
Vibration-based crack diagnosis in rotating shafts during acceleration
through resonance

Jerzy T. Sawicki*l, Xi Wu*, George Y. Baaklinit, Andrew L. Gyekenyesi

*Cleveland State University, Dept. ofMechanical Engineering, Cleveland, OH 441 15;
NASA Glenn Research Center, 2 1 000 Brookpark Road, MS 6- 1 ,Cleveland, OH 44135;

**OAJ/ASA Glenn Research Center, 21000 Brookpark Road, MS 6-1, Cleveland, OH 44135

ABSTRACT

The dynamic response of a cracked Jeffcott rotor passing through the critical speed with constant acceleration is
investigated analytically and numerically. The nonlinear equations of motion are derived and include a simple hinge
model for small cracks and Mayes' modified function for deep cracks. The equations of motion are integrated in the
rotating coordinate system. The angle between the crack centerline and the shaft vibration (whirl) vector is used to
determine the closing and opening of the crack, allowing one to study the dynamic response with and without the rotor
weight dominance. Vibration phase response is used as one of possible tools for detecting the existence of cracks. The
results of parametric studies of the effect of crack depth, unbalance eccentricity orientation with respect to crack, and the
rotor acceleration on the rotor's response are presented.

Keywords: crack, rotor, diagnosis, acceleration, resonance, unbalance, nonsynchronous response.

1. INTRODUCTION

In recent years, there has been an increasing interest for the development of rotating machinery shaft crack detection
methodologies and on-line techniques'9. Shaft crack problems present a significant safety and loss hazard in nearly
every application of modem turbomachinery, particularly in the power generation industry, but not only. Recently, the
Federal Aviation Administration (FAA), following several reports of shaft cracks, called'° for additional NDE
inspections of certain main rotor shafts in helicopters. Conventional NDE methods, however, have unacceptable limits.
Some of these techniques are time-consuming and inconvenient for turbomachinery service testing. Almost all of these
techniques require that the vicinity of the damage is known in advance, and they can provide only local information and
no indication of the structural strength at a component and/or system level. Also, the effectiveness of these experimental
techniques is affected by the high measurement noise levels existing in complex turbomachine structures. Therefore, the
use of vibration monitoring along with vibration analysis have recently received increasing attention.

An extensive review of the early literature on cracked shafts was published by . Dimentberg3 was apparently the
first to report the effect of the rotating asymmetry on the shaft lateral vibration. Henry and Okah-Avae4 presented the
results of analog computer study and reported the subcritical resonance due to an interaction between the crack and the
rotor's weight. Mayes and Davies5 studied the behavior of a cracked shaft model which took into account opening and
closing of the crack as a stiffness step function. Later, they extended their work and suggested a method for calculation
of change in stiffness due to a deep crack6. Gasch78 modeled the breathing crack by a spring-loaded hinge, and
numerically demonstrated a subharmonic resonance. Grabowski9 used modal approach to the problem and demonstrated
numerically strong dependence of the rotor vibrational behavior on the crack position.

The previously published research results focused primarily on the study of cracked shafts subjected to constant angular
speed. However, it has been well recognized'° that vibration monitoring during startup or shutdown can reveal important
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1. INTRODUCTION

In recent years, there has been an increasing interest for the development of rotating machinery shaft crack detection
methodologies and on-line techniques1-9. Shaft crack problems present a significant safety and loss hazard in nearly
every application of modem turbomachinery, particularly in the power generation industry, but not only. Recently, the
Federal Aviation Administration (FAA), following several reports of shaft cracks, called10 for additional NDE
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no indication of the structural strength at a component and/or system level. Also, the effectiveness of these experimental
techniques is affected by the high measurement noise levels existing in complex turbomachine structures. Therefore, the
use of vibration monitoring along with vibration analysis have recently received increasing attention.

