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ABSTRACT 

A cartilage growth mixture (CGM) model is linearized for infinitesimal elastic 

and growth strains. Parametric studies for equilibrium and non-equilibrium boundary-

value problems representing the in vitro growth of cylindrical cartilage constructs are 

5	 solved. The results show that the CGM model is capable of describing the main 

biomechanical features of cartilage growth. The solutions to the equilibrium problems 

reveal that tissue composition, constituent pre-stresses, and geometry depend on collagen 

remodeling activity, growth symmetry, and differential growth. Also, nonhomogeneous 

growth leads to nonhomogeneous tissue composition and constituent pre-stresses. The 

10	 solution to the non-equilibrium problem reveals that the tissue is nearly in equilibrium at 

all time points. The results suggest that the CGM model may be used in the design of 

tissue engineered cartilage constructs for the repair of cartilage defects; for example, to 

predict how dynamic mechanical loading affects the development of nonuniform 

properties during in vitro growth. Furthermore, the results lay the foundation for future 

15	 analyses with nonlinear models that are needed to develop realistic models of cartilage 

growth. 

INTRODUCTION 

Articular cartilage functions as a low friction, wear-resistant, load-bearing 

material that facilitates joint motion (Maroudas and Venn 1977; Mow and Ratcliffe 

20 1997). The two primary molecular components of the solid matrix, proteoglycan and 

collagen, appear to have distinct mechanical roles. The proteoglycans provide the tissue 

with a fixed negative charge that increases the tissue’s propensity to swell and to resist 

2
 



            

  

          

         

      

           

           

            

              

          

       

    

       

          

       

          

             

          

            

          

         

          

           

           
                                                

                   
 

Klisch et al., “A cartilage growth mixture model for infinitesimal strains … ” 

compressive loading (Basser et al. 1998; Lai et al. 1991). The crosslinked collagen 

network resists the swelling tendency of the proteoglycan, and provides the tissue with 

tensile and shear stiffness and strength (Mow and Ratcliffe 1997; Venn and Maroudas 

1977; Woo et al. 1976). The mechanical properties of articular cartilage depend on both 

5 proteoglycan and collagen contents (Maroudas et al. 1968; Mow and Ratcliffe 1997; Sah 

et al. 1996) and vary with depth from the articular surface (Chen et al. 2001a; Guilak et 

al. 1995; Schinagl et al. 1997; Setton et al. 1993). These spatial variations are likely 

related to the heterogeneity of tissue composition, as distinct zones of articular cartilage 

(i.e., superficial, middle, and deep) have been identified that vary in composition and 

10 structure (Buckwalter and Mankin 1998). 

The cartilage extracellular matrix is synthesized, maintained, and degraded by 

chondrocytes. A key feature of cartilage growth is that cell and matrix metabolism can be 

regulated by mechanical stimuli. In vitro experiments with cartilage explants have 

quantified the metabolic response to mechanical stimuli such as hydrostatic pressure, 

15	 dynamic compressive stress, and fluid shear (Guilak et al. 1997). Towards the aim of 

developing quantitative models of cartilage growth, in recent years we have extended 

continuum theories of growth (Rodriguez et al. 1994; Skalak et al. 1982; Skalak et al. 

1996; Skalak et al. 1997) to describe the growth of compressible elastic, thermoelastic, 

and multiphasic materials (Klisch et al. 2000; Klisch et al. 2001; Klisch and Hoger 2003). 

20	 Since both the pre-stresses1 and the mechanical properties of the proteoglycan and 

collagen constituents are crucial to the function of the tissue, we have proposed a 

cartilage growth mixture (CGM) model that allows for the specification of multiple 

1 We define pre-stress as the constituent stress in a local configuration for which the solid matrix stress is 
zero. 
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constituents that may grow and remodel in distinct ways (Klisch et al. 2000; Klisch et al. 

2003; Klisch and Hoger 2003). Related theories of growth have been presented recently 

by other authors for thermoelastic materials (Epstein and Maugin 2000; Lubarda and 

Hoger 2002; Menzel 2005) and mixtures (Garikipati et al. 2004; Humphrey and 

5	 Rajagopal 2002; Quiligotti 2002). Despite all of this work, realistic models of cartilage 

growth have not yet been developed, as many model parameters have not been 

experimentally characterized. 

Since the CGM model has only been recently proposed, few boundary-value 

problems have been described and solved. In continuum mechanics, the governing 

10 equations are numerous, nonlinear, and coupled; typically, the solution of boundary-value 

problems are crucial for developing an intuitive understanding of a new theory. In this 

paper, we solve boundary-value problems in order to better understand how the CGM 

model works and to gain insight into how the model may be used with tissue engineering 

experiments. Due to the inherent difficulties in using finite deformation theories, here we 

15 develop a CGM model for infinitesimal strains and seek analytical solutions to specific 

boundary-value problems. Analytical solutions are useful as they may highlight which 

parameters most affect the solutions and, consequently, identify the areas in which 

experimentation and theory should be focused in an attempt to develop validated models. 

The specific boundary-value problems were chosen to investigate the relative 

20 effects of collagen remodeling activity, growth symmetry, growth heterogeneity, and 

differential growth on tissue structure and function for current in vitro experimental 

protocols. These experimental protocols include growth of either tissue engineered 

constructs or native tissue explants under free swelling, static, or dynamic loading 

4
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conditions in both unconfined (Buschmann et al. 1999; Kisiday et al. 2004; Mauck et al. 

2000; Sah et al. 1989; Thibault et al. 2002; Williamson et al. 2003) and radially confined 

(Davisson et al. 2002a; Davisson et al. 2002b; Dunkelman et al. 1995; Pazzano et al. 

2000; Schreiber et al. 1999) configurations. In this paper, collagen remodeling activity is 

5	 defined as a change in collagen material constants to reflect an enhancement in collagen 

integrity via increased crosslink density, growth symmetry is defined as the orientation of 

mass deposition, growth heterogeneity is defined through spatially-varying mass 

deposition, and differential growth is defined by the relative amounts of proteoglycan and 

collagen mass deposition. 

10 The objectives of this study were: (1) to linearize a CGM model for infinitesimal 

strains and (2) to use this model to solve boundary-value problems related to in vitro 

growth of cartilage constructs. Currently available experimental data are not sufficient to 

determine all of the model’s parameters and constitutive equations, so the analyses 

presented here include a number of simplifying assumptions including infinitesimal 

15	 deformations, isotropic material symmetry, and homogeneous material properties.2 

Consequently, the results are intended to serve as a foundation for developing solutions to 

boundary-value problems related to in vitro growth experiments using future refinements 

of the model. 

METHODS 

20	 Cartilage growth model for finite deformations 

2 See the discussion section for proposed future studies aimed at addressing these limitations.
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The governing equations of the CGM model for finite deformations are obtained 

from the general growth mixture theory for an arbitrary number of constituents presented 

in (Klisch et al. 2000; Klisch and Hoger 2003) with the following assumptions: 

(1)	 The mixture is composed of four constituents: a growing proteoglycan elastic 

5	 material, a growing collagen elastic network, an inviscid fluid representing water and 

dissolved solutes, and “others” representing the non-collageneous proteins. The “others” 

may grow through mass increase via cellular metabolism or matrix degradation or 

through mass decrease via conversion into functional proteoglycan or collagen 

molecules. 

