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ABSTRACT

The aim of this study was to design in vitro growth protocols that can comprehensively quantify
articular cartilage structure-function relations via measurement of mechanical and biochemical
properties. Newborn bovine patellofemoral groove articular cartilage explants were tested
sequentially in confined compression (CC), unconfined compression (UCC), and torsional shear
before (DO i.e. day zero) and after (D14 i.e. day 14) unstimulated in vitro growth. The contents
of collagen (COL), collagen-specific pyridinoline (PYR) crosslinks, glycosaminoglycan, and
DNA significantly decreased during in vitro growth; consequently, a wide range of biochemical
properties existed for investigating structure-function relations when pooling the DO and D14
groups. All DO mechanical properties were independent of compression strain while only
Poisson’s ratios were dependent on direction (i.e. anisotropic). Select DO and D14 group
mechanical properties were correlated with biochemical measures; including (but not limited to)
results that CC/UCC moduli and UCC Poisson’s ratios were correlated with COL and PYR.
COL network weakening during in vitro growth due to reduced COL and PYR was accompanied

by reduced CC/UCC moduli and increased UCC Poisson’s ratios.

INTRODUCTION

Articular cartilage (AC) contains cells (i.e. chondrocytes) embedded in a matrix containing
glycosaminoglycans (GAGs), collagens (COLs), and water. GAGs, which form larger
proteoglycan (PG) molecules, have fixed negative charges that generate a swelling pressure that
is restrained by the crosslinked COL network (CN) (Venn and Maroudas, 1977). The
microstructural properties of the GAGs and the CN are thought to be predominantly responsible

for the tissue’s biomechanical properties, commonly characterized as anisotropic (i.e. dependent
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on direction), asymmetric (i.e. different in tension and compression), and nonlinear (i.e.

dependent on strain) (Woo et al., 1979; Soltz and Ateshian, 2000; Klisch, 2007).

Continuum mechanics cartilage growth mixture (CGM) models have been developed that allow
AC to be modeled as a mixture of constituents that can grow at different rates (Klisch et al.,
2003; Davol et al., 2007). These models include many adjustable parameters; in order to not
over-parameterize a growth simulation, comprehensive mechanical and biochemical property
data are needed. However, in vitro growth studies are limited with respect to the breadth of
measured mechanical properties; for example, a recent validation analysis of a CGM model was

limited to predicting tensile modulus at 20% strain (Klisch et al., 2007a).

Motivated by the need for comprehensive data in order to develop accurate CGM models, the
aim of this study was to design in vitro growth protocols that can comprehensively quantify AC
structure—function relations. Mechanical properties of explants harvested in different directions
were measured before growth in confined compression (CC), unconfined compression (UCC),
and torsional shear (TS). Other explants were grown in vitro to provide baseline growth laws (i.e.
the rate of mass deposition per unit current mass) under unstimulated conditions in order to
quantify the effect of mechanical loading on the growth laws in future studies. Novel features of
the protocols included the simultaneous measurement of two orthogonal UCC Poisson’s ratios
(i.e. the negative ratio of lateral expansion strain to applied compression strain) in contrast to
previous optical measurements of one Poisson’s ratio at a time (Jurvelin et al., 1997; Wong et al.,

2000; Laasanen et al., 2003; Wang et al., 2003; Kiviranta et al., 2006) and comprehensive
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mechanical property correlations with biochemical properties including COL  specific

pyridinoline (PYR) crosslinks.

The specific aims were to: (1) design experimental protocols to measure direction- and strain-
dependent AC mechanical properties; (2) measure mechanical and biochemical properties before
and after in vitro growth; and (3) investigate structure-function relations between mechanical and

biochemical properties.

