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A cartilage growth mixture (CGM) model is proposed to address limitations of a model 
used in a previous study. New stress constitutive equations for the solid matrix are 
derived and collagen (COL) remodeling is incorporated into the CGM model by allowing 
the intrinsic COL material constants to evolve during growth. An analytical validation 
protocol based on experimental data from a recent in vitro growth study is developed. 
Available data included measurements of tissue volume, biochemical composition, and 
tensile modulus for bovine calf articular cartilage (AC) explants harvested at three 
depths and incubated for 13 days in 20% fetal borine serum (FBS) and 20% 
FBS��-aminopropionitrile. The proposed CGM model can match tissue biochemical 
content and volume exactly while predicting theoretical values of tensile moduli that do 
not significantly differ from experimental values. Also, theoretical values of a scalar COL 
remodeling factor are positively correlated with COL cross-link content, and mass growth 
functions are positively correlated with cell density. The results suggest that the CGM 
model may help us to guide in vitro growth protocols for AC tissue via the a priori 
prediction of geometric and biomechanical properties. �DOI: 10.1115/1.2907754� 
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Articular cartilage �AC� has a poor intrinsic healing capacity
ikely related to its relatively low cellularity, metabolic activity,
nd avascularity �1�. Clinical repair strategies include the use of
hondral or osteochondral autografts or allografts and tissue-
ngineered constructs, among others �2,3�. The attainment of a
umber of specific design goals related to tissue composition,
tructure, and function may be critical to the development of a
onsistently successful strategy for the repair of AC defects. The
ong-term goal of the research proposed here is to develop con
inuum mechanics models of cartilage growth that may be used
ith experimental approaches to improve repair strategies. 
Growth and remodeling are biological processes that, together,

ransform AC tissue in vivo or in vitro from one biomechanical
tate to another. Growth �or resorption� may be defined as a
hange in tissue size or geometry due to deposition �or removal�
f material similar to that already present, while remodeling may
onducted by Ellen M. Arruda. 

ournal of Biomechanical Engineering Copyright © 20
be defined as a change in tissue composition and/or structure and, 
concomitantly, a change in mechanical properties �4,5�. AC can be 
viewed as a composite material for which interstitial tissue growth 
must involve both growth and remodeling, since accretion of a 
single tissue component will change the overall tissue structure 
and mechanical properties. The term growth is used here to refer, 
collectively, to both growth and remodeling of individual constitu
ents and the composite tissue either in vivo or in vitro. 

The extracellular solid matrix �SM� of AC contains proteogly
cans �PGs� and a cross-linked collagen �COL� network �Fig. 1� 
that appear to be predominantly responsible for the functional 
mechanical properties of the SM �6–8� and have distinct mechani
cal roles. The PGs are aggregate molecules containing glycosami
noglycans �GAGs� that provide the tissue with a fixed charge 
density �FCD� that causes a swelling pressure that resists com
pressive loading �9,10�. The cross-linked COL network resists the 
PG swelling pressure and provides the tissue with both tensile and 
shear stiffnesses and strengths �7,11,12�. 

The general continuum mixture theory of growth used here has 
been previously developed �13–15� and used to propose specific 
cartilage growth mixture �CGM� models �5,13,16–18�. In an ear
lier study using AC explants �5�, the theoretically predicted COL 
shear modulus was positively correlated with experimental mea

sures of pyridinoline �PYR� cross-link content, in agreement with 
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ig. 1 The major components of the articular cartilage solid
atrix: proteoglycans „PG…, collagen „COL…, and pyridinoline

PYR… cross-links 

ther studies that found mechanical properties to be correlated
ith cross-link content �19–21�. However, that earlier study �5�
ad three major limitations. First, the stress constitutive equations
sed for the PG-COL SM were not capable of accurately model
ng the mechanical response of AC. In particular, a parameter
tudy found that the CGM predictions are significantly different
or different forms of the COL stress constitutive equation. The
C mechanical response is complex; both Young’s moduli and
oisson’s ratios are strain dependent, anisotropic, and bimodular
e.g., tensile values can be approximately two orders of magnitude
reater than compressive values� �22–30�. Second, the experimen
al data used to quantify growth parameters in the CGM model
ere limited. Since the data corresponded to explants harvested at
istinct developmental stages �i.e., fetal, newborn, and adult�, it
as not possible to quantify the overall growth in tissue size since
aterial regions were not tracked. Third, tensile properties were

ot considered, thereby preventing definitive conclusions regard
ng the role of COL remodeling during growth. 

In recent years, there has been much interest in the develop
ent of continuum growth models for single constituents �31–38�,
ixtures �39,40�, and mixtures that employ a stress balance hy

othesis �41–44�. However, little attention has been focused on
rotocols for measuring a comprehensive set of growth model
arameters and developing validation analyses. The present study
s aimed at developing a CGM model with COL remodeling and
elated analytical protocols that address model validation. 

A key assumption that greatly simplifies the mechanical de
cription of the tissue’s biochemistry is the “stress balance hy
othesis” between two growing elastic materials: The SM stress is
qual to the sum of a COL network stress and a PG swelling stress
enerated by FCD. Of course, there are numerous COL types, PG
ypes, and other microstructural features that affect the tissue’s

echanical properties. However, there are no definitive results
ertaining to the desired complexity of a tissue growth model:
etaining too complex a model inhibits parameter estimation and
odel development, whereas using an overly simplified model

nhibits the ability to predict general trends. 
In this study, it is hypothesized that �1� a CGM model em

loying a PG-COL stress balance and COL remodeling can match
issue composition and volume while predicting tensile modulus
or selected in vitro growth protocols, �2� a single scalar measure
f COL remodeling can be correlated to experimental measures of
ross-link content, and �3� the growth laws can be correlated to
ell content. To address these hypotheses, new PG and COL
tress constitutive equations that more accurately describe the me
hanical behavior of the AC SM than the equations used in an
arlier study are used �5�. An analytical protocol for model
alidation that is based on a recent in vitro growth study
45�, in which newborn bovine AC explants at three depths were
ncubated in 20% fetal bovine serum �FBS� and 20%

BS+ �-aminopropionitrile �BAPN�, is developed. Since BAPN 
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inhibits PYR cross-link formation and has little to no effect on 
chondrocyte metabolism �46,47�, these experimental protocols 
produced a wide range in cross-link content without substantially 
altering metabolism that may be useful in obtaining statistical 
measures of the importance of COL remodeling in the CGM 
model. 