10	 (2) The proteoglycans, collagens, and “others” are bound to the extracellular matrix 

and, consequently, are constrained to experience the same overall motion. This is a 

limitation as 20-40% of the proteoglycans are soluble and mobile in the tissue matrix 

(Pottenger et al. 1985; Sajdera and Hascall 1969); however, the general theory (Klisch et 

al. 2000; Klisch and Hoger 2003) allows for the specification of mobile constituents. 

15	 (3) The mixture is constrained to be intrinsically incompressible. This constraint (Frank 

and Grodzinsky 1987; Mills 1966; Mow et al. 1980) has been demonstrated 

experimentally for physiologic load levels (Bachrach et al. 1998). 

(4) The proteoglycan stress depends on the proteoglycan, collagen, and water densities. 

In particular, we use a two-compartmental model (Basser et al. 1998) in which the 

20	 proteoglycan stress is calculated from an effective fixed charge density and depends on 

proteoglycan, collagen, and water contents. 

6
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(5) The collagen stress depends only on the elastic deformation of the collagen 

constituent. This assumption is made as there is insufficient data to quantify how other 

matrix molecules affect the mechanical properties of the collagen network. 

(6) The determinate fluid stress and the determinate stress in the “others” are both zero. 

5	 Assuming the determinate fluid stress to be zero is equivalent to assuming a constant 

fluid free energy function (Klisch and Lotz 2000). We assume that the others do not 

contribute directly to the mechanical properties of the solid matrix. 

The governing equations for this CGM model valid for finite deformations are 

obtained from the general theory of (Klisch et al. 2000; Klisch and Hoger 2003) and are 

10 presented in the appendix. 

Cartilage growth model for infinitesimal deformations 

We assume a homogeneous reference configuration with uniform constituent 

densities and zero pore pressure. A homogeneous reference configuration may be 

reasonable for constructs grown from isolated chondrocytes or for explants harvested 

15	 from immature bovine joints, which are nearly uniform in tissue composition 

(Buschmann et al. 1999). The governing equations presented in the appendix are 

linearized by assuming that the magnitudes of the solid matrix displacement vector, fluid 

density change, pore pressure, mass growth functions, and remodeling parameter to be 

order epsilon, and retaining only terms that are first order in epsilon (i.e., discarding all 

20	 higher order terms) in the governing equations. Many of the intermediate steps are not 

shown as the linearization procedure is essentially the same as that outlined in (Green and 

Naghdi 1970) for solid-fluid mixtures. 

Kinematics 

7
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The solid matrix infinitesimal strain tensor es may be expressed as 

1s	 T
e = {(F

s 
" I) + (F

s 
" I) }, 	 (1) 

2 

where Fs is the solid matrix deformation gradient tensor, I is the identity tensor, the 

quantity (Fs-I) is solid matrix displacement gradient tensor Hs=∂us/∂X, and T is the 

5	 transpose operator.3 For non-compatible growth, there do not exist single-valued 

displacement fields corresponding to elastic and growth deformations (Skalak et al. 

1996). Consequently, we define infinitesimal elastic ( e " 
e ) and growth ( e " 

g ) strain tensors 

for the growing solid matrix constituents as 

1	 1" " " T " " " T
e = {(M	 # I) + (M # I) }, e = {(M	 # I) + (M # I) }, (2) e e e g g g

2	 2 

10	 where M" 
e is the finite elastic accommodation tensor and M" 

g is the finite growth tensor.4 

Linearization of the multiplicative decompositions of the deformation gradient tensors 

(A1) leads to 

e = e e + e g ,	 (3) 

whereas linearization of the constraint (A4) leads to 

s	 " p p c c oth oth15 e = e (# e + e = e + e = e + e ) . 	 (4) e	 g e g e g 

This tensor description of growth allows for anisotropic growth, which may be necessary 

to include for modeling cartilage as experimental results (Buschmann et al. 1996) suggest 

that proteoglycans may be preferably deposited in a plane normal to the direction of 

3 If X and x denote material and spatial coordinates, respectively, then Hs=∂us/∂X  ~∂us/∂x in the linear
 
theory.

4 The superscript α will be used to designate the proteoglycans (p), collagens (c), and others (oth).
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applied compressive loading.5 Equations (A2) (defining the diffusive velocity a) and 

(A3) (constraining the solid matrix constituent displacement and velocity vectors to equal 

us and vs, respectively) hold in the linearization. Linearization of other kinematical 

relations leads to 

s
 
s "u # # # #
 
v = ,  detF = 1+ tre ,  detM e = 1+ tre e ,

5 "t	 (5) 
# # # $1 # # $1 #detM = 1+ tre g ,  (detM ) = 1$ tre ,  (detM ) = 1$ tre g ,g	 e e g 

where det(⋅) is the determinant operator and tr(⋅) is the trace operator. 

Balance of mass 

The balance of mass equation for each growing solid matrix constituent includes a 

mass growth function, cα, that quantifies the rate of mass deposition per unit current 

10	 mass. It is decomposed into two equations by assuming that the apparent density changes 

only because of the elastic part of the deformation. Using (A7) and (5)3 and introducing 

the infinitesimal fluid density change nw,6 the referential continuity equations linearize to 

"#	 # # "w w W 
= "R (1$ tre e ), = "R (1+ n ), 	 (6) 

where "# is the apparent density (mass/tissue volume) and "R is the reference apparent 

15 density. The local continuity equations (A6) become 

%tre #	 %n
w 

# e # s # w w w"R ($ ) + "Rdivv = "# 
cR, "R ( ) + "Rdivv = 0 ;	 (7) 

%t	 %t 

the growth continuity equations (A8) become7 

5 Also, the analytical results of (Klisch et al. 2000; Klisch et al. 2001; Klisch and Hoger 2003) reveal that
 
different growth symmetries lead to different states of residual stress in a growing elastic material.

6 This follows the linearization approach of (Green and Naghdi 1970).
 
7 Eqn. (8)1 is obtained after truncating the polynomial series representation of the exponential function in
 
(A8).
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%tre " "" " g
tre = $ 

t

d# or = . (8) g cR cR 
#= %tt0 

Also, the intrinsic incompressibility constraint (A5) becomes 

w w p p c c oth othn "R = tre "R + tre "R + tre "R , (9) e e e 

# # #Twhere "
R = $

R
/$
R is the reference volume fraction. In the infinitesimal theory the mass 

5 growth function c" , defined as the rate of mass deposition per unit reference mass, is 
R 

used. An alternative expression for the mixture continuity equation (A9) that is useful in 

solving non-equilibrium growth boundary-value problems can be derived by taking the 

material time-derivative of (A5) with respect to the fluid constituent and using (A6) and 

(A9): 

p p c c oth oth w w p s c s oth s10 "RcR + "RcR + "R cR = "Rdivv + "Rdivv + "Rdivv + "R divv . (10) 

Stresses, diffusive forces, and balance of linear momentum 

Neglecting body forces and inertial effects in the infinitesimal theory, the balance 

of linear momentum equations for the solid matrix and the fluid (A11) are 

divT
s 
+ " = 0,  divT

w 
#" = 0 , (11) 

15 where 0 is the zero vector and, recalling (A10) and (A12), 

oth
T

s 
= T

p 
+ T

c 
+ T , " = " s 

= #" w . (12) 

Growth laws 

To obtain a complete theory, growth response functions that describe the time-

rates of change of e g for the growing solid matrix constituents are required. 

