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ABSTRACT 

The prominent broad Fe ii emission blends in the spectra of active galactic nuclei have been shown to vary in 
response to continuum variations, but past attempts to measure the reverberation lag time of the optical Fe ii 
lines have met with only limited success. Here we report the detection of Fe ii reverberation in two Seyfert 1 
galaxies, NGC 4593 and Mrk 1511, based on data from a program carried out at Lick Observatory in Spring 2011. 
Light curves for emission lines including Hβ and Fe ii were measured by applying a fitting routine to decompose 
the spectra into several continuum and emission-line components, and we use cross-correlation techniques to 
determine the reverberation lags of the emission lines relative to V-band light curves. In both cases, the measured 
lag (τcen) of Fe  ii is longer than that of Hβ, although the inferred lags are somewhat sensitive to the choice of Fe ii 
template used in the fit. For spectral decompositions done using the Fe ii template of V ́eron-Cetty et al., we find 
τcen(Fe ii)/τcen(Hβ) = 1.9 ± 0.6 in NGC 4593 and 1.5 ± 0.3 in Mrk 1511. The detection of highly correlated 
variations between Fe ii and continuum emission demonstrates that the Fe ii emission in these galaxies originates 
in photoionized gas, located predominantly in the outer portion of the broad-line region. 

Key words: galaxies: active – galaxies: individual (Mrk 1511, NGC 4593) – galaxies: nuclei 

Online-only material: color figures 

1. INTRODUCTION 

Blends of Fe ii emission lines are often among the most 
prominent broad emission features in the ultraviolet (UV) and 
optical spectra of broad-lined active galactic nuclei (AGNs), and 
the integrated flux of Fe ii emission in quasars can be greater 
than that of any other single emission line, including Lyα (Wills 
et al. 1985). Despite more than three decades of observational 
and theoretical effort, the physical conditions that give rise to 
Fe ii emission have remained very difficult to determine. This is 
due in part to the complex energy-level structure of the Fe+ ion 
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and the very large number of individual Fe ii emission lines that 
appear in broad blends. Recent spectral synthesis models for the 
Fe+ ion include hundreds of energy levels and tens of thousands 
of individual transitions (Verner et al. 1999; Sigut & Pradhan 
2003). A variety of processes in the broad-line region (BLR) 
can contribute to Fe ii line production, including collisional 
excitation as well as continuum and line fluorescence (Phillips 
1978b; Netzer & Wills 1983; Collin-Souffrin et al. 1980). It 
is not yet fully determined whether the Fe ii production in 
AGNs occurs in gas heated solely by photoionization, or whether 
collisional ionization might play a significant or even dominant 
role (Collin & Joly 2000; Baldwin et al. 2004). A particularly 
promising recent development has been the realization that 
anisotropy in the emission from high column density clouds 
can have a strong impact on the observed Fe ii spectrum, and 
models for the emission from the shielded side of photoionized 
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clouds have shown significant improvements in fitting observed 
Fe ii spectra (Ferland et al. 2009). 