An extensive review of the early literature on cracked shafts was published by Wauer11
• Dimentberg3 was apparently the

first to report the effect of the rotating asymmetry on the shaft lateral vibration. Henry and Okah-Avae4 presented the
results of analog computer study and reported the subcritical resonance due to an interaction between the crack and the
rotor's weight. Mayes and Daviess studied the behavior of a cracked shaft model which took into account opening and
closing of the crack as a stiffness step function. Later, they extended their work and suggested a method for calculation
of change in stiffness due to a deep crack6

• Gasch7
-
8 modeled the breathing crack by a spring-loaded hinge, and

numerically demonstrated a subharmonic resonance. Grabowski9 used modal approach to the problem and demonstrated
numerically strong dependence of the rotor vibrational behavior on the crack position.

The previously published research results focused primarily on the study of cracked shafts subjected to constant angular
speed. However, it has been well recognizedlO that vibration monitoring during startup or shutdown can reveal important
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machine malfunctions, especially for machines such as aircraft engines, which are subjected to frequent starts and stops
as well as high speeds and acceleration rates. The topic of transient cracked rotor response has been treated by only a
few authors. Plaut et al.13 analyzed the transient response of a simply supported, rotating, Euler-Bernoulli shaft with a
breathing transverse crack, during its passage through a critical speed at constant acceleration or deceleration. Recently
Sekhar'4'5 investigated the transient vibration response of a cracked rotor passing through its critical speed, utilizing a
simple hinge model for small cracks. He made an assumption that the vibrations remain small in comparison to the sag
of the rotor under its own weight. If a cracked shaft rotates slowly under the load of its own weight, then the crack will
open and close once per revolution. He noted oscillations which are developed near critical speed.

In this paper, the Jeffcott rotor model is analyzed and a transverse crack is assumed at the middle of the shaft. The
characteristic changes in the accelerating rotor phase response due to the crack and are presented as a possible diagnostic
tool for crack detection in the accelerated rotors. The criterion for the opening and closing of the crack has been
developed based on the angle between the crack centerline and the shaft vibration vector which makes possible one to
ignore the rotor weight-dominance assumption. Stiffness weakening effects of cracked rotor in both strong and weak
axes are taken into consideration for deep cracks.

2. ROTOR AND CRACK MODEL

The theoretical model, called the Jeffcott rotor, employs a flexible rotor composed of a centrally located unbalanced disk
attached to a massless elastic shaft which is, in turn, mounted symmetrically on rigid bearings (see Fig. 1(a). The shaft
does have a transverse crack running across its section and located close to the disk. The stiffhess of the uncracked rotor
system is symmetric (isotropic) and the damping due to the air resistance effect is assumed to be viscous.

(a)

Figure 1 : (a) Model ofJeffcott rotor with crack, (b) shaft and crack position described in inertial and rotating coordinate systems.

The origins of the inertial (x,y,z) and body-fixed rotating (, coordinate frames coincide with each other and are
"attached" to the center line of the bearing supports. At any instant of time, the i-axis remains perpendicular to the face
of the crack, causing that (cc,i) frame rotates with the same velocity as the rotor. The crack position with respect to the
vibration vector is determined by angle t', which changes continuously with the rotor's speed. Finally, the rotor's
unbalance eccentricity C is oriented at constant angle ,6 with respect to the crack or i-axis. For a rotor subjected to
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as well as high speeds and acceleration rates. The topic of transient cracked rotor response has been treated by only a
few authors. Plaut et a1. 13 analyzed the transient response of a simply supported, rotating, Euler-Bernoulli shaft with a
breathing transverse crack, during its passage through a critical speed at constant acceleration or deceleration. Recently
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simple hinge model for small cracks. He made an assumption that the vibrations remain small in comparison to the sag
of the rotor under its own weight. If a cracked shaft rotates slowly under the load of its own weight, then the crack will
open and close once per revolution. He noted oscillations which are developed near critical speed.

In this paper, the Jeffcott rotor model is analyzed and a transverse crack is assumed at the middle of the shaft. The
characteristic changes in the accelerating rotor phase response due to the crack and are presented as a possible diagnostic
tool for crack detection in the accelerated rotors. The criterion for the opening and closing of the crack has been
developed based on the angle between the crack centerline and the shaft vibration vector which makes possible one to
ignore the rotor weight-dominance assumption. Stiffness weakening effects of cracked rotor in both strong and weak
axes are taken into consideration for deep cracks.

