,O) = o. (3.5) 

Furthermore, it is assumed that 

qa = qa (a, g) , qa (a,o) = 0, (3.6) 

where g = gradO. We require that oEa(I, I, 0,0,(0 ) = 0, where 00 is the mixture 
temperature in the reference configuration ""0. A path P in the space R 73 is parameterized 
by a real-valued function ~ (t) as 

(3.7) 

where ~ 1 ::; ~ ::; ~ 2. A homothermal quasi-static process is defmed to be the limit of 
homothermal processes:2 

. d~ . 
g=O, ~ = at > 0, ~ -+ O. (3.8) 

Bydefming 

a 
a d a (Xa ) (3.9)v* = d~ X ,t 

and using v~ in place ofva in (2.6-2.7) and (2.11), we obtain defmitions for the quantities 
v *' u~ , a*, L~ , and D~ , so that 

(3.10) 

Therefore, in a homothermal quasi-static process va ~O, v~O, u a ~O, a~O, La ---* 0, 
and Da ~ o. Finall~ in a homothermal quasi-static process, it is assumed thai3 

(3.11) 

and 

P a/~ ~ 0, a/~ aU ---r r u ---+ r lim , (3.12) 



where rUm remains fmite. Hence, the energy equation (2.15) for Ca can be written in rate
independent form for a homothermal quasi-static process as 

aa 
daia (~,O) a a T.... (A ) n a 

p d~ = P r lim + ~,O· * , (3.13) 

or, using (3.4-3.5), as 

a 
a a 1 ( d Aa t a )p r lim = _ a --L _ • na (3.14)() () p d~ *.0 

No~ Part I of the Second Law of Thermodynamics is invoked to assert that the Clausius 
integral given by 

l
t52 t52 a 

a a 1 ( d Aa )r = P r limdJ = l - pa--L -0 t a 
. D~ dJ (3.15) 

t51 () t5 1 () d~ 

is path-independent. This furnishes a partial entropy function y/ a = ~ a (~) such that for all 
homothermal quasi-static processes, 

(3.16) 

It is assumed that the partial entropy depends only on the quantities ~ for all 
processes. The arbitrary constant of integration in the partial entropy is fixed by requiring 
y/ a (I, I, 0, 0, ()o) = o. 

To develop restrictions on the constitutive equations, fIrst consider the mixture energy 
equation (2.22) written as follows for a homothermal quasi-static process: 

2 

+ :L(7i"a ·v~ -Ta .L~) = o. (3.17) 
a=l 

Defining, as in (3.2-3.5), 

TjJ (~, a) =0 TjJ (~) +e TjJ (~, a) (3.18) 

:rra (a, a) =0 :rra (a) +e :rra (a, a) (3.19) 

Ta (~, a) =0 Ta (~) +e T a (a, a), (3.20) 

and using (2.24), (3.12)2, and (3.16), the mixture energy equation (3.17) can be written for 
a homothermal quasi-static process as 



d;ijJ dO ) ~ ( - a a T-a La ) 0 (3.21)P ( db + 11 db + ~ 01r • V * -0 • * = , 

which will be referred to as the Gibbs equation for a mixture of elastic continua. Because 
the partial internal energies and the partial entropies vanish in the reference configuration 
Ko, the defmitions of the partial Helmholtz free energies and (2.19) lead to the result 
oVJ(I, 1,0,0, ( 0 ) = O. Letting 

(3.22) 

and using (3.1), (3.18), and the chain rule, (3.21) can be written as 

(3.23) 

. aoVJ a aoVJ [ ] where the notation aFa grad F has the component fonn aFjA FjA,i and gradGa u~ has 

the component form G~B,j U~j. Using arguments that have become standard [4-6, 13-16], 
the following constitutive results are deduced from (3.23): 

aoVJ 
1] =- (3.24)ao 

(3.25) 

(3.26) 

(3.27) 

These equations also hold for arbitrary processes because none of the variables that appear 
in (3.24-3.27) depends on the relative velocity a or on the temperature gradient g. 