METHODS

Sample Preparation

Full-thickness blocks (n=19) of newborn (~1-3 week old) bovine AC were harvested from the
medial ridge of the patellofemoral groove (PFG) of 19 unpaired knees (Fig. 1). Eleven blocks
were used for testing before in vitro growth (DO i.e. day zero). Each block was sliced to produce
three orthogonal slices: a medial-lateral (ML-DO) slice normal to the ML direction and ~ parallel
to the local split-line direction (Williamson et al., 2003a), an anterior-posterior (AP-DO0) slice
normal to the AP direction, and an axial (AX-DO) slice parallel to the articular surface at a mean
depth of 2 mm. In preliminary tests the AP-DO and ML-DO0 groups exhibited similar mechanical
properties; consequently, AP-DO slices were used only for biochemical testing. Each slice was
planed to Imm height (h) using a freezing stage mounted on a sledge microtome. Cylindrical
discs (diameter d = 3.2 mm, h = 1 mm) were punched from each slice so that the center of each
disc was ~ 2 mm from the surface. A trypan blue dye line on one disc surface was used to track
anatomic direction. The discs were frozen at -20 C and thawed at room temperature before

testing.
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The remaining 8 blocks were used for mechanical and biochemical testing after in vitro growth
(D14 i.e. day 14). Each block was used to obtain one axial (AX-D14) slice (~10 x 6 x .7 mm)
parallel to the surface at a mean depth of 2 mm. The slices were incubated in medium (DMEM
supplemented with 20% FBS and 100 ug/ml ascorbate) for 14 days using existing protocols
(Asanbaeva et al., 2007a). After 14 days the WW was measured and the slices were frozen at -20
C. Prior to mechanical testing, the slices were thawed at room temperature and punched into
cylindrical discs (d = 4.8 mm, h = 0.7 mm). The diameter, height, and WW of the discs were

measured before each mechanical experiment.

Mechanical Testing

All mechanical tests were performed in test medium consisting of PBS (0.15M NaCl at pH 7.1
plus buffers) and proteinase inhibitors. ML-DO and AX-DO specimens were tested in sequential
CC (n=10), UCC (n=11), and TS (n=7) experiments while AX-D14 specimens were tested in
sequential CC (n=8) and UCC (n=8) experiments. The CC experiments were performed
according to established protocols (Chen et al., 2001a; Williamson et al., 2001) in a materials
testing machine (Enduratec ELF 3200). Specimens were loaded in sequential 400 sec. ramps to
15, 30, and 45% strains while allowing for stress relaxation to equilibrium determined using a
termination criterion of a change in stress less than 0.003MPa over 180 sec. The mechanical
properties of the first three AX-DI14 specimens were considerably degraded such that
compressive loading to 45% strain caused irreversible damage; subsequent tests with AX-D14
specimens were limited to 15 and 30% compressive strains. A series of oscillatory

displacements of 0.1 - 0.3% amplitude were superimposed on all three compressed equilibrium
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states. From the equilibrium data, a CC secant modulus (i.e., total stress divided by total strain)

H, was calculated. From the dynamic data, the permeability constants k, and M were calculated

(Chen et al., 2001a) using the strain dependent permeability function k =kOeM8 (Lai et al.,
1981), where the strain € = A-1 and the stretch A (<1 for compression) in the compressed

equilibrium state equals the ratio of the compressed to initial thicknesses.

New protocols were developed to perform the UCC experiments and TS experiments in the same
test chamber (Fig. 2) in a materials testing machine (Dynastat). In UCC, impermeable platens
were used to compress each specimen to 15, 30, and 45% strains using loading protocols similar
to those for CC. A novel optical system was designed consisting of a light source, partially
submerged right-angle prisms, a flat mirror, and a digital SLR camera. The optical system
projected two perpendicular, lateral views of the disc to the camera simultaneously (Fig. 2A).
Images were obtained after stress relaxation at each strain level and processed in MATLAB (Fig.
3) to calculate the lateral expansion of the disc in two directions. Two orthogonal UCC Poisson’s

ratios vj; (i=direction of applied loading, j=transverse strain component) and a secant UCC

modulus E were calculated at each strain level. Upon completion of the UCC tests, platens were
switched to porous platens and a 10% offset equilibrium compression strain was applied to
perform the TS test (Fig. 2B). First, four cycles were applied from O to +0.5% shear strain, where
each cycle consisted of ramping to +0.5% shear strain, allowing for stress relaxation to
equilibrium (90 sec.), and unloading to 0. Then, four cycles were applied from O to -0.5% shear
strain in a similar manner. In order to obtain repeatable results, the data from the first cycles to
+0.5% were discarded and the remaining data were used to calculate an equilibrium shear

modulus u (i.e. shear stress divided by engineering shear strain). These protocols resulted from
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pilot tests so that there was no evidence in the data of slip at the specimen-porous platen
interface during torsion while allowing for slip at the specimen-impermeable platen surface

during UCC.