20 Mathematically, growth response functions of the general form are represented as (A13). 

As a precursor to establishing the growth law, here we specify growth tensors in order to 

solve growth boundary-value problems. It is important to note that the growth laws are 

10
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phenomenological equations that indirectly describe chemical processes responsible for 

growth. For example, the mass growth functions c may be decomposed as a “synthesis” 
R 

rate minus a “degradation” rate, and may include a mass conversion rate from one 

constituent to another. Also, the constants that appear in a specific growth law may be 

5 parameterized by biological factors (i.e., the level of a specific growth factor). 

Constitutive equations 

Constitutive equations are required for the partial stresses and the diffusive force. 

In the model proposed here, general constitutive equations take the form (A14-A18). In 

(Klisch et al. 2000; Klisch and Hoger 2003), constitutive restrictions were derived from 

10	 thermodynamical considerations; here, we restrict the constitutive equations substantially 

following the assumptions discussed above. In particular, we assume that the 

proteoglycan stress depends on the proteoglycan, collagen, and water densities; the 

collagen stress is an isotropic function of the collagen elastic deformation with material 

constants that may evolve due to remodeling; that the determinate fluid and others 

15	 stresses are zero; and that the determinate diffusive force depends only on the solid 

matrix deformation and the diffusive velocity. In order to linearize, the free-energy 

functions are expressed as quadratic isotropic functions of the infinitesimal elastic strain 

tensors and fluid density change, and the partial derivatives are evaluated to obtain the 

constituent stresses and diffusive force.8 After considerable algebraic manipulation, we 

20	 obtain 

p p c w p
T
p 

= "#RpI + $p(tre e )I + $c(tre e)I + $wn I + TRI, 	 (13) 

8 This procedure is the same as that presented in (Green and Naghdi 1970), except that the material
coefficients of the collagen free energy functions are allowed to depend on the collagen remodeling
parameter γ. 

11
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c c c c
T
c = "#RpI + $c(tre )I + 2µ e + %cI, (14) e e 

"oth oth 
= #$R pI , (15) 

"w w 
= #$ pI, (16) R 

ˆ s
" = #(e )a , (17) 

cwhere ("c,µ ,#c,$p,$c,$w)are material constants, p
TR is the initial proteoglycan stress, 

and " is a linear function of the diffusive velocity a with coefficients that may be strain-

ˆ sdependent and anisotropic since "(e ) is a second-order tensor. The collagen material 

cconstants ("c,µ ,#c) are parameterized by γ so that they may change with time as 

remodeling occurs (formally, this requires a remodeling rate equation for γ). For solving 

10 boundary-value problems, it is convenient to add (13-15) to obtain a stress constitutive 

equation for the solid matrix. First, we introduce 

"
c c 

+ ˆ= T
R 

", (18) 

cwhere T  (
R = "
 p

RT
ˆ) is the initial collagen stress and the material constant " represents a 

change in collagen stress due to remodeling at fixed strain. Recalling (3-4), we obtain 

T
s s s s c p c + ˆ= "#RpI + $(tre )I + 2µe "%1(tre )I "%2(tre )I " 2µe &I,g g g 

1" #R c #R , (19) 15 $ = $c + 'p + 'c + 'w 
w

, µ = µ , = $c + 'c + 'w
c 

w 
%1 w#R #R 

#R
p 

%2 w
,= 'p + 'w 

#R 

so that the boundary-value problem may be posed in terms of the solid matrix constitutive 

s c pˆequation of the form T
s 

= T
s
(e ,e g,e g,"). A commonly used material constant is the solid 

matrix aggregate modulus H
A

, defined as the initial slope of the equilibrium stress-strain 

curve in a confined compression experiment. Expressions for the aggregate moduli of the 

12
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proteoglycan ( HA
p ) and collagen ( H

A

c ) constituents are derived from (13-14) by assuming 

purely elastic deformations in (4): 

p	 1# $R c c
HA = "p + "c + "w 

w

w

,  HA = %c + 2µ , (20) 
$R 

and, consequently, from (19) we obtain 

p	 c5 HA = " + 2µ = HA + HA . (21) 

In this study, we are choosing constitutive equations with non-physiological assumptions 

(e.g., infinitesimal strains, isotropic material symmetry, initially spherical pre-stresses, 

material homogeneity) in order to illustrate the model and develop analytical techniques. 

In the discussion, we outline possible refinements of these constitutive equations that 

10 may result in more accurate cartilage growth models. 

In the boundary-value problems solved in this paper, we assume for simplicity 

that the mass of the others remains constant; recalling (8) and (4) this leads to 

oth	 oth oth oth scR = 0 " e g = 0, e = e e = e . 	 (22) 

Equilibrium growth boundary-value problem 

15 Since we are interested in developing solution procedures for in vitro 

experiments, we study boundary-value problems for cartilage specimens that initially 

have a cylindrical geometry with radius R and height H. We use cylindrical coordinates 

where (r,θ,z) denote the radial, circumferential, and axial coordinates and take the origin 

to be at the center of the specimen. To define the equilibrium boundary-value problem, 

20	 we make the following assumptions for a growing cartilage specimen: (1) the material 

properties, tissue composition, and constituent pre-stresses are initially homogeneous and 

given; (2) axisymmetric growth tensors are given; and (3) the grown configuration is in 

13
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equilibrium with traction free-boundaries. Due to these assumptions, the problem is 

axisymmetric so that none of the variables in the theory depend on θ, and the fluid pore 

pressure (p) and the diffusive force ( " ) are zero. For an axisymmetric problem, the solid 

matrix strain tensor is 

s s s s5 e = e
rr e r " e 

r + e##e# " e# + e
zz e " e 

z
, (23) 

z 

where (e ,e",e ) are the unit vectors of the cylindrical coordinate system, ⊗ is the tensor r z

s s sdyadic product, and the strain components (e ,e"",ezz) are rr 

s "u s u s "u r r z e = ,  e## = ,  e = , (24) rr zz
"r r "z 

where ur and uz are the radial and axial components of the solid matrix displacement 

10 vector. The growth tensors are assumed to take the form 

e g = egrr e r # e r + eg$$e$ # e$ + egzz e z # e z. (25) 

For axisymmetric problems, the equilibrium equations derived from (11)1 reduce to 

s s s
"T 1 1 "T rr + 

s s "T$$ zz(Trr # T$$ ) = 0, = 0, = 0, (26) 
"r r r "$ "z 

while the equilibrium equations derived from (11)2 are identically satisfied when p=0 

15 everywhere. The traction free-boundary conditions reduce to 

s s
T (r = R) = 0,  T (z = ±H /2) = 0 . (27) rr zz 

Solution to the homogeneous growth boundary-value problem 

Here, the growth tensor components in (25) are assumed to be homogeneous and 

we restrict attention to the special case where the radial and circumferential growth tensor 

20 components are identical (i.e., e = e ). In this case, homogeneous solutions exist such grr g## 

that the solid matrix stress is zero everywhere (so that (26) are identically satisfied) and 

14
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s	 sthe radial and circumferential solid matrix strain components are equal (i.e., e ). 
rr = e"" 

Substituting the solid matrix stress-strain equations (19) into the boundary conditions 

(27), we obtain the solution for the solid matrix strain components: 

c p c p 
% ˆ(2#1 + $ + 2µ)e + 2#2e + (#1 % $)e + #2e & s	 s grr grr gzz gzz

e =	 ,rr = e"" 
3$ + 2µ 

(28) 
c p	 c p 

% ˆ2(#1 % $)e + 2#2e + (#1 + 2$ + 2µ)e + #2e & s grr grr	 gzz gzz
e =	 . zz	 

3$ + 2µ 

5	 This solution is then used to calculate the final tissue geometry (i.e., diameter d and 

height h) by integrating (28) to obtain the solid matrix displacement vector using (24); the 

proteoglycan and collagen elastic strain tensors using (4), (23), and (25); the infinitesimal 

fluid density change using (9); the final volume fractions using (6); and the proteoglycan 

and collagen stresses using (13-14). Final tissue volume was calculated using the volume 

10 formula for a cylinder. 