2. ROTOR AND CRACK MODEL

The theoretical model, called the Jeffcott rotor, employs a flexible rotor composed of a centrally located unbalanced disk
attached to a massless elastic shaft which is, in turn, mounted symmetrically on rigid bearings (see Fig. l(a). The shaft
does have a transverse crack running across its section and located close to the disk. The stiffness of the uncracked rotor
system is symmetric (isotropic) and the damping due to the air resistance effect is assumed to be viscous.
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Figure 1: (a) Model of Jeffcott rotor with crack, (b) shaft and crack position described in inertial and rotating coordinate systems.

The origins of the inertial (x,y,z) and body-fixed rotating (S:17,q) coordinate frames coincide with each other and are
"attached" to the center line of the bearing supports. At any instant of time, the ~-axis remains perpendicular to the face
of the crack, causing that (, 1],q) frame rotates with the same velocity as the rotor. The crack position with respect to the
vibration vector is determined by angle If/, which changes continuously with the rotor's speed. Finally, the rotor's
unbalance eccentricity e is oriented at constant angle f3 with respect to the crack or ~-axis. For a rotor subjected to
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constant acceleration a, the spin angle changes, i.e., ct(t) = t(O) + w0t + —, where w is the initial speed (assumed to

be zero) and t(O) =—fi.

The opening and closing or "breathing" of the crack, as the rotor rotates, results in a periodic change in the rotor
stiffness. In order to not be restricted to the weight dominance assumption, where the dynamic displacement is smaller
than the rotor's sag, the angle yt (see Fig. 1(b)) is used to judge the opening and closing of the crack. This angle more
practically describes the "breath" of the crack by taking into consideration the influence of the whirl speed on the closing
and opening of crack. The rotor stiffness in the crack and cross directions can be written as8:

(K O"l (K Ø'\ 1AK O'
0 KqJ0 KJ( o J

H
VI (degree

Figure 2: Crack model; (a) the closing behavior of(I) the hinge model for small cracks and (II) Mayes' modified function for deep
cracks, (b) opening and closing ofthe crack as a function ofthe shaft position along its orbit.

For small cracks, the rectangular function for the hinge model8 is used (see Fig. 2(a)), which describes the crack's
sudden opening and closing, by switching from 1 (open) to 0 (closed). This function can be approximated by the Fourier
expansion as follows:

f() = +cos —cos3 + cos 5
2 r 3'r 5ir (2)

(1)

For linearly elastic crack and rotor deflections, the changes in the stiffness L\K and i±sK may be assumed to be

constant. For all but very large cracks, the stiffness change AK is small and often assumed to be zero. However, in this

MC
study, for the case ofthe deep crack, its effect is includedassuming that AKq =

—-L
. The steering function f(çi') is a

periodic function depending on both, the rotor spin and whirl speed, and is shown on Fig. 2 for small and deep cracks.
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constant acceleration a, the spin angle changes, i. e., <1>(t) =<1>(0) + (1)ot + at ,where (1)0 is the initial speed (assumed to
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be zero) and <1>(0) = -p .

The opening and closing or "breathing" of the crack, as the rotor rotates, results in a periodic change in the rotor
stiffness. In order to not be restricted to the weight dominance assumption, where the dynamic displacement is smaller
than the rotor's sag, the angle If/ (see Fig. l(b)) is used to judge the opening and closing of the crack. This angle more

practically describes the "breath" of the crack by taking into consideration the influence of the whirl speed on the closing
and opening of crack. The rotor stiffness in the crack and cross directions can be written ass:

(1)

For linearly elastic crack and rotor deflections, the changes in the stiffness 1iK~ and 1iK
11

may be assumed to be

constant. For all but very large cracks, the stiffness change 1iK" is small and often assumed to be zero. However, in this

M<.
study, for the case of the deep crack, its effect is included,assuming that6 1iK

11
=--~ . The steering function !(If/) is a

6
periodic function depending on both, the rotor spin and whirl speed, and is shown on Fig. 2 for small and deep cracks.
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Figure 2: Crack model; (a) the closing behavior of (I) the hinge model for small cracks and (II) Mayes' modified function for deep
cracks, (b) opening and closing of the crack as a function of the shaft position along its orbit.