The Fe ii emission lines are closely linked to several fun
damental issues in AGN physics and phenomenology. From 
principal-component analysis of quasar spectra, the relative 
strength of Fe ii emission is one of the major characteristics 
of “Eigenvector 1” (Boroson & Green 1992), the component 
which accounts for much of the variance among the quasar 
population. Empirically, Eigenvector 1 represents the anticorre
lations between Fe ii and [O iii] equivalent widths, and between 
Fe ii strength and Hβ width. The fundamental physical driver 
of the Eigenvector 1 sequence is the Eddington ratio L/LEdd 
(Sulentic et al. 2000; Boroson 2002), but the physical mecha
nism responsible for the increase in Fe ii strength with Eddington 
ratio is not fully understood. It may be linked to the presence 
of a soft X-ray excess at high Eddington ratio, which would 
produce a larger partially ionized zone of warm, Fe ii-emitting 
gas (e.g., Marziani et al. 2001; Boroson 2002), while orienta
tion could play a secondary role (Marziani et al. 2001). Shields 
et al. (2010) argue against the X-ray excess as the primary driver 
of Fe ii strength, proposing instead that differences in gas-phase 
iron abundance, driven by selective depletion of iron onto grains, 
are primarily responsible for the wide range of observed Fe ii 
line strengths in AGNs. In another interpretation proposed by 
Ferland et al. (2009) and Dong et al. (2011), the competing 
forces of gravity and radiation pressure set a critical column 
density for clouds to remain gravitationally bound within the 
BLR, and at higher Eddington ratio, the higher column density 
of surviving BLR clouds would produce a larger Fe ii/Hβ flux 
ratio. For AGNs having extremely strong Fe ii emission, it has 
also been suggested that the shock-heated gas associated with 
circumnuclear star formation may be responsible for the Fe ii 
enhancement (Lipari et al. 1993). 

Furthermore, Fe ii emission is potentially valuable as a tracer 
of chemical evolution. The strength of the UV Fe ii emission 
relative to Mg ii in quasar spectra has been used as a proxy 
for the iron to α-element abundance ratio in the BLR (e.g., 
Yoshii et al. 1998; Dietrich et al. 2002; Kurk et al.  2007; Jiang 
et al. 2007), although the sensitivity of Fe ii/Mg ii line ratios 
to factors such as gas density and microturbulence means that 
observed line ratios are not straightforward indicators of the 
underlying abundance ratios (Verner et al. 2003; Baldwin et al. 
2004; Bruhweiler & Verner 2008). Improved understanding of 
the physical conditions responsible for Fe ii emission could 
have important ramifications for elucidating the history of metal 
enrichment in the densest regions of the universe at high redshift. 

A key quantity of interest is the spatial scale of the Fe ii-
emitting region. However, there are very few measurements 
available that directly constrain its size. Maoz et al. (1993) 
carried out reverberation mapping of the UV Fe ii lines in 
NGC 5548 and found a lag of about 10 days, similar to that of 
Lyα, indicating that the UV Fe ii lines originate from within the 
BLR. This has been the only measurement of a reverberation 
lag for the UV Fe ii lines to date. Aside from reverberation 
mapping, one additional direct constraint exists: a spectroscopic 
microlensing study of a lensed quasar by Sluse et al. (2007) 
found evidence that the Fe ii emission originates largely in the 
outer portion of the BLR. 

Previous attempts at reverberation mapping of the optical Fe ii 
blends have generally not led to clear detections of reverberation 
lags. For the well-studied AGN NGC 5548, Vestergaard & 
Peterson (2005) examined 13 yr of monitoring data and found 
that the Fe ii flux responded to continuum changes on timescales 

of less than several weeks, but the available data did not allow for 
a definite measurement of the lag. Kuehn et al. (2008) measured 
light curves for the Fe ii blends in Ark 120 and found a long-
term variability trend that followed the continuum changes, but 
the data did not yield a significant cross-correlation lag. They 
concluded that the Fe ii emission region in Ark 120 was likely to 
be several times larger than the Hβ-emitting zone of the BLR. 
An alternative possibility was that the Fe ii emission might be 
powered by collisional excitation rather than by photoionization, 
although they were unable to fit the Fe ii emission blends well 
with collisional excitation models. Bian et al. (2010) measured 
the Fe ii light curve for PG 1700+518 using monitoring data 
from Kaspi et al. (2000). While they were able to detect evidence 
of reverberation in the Fe ii lines, the cross-correlation analysis 
did not yield a highly significant peak, and the measured lag of 
209+100 

−147 days was very uncertain. Variability of the optical Fe ii 
emission has been examined in other AGNs (e.g., Giannuzzo & 
Stirpe 1996; Doroshenko et al. 1999; Kollatschny et al. 2000; 
Wang et al. 2005; Shapovalova et al. 2012), but most data sets 
have not been suitable for measurement of reverberation lags. 
The overall picture that emerges from these studies is that while 
optical Fe ii emission does respond to continuum variations at 
least over long timescales, it tends to have a lower amplitude 
of variability than Hβ, and it does not generally show a clear 
reverberation lag signature. 