Biochemical Analysis

Biochemical properties were measured according to established protocols (Asanbaeva et al.,
2007a). Biochemical properties were measured for the AX-DO and ML-DO groups using the
adjacent AP-DO slices, and measured directly from the mechanically tested AX-D14 specimens.
The specimens were lyophilized, weighed dry, and digested using Proteinase K. The digest was
analyzed to quantify DNA (McGowan et al., 2002), GAG (Farndale et al., 1986), hydroxyproline
(Woessner, 1961), and PYR (Uebelhart et al., 1993). DNA was converted to cell number using a
conversion factor of 7.7 pg DNA/cell (Kim et al., 1988). Hydroxyproline was converted to COL

using a mass ratio of 7.25 COL/hydroxyproline (Herbage et al., 1977).

Statistical Analysis

For the DO mechanical properties H,, E, and v;; the effects of direction (ML vs. AX) and strain
(15, 30, 45%) factors were investigated using two-way ANOVA (Excel) and post-hoc Tukey
tests (custom MATLAB code). For the DO mechanical properties k,, M, and u the effects of
direction were investigated using t-tests. For biochemical composition the effects of growth were
investigated using t-tests with the AX-D14 specimens and the AP-DO specimens that were paired
with the AX-D0 and ML-DO specimens. For mechanical properties the effects of growth were
investigated using t-tests with the AX-DO and AX-D14 specimens. Correlations between

mechanical and biochemical properties were investigated with two different linear regressions,
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one that included both DO and D14 specimens (i.e. AX-D0O, ML-D0O, AX-D14) and one that
included only DO specimens (i.e. AX-D0O, ML-DO0), and significances were assessed using t-test
analysis of the regression slopes (custom MATLAB code). P values less than 0.05 were

considered significant.

RESULTS

From the tests on AX-D0 and ML-DO groups, CC modulus H, and UCC modulus E did not
depend on direction or strain level (Table 1, Fig. 4). However, a stress-softening trend (not
significant) was observed as modulus was lowest at the 30% strain level for 9/10 CC specimens
and 11/11 UCC specimens. The UCC Poisson’s ratio v,; was greater than the other Poisson’s
ratios at all strain levels (Table 1); v,; was significantly greater than v,, at 30 (p<0.01; Fig. 5) and
45% strains (p<0.01) but not at 15% strain (p=0.11) while the trend of v ; greater than v, and v;,
was not significant at any strain level. The shear modulus u was independent of direction (Table
1). A positive linear correlation (p<0.05) existed between u and offset compression stress when
pooling ML-DO and AX-DO specimens (Fig. 6), and the regression y-intercept value of 0.113

MPa suggests a value for the infinitesimal shear modulus.

From the tests on AX-D0, AP-DO, and AX-D14 groups, there were significant differences found
in mechanical and biochemical properties before and after in vitro growth (Tables 1-2). H,
(p<0.001) and E (p<0.001) decreased and the Poisson’s ratios v;; (p<0.01) and v;, (p<0.01)
increased at both strain levels, but the permeability constants k, and M did not change (Table 1).
The contents of COL (p<0.001), GAG (p<0.05), DNA (p<0.001), and PYR (p<0.001) decreased