The specific aims are to �1� refine the CGM model to include 
COL remodeling and more accurate stress constitutive equations, 
�2� develop analytical protocols for model validation using experi
mental data, �3� test the hypotheses related to model validation, 
and �4� determine base line �i.e., free-swelling� growth laws for 
the PGs and COLs. 

Methods 

Cartilage Growth Mixture (CGM) Model. Here, the CGM of 
Ref. �5� is extended to include COL remodeling and new stress 
constitutive equations. The CGM model employs a mixture of a 
water constituent and a growing SM with the following features. 
First, the SM is modeled as a mixture of two growing elastic 
materials, PG and COL, with distinct mechanical roles that are 
crucial to tissue function.2 The PG and COL constituents are de
fined to include the constituents responsible for a FCD-induced 
swelling pressure and the network restraining this swelling pres
sure, respectively. Second, growth laws describe the amount and 
orientation of mass deposition for the PG and COL constituents. 
Third, these growth laws allow the PG and COL constituents to 
grow in a differential manner �i.e., at different rates of mass 
deposition/removal�. Fourth, the intrinsic COL material properties 
may remodel during growth. 

The analysis is limited to pre- and postgrowth equilibrium 
states of unloaded AC SM elements because the experimental 
quantification of these states can be used to estimate the growth 
laws.3 Furthermore, the analysis corresponds to the homogeneous 
growth of a SM element with homogeneous biomechanical prop
erties in its reference configuration. Due to these assumptions and 
the equilibrium equations �discussed below�, the SM element is 
stress-free in all unloaded configurations. In the experimental 
study, thin ��0.25–0.4 mm� AC explants were harvested in an 
attempt to obtain nearly homogeneous growth and biomechanical 
properties; consequently, the AC explants are assumed to corre
spond to the homogeneous SM element.4 

Kinematics. The superscripts p and c will be used to designate 
the PG and COL constituents, respectively. The configurations �R, 
�M, and �G specify unloaded stress-free configurations of the SM 
element before growth ��R�, after mass deposition ��M�, and after 
mass deposition and remodeling ��G�. The model assumes an im
mobility constraint that holds during both mass deposition and 
remodeling: all of the PG and COL molecules are bound to the 
SM, so that their total deformation gradient tensors Fp and Fc are 
equal to the SM deformation gradient tensor F. Although not 
needed in this study, the CGM model also uses the constraint of 
solid-fluid intrinsic incompressibility �48–50�. 

During growth and remodeling of an unloaded element, F is 
decomposed into a tensor Fm due to mass deposition and a tensor 
Fr due to COL remodeling �Fig. 2� as follows. 

2In Ref. �16�, an additional constituent representing the other noncollagenous 
proteins, which is assumed to not directly affect the mechanical properties of the SM, 
is included. 

3The fluid stress at equilibrium is assumed to be zero everywhere due to homo
geneity assumptions.

4For exact and computational solutions of nonhomogeneous problems, the SM 
element would correspond to a virtual configuration and a finite element, respec
tively, and additional elastic compatibility deformations would be required. See Ref. 

�18� for details. 
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ig. 2 Kinematics of growth and remodeling for a homoge
eous stress-free solid matrix „SM… element. Fm is the SM de

ormation gradient tensor due to mass deposition. The growth
censors Fp and F describe differential mass deposition of theg g

G „p… and COL „c… constituents. The elastic growth tensors
p and Fc ensure continuity of the SM during mass deposieg eg

ion. Fr is the SM deformation gradient tensor due to COL
emodeling. 

F = FrFm �1� 

he tensor Fm describes the evolution of the SM stress-free con
guration, relative to �R, due to mass deposition. It is decomposed

nto constituent elastic and growth tensors; using the immobility
onstraint, one obtains 

p c cp FFm = Feg g = FegFg �2� 

he growth tensors Fp and Fc describe the amount and orientationg g
f PG and COL mass depositions; as seen below, their determi
ants can be determined from experimental mass measures. The
lastic growth tensors Fp and Fc ensure continuity of the SM; aseg eg
een below, they can be determined from the equilibrium equa
ions and the immobility constraint. The tensor Fr describes the
hange in the SM stress-free configuration, relative to �M, due to
OL remodeling.5 Here, COL remodeling will be defined by al

owing the intrinsic COL material properties to evolve during
rowth in a homogeneous manner. Since the SM element is also
omogeneous, this results in a homogeneous Fr. Finally, a super
osed elastic deformation Fl represents applied loading to �G
e.g., loading applied during mechanical testing�. Consequently,

p c�he total elastic tensors of the PG and COL constituents �F ,Fe e 
re decomposed as 

p p c cFe = FlFrFeg, Fe = FlFrFeg �3� 

nd the total deformation gradient tensor of the solid matrix can
e represented as 

pF cFF = F p = F c �4�e g e g 

A crucial assumption in the CGM model used here, which has
een elaborated upon in Refs. �14,17,31�, is needed to provide
xperimental prescriptions for the elastic and growth tensors: The
ass density and stress functions are independent of the growth

ensors Fp and Fc. Without remodeling, this assumption leads tog g
xperimental prescriptions for both the elastic and growth tensors
ia destructive experiments designed to relieve residual stresses
17�, resulting in a “testable” theory. However, with the remodel
ng feature presented here, those destructive experiments cannot
istinguish between the elastic growth and remodeling tensors

p ci.e., F or F and Fr�. An aim of this study is to show howeg eg
xperimental measurements of mass deposition and volume
hange, combined with accurate stress constitutive equations, can
e used to theoretically distinguish among these various elastic
ensors. 