To obtain further restrictions on the constitutive equations, the Clausius-Duhem 
inequality is invoked as a statement ofPart II of the Second Law ofThermodynamics, which 
in spatial form is [16] 

d1] pr . (q*)p- - - +dlV - > o. (3.28)dt 0 0



Recalling the energy equation (2.22), relations (3.2-3.6), (3.18-3.20), and the constitutive 
results (3.24-3.27), we obtain from the Clausius-Duhem inequality the additional restriction 

e'P (d,a) = 0 (3.29) 

and the residual inequality 

2 *,,(-a) q.gL..J eT . La +e * .a - -()- ~ o. (3.30) 
a=l 

Using (3.18) and (3.29), the Helmholtz free-energy function becomes 

(3.31) 

4. CONSTRAINED MIXTURES OF ELASTIC CONTINUA 

In mixture theory, Mills [1] and other authors [2-6] have studied the special constraint 
of intrinsic incompressibi1i~ which simultaneously restricts the possible values of the 
constituent densities. For a mixture oftwo elastic continua, this constraint can be expressed in 
terms of the deformation gradient tensors ofboth constituents. Hence, we consider a general 
thermomechanical internal constraint of the form 

(4.1) 

where ¢ is a sufficiently smooth scalar-valued function defmed for the subset of the 19
dimensional space £ for which detFa > 0 and (J > O. It is assumed that the 19-dimensional 

vector ( iJ¢l' iJ¢2' iJ¢()) =F 0, so that (4.1) defines a fixed 18-dimensional hypersurface 
aF aF a 

s c £ referred to as the constraint manifold. It is assumed that ¢ remains invariant under 
superposed rigid-body motions ofthe mixture at fixed temperature so that (4.1) can be written 
in the objective forms 

(4.2) 

where C a = Fa T Fa and the rotation tensor R a is obtained from the polar decomposition 
Fa = Ra U a . Although (4.2) may be more convenient for representing some types of 
internal constraints, in the present paper the development will proceed with the more primitive 
form given by (4.1). 

Before proceeding, it is helpful to consider how a mixture process that satisfies (4.1) 
may generate different paths on S (see Figure 1). First, consider a material point X 1 of 
C1 . At time to, X 1 occupies some spatial point Xo. Also, there exists a material point X~ 
of C2 that occupies Xo at to. The vector (F 1 (to), F 2 (to), ()(to)) is defmed for Xl at to, 
where F 2 (to) is evaluated for X ~. Clearly, the vector (F 1 (to), F 2 (to), O(to)) identifies a 
point on S. At a later time t1, Xl occupies some spatial point Xl; in general, Xl =I- Xo· 



n 
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Fig. 1. The 18-dimensional constraint manifold S c £ defined by the internal constraint (4.1). The 

three curves CXl, CX2, and Cx on S correspond to the three points xl, X 2 
, and x which occupy the 

same spatial point at time t. Tangents to the curves CXl , CX2, and Cx are tXl , t X2, and t x , respectively, 

and the normal to S is D. 

Also, there exists a material point X~ of C2 that occupies Xl at t1; in general, X~ =1= X~. 
The vector (F 1(t1), F 2 (t1), 0(t1)) is defmed for Xl at t1, where F 2 (t1) is evaluated for 
X~. Once again, the vector (F1(t1), F 2 (t1), 0(t1)) identifies a point on S. Thus, the vector 
(F 1(t), F 2 (t), O(t)) defmed for X 1 generates a path CXl on S. A tangent vector to CXl on 
S is defined using the material time derivative d 1 ( . ) / dt following C1. In a similar fashion, 
the vectors (F1(t), F 2(t), O(t)) defmed for X 2 and X generate paths CX 2 and Cx on S. 

Therefore, the constraint (4.1) can be considered while one of three points are held 
fixed: (i) a material point Xl; (ii) a material point X 2 ; or (iii) the spatial point x, which 
is simultaneously occupied by X 1 and X 2 at time t. A normal to S is given by 

ae/> ae/> ae/» 
(4.3)n = ( aF1' aF2' ao 

for all three cases (i)-(iii). A process of the mixture that satisfies (4.1) generates three curves 
CXl, CX2, and Cx on S corresponding to the three points Xl, X 2, and x. Tangents to the 
curves CXl, CX2, and Cx corresponding to the three cases (i)-(iii) are given by 

(diF I dl F2 dlB)tXl dt'dt' dt 

2 

t X2 
(d2FI d2F d2B)
dt'dt' dt 

(aF I aF2 aB)t x (4.4)at'at'at 



Hence, for any process satisfying the constraint (4.1), it is necessary that 

a¢ dlF l a¢ d l F 2 a¢ d l (} 

aFl . ---;It + aF 2 • ---;It + a(} dt = 0 

a¢ d 2F l a¢ d 2F 2 a¢ d 2 (} 

aF 1 · ---;It + aF2 · ---;It + a() dt = 0 

a¢ aFl a¢ aF 2 a¢ a(} 
(4.5)aF 1 · at + aF2· at + a() iii = 0 

for the three cases (i)-(iii). Recalling 

a 
daF = LaFa (4.6)

dt ' 