due to growth (Table 2).
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Mechanical properties pooled from the ML-D0, AX-D0, and AX-D14 groups were correlated
with biochemical contents (Figs. 7-8). COL was correlated with H, (p<0.01), E (p<0.0001), v;,
(p<0.05), and v, (p<0.05) at 15, 30 (Fig. 7), and 45% strains, and with k, (p<0.01) and pn
(p<0.01) (Fig. 7). PYR was correlated with H, (p<0.01), E (p<0.01), v;, (p<0.05), and v;,
(p<0.05) at 15, 30 (Fig. 7), and 45% strains. GAG was correlated with H, (p<0.05) at 30 (Fig. 8)
and 45% strains, with E (p<0.001) at 15, 30 (Fig. 8), and 45% strains. DNA was correlated with
H, (p<0.01) at 15 and 30% (Fig. 8) strains, with E (p<0.05) at 15, 30 (Fig. 8), and 45% strains,
with v, (p<0.05) at 15% strain, with v;, (p<0.05) at 30% (Fig. 8) strain, and with k, (p<0.05)

(Fig. 8). Water content was correlated with k, (p<0.01) and with u (p<0.01).

Without the inclusion of data after in vitro growth, the correlations were generally weaker (not
shown). COL was correlated with H, (p<0.05) at 30 and 45% strains, with E (p<0.0001) at 15,
30, and 45% strains, with v,, (p<0.05) at 30% strain, with v,; (p<0.05) at 15 and 30% strains,
with v;, (p<0.05) at 15, 30, and 45% strains, with v;, (p<0.05) at 45% strain, and with p
(p<0.001). PYR was correlated with v,, (p<0.05) at 15% strain and with M (p<0.05). GAG was
not correlated with any of the DO mechanical properties. DNA was correlated with v, (p<0.05)
at 30% strain and with v;, (p<0.05) at 15% strain. Water content was correlated with H,

(p<0.05) at 30 and 45% strains, with E (p<0.05) at 15, 30, and 45% strains, and with n (p<0.01).

DISCUSSION
This study provides novel structure-function relations between mechanical and biochemical

properties before and after in vitro growth. All DO mechanical properties were independent of
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compressive strain while only Poisson’s ratios were dependent on direction (i.e., anisotropic).
Since growth in FBS leads to an immature state evidenced by lower GAG, COL, and PYR, the
protocol produced a wide range of biochemical content for investigating structure-function
relations when pooling the DO and D14 specimens. Select mechanical properties were correlated
with biochemical measures; generally, correlations with the CN properties COL and PYR were

strongest.

Although some studies suggest that compressive properties are best correlated with GAG (Mow
and Ratcliffe, 1997), the result here that CC modulus is better correlated with COL does agree
with several previous studies. For a more superficial region of bovine PFG AC, CC modulus
was correlated with COL and GAG with R* values of 0.36 and 0.24, respectively (Williamson et
al., 2001). One hypothesis offered in (Williamson et al., 2001) to explain the dependence of CC
modulus on COL is that a higher COL content leads to a decrease in extrafibrillar volume where
the GAGs reside and, consequently, to a higher effective fixed charge density which controls
compressive properties (Basser et al., 1998). Also, other experimental studies using different
protocols have suggested that the CN may provide compressive resistance in confined

compression (Khalsa and Eisenberg, 1997; Chen et al., 2001b).

Previously, tension modulus has been shown to be significantly correlated with PYR
(Williamson et al., 2003a); here, CC and UCC modulus and UCC Poisson’s ratio were also
correlated with PYR. Also, both CC and UCC moduli decreased by ~1 order of magnitude
during growth as COL and PYR decreased; these results can be partly explained by CN

weakening as evidenced by reductions in COL and PYR. These results are consistent with

10
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reductions in tension modulus during unstimulated growth for specimens from the same tissue

site (Williamson et al., 2003b; Asanbaeva et al., 2007b).