5The introduction of Fr is similar to previous tensorial descriptions of tissue
emodeling �38,51�. In nonhomogeneous problems, Fr may differ between adjacent
lements and a compatibility deformation may be introduced to ensure continuity of

he SM. 
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Balance Laws. Mass growth functions cp and cc that quantify 
the rate of mass deposition per unit current mass, having units of 
s−1, are introduced into the balance of mass; the resulting conti
nuity equations are �14,15� 

t t 
p p c c�pJpJ = �R exp cpd� , �cJcJ = �R exp ccd�e g e g�� � �� � 

�=t0 �=t0 

�5� 
p c p p cwhere �R and �R are the apparent densities in �R, J =det F , Je e e 

c p p c=det F , J =det F , J =det Fc, and det is the determinant operae g g g g
tor. Upon assuming that the apparent densities are independent of 
the growth tensors and, consequently, Jp and Jc �as stated above�,g g 

p p c celastic continuity equations are obtained: �pJe = and �cJ =�R.�R e 
Then, growth continuity equations are obtained from Eq. �5� as 
follows: 

t t 
p cJ = exp cpd� , J = exp ccd� �6�g g�� � �� � 

�=t0 �=t0 

In this study, cp and cc are assumed to be constant with respect to 
time; consequently, Eq. �6� leads to 

p p�t�, c c�t�Jg = exp�c J = exp�c �7�g 

where �t is the time increment of growth. Since mass deposition 
takes place at constant apparent density and is assumed to be 
homogeneous, Jp and Jc can be calculated from experimental g g 
mass measurements as 

p cJp = 1 +  �mp/m0, Jc = 1 +  �mc/m0 �8�g g 

cwhere m0 
p and m0 represent the initial masses and �mp and �mc 

represent the added �or resorbed� masses. It is emphasized that 
Eqs. �7� and �8�, which define the growth tensor determinants in 
terms of experimental mass measurements, are obtained only after 
assuming that the apparent densities are independent of the 
growth tensors. 

Since the SM element is homogeneous and unloaded in �R, �M, 
and �G, the traction-free boundary condition on all surfaces and 
the equations of motion at equilibrium �i.e., div Ts =0� are satis
fied if the SM element is stress-free, 

Ts = 0 �9� 

where div is the divergence operator, Ts is the solid matrix stress, 
Ts =Tp +Tc due to the stress balance hypothesis, and Tp and Tc 

are the PG and COL stresses. 

Growth Laws. To obtain a complete theory, growth response 
functions, i.e., the time rate of changes of Fp and Fc, are required. g g
The results presented here are based on the assumption of isotro
pic growth;6 isotropic growth tensors can be represented as 

p cFg = �Jg 
p�1/3I, Fg = �Jc

g�1/3I �10� 

where I is the identity tensor. The growth laws may depend on 
any of the primitive variables of the model; for example, they may 
depend on stress, strain, strain energy, the rate of strain, and in
terstitial fluid velocity. However, an aim of this paper is to use 
experimental data to quantify Eq. �10� and, consequently, to esti
mate AC growth laws for specific in vitro protocols. 

Following Ref. �14�, growth laws Ġp and Ġc are used to de
scribe growth relative to the current configuration, as opposed to 
the fixed reference configuration �R.7 In Eq. �5.6� of Ref. �14�, it

˙was shown that c=G ·I for a growing elastic body; consequently, 
for isotropic growth, one obtains 

6The effect of anisotropic growth is presented in the discussion and has been 
studied in Refs. �14,16�. 

7In Ref. �14�, it is shown how these growth laws can be used to determine the 

“incremental growth tensor” using a first order Taylor series approximation. 
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ig. 3 The coordinate system and experimental specimen ori
ntations in relation to anatomical directions. The unit vector
1 is parallel to the local split-line direction, the unit vector E3 is
erpendicular to the articular surface, and the unit vector E2 is
erpendicular to the split-line direction and parallel to the sur
ace. The rectangular slices labeled S, M1, and M2 represent
0.4 mm, 0.25 mm, and 0.25 mm thick specimens used in the

ontrol and experimental groups. 

˙ p ˙ cG = �1/3�cpI, G = �1/3�ccI �11� 

˙n Ref. �17�, it was shown that for a growing elastic body Fg 
−1GFe 

˙ FeFg; thus, the growth laws �11� can be expressed relative
o �R as 

˙ p p ˙ c cF = �1/3�cpFg, F = �1/3�ccFg �12�g g 

Stress Constitutive Equations. The stress constitutive equations
sed for the PG and COL constituents are discussed in detail in
he Appendix; here, an overview is provided. Due to the assump
ion that the PG and COL stresses only depend on their respective
lastic tensors, in addition to a COL stress dependence on a scalar
emodeling factor �, general stress constitutive equations are de
ned relative to �R as follows: 

ˆ p ˆ c c�Tp = T �Fp�, Tc = T ��,F �13��R e �R e 

or the PG constituent, an isotropic polyconvex strain energy
unction is chosen with two material constants ��1 and �2� that are
pecified relative to a PG reference configuration �0 

p that coincides
ith �R. Consequently, a PG stress equation �see Eq. �A3�� that

ˆ pepresents the required function T �Fp� of Eq. �13� is obtained.�R e 

welling pressure data for isolated PG solutions �52,53� are used
o determine using a microstructural model that calculates an ef
ective fixed charge density based on the two-compartment water
i.e., extra- and intrafibrillar� model proposed in Ref. �10�. 

The COL stress equation is defined relative to a COL stress-free
ceference configuration �0 so that the COL network has a tensile

restress in �R that restrains the PG swelling pressure. The COL
lastic swelling strain is represented by the deformation gradient

c censor F0 and maps �0 to �R. Thus, the COL stress function de
ned relative to �R is related to a COL stress function defined

celative to �0 via the relation 

ˆ c ˆ c ˆ c cT �R 
��,Fe 

c� = T �0 
��,Fe 

cFc
0� � T �0 

��,Fe0� �14� 
chere the definition Fe0=FcFc 

0 is used to simplify the presentatione 
ˆ cf the constitutive function T . The COL strain energy function�0

c is based on a formulation recently used for the SM �54� and
as the following features: �1� it is bimodular, i.e., individual
train energy terms are only mechanically active when corre
ponding fiber directions are in tension; �2� it is a polyconvex

cunction of Fe0 and satisfies material stability criteria; and �3� it
ncludes “strong interaction terms” that facilitate modeling asym

etric strain-dependent Poisson’s ratios. Primary fiber families
re aligned with the orthonormal basis vectors E1 �parallel to the
ocal split-line direction�, E2 �perpendicular to the split-line direc
ion and parallel to the surface�, and E3 �perpendicular to the

rticular surface� �Fig. 3�. Strong interaction terms are generated 
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by secondary fiber families in each of the three planes formed by 
the basis vectors. Three material constants ��1, �2, and �3� repre
sent strengths of corresponding primary fiber families and one 
material constant ��� represents the strength of the secondary fiber 
families. 