For small cracks, the rectangular function for the hinge models is used (see Fig. 2(a)), which describes the crack's
sudden opening and closing, by switching from 1 (open) to 0 (closed). This function can be approximated by the Fourier
expansion as follows:

1 2 2 2
!(If/) =- + -coslf/ --cos3lf/ +-cos 5lf/ - ...

2 1r 31r 51r
(2)
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In the case of deep cracks, there is a smooth transition between the opening and closing of the crack and this is reflected
by the Mayes' modified function6, i.e.,

f()l+cos (3)

3. EQUATIONS OF MOTION

The equations of motion for a Jeffcott rotor, with a cracked shaft, in a presence of gravity forces and unbalance
excitation, and subjected to constant acceleration, can be expressed in inertial coordinate frame as follows:

IM +1c OIKii K12
(4)O M)IjJ O C)$'J LK21 K22)yj J Le2sinG—ecosGJ

wherez andy are the displacements of the disk. The stiffhess matrix K(q,t) (where q =(z )T) is nonlinear, depending
not only on time, but also on the position of the shaft center along the orbit.

The above equations of motion in the rotating coordinate can be written as

IM ° C _2Ma')J 1K_f(yJ)AK —Md
o M) LJ (2Ma' C ) J wC+Mct

I cos 1 2 Icos/31 I sinfl=Mg +Mea
—sinJ [sin/3J —cosfl

-aC-Ma
K-f(yi)tK _Mw2)l?7

(5)

where the transformation between the inertial and rotating coordinate frames takes the form:

(z')(cos _sinct)(y[(\sin cos) (6)

Incorporating the hinge model for small cracks into Eq. (5) (AKq =0), normalizing displacements with respect to static

deflection, and using nondimensional time yields:

[1 og"
[o lji7'

I cos 1
I— sin cJJ

where here f(ii) is a rectangular steering function (see Fig. 2(a)).

(7a)

2

l-
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In the case of deep cracks, there is a smooth transition between the opening and closing of the crack and this is reflected
by the Mayes' modified function6

, Le.,

f (If/) = 1+cos If/
2

3. EQUATIONS OF MOTION

(3)

The equations of motion for a Jeffcott rotor, with a cracked shaft, in a presence of gravity forces and unbalance
excitation, and subjected to constant acceleration, can be expressed in inertial coordinate frame as follows:
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where zand yare the displacements of the disk. The stiffness matrix K(q, t) (where q =(z y)T) is nonlinear, depending

not only on time, but also on the position of the shaft center along the orbit.

The above equations ofmotion in the rotating coordinate can be written as

(
M 0J{~}+( C -2M(OJ{~}+(K-f(lJI)M(~-M(02
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{
COS <P } 2 {cos fJ} { sin fJ }=Mg +M8(o +Mea ;

- sin <I> sin fJ - cos fJ

(5)

where the transformation between the inertial and rotating coordinate frames takes the form:
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(6)

Incorporating the hinge model for small cracks into Eq. (5) (M(11 =0), normalizing displacements with respect to static

deflection, and using nondimensional time yields:
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where here f(lJI) is a rectangular steering function (see Fig. 2(a».
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AK
Similarly, one can incorporate into the equations of motion (Eq. (5)) the model for deep crack, assuming AK = —1-,

and Meyes6 modified steering function f(u)= cos(cif) (see Fig. 2(a)), and write that

- l-f()AK- -2ç-[1 °1f co O), (0,,

[o ijlj 2--+--- 1- f(w)AK
-

ai w2 6 w2n n n
(7b)

definitions and nondimensional variables were employed (see Nomenclature

2 K AK C aco = —, AK = , = , 7 = —i-M K 2Mco co,

Mg g -_ - t ---
list ___i, ', ——, 1 — , i---a) , —Ti.K w ii i! (On

co=co0+at=at, forw0=O
at2 yi.2l0+co0t+———, for0=O

_g _g •_g'7 2' '
cO co W cO

=gff, ij=gir

where
, - d(.) 1 d(•) " d2(.) 1 d2(•)

0— — ,()— 2 2 2di. O)dt di. O)dt

9=cl+fi; =_arctan2) (seeFig. 1(b)).