(2.4)2, and (2.8)2, the constraint equations (4.5) can be written as 

where the notation gradFa [a] has the component form F uk ak. The middle terms of the 
constraint equations (4.7) can also be shown to be equal sinc'e (4.1) implies 

grad</> = a</> = a</>l gradF 1 + a</>2 gradF 2 + a</>(} grad 0 = O. (4.8) 
ax aF aF a 

Although the three tangents (4.4) are, in general, not equal at a time t during a given process, 
the relation (4.8) ensures that they all lie in the tangent space to a point onS. The development 
of constrained mixtures will proceed with case (ii) (i.e., holding X 2 fixed) represented by 
(4.7)2. Also, it is assumed that the constraint is satisfied in the reference configuration: 

¢ (I, 1,(0 ) = o. (4.9) 

To define an equivalence class associated with the constraint, consider two mixtures of 
elastic continua, ml and m2, which have common values of partial densities in the reference 
configuration Ko. These mixtures can be considered as elements of the set M of all 



unconstrained mixtures, which are infmite in number: An equivalence relation associated 
with the constraint (4.1) is defined as 

Defmition 1: The mixture m1 is equivalent to the mixture m2(m1 m2) if and only if!"J 

for all (F 1, F 2 , 0) E S and for all (G1, G 2
, a, g). 

This equivalence relation partitions the set M into disjoint subsets whose union is M. The 
disjoint subsets are equivalence classes denoted by M(m) = {n EM: n !"J m}. Part (ii) of 
Defmition 1 is motivated by the previous' observation [7, 9] that an internal constraint makes 
no contribution to the entropy production for an internally constrained thermoelastic material. 

To derive relationships among the constitutive restrictions for two equivalent mixtures 
m1 and m2, Defmition 1 will be applied in two steps. Part (i) of Defmition 1 will be used 
with the Gibbs equation (3.21) to derive relationships for the partial stresses and the diffusive 
forces of m1 and m2. Then, part (ii) of Defmition 1 will be used with the Clausius-Duhem 
inequality (3.28) to derive a relationship for the entropy production ofm1and m2. First, 
recalling the Gibbs equation (3.21), which in light of(3.24-3.27) is satisfied for all processes, 
and multiplying by J , it can be seen that 

2L
2

Vi'~l • La) + o1rm1 • (VI - V ) - P11 ml ~~ 
a=l 

2 

~ ( T-a La) - (1 2) dOL..J 0 m2 • + 01rm2 • V - V - P11 m2 dt· (4.10) 
a=l 

Ifml rv m2, thenlfrml andlfrm2 match on Sand (4.10) yields 

- 1 1 - 2 2 _ dO 
o T ml · L + 0 T ml · L + 0 1rml • a - P11 ml dt 

-2 2 - ~ + 0 T m2 • L + 0 1rm2 • a - P11 m2 dt (4.11) 

for all (V, L2 ,a, ~~) satisfying (4.7h. Introducing a Lagrange multiplier A. and recalling 

(2.8)1 and gradO= 0, we obtain 



- - 1 a¢ dF 1) ( 1 a¢) dO+ 1t" - 1r - It. - gra . a - pn - pn - It. - - = 0 (4 12)
( o ml 0 m2 aF 1 "' ml ", m2 ao dt . 

for all (Ll,L2,a, ~~) satisfying (4.7h. Because the terms in parentheses of (4.12) are 

independent of (V, L2, a, ~~), it is necessary and sufficient that 

-1 -1 +,A, iJ¢ F 1T
oTm2 oTm1 aF 1 

-2 -2 +,A, iJ¢ F 2T
oTm2 oTm1 aF 2 

a¢ 1-A-gradF0*m2 0*ml aF 1 

-A a¢
Pl1 m2 Pl1 ml (4.13)ao 

for any two mixtures m1, m2 E M(m) that are undergoing processes that satisfy the constraint 
(4.1). It should be emphasized that the relations (4.13) were obtained without invoking part 
(ii) ofDefmition 1. 