COL remodeling is implemented by allowing the intrinsic COL 
material constants ��1, �2, �3, and �� to evolve during growth. 
Due to a lack of comprehensive mechanical property data, two 
simplifying assumptions are made. First, each of the COL material 
constants is multiplied by the same scalar remodeling factor �. 
From a physiological perspective, � should be related to one or 
more measures of the COL network microstructure �as discovered 
in the Results section�. The remodeling factor �=1 before growth 
and remodeling occur; thus, initial parameters ��1, �2, �3, and �� 
correspond to �R. Second, since only the tensile modulus in the 
2-direction is available for this study, it is assumed that �2=�1, 
�3=0.5�1, and �= �1, while the orientations of the secondary fiber 
families are based a previous study �54�. These assumptions result 
in SM mechanical properties relative to �R that generally agree 
with other studies, as discussed in the Appendix. 

Experimental Data. The experimental data were available 
from a previous study �45�. AC was harvested from the patel
lofemoral groove of five newborn bovine knees. Specimens from 
three successive layers �Fig. 3� were prepared: �S� superficial 
layer �0.4 mm thick, including the intact articular surface; �M1� 
first middle zone layer �0.25 mm thick; and �M2� second middle 
zone layer �0.25 mm thick. The long axes of the blocks were in 
the anterior-posterior direction and, thus, approximately perpen
dicular to the split-line direction. Blocks were initially weighed 
wet �WWI�. Some blocks were analyzed immediately �day 0 con
trol groups S-D0, M1-D0, and M2-D0�. Other blocks were incu
bated for 13 days in medium Dulbecco’s modified eagle’s me
dium �DMEM supplemented with 20% FBS and 100 �g /ml of 
ascorbate; experimental groups S-FBS, M1-FBS, and M2-FBS� or 
medium with 0.1 mM BAPN �experimental groups S-BAPN, M1
BAPN, and M2-BAPN�. At termination, blocks were weighed wet 
�WWF� and punched to form a tapered tensile test specimen ori
ented in the 2-direction. Tapered tensile specimens were tested 
�rate=5 mm /min� and dynamic ramp modulus was calculated as 
the linear regression slope of the stress-strain curve from 25% to 
75% of the maximum load. Since these destructive tests were 
performed in a previous study that did not measure equilibrium 
values, the dynamic moduli were scaled by factors based on more 
recent measurements of equilibrium and dynamic moduli �55�. 
Specifically, equilibrium secant tension moduli at 20% strain �i.e., 
equilibrium stress divided by 0.20� were estimated by multiplying 
the dynamic ramp moduli by 0.14, 0.14, and 0.19 for the S, M1, 
and M2 layers, respectively. Failed portions of the tensile speci
men and residual cartilage were analyzed together to quantify 
DNA, GAG, COL, and PYR contents �45�. 

Parameter Estimation. The five analysis steps used to quantify 
growth for each experimental group are illustrated in Fig. 4. Since 
biomechanical and biochemical properties of an individual speci
men in the experimental groups are only measured using destruc
tive experiments in the grown configuration �G, it is not possible 
to define that specimen’s reference configuration. Consequently, 
growth is analyzed in an averaged sense. The averaged values of 
the control �S-D0, M1-D0, and M2-D0� and experimental �S-FBS, 
M1-FBS, M2-FBS, S-BAPN, M1-BAPN, and M2-BAPN� groups 
�Table 1� are used to quantify growth. Reference configuration 
values of GAG and COL masses for the experimental groups are 
estimated by scaling the related masses of the control groups us
ing the ratio of experimental to control group WWIs. These ref
erence configuration values are estimated in a layer- and 
treatment-specific manner, resulting in a specific �R for each of 
the six experimental groups. 
Step 1. The material constants for the PG and COL constituents 
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Fig. 4 Steps in the analysis proced
cols. Step 1 defines the reference co
terial constants and the COL swellin
deformation gradient tensor due to 
termine the SM deformation gradie
needed to match final tissue volum
properties relative to the grown co
problems defined by the applied SM

re specified for each of the control groups �S-D0, M1-D0, and
2-D0; Table 2�. For the PG constituent, the experimental mea

ures of wet weight �WW�, dry weight, GAG mass, and COL
ass are used to calculate the material constants ��1 and �2� as

iscussed in the Appendix. With the assumptions stated above, the
OL stress equation has only one adjustable parameter, �1, that is
etermined from the experimental data in an iterative fashion. For
ach control group, an initial guess for �1 is made and the COL
welling strain, F0 

c, is calculated using the equilibrium equations
9� as follows: 

Ts = 0 = T̂ p �I� + T̂ c �Fc
0� �15��R �0 

p cince F =F =I in �R. Then, the uniaxial tension �UT� boundarye e 
alue problem for loading in the 2-direction is solved using the
tress equation 

ˆ p ˆ cTs = T �Fl� + T �FlF0 
c� �16��R �0 

here Fl =Fp =Fc corresponds to the applied UT displacemente e 
eld. From this solution, the secant tensile modulus at 20% strain

s calculated, compared to the experimental value �Table 1�, and
1 is changed until the theoretical and experimental secant tensile
oduli agree. 

Table 1 Experimental values of initial tissue
growth „% WW CHANGE…, composition „GAG, 
and calculated equilibrium secant tensile mo
CHANGE is the average of experimental value
the average initial and final WWs. GAG, COL, 
configuration. Values presented are mean ±1
animals. 