4. RESULTS AND DISCUSSION

The presence of a crack on the shaft results in the stiffhess variation as a function of time. In most rotor dynamic
analysis, the system response is obtained in the form of steady state amplitude data at each operational speed. In the case
of transient analysis, the dynamic response can be obtained using time marching techniques. In this study Runge-Kutta
method was employed to numerically solve equations of motion (Eq. (7a) and (7b)). The nonlinear responses of rotor

passing through the critical speed with several values of constant angular acceleration ratios (= —-) and different
(On

In the above equations the following
section):

M<.
Similarly, one can incorporate into the equations of motion (Eq. (5)) the model for deep crack, assuming M<." =--~ ,
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2

{
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-2~
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1- f(lJI)M<.-- -2~---2

{~}=
OJn
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2
slnfJ
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1]st OJn 1]st OJn

(7b)

In the above equations the following definitions and nondimensional variables were employed (see Nomenclature
section):

2 K M(~ C
(j)n = M' I1K=T' (;= 2M(j)n'

Mg g - ~ - 1]
1]st =K=-2' ~ =-, 1] =-,

OJn 1]st 1]st

OJ =OJo +at =at, for OJo =0

at2 yr2

<I> =<1>0 + OJot + - =-, for <1>0 =0
2 2

ay=­
OJ2

n

. gfj'
1]=-

OJn

where

0' = dO =_1 dO, 0" =d
2
0 =_1 d

2
(.)

dr OJn dt dr2
OJ; dt2

() =cf> + /3; If/ = cf> - arctan ( ~) (see Fig. 1(b».

4. RESULTS AND DISCUSSION

The presence of a crack on the shaft results in the stiffness variation as a function of time. In most rotor dynamic
analysis, the system response is obtained in the form of steady state amplitude data at each operational speed. In the case
of transient analysis, the dynamic response can be obtained using time marching techniques. In this study Runge-Kutta
method was employed to numerically solve equations of motion (Eq. (7a) and (7b)). The nonlinear responses of rotor

passing through the critical speed with several values of constant angular acceleration ratios (y = a
2

) and different
OJn
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crack depths (AK ) were evaluated. For all cases it was assumed that damping ratio =0.05 and normalized unbalance

eccentricity is -f--= 0.05.
list

The change in the rotor phase response due to the acceleration and crack is presented in Fig. 4. In general, due to the
crack the amplitude of the phase angle decreases for the given speed ratio and acceleration rate. In addition, it can be
seen that the crack induces significant oscillations in the rotor phase response (see Fig. (4b)), especially for higher
acceleration rates. Such a characteristic "saw-cut" pattern of the phase waveform can find potential application in the
crack on-line detection monitoring systems.

w

(a) no crack

Figure 4: Phase angle ofthe accelerated rotor passing through the critical speed for y=O.O1, O.8x103, and iO, and ,8= 0.
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Figure 5: Vibration amplitude in Z-direction ofthe accelerated rotor passing through the critical speed for y= 0.8xl03 and fi= 0.
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seen that the crack induces significant oscillations in the rotor phase response (see Fig. (4b)), especially for higher
acceleration rates. Such a characteristic "saw-cut" pattern of the phase waveform can find potential application in the
crack on-line detection monitoring systems.
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Figure 6: Vibration amplitude ofthe accelerated rotor passing through the critical speed for y= 0.8x103, fi= 0 and K= 0.32.

Figures 5 and 6 show nondimensional vibration amplitude in Z-direction and the overall amplitude, respectively, for the
crack depth of AK= 0.32. It is apparent that the shaft crack reduces the stiffness of the system, shifting the resonance to a
lower speed. It can be noticed the presence of sub-critical (1/3, 1/2) response peaks and large increase of vibration
response at the fundamental resonance peak when the crack exists.
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Figure 7: Response of accelerated rotor passing through the critical speed with crack and gravity for y= 0.8x103, ,8= 0 and MC =

0.15, 0.28, and 0.37; (a) vibration amplitude in Z-direction, (b) vibration amplitude.