UCC Poisson’s ratios were mostly dependent on the CN properties COL and PYR, as compared
to GAG, DNA, and water. The UCC Poisson’s ratios v;, and v, increased ~3 times during
growth, consistent with recent theoretical predictions that a weakened CN leads to increased
UCC Poisson’s ratios. For specimens harvested from the same site but a more superficial region
(Asanbaeva et al., 2004), a continuum mechanics CGM model with COL remodeling predicted
Poisson’s ratios v 5, and v 3, to increase from 0.16 to 0.20 while PYR decreased from 137 to 89
nmol/g (Klisch et al., 2007a). Here, the increases in v 5, and v 5, were greater while PYR contents
were lower (decreasing from 96 to 46 nmol/g). Although these absolute numbers are different,

the trend of increasing Poisson’s ratios with decreasing PYR is consistent among these studies.

Only Poisson’s ratios were anisotropic as v ,; was greater than v |, and v 5, and significantly
greater than v 5,. The dependence of Poisson’s ratios on CN properties offers an explanation for
why v ; is the largest Poisson’s ratio. If the CN tensile stiffness is weakest in the 3-direction (i.e.
normal to the surface), then for an applied UCC strain in the 1-direction the transverse strain in
the 3-direction (v ;) should be greater than that in the 2-direction (v ,), as measured here and
predicted by a nonlinear PG-COL stress balance model (Klisch et al., 2007b). The conclusion
that Poisson’s ratios depend mostly on CN properties strengthens a similar conclusion of
(Kiviranta et al., 2006), whom reported a lower correlation (R’=0.35) between Poisson’s ratio

and COL while not considering PYR content nor anisotropy.

11
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Measured mechanical properties generally agreed with other studies with calf AC. CC moduli
were similar to values for calf humeral head AC (0.64 MPa) (Soltz and Ateshian, 2000) and a
more superficial layer of calf PGF AC (0.43) (Williamson et al., 2001). UCC moduli were
similar to values for calf humeral head AC (0.60 MPa) (Soltz and Ateshian, 2000). UCC
Poisson’s ratios v 5, and v 5, were similar to values for calf humeral head AC (0.11) (Wong et al.,
2000), bovine PFG AC (~0.20) (Laasanen et al., 2003), and middle zone calf glenohumeral AC
(0.21-0.22) (Wang et al., 2003) while the observed anisotropy of Poisson’s ratios agree with
results for middle zone calf glenohumeral AC (Wang et al., 2003). The predicted infinitesimal
modulus (0.11 MPa) was lower than a range of published values from other tissue sites (Mow
and Ratcliffe, 1997), but similar to a value for calf humeral head AC (0.17 MPa) (Soltz and

Ateshian, 2000) and adult bovine knee AC (0.14 MPa) (Khalsa and Eisenberg, 1997).

Stress softening in 19/20 compression specimens was observed, i.e. CC and UCC moduli were
lowest at the 30% strain level. This trend, although not significant, agrees with results for calf
glenohumeral AC (Chahine et al., 2004) and theoretical predictions by a linear triphasic model
(Chahine et al., 2004) and a nonlinear PG-COL stress balance model (Klisch et al., 2006). In the
latter nonlinear PG-COL stress balance model, the CN behaves as a highly nonlinear elastic
material in tension that, in an unloaded configuration for a tissue specimen, supports a tensile
pre-stress that restrains the swelling tendency of the PGs. As a consequence of this modeling
assumption, a nonlinear UCC response is predicted as both modulus and Poisson’s ratios drop
substantially during the initial stages of UCC due to a decrease/increase in COL fiber tension in
the loading/lateral directions, respectively (Klisch et al., 2007b). These predictions are supported

by our observed decrease in UCC secant modulus from 15-30% strains but not by our observed

12
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strain-independent Poisson’s ratios; presumably the use of smaller strain increments would more

effectively capture these nonlinear effects.