Group WWI %WW GAG 
�layer treatment� �mg� CHANGE �mg�

S-D0 8.6�0.2 N/A 0.25� 0.0
S-FBS 7.0�0.1 73.1� 20.9 0.35� 0.1
S-BAPN 7.6�0.2 98.2� 21.0 0.36� 0.0
M1-D0 9.5�0.2 N/A 0.34�0.0
M1-FBS 6.8�0.2 45.4�13.5 0.35�0.1
M1-BAPN 7.1�0.2 54.0�18.8 0.34� 0.1
M2-D0 8.3�0.1 N/A 0.31� 0.0
M2-FBS 7.1�0.1 38.2� 15.8 0.37� 0.1
M2-BAPN 7.4�0.1 44.0�5.3 0.38�0.1
ournal of Biomechanical Engineering 
 to model the in vitro growth proto
guration by determining the SM ma
train F0 

c. Step 2 determines the SM 
s deposition Fm. Steps 3 and 4 de
tensor due to COL remodeling Fr 
Step 5 determines the mechanical 
uration by solving boundary-value 
formation gradient tensor Fl. 

Step 2. The growth and elastic growth tensors for the PG and 
COL constituents are determined. Experimental measures of PG 
and COL masses for the control and experimental groups are used 
to calculate the growth tensor determinants �Jg 

p and Jc� using Eq. g
�8�, the mass growth functions �cp and cc� using Eq. �7�, and the 
growth tensors �Fg 

p and Fc� using Eq. �10�. Due to the immobility g 
p c c�Fconstraint, Eq. �2� is used to obtain Feg=FegFg 

p�−1 and the equig 
librium equation �9� becomes 

Ts ˆ p c p�−1� + T̂ c c= 0 = T �R 
�FegFg 

c�Fg �R 
�Feg� �17� 

c pwhich are solved for F and, consequently, F , Fm using Eq. �2�,eg eg 
and Jm =det Fm. Note that Jm and the initial tissue volume can be 
used to calculate the tissue volume in �M, as discussed below. 

Step 3. Since the calculated theoretical tissue volume for �M is 
always less than the experimental value, it is hypothesized that the 
COL network remodels during these growth protocols to produce 
a weaker material that enhances volumetric expansion during 
growth. Since the dependence of the COL remodeling factor � on 
tissue microstructure is unknown, a value for � first is assumed, 
and the remodeling deformation tensor of the solid matrix, Fr, is
calculated from the equilibrium equation �9� as follows: 

t weight „WWI…, % wet weight change during 
L, PYR/WWF; WWF is final tissue wet weight…, 
lus at 20% strain in the 2-direction. % WW 
f WW change, and not the percent change in 
 PYR measurements correspond to the WWF 

tandard deviation; n=9–21  blocks from five 

COL Cells PYR/WWF Modulus 
�mg� �million� �nmol/g� �MPa� 

0.71� 0.33 1.22� 0.43 91.5� 30.5 1.01�0.3 
0.67� 0.37 0.96�0.34 71.2� 47.5 0.46�0.2 
0.61�0.27 0.95�0.38 49.0� 31.6 0.23�0.1 
1.03�0.35 0.83� 0.25 122.0�88.4 1.31�0.7 
0.85� 0.24 0.64� 0.30 113.3�133.7 0.69�0.3 
0.72� 0.29 0.58� 0.35 61.9� 13.9 0.31�0.1 
1.11� 0.33 0.75�0.25 137.1� 125.4 2.54�0.8 
0.92�0.37 0.54�0.30 137.4�43.5 1.09�0.4 
0.91�0.30 0.53�0.15 88.6�8.7 0.64� 0.4 
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able 2 Parameters used to identify the stress-strain equa-
ions for the control groups. All parameters are defined in MPa
xcept for the angles „�12, �13, and �23…, which are defined in
eg. 

Control group 

Parameter S-D0 M1-D0 M2-D0 

TR 
p 

�1 

�2 

�1 

�2 

�3 

� 

−0.020 
0.020 
1.13 
0.20 
0.20 
0.10 
0.20 

−0.033 
0.033 
2.08 
0.23 
0.23 
0.12 
0.23 

−0.046 
0.046 
2.02 
0.53 
0.53 
0.27 
0.53 

�12 

�13 

�23 

45 
35 
35 

45 
35 
35 

45 
35 
35 

ˆ p c ˆ c cTs = 0 = T �FrF � + T �FrF � �18��R eg �R eg 

onsequently, Jr =det Fr and the total determinant of the solid
atrix deformation gradient tensor due to growth and remodeling

an be calculated using Eq. �1� as follows: J=JrJm. Based on the
omogeneity assumptions, J can be used to calculate the tissue
olume in �G using 

�V 
J = 1 +  �19� 

V0 

here V0 is the initial volume of the explant in �R and �V repre
ents the change in tissue volume due to growth and remodeling.

Step 4. This is an iterative step that determines the value of � 
eeded to theoretically match the experimental tissue volume.
ince complete geometry measurements were not made on these
pecimens, experimental measurements of tissue WW are used to
alculate the volume change and, consequently, J between the
ontrol and experimental groups. Upon assuming constant total
issue density,8 one obtains 

�V 
= % WW CHANGE ⇒ J = 1 + % WW CHANGE �20� 

V0 

here % WW CHANGE was experimentally measured �Table 1�.
onsequently, the theoretical prediction of J from Step 3 is com
ared to the value calculated from experimental data using �20�
nd � is changed until theoretical and experimental values for J 
gree. 

Step 5. Validation is assessed by statistical tests of the first two
ypotheses. First, the analytical protocol allows for the theoretical
rediction of mechanical properties relative to the grown configu
ation �G by solving specific boundary-value problems using the
tress equation 

ˆ s ˆ p ˆ cTs = T �Fl� = T �Fl� + T �Fl��G �G �G 

ˆ p ˆ c c= T �FlFrF
p � + T �FlFrF � �21��R eg �R eg 

here Ts �Fl� is the solid matrix stress function relative to �G�G 
nd Fl represents the deformation due to boundary conditions. It is
mphasized that Eq. �21� quantifies how the solid matrix stress-
train equation evolves during growth and remodeling using the
GM theory. Since only the experimental tensile modulus in the
-direction was measured, the UT boundary-value problem for
oading in the 2-direction is solved and the secant tensile modulus

8Calculations show that tissue density changes by less than 2% during these

rowth protocols. 
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Fig. 5 Determinants of the constituent growth tensors Jp andg 
cJ calculated from experimental measurements of PG „p… andg 

cCOL „c… masses: Jp >J „p<0.001, n=6…g g 

at 20% strain is calculated for the six experimental groups. A 
paired t-test is performed between the sets of theoretical predic
tions and experimental values of secant tensile moduli for the six 
experimental groups. 