The vibration amplitude in Z-direction and the overall vibration amplitude transient responses for different crack depths and
constant acceleration rate are illustrated in Fig. 7. It can be noticed (see Fig. 7(b)) that the whirl vector develops significant
oscillations near the fundamental resonance speed. The zone of critical speed becomes wider and the vibrations level increases with
the depth of the crack. As a result, for the deeply cracked rotors there is no exact critical speed.
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Figure 6: Vibration amplitude of the accelerated rotor passing through the critical speed for y= 0.8x 10-3
, {3 = 0 and t:J( = 0.32.

Figures 5 and 6 show nondimensional vibration amplitude in Z-direction and the overall amplitude, respectively, for the
crack depth of t:J( = 0.32. It is apparent that the shaft crack reduces the stiffness of the system, shifting the resonance to a
lower speed. It can be noticed the presence of sub-critical (1/3, 1/2) response peaks and large increase of vibration
response at the fundamental resonance peak when the crack exists.
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Figure 7: Response of accelerated rotor passing through the critical speed with crack and gravity for y= O.8x10-3
, {3= 0 and t:J( =

0.15, 0.28, and 0.37; (a) vibration amplitude in Z-direction, (b) vibration amplitude.

The vibration amplitude in Z-direction and the overall vibration amplitude transient responses for different crack depths and
constant acceleration rate are illustrated in Fig. 7. It can be noticed (see Fig. 7(b» that the whirl vector develops significant
oscillations near the fundamental resonance speed. The zone of critical speed becomes wider and the vibrations level increases with
the depth of the crack. As a result, for the deeply cracked rotors there is no exact critical speed.
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Presentation of the rotor transient response in rotating coordinates also provides useful information. Thus, Fig. 9 shows
vibration amplitude in -dfrection of the accelerated rotor passing through the critical speed for crack depths EsK 0.32
and 0.36. In the absence of the crack the resonant vibration amplitude almost does not show-up. However, if there is a
crack then the fundamental resonance is apparent and additionally the second and third harmonics are present, which is a
crack-characteristic phenomenon. It can be seen that even small change in the crack depth causes that the rise of
amplitude.
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Figure 9: Vibration amplitude in f-direction ofthe accelerated rotor passing through the critical speed for y= O.8x103 and fl= 0; (a)
no crack, (b) iK= 0.32, (c) K= 0.36.

The effect of unbalance eccentricity orientation on vibration amplitude of a cracked rotor is shown in Fig. 10.
Orientation of unbalance affects the amplitude of the fundamental resonance, but does have a little influence on the sub-
harmonics. The maximum resonant vibration amplitude exists when the eccentricity vector is along the crack centerline

(p = 0 ). When the unbalance is on the opposite side ofthe crack (fi = 180° ), then the effect ofthe crack is significantly
diminished. In this situation, the resonance amplitude is only about 1/6 ofthe corresponding amplitude for the case when
/3=0.
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and 0.36. In the absence of the crack the resonant vibration amplitude almost does not show-up. However, if there is a
crack then the fundamental resonance is apparent and additionally the second and third harmonics are present, which is a
crack-characteristic phenomenon. It can be seen that even small change in the crack depth causes that the rise of
amplitude.
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The effect of unbalance eccentricity orientation on vibration amplitude of a cracked rotor is shown in Fig. 10.
Orientation of unbalance affects the amplitude of the fundamental resonance, but does have a little influence on the sub­
harmonics. The maximum resonant vibration amplitude exists when the eccentricity vector is along the crack centerline

(f3 = 0). When the unbalance is on the opposite side of the crack (P = 1800

), then the effect of the crack is significantly

diminished. In this situation, the resonance amplitude is only about 1/6 of the corresponding amplitude for the case when
f3 =0.
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5. CONCLUSIONS

The presence of a crack in the shaft of the rotor system affects the dynamic response significantly. The changes of
vibrational behavior can be used to predict and/or detect the crack in the shaft. The following conclusions can be drawn
based on the results presented in this paper:

I . The developed model enables to study the cracked rotor dynamic response with and without weight dominance. The
model includes small and deep cracks, as well as cross stiffness effect (for deep cracks).