Next, the Clausius-Duhem inequality (3.28) is invoked as a statement of Part II of the 
Second Law ofThermodynamics for m2. Introducing a Lagrange multiplier A and using part 
(ii) ofDefmition 1 and (4.13), we obtain the residual entropy inequality 

(4.14) 

for any two mixtures m1, m2 E M(m) that are undergoing processes that satisfy the constraint 
(4.1). Furthermore, if(4.13) is true for any two mixtures, then (4.11) is true for these two 
mixtures and fiJml and fiJm2 match on S. However, in general, these mixtures may not be 

A a 
equivalent as e * and e T may not match on S. 

Upon repeating the analysis with (4.7)1 corresponding to holding X 1 fixed, relations 
(4.13) are obtained except that (4.13)3 is replaced by 

_ a¢ 2 
01rm2 = 01t"m1 +A--2 gradF (4.15)aF 

while the residual inequality (4.14) is replaced by 



2 

~ ( T-a La ) - q~l · g 2(2 2) > 0L...J e ml • + e 1rml • a - () + P 11 m2 - 11 ml a· g - · (4.16) 
a=l 

In a homothermal state for which g = 0, (4.8) reveals that 

a¢ 1 a¢ 2 
--1 gradF = ---2 gradF ,	 (4.17)aF aF 

so that (4.13)3 and (4.15) are equal. Furthermore, since g = 0, (4.14) and (4.16) are equal. 
However, in a nonhomothermal state for which g =I 0, (4.13)3 and (4.15) are not equal 
and neither are (4.14) and (4.16). Thus, for arbitrary processes, (4.13-4.14) must be invoked 
together or, a1temativel~ (4.15-4.16) must be invoked together: 

The above development for unconstrained mixtures of elastic continua leads to the 
following definition of a constrained mixture of elastic continua, which is analogous to the 
case of constrained thermoelastic materials [9]: 

Definition 2: a constrained mixture ofelastic continua mI associated with an equivalence 
class M(n) is a mixture for which: 

(i) the possible processes are those and only those that satisfy the constraint (4.1); 
(ii)	 m I can possess the values ofthe quantities (Ifla ,q, a1r, e1r, aTa , eTa , 11 ) ofany m E 

M(n) when mundergoes a process satisfying the constraint; and 
(iii)	 m' can only possess values of the quantities (ljIa ,q, a1r, e1r, aTa , eTa ,11 ) that are 

possible for any m E M(n) when m undergoes a process satisfying the constraint. 

From this defmition, it is clear that the union of all equivalence classes associated with the 
constraint will generate the set ofall constrained mixtures M I associated with the constraint. 

Consider any constrained mixture m' E M ' that is associated with an equivalence 
class M(n). For any process that satisfies the constraint, m I possesses values of 
(1fI~' ,qm' , e 1rm' , e T~, ), which are the common values of all elements inM(n). Because 

m I can possess values of (a 1rm' , aT~, ,11 m' ) of any element in M(n), from (4.13) it is 
evident that 

aT-1 , TI + A. iJ</> FIT 
m a aF 1m 

-2	 F 2T 
aT m, = T2 + A. iJ</>

a m aF 2 

_ a¢ 1 

a1rm a1rm -A-- gradF'	 1aF 
a¢ 

P11 m' P11 -A-	 (4.18)
m ao 

on S for any element m E M(n) undergoing the same process as m'. Also, from (4.14) it is 
evident that 



La ) - q~, · g 1(1 1 ) > 0 . + e1rm' • a - () +P 11 m' - 11 m a· g _ (4.19) 

on S for any element m E M(n) undergoing the same process as m'. Upon repeating 
the analysis using conditions (4.7)1 and (4.7)3 corresponding to holding Xl and x fixed, 
respectivel~ we can derive the alternative and different residual inequalities 

2 

"( T-a La ) - q~, . g 2 (2 2 ) > 0L..J e m'· + e1rm' • a - () + P 11 m - 11 m' a· g _ (4.20) 
a=l 

and 

2	 * 2L	 (/r~, ·La) + e1rm' ·a - qm'O' g + Lpa ('1~, - '1 ~) va · g 2: O. (4.21) 
a=l	 a=l 

However, for internal constraints that are independent of the common mixture temperature 
(), ac/J/a() vanishes, and using (2.19)4 and (4.18)4 it can be shown that these residual 
inequalities are equal and assume the form (4.21). Furthermore, for constraints that involve 
only the mixture temperature (), it can also be shown that these inequalities are equal and 
assume the form (4.21). As a consequence of considering processes with a common mixture 
temperature, in the general case we cannot determine the indeterminate contributions to the 
partial entropies but only that of the mixture entropy as in (4.18)4. 