Second, since the only adjustable parameter used to match the 
grown tissue configuration �G was the remodeling factor �, vali
dation is further enhanced if � is statistically related to some mea
sure of COL microstructure. Thus, the correlative relationship be
tween � and PYR concentration �Table 1� is analyzed using linear 
regression and a t-test is performed to determine the existence of 
significant trends. 

To test the third hypothesis, correlative relationships are inves
tigated between the mass growth functions cp and cc and cell 
content �Table 1� and t-tests are performed to determine the exis
tence of significant trends. 

Results 

The parameters used to describe the SM stress response func
tion relative to each control group’s reference configurations �S
D0, M1-D0, and M2-D0� are shown in Table 2; the predicted 
control group mechanical properties are further discussed in the 
Appendix. The determinant of the growth tensor for the PG con
stituent is greater than that for the COL constituent for each of the 

pexperimental groups, with values ranging from 1.34 to 1.74 for Jg 
and 0.92 to 1.14 for Jc �Fig. 5�; this difference is significant when g 
pooling all experimental groups �p �0.001, n=6�. The volumetric 
increase due to COL remodeling is predicted to be higher than that 
due to mass deposition �i.e., Jr � Jm� for all protocols except for 
FBS-M1, with values ranging from 1.19 to 1.90 for Jr and 1.00 to 
1.22 for Jm �Fig. 6�; this difference is significant when pooling all 
experimental groups �p�0.05, n =6�. 
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Fig. 6 Determinants of the overall SM deformation gradient 
tensor „J… calculated from experimental measurements of tis
sue WW, and determinants of SM deformation gradient tensors 
due to mass deposition „Jm… and COL remodeling „Jr… predicted 

from the CGM model. Jr >Jm „p> 0.05, n =6… 
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ig. 7 Experimental and theoretical values of secant tensile
odulus at 20% strain in the 2-direction. Experimental values
easured before „D0-exp.… and after „D13-exp.… growth for

hree layers „S, M1, and M2… and two growth medium types
FBS and BAPN…; error bars represent ±1 standard deviations.
heoretical values represent predictions of D13 values using
he CGM model. No significant difference is detected between
he theoretical and experimental D13 values using a paired
-test „p=0.40, n=6… 

The theoretical values of secant tensile modulus at 20% strain
redicted by the CGM model for all experimental groups are
ithin �1 standard deviations of experimental means; there is not

 significant difference between theoretical and experimental val
es �p=0.40, n =6� �Fig. 7�. The theoretical remodeling factor ��� 
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required to match the final tissue volume exhibits a positive trend 
with PYR cross-link content that is not significant when pooling 
all experimental groups �R2=0.37, p=0.20, n=6, Fig. 8 �left��. 
However, the trend exhibits a strong positive correlation when 
only the S and M1 experimental groups are pooled �R2=1.00, p 
�0.0001, n=4, Fig. 8 �right��. 

The calculated mass growth function for the PG constituent, cp, 
exhibits a strong positive correlation with cell density �R2=0.98, 
p�0.0001, n=6, Fig. 9 �left��, while the mass growth function for 
the COL constituent, cc, exhibits a positive trend that is not sig
nificant �R2=0.34, p=0.22, n =6, Fig. 9 �right��. Although both cp 

and cc are lower in the BAPN protocols, as compared to the FBS 
protocols, for each of the S, M1, and M2 layers, this trend is not 
significant �p=0.11 for both cp and cc , n =6�. 

Discussion 

The major aim of this study was to develop and conduct vali
dation protocols for a continuum mechanics model of cartilage 
growth. In order to do that, this study addressed limitations of a 
previous cartilage growth study �5�. Here, more accurate stress 
constitutive equations were developed based on a PG-COL stress 
balance hypothesis. This model can describe strain-dependent, 
asymmetric, and anisotropic Young’s moduli and Poisson’s ratios 
in UT and unconfined compression �UCC� as well as stress soft
ening in UCC, in general agreement with previous results �see the 
Appendix�. Also, this study includes experimental measurements 
of the evolution of tissue volume and tensile properties during 
growth. 
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An in vitro growth protocol designed to test the PG-COL stress
alance hypothesis provides experimental evidence that confirms
he model’s prediction that volumetric growth �i.e., J� will be
nhanced when the COL network is weakened via inhibition of
ross-link formation with BAPN �Fig. 6�. The CGM model pre
ictions provide further evidence for the model assumptions and,
pecifically, the critical role that the PG-COL stress balance has
or these in vitro growth protocols. In particular, validation is
btained in three manners: �1� the CGM model is capable of
atching final tissue composition and tissue volume exactly, via

he specification of the PG and COL growth tensors and �; �2� the
GM model provides theoretical predictions of secant tensile
oduli for three layers �S, M1, and M2� and two free-swelling in

itro growth protocols �FBS and BAPN� that do not significantly
iffer from experimental values; and �3� � is positively correlated
ith experimental measures of PYR cross-link content. 
A secondary aim was to obtain mass growth function that esti
ate base line growth laws for free-swelling protocols for the

hosen tissue source. The results suggest that �1� the daily %
ncrease in PG mass �i.e., cp�, ranging from
.3% /day to 4.3% /day, is greater than the daily % increase in
OL mass �i.e., cc�, ranging from −0.7% /day to 1.0% /day �Fig.
�; and �2� both cp and cc can be defined as increasing functions of
ell density �although only cp exhibited a significant trend; Fig. 9�.
hese results may be used to define the growth laws relative to the

urrent configuration �i.e., Ġp and Ġc� using Eq. �11� or relative to
˙ ˙he reference configuration �i.e., Fp and Fc� using Eq. �12�. Sinceg g 

hese results are for free-swelling protocols, future studies are
lanned to quantify the effect of applied external loading on the
rowth laws. 