Solution to the nonhomogeneous growth boundary-value problem 

It has been shown that for a dynamic unconfined compression protocol, 

nonhomogeneous proteoglycan mass deposition is best correlated with the spatial profile 

of relative fluid velocity, being least at the center of the specimen and increasing with 

15	 radial coordinate r (Buschmann et al. 1999). Motivated by these findings, we consider a 

special case where the growth tensor components are zero at r=0 and linearly increasing 

with the radial coordinate r. Also, we restrict attention to the special case where the radial 

and circumferential growth tensor components are identical. In this case, the growth 

tensors are 

20 e g = gr re r # e r + gr re$ # e$ + gz re z # e z, 	 (29) 

15
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where ( g ,g" ) are constants. Since there is no z-dependence in the solution, the only non-r z 

trivial equilibrium equation is (26)1. Using the strain-displacement relations (24), the 

growth tensors (29), the stress-strain equations (19), and the boundary condition (27)2, we 

obtain the governing ordinary differential equation for the solid matrix radial 

5 displacement: 

"
2 
u	 1 "u u r + r #	 r = A,
 

"r
2 r "r r

2
 

(30) 
1 c c p p c c

A = [%1(2gr + gz) + %2(2gr + g ) # $gz + ($ + 2µ)g ], 
2($ + 2µ)	 z r 

for which an exact solution exists: 

Ar
2 

C
1 + C

2
r , (31) 

r
3 r 

u = + 

where C1 and C2 are constants of integration. Imposing the additional boundary 

10	 condition that the solid matrix radial displacement is zero at r=0 leads to C1=0. Imposing 

the boundary condition (27)1 allows for the determination of C2; thus, 

R 5 4 c c = 0,	  C2 = [#( " + µ)A + $1(2g + g )C1	 r z
3" + 2µ 3 3 (32) 

p p c c 
# ˆ(2g + g ) # "g + (" + 2µ)g %].+ $2 r z z r 

This solution is then used to calculate the final tissue geometry (i.e., diameter d and 

height h where h is a function of r) by evaluating (31) at r=R and by integrating the 

15 derived expression for "u "z with respect to z to calculate uz at z=H/2 (which depends 
z 

on r); and the other output variables are calculated as discussed above. Final tissue 

volume was calculated by integrating a differential volume element over the appropriate 

limits of integration. 

16
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Non-equilibrium growth boundary-value problem 

Since the mechanical effects due to growth and to typical in vivo or in vitro 

mechanical loads occur over time scales that differ by several orders of magnitude, we 

hypothesized that a time increment may be chosen over which the dynamic mechanical 

5	 effects of growth may be neglected. Thus, we consider a non-equilibrium growth 

boundary-value problem with growth rates that lie at the high end of those reported in the 

literature (e.g., see (Mauck et al. 2000)), in order to best support any conclusions 

regarding the relative time scales of growth and applied mechanical loads. We consider 

growth in a radially confined chamber because it describes a common experimental tissue 

10	 engineering protocol (as discussed in the introduction) and because we plan on analyzing 

these types of growth experiments in the future using the finite deformation theory in 

order to reduce the analysis to a one-dimensional problem. Furthermore, using a radially 

confined configuration allows us to compare the governing partial differential equations 

to those derived for confined compression using the biphasic model. 

15 We use cylindrical coordinates (r,θ,z) and take the origin to be at the center of the 

specimen. To define the boundary-value problem, we make the following assumptions: 

(1) the material properties, tissue composition, and constituent pre-stresses are initially 

homogeneous and given; (2) isotropic growth tensors and time-independent mass growth 

functions are assumed; (3) the specimen is radially confined at r=R and has a traction 

20	 free-boundary at its top and bottom surfaces; (4) the top and bottom surfaces are in 

contact with a physiologic saline and the fluid may flow freely through these surfaces. 

Due to these assumptions, the solid matrix displacement, solid matrix strain, and all 

velocity vectors are one-dimensional (i.e., they only have a z-component). As with the 

17
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confined compression biphasic model solution (Mow et al. 1980), the problem is “one-

dimensional” so that none of the variables in the theory depend on r or θ and the 

governing equations can be reduced to obtain decoupled partial differential equations for 

the solid matrix displacement and fluid pore pressure. Thus, we set 

s s "u w w s "u 
e # e . (33) 5 u = u(z,t)e ,  p = p(z,t), v = e , v = v e e = z z z z z

"t "z 

The isotropic growth tensors are expressed as 

e = e I (# tre = 3e ) . (34) g g g g 

The non-trivial linear momentum equations derived from (11) are 

"T
s 

"T
w 

zz zz+ # = 0, $# = 0. (35) 
"z

z 
"z

z 

10 Here, we assume that the diffusive force is strain-independent: 

(#R
w
)
2 

" z = a, (36) 
k 

where k is the permeability constant and a is the z-component of the diffusive velocity. 

Due to symmetry about the z=0 plane, the solid matrix displacement and velocity vectors 

are zero at z=0: 

s w15 u(0,t) = 0,  v (0,t) = 0,  v (0,t) = 0 . (37) 

The fluid pore pressure and the solid matrix stress are assumed to be zero at the top and 

bottom surfaces. Consequently, the initial and boundary conditions are 

s
u(z,0) = 0,     p(z,0) = 0,  T (H /2,t) = 0,     p(H /2,t) = 0. (38) zz 

Solution to the non-equilibrium growth boundary-value problem 

20 Using (33-34) and (3), we obtain the reduced growth, fluid, and mixture 

continuity equations from (8)2, (7)2, and (10): 

18
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#	 w w"e "n "vg	 # w w3	 = cR, $R + $R = 0, 
"t "t "z (39) 

"2 
p p	 c c w "vw 

p c oth u 
%RcR + %RcR = %R + (%R + %R + %R ) , 

"z	 "z"t 

and the reduced intrinsic incompressibility constraint: 

w w p #u p c #u c oth #u . 	 (40) "Rn	 = "R ( $ 3e g) + "R ( $ 3e g) + "R
#z #z #z 

Integrating (39)3 from 0 to z and recalling (37), we obtain 

w w p c oth $u p p c c
+ "RcR + "RcR . 	 (41) 5 "Rv = #("R + "R + "R ) 

$t 

The axial components of the solid matrix stress, fluid stress, and diffusive force are 

derived from (19), (16) and (36) using (33-34): 

%us	 s c p cT = "#Rp + ($ + 2µ) " 3&1e " 3&2e " 2µe ,zz	 g g g
%z (42) 

(#R
w)2 %u 

Tw = "#R
wp, ' = (vw " ).zz z

k %t 

The derivation of the governing partial differential equations proceeds as follows. The 

10	 fluid velocity vw is solved from (41) and used in the diffusive force equation (42)3. Then, 

the stresses and diffusive force from (42) are substituted into (35). The resulting 

equations can be decoupled, yielding 

"2u 1 %"u p p c c ( "p "2u 
=	 & # ($RcR + $RcR )z ), = HA , 	 (43) 

"z2	 HAk ' "t * "z "z2 

where the aggregate modulus HA is defined in (19-20). Equation (43)2 can be integrated 

15 using the boundary condition (38)4 to obtain: 

p(z,t) = HA 
"u "u 

(H /2,t) . 
 (44)
 (z,t) # 
"z "z 

19
 



!