Limitations of the present study include a limited amount of mechanical tests following growth;
tests were limited to 15 and 30% CC and UCC strains because preliminary tests resulted in weak
grown specimens that were irreversibly damaged when loaded in CC or UCC to 45% strain.
Grown specimens included only AX oriented specimens; this choice was made because the
protocol regarding tissue size may have resulted in the growth of initially nonhomogeneous
specimens if ML or AP slices were used. The possibility of nonhomogeneous properties is also a
concern for the ML-DO and AP-DO groups. However, averaged biochemical measures for the
AP-DO and ML-DO groups can be expected to be similar to values of smaller specimens at a
mean depth of 2 mm as pilot biochemistry tests showed that contents did not vary between paired
AX and ML specimens (n=8; p=0.72 and 0.98 for GAG and COL, respectively). Middle zone
AC was harvested from immature animals as it was assumed that mechanical properties would
be less anisotropic than AC from a more superficial region and/or from mature animals;
consequently, the results from this and ongoing studies may be used to accomplish the long-term
aim of quantifying the development of anisotropic structure-function properties during growth.
COL, GAG, DNA, and PYR contents were all significantly different between the DO and D14
groups; thus, it is not possible to attribute mechanical property changes to a decrease in any one
component. This observation suggests the importance of analyzing these results with continuum
mechanics models of growth, as described below, that can further quantify how the complex

biochemical changes that occur during growth collectively affect mechanical properties.

13



10

11

12

13

Ficklin et al., “Articular cartilage mechanical and biochemical property relations ...”

This study provides structure-function data for a baseline growth protocol; future studies will be
able to use these results to conduct validation analyses of CGM models while incorporating data
from other protocols designed to enhance biomechanical properties. If the growth models can be
validated, it may be possible to predict biomechanical changes of graft or engineered tissue
constructs during in vitro stimulation and, consequently, to address limitations of cartilage repair
strategies. For example, difficulties associated with osteochondral grafts include lateral
integration with surrounding tissue, transplantation from low to high weight-bearing sites, and
mismatch between donor and repair site thicknesses (Hangody and Fules, 2003; Horas et al.,

2003).
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TABLE AND FIGURE CAPTIONS

Table 1. Results (mean + 1 S.D.) measured in CC (aggregate modulus H, in MPa, permeability
constants k, in 10™° m*/Pa-s, M), UCC (Young’s modulus E in MPa, Poisson’s ratios v;) and TS
(shear modulus u in MPa) before (AX-D0, ML-DO0) and after (AX-D14) growth. Subscripts 15,
30, 45 refer to strain levels of 15, 30, and 45%, respectively. Superscripts “d” and “g” indicate
significant differences (p<0.05) due to direction and growth, respectively. Some AX-DI14
properties were not measured because of considerable mechanical property degradation during

growth.

Table 2. Results (mean + 1 S.D.) for AP-DO and AX-D14 groups. AP-DO values are from
specimens adjacent to the ML-DO and AX-DO specimens. AX-D14 values are from
mechanically tested specimens after growth. % water (% W), COL (mg/g), GAG (mg/g), DNA

(107 x cells/g), and PYR (nmol/g). Contents are normalized to tissue WW. Superscript “g
indicates a significant difference (p<0.05) due to growth.

Figure 1. Day zero (D0) specimen preparation included harvesting a full-thickness explant block
from the medial ridge of the PFG, preparing three orthogonal slices, and punching one disc
(diameter = 3.2 mm, height = 1 mm) from each slice at a 2mm mean depth. This protocol
produces discs obtained from slices normal to local anatomical directions: medial-lateral (ML-
DO), anterior-posterior (AP-D0), and axial (AX-DO0).

Figure 2. In unconfined compression (A), a mirror and prisms project two lateral images of the
specimen 90° apart to a digital camera. The light paths from the two cross sections travel
horizontally to right angled prisms which project the light paths vertically upward to a flat
mirror, which is angled at 45° to the horizontal and projects the light paths outward toward the
digital camera. In torsional shear (B), porous platens apply rotation to the specimen.

Figure 3. Digital image of a cartilage explant (top) between two impermeable platens and
calculated image obtained in MATLAB (bottom). The dark horizontal lines in the bottom figure
represent the diameters that MATLAB computes by loading the original image and scanning
through rows to find the positions where the change in pixel intensity is greatest.

Figure 4. CC modulus H, and UCC modulus E results (mean + 1 S.D.) before growth (DO).
Data corresponds to cylindrical discs with axial directions aligned with ML and AX directions at
strain levels of 15, 30, and 45%. H, and E were independent of direction and strain level
although values at 30% strain were lower than values at 15 and 45% strain.