Limitations of the experimental data include the lack of com
rehensive geometric measurements �e.g., length, width, and
hickness� and mechanical properties that may be used to com
letely characterize anisotropic geometry and mechanical
hanges, respectively. A preliminary study considered anisotropic
rowth. When the growing tissue explant is assumed homoge
eous, anisotropic growth does not affect the predicted tensile
odulus �or any of the evolving mechanical properties� because

he PG stress is assumed to be spherical. However, anisotropic
rowth does affect the predicted explant dimensions �e.g., length,
idth, and thickness� even when the final tissue volume is
atched. Since these dimensions were not available in this study,

nly isotropic growth is detailed. 
Also, a preliminary study considered anisotropic remodeling by

hanging the intrinsic COL material constants by different scalar
emodeling factors. Those results show that anisotropic remodel
ng affects the predicted tensile modulus and explant dimensions.
owever, there are insufficient data to determine how to imple
ent anisotropic remodeling in this study; future studies should

nclude direction-dependent mechanical property tests before and
fter growth to better characterize anisotropic growth and remod
ling. Despite these limitations in the experimental data, the re
ults of this study do provide justification for conducting experi
ents that are designed to more rigorously validate the CGM
odel. 
A limitation of the analysis is the assumption of homogeneous

roperties in all configurations. Our protocol attempts to mitigate
hese error sources by using 0.25–0.4 mm thick specimens and
rovides growth laws that may be used to study nonhomogeneous
rowth using computational solutions, such as the recently devel
ped cartilage growth finite element model �18�. It may be sug
ested that there are other limitations related to the limited com
lexity of the model used here. A common theme in our work has
een to provide experimental prescriptions for all model param
ters so that the theory can be rigorously tested, as discussed in
ef. �17�. Due to a lack of comprehensive experimental data, the
GM model proposed here is kept as simple as possible to facili
ate the calculation of growth model parameters while still provid

31006-8 / Vol. 130, JUNE 2008 
� �

ing the capability to predict specific biomechanical changes dur
ing in vitro growth. Here, no attempt is made to distinguish 
between different types of PGs �such as the primary PG molecule 
aggrecan and the smaller PGs: decorin, biglycan, and fibromodu
lin�, different types of COLs �such as the primary Type II mol
ecule and several other types�, mobile versus immobile PGs and 
COLs, and nonequilibrium properties related to diffusion, trans
port, viscoelasticity, etc. However, the CGM model is derived 
from a general continuum theory of growth that models the tissue 
as a fluid and an arbitrary number of growing elastic materials, 
where all growing tissue constituents can experience distinct, yet 
interdependent, stresses, strains, diffusive velocities, mechanical 
properties, and mass deposition/removal rates �13,15�. Thus, as 
more experimental data become available, the CGM model may 
be generalized to accommodate these features. 

The long-term goal of this work is to develop analytical models 
that may aid in experimental approaches related to the growth of 
tissue for the repair of native AC defects. Clinical repair strategies 
include the use of chondral or osteochondral autografts or al
lografts and tissue-engineered constructs, among others �2,3�. 
Goals of cartilage repair strategies may include the identification 
of a “target” implant with the desired geometry to fill a defect and 
biomechanical properties to successfully integrate with surround
ing native tissue. Difficulties associated with osteochondral grafts 
include a limited tissue area recommended for treatment, devel
opment of a smooth convex joint surface, lateral integration with 
surrounding tissue, concern about transplantation from low to 
high weight-bearing sites, and mismatch between donor and repair 
site thickness �2,56,57�. In the future, it is possible that a implant’s 
requirements for a specific anatomic site may be identified by 
noninvasive methods such as magnetic resonance imaging �MRI� 
or ultrasound �58,59�. If the CGM model can be calibrated for an 
in vitro growth protocol within a range of biochemical and bio
mechanical stimuli, then it may be used to predict the protocol 
needed to produce an implant with the targeted properties. The 
results of this study suggest that a CGM model may help us to 
guide in vitro growth protocols for AC tissue via the a priori 
prediction of construct geometric and biomechanical properties. 
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Appendix 

This appendix provides details of the stress constitutive equa
tions used in this study. 

Methods 

For a growing elastic material with an elastic tensor Fe, the 
stress T is derived from an elastic strain energy function W as 
established in Refs. �14,15� as 

2 �W TT = Fe F �A1�eJe �Ce 

For the PG constituent, an isotropic polyconvex strain energy 
function is chosen as follows: 

Wp �1 p�−��2−1�= �J �A2�e�2 − 1  

which is polyconvex if the material constants �1 �0 and �2 �0. 

Using Eq. �A1�, this produces a Cauchy stress function 
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Fig. 10 Description of the mechan
predicted by the PG-COL stress e
Biot strain for uniaxial tension „UT…
Right: Poisson’s ratios „�ij… at 15%
direction, j =direction of transverse

�1Tp = −  I �A3� p��2�Je 

he material constants are specified relative to a PG reference
onfiguration �0 

p that coincides with �R. Consequently, Eq. �A3�
ˆ pepresents the required function T �Fp� of Eq. �13�. The two�R e 

ompartment water �i.e., extra- and intrafibrillar� model proposed
n Ref. �10� is used to calculate the PG stress component in �R

TR
p� and its extension presented in Ref. �60� is used to calculate

1 and �2. The following equations are used: 