!

!

!

!

            

  

          

             

           

     

          

           

  

 

  

       

 

  

          

       

 

 

 
 
 

 
 
 

     
 
 
 

 
 
 

   

         

     

        

         

            

        

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 
  

" 

%
& 
'
 

(
) 
* 

% 
& 
'
 

( 
) 
* 

$	 ' 

Klisch et al., “A cartilage growth mixture model for infinitesimal strains … ” 

Thus, the solution procedure is to solve (43)1 for the solid matrix displacement and use 

the result in (44) to solve for the fluid pore pressure. The above equations reduce to those 

for the confined compression analysis using the biphasic model (Mow et al. 1980) by 

setting all growth terms to zero. 

5 To solve (43)1, the initial condition (38)1 and the boundary conditions (37)1 and 

(38)3 are used. Using (42)1, the boundary condition (38)3 leads to 

"u 1 c p
(H/2,t) = {(3#1 + 2µ)eg + 3#2eg}. 	 (45) 

"z HA 

To simplify the solution procedure, we choose the mass growth functions c to be 
R 

constant with time. Consequently, the partial differential equation for the solid matrix 

10 displacement and the initial and boundary conditions are: 

"2 u 

"z 
,

2 
(+1 + µ)cR

c	 + +2cR
p 

"u1
 p$R 

"u 1 

p c c cR + $R# (
 )z      u(z,0) = 0, =
 cR2 "tH k 
(46)
 A

t. 

This is a nonhomogeneous partial differential equation with a nonhomogeneous, linear, 

time-dependent boundary condition without an analytical solution. 

To solve (46), we obtained a numerical solution by assuming a time increment 

15	 (0<τ<1) corresponding to (t1<t<t2) over which the boundary condition (46)4 is constant, 

and equal to its value at the end of the prescribed time increment (τ=1; t=t2). The 

resulting partial differential equation has an exact solution for the time increment: 

%(2n#1)$ (2 
+	 #kHA "(2n #1)$z ' * 

u(z, ") = uE (z) + ,Bn sin e & H ) ,
 
n=1 H
 

p p c c p p c c 21 #RcR + #RcR 3 1 #RcR + #RcR HuE (z) = " z + &A + )z, 
6 kHA % 2 kHA 4 ( 

u(0,t) = 0, (H/2,t) = 
"z HA 3
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1
 
A =
 +
 

2 
µ)cR

c + "2cR
p 
t 2, 

HA 3
 
("1 

H / 2 4	 (2n "1)$z 
B = n # [f(z) " uE (z)]sin dz,	 (47) 

H 0	 H 

where f(z)=u(z,τ=0) is the initial condition corresponding to the solution from the 

previous time increment and A = "u /"z (H /2, t 2) represents the boundary condition at 

5	 the end of the time increment. Thus, to solve the non-equilibrium problem, a time 

increment is chosen and the solution (47) is obtained in an iterative fashion by updating 

the initial and boundary conditions. Convergence studies indicated that ten terms in the 

summation were sufficient and that the integral defining Bn could be evaluated using the 

trapezoidal rule. The numerical solution was obtained using Mathematica. 

10 Parameter estimation 

To solve the problems outlined above, values for the following model parameters 

must be specified: constituent volume fractions/pre-stresses, material constants for the 

proteoglycan/collagen stresses, and the permeability constant. Experimental measures of 

tissue composition, confined compression aggregate modulus, and permeability were 

15 available for a typical calf bovine cartilage explant harvested from the patellofemoral 

groove (Williamson et al. 2001). Using this data, the proteoglycan stress component p
TR 

was determined using the model of (Basser et al. 1998). That approach uses a two-

compartmental model for the fluid constituent: an interfibrillar compartment contained in 

the collagen fibers, and an extrafibrillar compartment surrounding the collagen fibers. 

20 The proteoglycans reside in the extrafibrillar water compartment; thus, an effective fixed 

charge density is calculated by dividing the total fixed charge density by the extrafibrillar 

water mass. The relationship between proteoglycan swelling stress and effective fixed 

21
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charge density is assumed to be the same as that of extracted proteoglycans. The swelling 

stress (defined per unit area of the extrafibrillar water) is multiplied by the extrafibrillar 

water volume fraction to obtain the proteoglycan stress defined per unit mixture area. The 

input parameters are the following measures of tissue composition: wet weight mass 

5	 mWW, dry weight mass mDW, GAG mass mG, and hydroxyproline content mC. 

Then, using the experimental solid matrix aggregate modulus and methods in 

earlier studies (Chen and Sah 2001; Klisch et al. 2003), the proteoglycan material 

constants are calculated as follows. First, curves of the proteoglycan stress component Tp 

vs. the confined compression strain ε are generated. In confined compression, it is 

10	 assumed that only water mass changes as fluid flows out of the tissue. For a given ε, mWW 

is reduced by the volume change (since the density of the fluid is assumed to equal 1 

g/cm3) and the model is applied to solve for Tp. From the calculated Tp vs. ε curve, the 

pproteoglycan aggregate modulus H is calculated as A 

p "T
p 

HA = , 	 (48) 

15	 where convergence studies indicated that ε=1% was sufficient. Then, the material 

constants ("p,"c) are estimated using a similar procedure. First, mG and, consequently, 

mWW and mDW are increased, the model is applied, and ηp is calculated by approximating 

pthe partial derivative of (13) with respect to tre and using (6)1: e 

m 
"p p p

= # $T . 	 (49) 
$m p 

20	 Next, mC and, consequently, mWW and mDW are increased, the model is applied, and ηc is 

calculated in a similar fashion: 

22
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"c
m c p

= # $T . (50) 
$m c 

pUsing the calculated values of ( HA, "p
, "c), "wis calculated from (20)1 and the collagen 

caggregate modulus H
A is calculated from (21)2. The collagen material constants (λc, µc) 

were determined as in an earlier study (Klisch et al. 2003) by assuming a solid matrix 

Poisson’s ratio of 0.11 reported for bovine cartilage explants (Wong et al. 2000). The 

input parameters used are listed in Table 1. 

Parameter studies 

For both equilibrium and non-equilibrium problems, 

diameter and height of 2 and 1 mm, respectively. 