Figure 5. UCC Poisson’s ratios (Vij) results (mean + 1 S.D.) before growth (DO0). Data

corresponds to cylindrical discs with axial directions aligned with ML and AX directions at a
30% strain level. * indicates a significant difference (p<0.05).

Figure 6. Relationship between shear modulus u and normal stress o at 0.5% shear strain and
10% offset compression strain before growth (D0). Data points correspond to cylindrical discs
with axial directions aligned with the ML (2) and AX (O) directions. The y-intercept value of
0.113 MPa suggests a value for the infinitesimal shear modulus.
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Figure 7. Relationships between mechanical properties and COL/PYR contents. CC modulus H,,
UCC modulus E, UCC Poisson’s ratios v3; and v3, at 30% strain, permeability constants k, and
M, and shear modulus u at 10% offset compression strain. Data points correspond to cylindrical
discs with axial directions aligned with the ML (2) and AX (o,m) directions before (DO; A,0) and
after (D14; m) growth. COL/PYR contents were measured from AX-D14 specimens and from
AP-DO specimens paired with the ML-DO and AX-DO0 specimens. Displayed regression lines and
coefficients indicate significant correlations (p<0.05).

Figure 8. Relationships between mechanical properties and GAG/DNA contents. CC modulus
H,, UCC modulus E, UCC Poisson’s ratios v3; and v3, at 30% strain, permeability constants k,
and M, and shear modulus pn at 10% offset compression strain. Data points correspond to
cylindrical discs with axial directions aligned with the ML (4) and AX (o,m) directions before
(DO; A,0) and after (D14; =) growth. GAG/DNA contents were measured from AX-DI14
specimens and from AP-DO specimens paired with the ML-DO and AX-DO specimens.
Displayed regression lines and coefficients indicate significant correlations (p<0.05).
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Table 1. Results (mean = 1 S.D.) measured in CC (aggregate modulus H, in MPa, permeability
constants k, in 10™° m*/Pa-s, M), UCC (Young’s modulus E in MPa, Poisson’s ratios v;) and TS
(shear modulus u in MPa) before (AX-D0, ML-DO0) and after (AX-D14) growth. Subscripts 15,
30, 45 refer to strain levels of 15, 30, and 45%, respectively. Superscripts “d” and “g” indicate
significant differences (p<0.05) due to direction and growth, respectively. Some AX-DI14
properties were not measured because of considerable mechanical property degradation during

growth.

AX - D0 ML - DO AX - D14
Hyis 0564 + 0.178° 0.532 + 0.259 0.062 + 0.026°
His 0510 + 0.135° 0513 + 0.195 0.071 + 0.027°
Hy4 0610 = 0.159 0.613 = 0.239 not measured
ko 1.547 + 2254 0.653 + 0.384 1272 + 0.852
M 6.069 + 2.394 5180 + 1.614 6.014 + 1435
Es  0.606 + 0210 0.564 + 0.256 0.022 + 0.024%
Ex 0528 + 0.177° 0471 + 0.204 0.022 + 0.022°
Eus 0.634 + 0.224 0.558 + 0.242 not measured
Viz,is N/A 0.143 + 0.063 N/A
Viz.30 N/A 0.142 + 0.062 N/A
V12,45 N/A 0.150 + 0.085 N/A
Visis N/A 0219 £ 0.150 N/A
Vi3, 30 N/A 0232 = 0.133° N/A
Vi3, a5 N/A 0253 = 0.148° N/A
Viis 0.138 + 0.081% N/A 0435 + 0.213°
Vi 0.141 + 0.080% N/A 0.458 + 0.203%
Viyas  0.156 = 0.083 N/A not measured
Vius 0127 + 0.063% N/A 0371 + 0.185°
Vi 0.119 + 0.039%% N/A 0.440 + 0.139%
Vius 0125 + 0.049¢ N/A not measured
u 0918 + 0.409 0.723 + 0.422 not measured
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Table 2. Results (mean + 1 S.D.) for AP-DO and AX-D14 groups. AP-DO values are from
specimens adjacent to the ML-DO and AX-DO specimens. AX-D14 values are from
mechanically tested specimens after growth. % water (% W), COL (mg/g), GAG (mg/g), DNA
(107 x cells/g), and PYR (nmol/g). Contents are normalized to tissue WW. Superscript “g”
indicates a significant difference (p<0.05) due to growth.