2. Characteristics "saw-cut" pattern in the phase response waveform can fmd potential application in the on-line crack
detection monitoring systems.

3. The crack reduces stiffness of the system, shifting the resonance to lower speeds. This effect is magnified by the
depth of the crack. It can be noticed the presence of subcritical (1/3, '/z) response peaks and large increase of
fundamental vibration response when the crack exists.

4. For the accelerating rotor the zone of critical speed becomes wider and the vibration level increases with the depth
ofthe crack. The whirl vector develops oscillation near the critical speed.

5. The orientation of unbalance eccentricity with respect to the crack centerline affects fundamental resonance and
does have much less effect on subharmonics.

NOMENCLATURE

C external damping coefficient
g gravitational acceleration
K uncracked shaft stiffness

K cracked shaft stiffness in -direction

K cracked shaft stiffness in i-direction

M mass ofthe disk
°b position ofbearing centers line

Os shaft center

z,y , Z,Y inertial coordinate system; Z = z/ii5 Y =v/
a constant angular acceleration
/3 angle between 4 andunbalance

I acceleration ratio; r =

AK stiffness change ratio ( = LK 1K)
AK variation of stiffhess in -direction caused by crack

AK,1 variation of stiffness in r, -direction caused by crack

c unbalance eccentricity of the disk
external damping ratio

static deflection of uncracked rotor; i5 = g/a
6 orientation of unbalance eccentricity with respect to and z-axis

whirling angle corresponding to whirling speed

rotating coordinate system; is in the crack direction

w anglebetween and the line connecting bearing and shaft center
angle between and zaxes

co angular velocity of rotation
critical speed of uncracked rotor

5. CONCLUSIONS

The presence of a crack in the shaft of the rotor system affects the dynamic response significantly. The changes of
vibrational behavior can be used to predict and/or detect the crack in the shaft. The following conclusions can be drawn
based on the results presented in this paper:

1. The developed model enables to study the cracked rotor dynamic response with and without weight dominance. The
model includes small and deep cracks, as well as cross stiffness effect (for deep cracks).

2. Characteristics "saw-cut" pattern in the phase response waveform can fmd potential application in the on-line crack
detection monitoring systems.

3. The crack reduces stiffness of the system, shifting the resonance to lower speeds. This effect is magnified by the
depth of the crack. It can be noticed the presence of subcritical (1/3, ~) response peaks and large increase of
fundamental vibration response when the crack exists.

4. For the accelerating rotor the zone of critical speed becomes wider and the vibration level increases with the depth
of the crack. The whirl vector develops oscillation near the critical speed.

5. The orientation of unbalance eccentricity with respect to the crack centerline affects fundamental resonance and
does have much less effect on subharmonics.

NOMENCLATURE

c
g
K

K;

K"
M

°b
Os

z,Y,Z,Y

a

f3
r
11K

11K;

11K"
6

S

external damping coefficient
gravitational acceleration
uncracked shaft stiffness
cracked shaft stiffness in ~ -direction

cracked shaft stiffness in 1] -direction

mass of the disk
position ofbearing centers line

shaft center

inertial coordinate system; Z = z/1]st , Y =y / 1]st

constant angular acceleration
angle between ~ and unbalance

acceleration ratio; r = a/(1);
stiffness change ratio ( = 11K; / K )

variation of stiffness in ~ -direction caused by crack

variation of stiffness in 1] -direction caused by crack

unbalance eccentricity of the disk
external damping ratio

static deflection of uncracked rotor; 1]st =g / (1);
orientation of unbalance eccentricity with respect to and z-axis

whirling angle corresponding to whirling speed

rotating coordinate system; ~ is in the crack direction

angle between ~ and the line connecting bearing and shaft center

angle between ~ and z axes

angular velocity of rotation
critical speed of uncracked rotor
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