10 Equilibrium solutions 

we assumed an initial 

For homogeneous growth, the following problems were solved to investigate the 

relative effects of collagen remodeling activity, growth symmetry, and differential 

growth: 

p p c
ISO (e >) : isotropic growth ( tre = 0.30,tre = 0.15);g g g 

p p c15 ISO " R (e >): isotropic growth + remodeling ( tre = 0.30,tre = 0.15);g g g 

p p
PLAN (eg >) : planar growth ( tre g 

c p
ISO (eg >) : isotropic growth ( tre g 

c 
= 0.30,tre g = 0.15); 

c 
= 0.15, tre g = 0.30); 

c p c
ISO - R (e >): isotropic growth + remodeling ( tre = 0.15, tre = 0.30).g g g 

Recalling (8), the total mass deposited for either constituent is 

20 deposited  mass = "R % ( % 
t 

cRd$)dV = "R % tre gdV . (51) 
V $=t0 V 

23
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p cThus, cases with ( tre g = 0.30,tre g = 0.15) represent a 30% increase in proteoglycan mass 

p cand a 15% increase in collagen mass, whereas cases with ( tre g = 0.15, tre g = 0.30) 

represent a 15% increase in proteoglycan mass and a 30% increase in collagen mass. 

Isotropic growth does not result in a preferential direction for mass deposition so that 

5 egrr = eg## = egzz in (25). The planar growth case results in a preferential direction for 

mass deposition in the radial direction; we chose egrr = eg##,  egzz = 0 in (25) such that 

p ctreg = 0.30, treg = 0.15. For the cases with remodeling, the collagen material constants 

c(µ ,"c) were each increased by 10% to represent a stiffening of the collagen network. 

The equilibrium solution to one nonhomogeneous growth case is presented, in 

10 which the constants ( g ,g" ) in (29) were selected using (51) to correspond to the same r z 

cmass deposition as the homogeneous case ISO (eg >) : 

c
ISO - NH (eg >): nonhomogeneous isotropic growth. 

Non-equilibrium solutions 

We assumed the same reference configuration as that chosen for the equilibrium 

15 problems, and specified mass growth functions c to correspond to a 30% increase in 
R 

proteoglycan mass and a 15% increase in collagen mass over a time of one day. We 

chose time increments of 5 minutes and solved the problem numerically as discussed 

above. Although we also obtained an exact solution for the time-dependent response to 

equilibrium after the growth process ends at one day, these results are not presented as 

20 the tissue reached equilibrium over a time scale on the order of seconds. 

24
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RESULTS 

In the figures and tables, the case REF refers to the reference configuration with 

volume fractions and constituent pre-stresses listed in Table 1. 

Equilibrium solutions 

Tissue composition and constituent pre-stresses depended on remodeling activity, 

growth symmetry, growth heterogeneity, and differential growth. For homogeneous 

growth, the solid matrix strain and, consequently, the constituent elastic strains, volume 

fractions, and stresses were homogeneous and the solid matrix stress was zero (Fig. 1). 

cFor	 nonhomogeneous growth ( ISO - NH (eg >)), the solid matrix strain and, 

10	 consequently, the constituent volume fractions, pre-stresses, and solid matrix stress 

varied with radial position r (Fig. 2). Tissue geometry depended on remodeling activity, 

growth symmetry, growth heterogeneity, and differential growth (Fig. 3). The final 

geometry was cylindrical except for the non-homogeneous growth case 

c( ISO - NH (eg >)), where the axial displacement of the solid matrix increased with radial 

15 position r (result not shown). 

Non-equilibrium solution 

The results for the non-equilibrium growth boundary-value problem indicate that 

the tissue is nearly in equilibrium at all time points. At the end of the growth process (one 

day), the solid matrix strain was nonhomogeneous (Fig. 4); however, the difference 

20	 between the strain values at the top (z=H/2) and middle (z=0) surfaces was 0.005%. The 

average solid matrix strain was calculated as the displacement of the surface (z=H/2) 

divided by the height of the symmetrical control volume (H/2), and increased nearly 

linearly with time (Fig. 4). Consequently, the averaged volume fractions, velocities, and 

25
 



! !

            

  

        

       

              

          

          

           

         

     

 

         

          

            

        

  

          

           

        

        

           

          

   

 

 

 

  

         

              

Klisch et al., “A cartilage growth mixture model for infinitesimal strains … ” 

stresses also increased nearly linearly with time (results not shown). The volume 

fractions were nonhomogeneous (Fig. 5), with proteoglycan and collagen contents 

highest at z=0 and water content highest at z=H/2. These results indicate that at the end of 

the growth process, water will flow towards the center of the specimen to reach 

5	 equilibrium (this was verified by direct solution although the results are not presented). 

The velocities were nonhomogeneous (Fig. 6); the diffusive velocity profile indicates that 

fluid is flowing out of the tissue during the growth process. The fluid and solid matrix 

stresses were nonhomogeneous (Fig. 6). 

DISCUSSION 

10 We have presented a CGM model for infinitesimal strains and solved boundary-

value problems chosen in order to elucidate how the CGM model may ultimately be used 

with in vitro growth experiments. The results reveal that the CGM model has the 

capability to predict the evolution of tissue composition, stresses, and geometry of 

growing cartilage. 

15 The solutions have possible implications for tissue engineering experiments. For 

example, the results suggest that the CGM model may be used to identify stages of 

growth experiments: one to achieve a geometry needed to repair a cartilage defect in vivo, 

and another to achieve an enhancement of structural and functional properties. For 

homogeneous growth, the solutions reveal that the cartilage matrix is homogeneous and 

20	 that the solid matrix is not residually stressed. The two homogeneous growth cases with a 

p	 pgreater proteoglycan mass growth function, ISO (eg >) and PLAN (eg >) , resulted in the 

greatest increase in tissue volume. Thus, by identifying a mechanical loading protocol to 

produce these types of growth, the tissue engineer may be able to grow a construct to a 

26
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specified volume in order to fill a defect in vivo. On the other hand, homogeneous 

growth with a greater collagen mass growth function and remodeling activity, 

c
ISO - R (eg >) , resulted in the least increase of tissue volume, the greatest solid matrix 

content, and the second-greatest constituent pre-stresses. Greater proteoglycan and 

5 collagen pre-stresses may likely to an enhancement of biomechanical function (such as 

compressive, tensile, and shear properties) due to the nonlinear stress-strain behavior of 

the cartilage solid matrix. Furthermore, greater solid matrix content may lead to a lower 

permeability. Since mature cartilage has a higher solid content, higher elastic moduli, and 

lower permeability than immature constructs, these results suggest that by identifying a 

10 mechanical loading protocol to produce this type of growth, the tissue engineer may be 

able to grow a construct with the desired compositional and biomechanical properties. 

The results also suggest that the CGM model may be used to predict how dynamic 

mechanical loading affects the development of nonhomogeneous properties during in 

vitro growth. The type of nonhomogeneous growth that was chosen here was intended to 

15 model the results of (Buschmann et al. 1999) in which a dynamic compression loading 

protocol revealed that proteoglycan mass deposition was most closely correlated with the 

magnitude of diffusive velocity, increasing with radial position. The results predict that 

non-uniform growth leads to a nonhomogeneous specimen with a residually stressed 

solid matrix, in agreement with previous studies. Native cartilage is nonhomogeneous; 

20 for example, the superficial region of cartilage has a lower aggregate modulus, higher 

permeability, and higher water content than the middle and deep regions (Schinagl et al. 

1997). It has been shown that these nonhomogeneous properties affect the solid matrix 

compaction, fluid pressure, and fluid flow throughout the tissue in confined compression 

27
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(Wang et al. 2001). In order to design a construct that has the nonhomogeneous 

properties of native cartilage, it is likely that a combination of different dynamic loading 

protocols is necessary. It may be possible to experimentally determine model parameters 

for specific dynamic loading protocols such as compression, tension, and shear, and then 

5 use the CGM model to predict a sequential combination of these protocols to produce the 

desired nonhomogeneous properties in place of time consuming and costly experiments. 