AP- D0 AX-D14

%W 8.0 + 14 862 + 7.8
COL  100.0 + 18.3% 46.6 + 23.9°
GAG 476 =+ 85° 301 + 1648
DNA 94 + 19° 47 + 2.1°%
PYR 955 =+ 294% 455 =+ 12.3°%
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Figure 1. Day zero (D0) specimen preparation included harvesting a full-thickness explant block
from the medial ridge of the PFG, preparing three orthogonal slices, and punching one disc
(diameter = 3.2 mm, height = 1 mm) from each slice at a 2mm mean depth. This protocol
produces discs obtained from slices normal to local anatomical directions: medial-lateral (ML-
DO), anterior-posterior (AP-D0), and axial (AX-DO0).
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Figure 2. In unconfined compression (A), a mirror and prisms project two lateral images of the
specimen 90° apart to a digital camera. The light paths from the two cross sections travel
horizontally to right angled prisms which project the light paths vertically upward to a flat
mirror, which is angled at 45° to the horizontal and projects the light paths outward toward the
digital camera. In torsional shear (B), porous platens apply rotation to the specimen.
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Figure 3. Digital image of a cartilage explant (top) between two impermeable platens and
calculated image obtained in MATLAB (bottom). The dark horizontal lines in the bottom figure
represent the diameters that MATLAB computes by loading the original image and scanning
through rows to find the positions where the change in pixel intensity is greatest.
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Figure 4. CC modulus H, and UCC modulus E results (mean + 1 S.D.) before growth (DO).
Data corresponds to cylindrical discs with axial directions aligned with ML and AX directions at
strain levels of 15, 30, and 45%. H, and E were independent of direction and strain level
although values at 30% strain were lower than values at 15 and 45% strain.
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Figure 5. UCC Poisson’s ratios ( Vij) results (mean + 1 S.D.) before growth (DO). Data

corresponds to cylindrical discs with axial directions aligned with ML and AX directions at a
30% strain level. * indicates a significant difference (p<0.05).
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Figure 6. Relationship between shear modulus u and normal stress o at 0.5% shear strain and
10% offset compression strain before growth (D0). Data points correspond to cylindrical discs
with axial directions aligned with the ML (2) and AX (O) directions. The y-intercept value of
0.113 MPa suggests a value for the infinitesimal shear modulus.
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Figure 7. Relationships between mechanical properties and COL/PYR contents. CC modulus H,,
UCC modulus E, UCC Poisson’s ratios v3; and v3, at 30% strain, permeability constants k, and
M, and shear modulus p at 10% offset compression strain. Data points correspond to cylindrical
discs with axial directions aligned with the ML (2) and AX (o,m) directions before (DO; A,0) and
after (D14; m) growth. COL/PYR contents were measured from AX-D14 specimens and from
AP-DO specimens paired with the ML-DO and AX-DO0 specimens. Displayed regression lines and
coefficients indicate significant correlations (p<0.05).
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Figure 8. Relationships between mechanical properties and GAG/DNA contents. CC modulus
H,, UCC modulus E, UCC Poisson’s ratios v3; and v3, at 30% strain, permeability constants k,
and M, and shear modulus wn at 10% offset compression strain. Data points correspond to
cylindrical discs with axial directions aligned with the ML (4) and AX (o,m) directions before
(DO; A,0) and after (D14; =) growth. GAG/DNA contents were measured from AX-DI14
specimens and from AP-DO specimens paired with the ML-DO and AX-DO specimens.
Displayed regression lines and coefficients indicate significant correlations (p<0.05).
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