Some additional results can be stated for constrained mixtures ofelastic continua that are 
analogous to those proved for constrained thermoelastic materials since the development in 
the present paper parallels that of [9]. 

(i)	 By defming two constrained mixtures to be identical if the quantities (lIf~ ,qm , e:rrm, 
e T: )are equal, then it can be seen that there exists a one-to-one relationship between 
equivalence classes ofunconstrained mixtures and constrained mixtures. 

(ii) A constrained mixture m' can be constructed from a corresponding unconstrained mix

ture m by evaluating the quantities (1fJ~, qm , e1rm , eT:) for m on the constraint 

manifold S, and noting that the quantities ( 0 1rm' , are specified by (4.18)0 T:, ,'1 m' ) 

where ( 0 1rm , are evaluated on S.0 T: ,'1 m ) 

(iii) The invariance conditions for a constrained mixture m' associated with an equivalence 
classM(n) must be modified. Foranym E M(n), recalling (2.19)4, (2.27)1, (2.27)2, 
(2.28), (3.16), and the fact that the entropy is defmed to vanish in the reference config
uration, it can be seen that under a superposed rigid-body motion at fixed temperature 

(4.22) 

It is also assumed that c/J remains invariant under a superposed rigid-body motion at 
fixed temperature so that 



(4.23) 

However, the inherent arbitrariness of the Lagrange multiplier A. prohibits the assump
tion that A. remains properly invariant under a superposed rigid-body motion at fixed 
temperature. Hence, for a constrained mixture m', (4.18) and (4.22-4.23) give 

oT~;+- = Q(oT~' +(-l+--l)aa:aFaT)QT 

-+o1r , Q (o1i"m' - (-l+ --l) ::1 gradF
1)m 

) iJ¢( + (4.24)P17 m' - -l - -l ao · 

5. INTRINSIC INCOMPRESSmILIlY 

A commonly used constraint in the theory of mixtures is that of intrinsic incompressibility 
first proposed by Mills [1] and studied by other authors [2-6]. Each constituent Ca is assumed 
to be separable from the others with constant (true) density pa T defined as the mass of Ca 

per unit volume ofca. Upon addition in fonning the mixture, it is assumed that the volumes 
of Ca add to fonn the volume of the mixture. With these assumptions, Mills [1] derived an 
equation that is a special fonn of the general internal constraint represented by (4.1): 

pI p2 
IT + 2T = 1. (5.1)
P P 

Using the local fonn of the continuity equation,pa Ja = pg, (5.1) can be written in the form 
(4.1) as 

1 2 
Po + Po -1 = O. (5.2) 

p 1T detF 1 p 2T detF 2 

Recalling 

(5.3) 

equations (4.18) become 

-1 -1 PI 

oT , oTm -A.-IT Im p 



p2-2 -2
oTm, oTm -A-I 

p2T 

_ A. gradpl
01rm' o1rm	 (5.4)

pIT 

In deriving (5.4)3, it was assumed that gradp5 = 0 is consistent with (4.8); however, 
this assumption is not necessary when using the approach by Mills [1]. This apparent 
contradiction may be resolved in one of two ways. By defming the constraint (4.1) to be 
of the form 

(5.5) 

the procedure of Section 4 can be used with the constraint (5.2) to obtain the results 
(5.4) without requiring that gradp6 vanish. Alternativel~ we may choose a reference 
configuration for a mixture subject to (5.4) for which the initial constituent densities are 
homogeneous. For this constraint, we note that the indeterminate terms in (4.13)3 and (4.15) 
are equal as are the three residual inequalities (4.19-4.21) because the constraint (5.2) is 
independent of the common mixture temperature. Hence, the general treatment of internally 
constrained mixtures of elastic continua reduces to the theory of intrinsic incompressibility 
of each constituent as proposed by Mills [1] and used by other authors [2-6]. 

Acknowledgments. The author gratefully acknowledges discussions regarding the content of this paper with Professor 
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NOTES 

1.	 For a discussion concerning the decompositions (2.20), see [15]. 

2.	 As noted in [13], a homothermal quasi-static process is not an actual process of the mixture, but rather a 
limit of actual processes. 

3.	 The assumption (30. ---+ 0 is motivated by the results of [16], which, for the mixture under consideration in 
the present paper, state that (30. vanishes when both the temperature gradient and the relative velocity are 
zero. 
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