To best mimic the nonhomogeneous properties of native cartilage, these methods may be 

combined with recent experiments with constructs grown from chondrocytes with 

different phenotypes; for example, stratified cartilage constructs have been fabricated in 

10 vitro by harvesting cells from both the superficial and middle regions of cartilage 

explants (Klein et al. 2003). 

The solution to the non-equilibrium growth boundary-value problem suggests the 

manner in which the CGM model may be used in the future to quantify the biomechanics 

of growth in vitro. The mass growth functions that were chosen in the present study 

15	 reflect an upper bound based on previous experimental results. The result that the tissue 

is near equilibrium during the growth process suggests that the time scales over which the 

mechanical effects due to growth and in vivo or in vitro loading differ by several orders 

of magnitudes. Thus, to apply the CGM model with in vitro experiments, one may 

identify a time increment (e.g., one day) during which the mechanical effects of growth 

20	 are neglected. Then, the boundary-value problems obtained from existing analyses using 

classical mixture theory may be used to obtain time-averaged values of mechanical 

stimuli over this time increment. These time-averaged values may then be used in the 

growth laws to determine the growth tensors and an equilibrium growth boundary-value 

28
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problem may be solved to obtain new values for tissue composition, stresses, and 

geometry. This approach would then proceed in an iterative fashion throughout the 

growth process. Such an approach is similar to that used in bone remodeling by Carter 

and colleagues (Beaupre et al. 1990; Carter and Wong 1988). 

5 As a precursor to establishing the forms of the growth laws, in this paper the 

growth tensors were specified. The results suggest that it is important to quantify both the 

amount and orientation of proteoglycan and collagen mass deposition in order to predict 

the evolution of tissue composition and biomechanical function during growth. 

Experimental data that quantifies the changes in both the geometry of a growing tissue 

10	 explant as well as the constituent densities are necessary. The type of experiment that 

was conducted in (Buschmann et al. 1996) that quantified the spatial location of 

molecular deposition in the extracellular matrix could be used to fully characterize each 

growth tensor. Furthermore, the effect of various biochemical regulators on the growth 

law may be studied. 

15 In this study, we used stress constitutive equations with non-physiological 

assumptions (e.g., infinitesimal strains, isotropic material symmetry, initially spherical 

pre-stresses, material homogeneity) in order to accomplish our objectives and to lay the 

foundation for future studies. In general, physiological growth problems will involve 

large growth deformations, which will usually cause large elastic deformations. The 

20	 solutions to these problems will employ a numerical solution technique where the 

incremental equilibrium boundary-value problem (e.g., see (Klisch et al. 2001)) is solved 

after obtaining a linear approximation to the growth law and stress constitutive equations. 

Consequently, more accurate constitutive models will include finite deformations, in 
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addition to anisotropic material symmetry and material nonhomogeneity. Several 

experimental studies have quantified the nonlinear and nonhomogeneous mechanical 

properties of the cartilage solid matrix. A model for the solid matrix of cartilage has been 

proposed (Soltz and Ateshian 2000) that is capable of modeling the tension-compression 

5 asymmetry that has been observed in developing cartilage, mature cartilage, and tissue-

engineered constructs. Many studies have quantified the depth-dependent mechanical 

properties of bovine and human articular cartilage. However, these nonlinear (Soltz and 

Ateshian 2000) and nonhomogeneous (Chen et al. 2001a; Chen et al. 2001b; Schinagl 

1997) models have only been postulated for infinitesimal strains. In order to develop 

10	 constitutive equations that may be used accurately during a growth process, they must be 

validated for multiple experimental protocols and large strains. It is emphasized that 

accurate constitutive equations are necessary in order to validate the CGM model so that 

it can be used to predict in vitro and in vivo growth. 

For example, the manner in which the collagen stress constitutive equation is 

15 defined may be modified in several ways in order to better describe growth and 

remodeling. First, the use of a finite deformation constitutive equation can describe how 

cthe collagen material constants ("c,µ ,#c) in (14) evolve due to the nonlinear effects of 

growth. In our recent paper (Klisch et al. 2003), we studied two non-physiologic, 

nonlinear collagen stress constitutive equations and used a “small-on-large” approach to 

20 quantify how the collagen material constants for infinitesimal deformations superimposed 

on an equilibrium state evolve. A more accurate model may account for the presence of 

residual stress (i.e., a nonhomogeneous pre-stress); the general approach was developed 

in (Klisch et al. 2001). A first-order stress constitutive equation relative to a residually-
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stressed configuration was derived in (Johnson and Hoger 1993) and is similar to (14), 

although the pre-stress in (14) is allowed to be homogeneous and spherical due to the 

mixture approach whereas the residual stress in (Johnson and Hoger 1993) was 

necessarily nonhomogeneous. Second, the model assumes that the collagen matrix that is 

5 deposited during growth has the same principal orientations as the existing collagen 

network, although the material constants are allowed to depend on a single remodeling 

parameter (e.g., crosslink density). Our preliminary results in applying the model with 

bovine cartilage explants (Klisch et al. 2003) suggest that there are other microstructural 

parameters that affect the collagen mechanical properties. Thus, it may be necessary to 

10	 incorporate additional microstructural variables into the CGM model. One promising 

approach for modeling the evolution of anisotropy has been recently published (Menzel 

2005).9 

The CGM model developed here assumes the existence of an extracellular 

proteoglycan-collagen matrix that is dense enough so that it can be modeled as a 

15 continuum. The model seems best suited for studying the growth of either tissue explants 

or tissue engineered constructs that have formed an extracellular matrix. We have used 

the model to describe the growth of native tissue explants (Asanbaeva et al. 2004; Klisch 

et al. 2005) and plan on using it to describe the growth of tissue engineered constructs 

using the alginate recovery method (Masuda et al. 2003), in which constructs are formed 

20 using chondrocytes that have an intact pericellular matrix after being cultured in alginate 

beads. Most cartilage tissue engineering experiments are conducted by seeding 

9 Anisotropy may also develop due to the nonlinear effects of growth; for example, anisotropic growth of
an isotropic material will generally lead to a configuration for which the mechanical response relative to the
new configuration is anisotropic. 
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chondrocytes onto synthetic matrices. The CGM may be used to model those experiments 

by using the theory for an arbitrary number of growing constituents (Klisch et al. 2000; 

Klisch and Hoger 2003) to include an additional constituent representing the synthetic 

matrix, which may be allowed to “grow” to represent degradation of a biodegradable 

5	 scaffold (e.g., see (Wilson et al. 2002)). In this case, the analysis may begin with no 

proteoglycans or collagens present in the extracellular matrix, which then grow via 

conversion from the culture medium. However, preliminary studies may indicate that it is 

necessary to delay analysis with the CGM model until a sufficient amount of time in 

culture has passed so that an intact extracellular matrix exists. 

10 Ultimately, a CGM model may be used to develop a better understanding of the 

key mechanisms of cartilage growth in the specific context of repairing damaged 

cartilage. With the development of more accurate stress constitutive equations and the 

experimental determination of the growth laws, the CGM model may serve as a paradigm 

for quantifying the in vitro growth of tissue engineered cartilage constructs and the in 

15	 vivo growth upon implantation for the repair of cartilage defects. 
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APPENDIX 

In this appendix, we outline a cartilage growth mixture (CGM) model for finite 

20	 deformations obtained from the general growth mixture theory presented in (Klisch et al. 