FCtot = 3.76�458/502� � mp/1000 �A4� 

wFCDeff = 1000 � FCDtot/mef �A5� 

w ww − m wmef = m dw − mif �A6� 

= �0.726 + 0.538 � exp�− 0.258 � pp�� � m �A7�mif
w c 

0.0375 � �1 − exp�15.14 � FCDeff�� if FCDeff � 0.23 
pp = 

155.1 � exp�0.12 � FCDeff� − 158.3 if FCDeff � 0.23 

�A8�
w, mww dwhere FCtot, FCDeff, mef , m w, and pp represent total, mif 

xed charge �mEq�, effective fixed charge density �mEq/g; nor
alized to extrafibrillar water content�, extrafibrillar water mass

mg�, WW mass  �mg�, dry weight mass �mg�, interfibrillar water
ass �mg�, and PG swelling pressure �atm�. Equation �A4� is from
ef. �53�, where it was assumed that chondroitin sulfate �CS�
ontains two ionized charge groups, the molecular weight of dis
ociated CS disaccharide is 458 g /mol, and 86% of cartilage PG
re CS GAGs. GAG content was measured from dimethylmethyl
ne blue �DMB� assay using C6S �502 g /mol� as a standard;
ence, the conversion factor �458 /502� is used. Equations
A5�–�A7� are from Ref. �10� while Eq. �A8� is not, because the
G densities for newborn bovine cartilage are typically less than

hose of the aged human samples in Ref. �10�. Equation �A8� was
btained in Ref. �60� by curve-fitting swelling pressure data for
ow PG content �52,53� in addition to using the relation from Ref.
10� for specimens with high PG content. 

Given experimental mass measurements, Eqs. �A4�–�A8� repre
ent five coupled algebraic equations for five unknowns �FCtot,

w wCDeff, , , and pp�. Since pp is in units of atm �1 atmmef mif 
−0.101 MPa� and represents a true stress �i.e., normalized by
onstituent area�, while the mixture theory uses apparent stress
i.e., normalized by total tissue area�, the following conversion is

p 
eeded to obtain the apparent PG stress component T �MPa�: 
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rain component. 

wmef pTp = − 0.101 � p �A9� 
V 

where V is the volume of the tissue �mm3�. Thus, Eqs. �A4�–�A9� 
are solved using experimental data for each layer’s reference con-

pfiguration to obtain TR for each layer �60�. PG stress values are 
also calculated for specimens with �1 standard deviations in PG 
density for each layer, and nonlinear regression is performed to 
determine unique PG material constants for each layer. This ap
proach yielded the PG material constants for each control group 
�Table 2� with R2=0.96, 0.95, 0.91 for the S-DO, M1-D0, and 
M2-D0 control groups, respectively. 

The COL stress equation is based on a formulation recently 
used for the SM �54� that was based on Spencer’s theory of fiber-
reinforced anisotropy �61�. The COL right Cauchy–Green elastic 

cdeformation tensor Ce0 corresponds to the deformation gradient 
c ctensor Fe0=FcF0 defined relative to the COL stress-free referencee 

configuration �0 
c. Following Ref. �54�, nine fiber families are de

fined. Three primary fiber families are aligned with the orthonor
mal basis vectors E1, E2, and E3 �Fig. 3�. Strong interaction terms 
are generated by considering secondary fiber families in each of 
the three planes formed by the basis vectors.9 Then, Wc is as
sumed to depend on the nine strain invariants that are equivalent 
to the squares of the stretches along each fiber direction as fol
lows: 

c c c c c c�I11,I22,I33,I�12,I�13,I�23� 
c c c c
= �Ce0,11,Ce0,22,Ce0,33,Ce0,11 cos2 �12
 

c c c+ Ce0,22 sin2 �12 � 2Ce0,12 cos �12 sin �12,Ce0,11 cos2 �13 

c c c+ Ce0,33 sin2 �13 � 2Ce0,13 cos �13 sin �13,Ce0,22 cos2 �23 

c c+ Ce0,33 sin2 �23 � 2Ce0,23 cos �23 sin �23� �A10� 

where �12, �13, and �23 are angles that define the orientation of 
the secondary fibers in the E1−E2, E1−E3, and E2−E3 planes, 
respectively. Here, the anisotropic strain energy function of Ref. 
�54� is generalized to include � as follows: 

c c c c c cWc = 
�

��1�I11��I11 − 1�3 + �2�I22��I22 − 1�3 + �3�I33��I33 − 1�3 

6 
c c c c c c+ ��I�12��I�12 − 1�3 + ��I�13��I�13 − 1�3 + ��I�23��I�23 − 1�3� 

�A11� 

where the material constants ��1, �2, �3, and �� are only active 

9
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The reader is referred to Ref. �54� for full details. 
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Fig. 11 Description of stress softe
trol group predicted by the PG-C
stress versus Biot strain for UT an
versus UCC Biot strain. 

hen their corresponding fibers are in tension as follows: 
c�1 � 0 if I11 � 1 c�1�I11� = ,c0 if I11 � 1 

� c� � 0 if I�12 � 1 c��I�12� = c , etc. �A12� 
0 if I�12 � 1 

he COL material constants are determined as outlined in Step 1
f the Methods section. 

esults 

The predicted mechanical response is qualitatively similar for
ll three control groups; uniaxial tension �UT� and unconfined
ompression �UCC� results are detailed only for the M2 layer. The
onlinear stress response is anisotropic and asymmetric, with
train-dependent Young’s moduli and Poisson’s ratios higher in
T than in UCC �Fig. 10� and nearly equal tensile properties in

he 1- and 2-directions as demonstrated for this tissue site �21�.
he predicted secant UCC moduli at 15% strain were �E1 ,E3� 
0.39, 0.34 MPa �Fig. 11� as compared to values of 0.55 MPa
nd 0.61 MPa for a deeper layer ��2 mm� at this tissue site �30�.
he predicted UCC Poisson’s ratios at 15% strain were
v12,v13,v31,v32�=0.09, 0.17, 0.16, 0.16 �Fig. 10�, as compared to
xperimental values of 0.14, 0.22, 0.14, and 0.13 for a deeper
ayer ��2 mm� at this tissue site �30�. The predicted strain-
ependent confined compression modulus �HA� increases with
epth from the articular surface in agreement with experimental
bservations �62,63�, from values at 15% strain of 0.15 MPa,
.28 MPa, and 0.40 MPa in the S, M1, and M2 layers at depths of
0–0.4 mm, 0.4–0.65 mm, and 0.65–0.90 mm, respectively

data not shown�, as compared to an experimental value of
.56 MPa for a deeper layer ��2 mm� at this tissue site �30�.
lso, the UCC response exhibited experimentally observed stress

oftening behavior �28,30,62,63�, with secant moduli decreasing
etween 0% and 20% strains �Fig. 11�. 
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