2000; Klisch and Hoger 2003) with the simplifying assumptions presented in the 

Methods section. 
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Kinematics. The deformation gradient tensors F (superscript α=p (proteoglycan), c 

(collagen), oth (others)) for the growing solid matrix constituents are decomposed as 

F = M e M g .	 (A1) 

The tensor M e M g describes the deformation due to growth relative to a fixed reference 

5	 configuration, where the amount and orientation of mass deposition are described by M g . 

The tensor M is the elastic accommodation tensor that ensures continuity of the 
e 

growing body, and may include a contribution arising from a superposed elastic 

deformation. The diffusive velocity a is defined as 

w	 s
a = v	 " v , (A2) 

10	 where vw is the fluid velocity and vs is the solid velocity. The constraint that the growing 

solid matrix constituents experience the same overall motion requires their displacement 

vectors (uα) and velocity vectors (vα) must equal the solid matrix displacement (us) and 

velocity (vs) vectors: 

s p c oth s p c oth 
u = u = u = u , v = v = v = v . (A3) 

15 Consequently, the deformation gradient tensors F"of the growing solid matrix 

constituents must equal the solid matrix deformation gradient tensor Fs: 

oth	 p p c c oth oth
F

s 
= F

p 
= F

c 
= F " F

s 
= M M = M M = M M . (A4) e g e g e g 

The constraint of intrinsic incompressibility states that the mixture is fully saturated with 

constant true densities: 

+ "oth20 "p 
+ "c + "w 

= 1,	 (A5) 
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where "# 
= $# 

/$#T is the volume fraction, "# is the apparent density (mass/tissue 

volume), "#T is the true density (mass/constituent volume), and superscript w= water. 

Balance of mass. The standard balance of mass equations are generalized by introducing 

mass growth functions (cα) that quantify the rate of mass deposition per unit current mass 

5	 for the growing solid matrix constituents. Due to the constraint (A3), we obtain 

"# s # "w w˙ + "#divv = "# 
c , ˙ + "w

divv = 0 , (A6) 

where a superposed dot indicates the material time derivative following the appropriate 

constituent and div(⋅) is the divergence operator. The balance of mass equation for each 

growing solid matrix constituent is decomposed into two equations by assuming that the 

10	 apparent density changes only because of the elastic part of the deformation. Thus, the 

balance of mass equations for the growing solid matrix constituents become 

det M	 = "
R , (A7) 

e 

where "R 
# is the reference apparent density. Growth continuity equations are then derived 

from (A6)1 and (A7): 

15 det M g = exp ( $ 
t

c d#) ,	 (A8) 
#=t0 

where det(⋅) is the determinant operator. The balance of mass equation for the mixture 

requires 

ρp cp + ρc cc + ρoth coth = ρs cs ,	 (A9) 

where cs is the mass growth function for the solid matrix. 
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Stresses, diffusive forces, and balance of linear momentum. The solid matrix Cauchy 

stress tensor Ts and diffusive force π s are assumed to be the sum of the partial solid 

matrix constituent stresses Tα and diffusive forces πα, respectively: 

T
s oth	 

+ " oth
" s 

= T
p 

+ T
c 

+ T , = " p 
+ " c . (A10) 

5 It was shown in (Klisch et al. 2000; Klisch and Hoger 2003) that the constraint (A4) 

produces constraint responses in Tα and πα which cancel upon addition when forming the 

solid matrix stress tensor and diffusive force vector. Consequently, the balance of linear 

momentum equations reduce to one for the solid and one for the fluid: 

s	 w
divT

s 
+ " s 

= #s 
v̇ ,  divT

w 
+ " w 

= #w 
v̇ . (A11) 

10 The balance of linear momentum for the mixture requires 

s	 w
" = " = #" , (A12) 

where π is the diffusive force. 

Growth laws. To obtain a complete theory, growth response functions that describe the 

time-rate of change of M g for the growing solid matrix constituents are defined. 

15 Mathematically, growth response functions of the general form are represented as 

˙ 	 ˆM g = G (M ) , 	 (A13) 

ˆwhere G is a function of mechanical stimuli M that drives the growth process for each 

growing solid matrix constituent. 

Constitutive equations. Constitutive equations are required for the partial stresses as well 

20	 as the diffusive force. In (Klisch et al. 2000; Klisch and Hoger 2003), constitutive 

restrictions were derived that relate the constituent stresses to partial Helmholtz free 

energy functions that were allowed to depend on the elastic deformation gradient tensors 
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and their gradients, fluid density and its gradient, diffusive velocity, and temperature. 

Here, we restrict those constitutive equations substantially as discussed in the Methods 

section. Generally, the assumed stress and diffusive force constitutive equations in the 

CGM model are 

p c5 "p 
= #$p

pI + "̂ p(M ,M ,%w
) , 	 (A14) e e 

" c 
= #$c

pI + "̂ c(M
c
e,%) , 	 (A15) 

oth 
= "#othT pI , 	 (A16) 

"w 
= #$wpI, 	 (A17) 

grad#s 

" =	 
#sT 

pI + "̂ (F s,a) , (A18) 

10	 where I is the identity tensor, p is an arbitrary Lagrange multiplier (i.e., the fluid pore 

pressure) that arises due to the intrinsic incompressibility constraint, and γ is a collagen 

remodeling parameter that may model a structural change in collagen network integrity 

(e.g., collagen crosslink density). 
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Table 1: Input parameters for CGM model estimated from a typical bovine calf cartilage
explant harvested from the patellofemoral groove. 

PARAMETER VALUE 
"
R 
w 0.877 
"R 
p 0.013 
"
R 
c 0.072 
"
R 
o 0.038 
p
TR (MPa) -0.048 
T
R 
c (MPa) 0.048 

HA (Mpa) 0.213 
k (m4/N-s) 3.07×10-15 

HA 
p (MPa) 0.088 

H
A 
c (MPa) 0.125 

"p (MPa) 0.065 
"c (MPa) 0.011 
"w (MPa) 0.086 
λc (MPa) -0.061 
µc (MPa) 0.093 
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Figure 1: Volume fraction and stress results for homogeneous equilibrium growth
boundary-value problems. The stresses were spherical tensors, Tp was negative, and Tc 

was positive. 
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Figure 2: Volume fraction and stress results for the nonhomogeneous equilibrium growth 
cboundary-value problem ( ISO - NH (eg >)). The proteoglycan stress is a spherical tensor; 

p p p si.e., Trr = T"" = Tzz. The solid matrix axial stress T
zz was zero everywhere. 
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Figure 3: Geometry results: percent increase in diameter (d; mm), height (h; mm) and 
volume (V; mm3) for equilibrium growth boundary-value problems. 
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Figure 4: Solid matrix strain vs. axial coordinate z (at one day) and average solid matrix 
strain vs. time results for the non-equilibrium growth boundary value problem. 
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Figure 5: Volume fraction vs. axial coordinate z results (at one day) for the non-
equilibrium growth boundary value problem. 
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Figure 6: Velocities, solid matrix stress, and fluid stress vs. axial coordinate z results (at 
one day) for the non-equilibrium growth boundary value problem. 
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