In the absence of direct constraints on the relative sizes of 
the Fe ii and Hβ emission regions, indirect clues have come 
from line-profile measurements. Phillips (1978a) and Boroson 
& Green (1992) found that the velocity widths of the Fe ii lines 
are generally similar to that of Hβ, suggesting that Fe ii and 
Hβ originate from the same region within the BLR. Subsequent 
work has uncovered subtle systematic differences between Hβ 
and optical Fe ii widths, which hint at an origin for Fe ii in the 
outer portion of the BLR or perhaps within an “intermediate-line 
region” corresponding to the transition between the BLR and 
the dusty torus (Marziani et al. 2003; Popović et al.  2004; Hu  
et al. 2008b; Kova  ̌ c et al.  2010). For a sample of 4000 Sloan cevi´
Digital Sky Survey (SDSS) quasar spectra, Hu et al. (2008b) 
found that the full width at half-maximum intensity (FWHM) 
of the optical Fe ii lines is typically about 0.75× FWHM(Hβ), 
albeit with substantial scatter, implying a size for the Fe ii-
emitting region that is typically about twice as large as the 
Hβ-emitting zone of the BLR. 

Here, we present new Fe ii reverberation-mapping results for 
two nearby Seyfert galaxies, NGC 4593 and Mrk 1511, from 
the Lick AGN Monitoring Project 2011. Section 2 gives a brief 
overview of our observing campaign. Section 3 describes the 
fitting method used to isolate the continuum and emission-line 
components in the spectroscopic data and the measurement of 
light curves. In Section 4, we describe the cross-correlation lag 
measurements and the dependence of the lags on the choice 
of Fe ii template, and Section 5 presents a discussion of the 
results. In the Appendix, we present a brief discussion of results 
based on additional newly available Fe ii templates. While 
the reverberation lag measurements are modestly sensitive to 
the choice of Fe ii template, both of these objects clearly 
show evidence of Fe ii reverberation in response to continuum 
variations. 

2. OBSERVATIONS AND REDUCTIONS 

Initial results from the Lick AGN Monitoring Project 2011 
were previously presented by Barth et al. (2011b) and Pancoast 
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Table 1 
Light-curve Sampling Statistics 

Data Set Nobs Δtmedian Δtmean 

(days) (days) 

NGC 4593 photometry 75 0.95 1.12 
NGC 4593 photometry (averaged) 57 1.01 1.48 
NGC 4593 spectroscopy 43 1.02 1.81 
Mrk 1511 photometry 71 1.00 1.51 
Mrk 1511 photometry (averaged) 59 1.05 1.82 
Mrk 1511 spectroscopy 40 1.01 1.94 

Notes. Nobs is the number of observations in each light curve, and Δtmedian and 
Δtmean give the sampling cadences, defined as the median and mean separation 
between adjacent data points in each light curve. Photometric light curves were 
condensed by taking a weighted average of any observations separated by less 
than six hours. 

et al. (2012), and full details of the spectroscopic and photomet
ric observing campaigns, analysis procedures, and light-curve 
data for all targets will be presented in a forthcoming series of 
papers. Here, we briefly review the key aspects of the observing 
program. 

2.1. Photometry 

From 2011 early March through mid-June, we obtained 
queue-scheduled V-band images of NGC 4593 and Mrk 1511 us
ing the 0.76 m Katzman Automatic Imaging Telescope (KAIT) 
at Lick Observatory (Filippenko et al. 2001), the 0.9 m telescope 
at the Brigham Young West Mountain Observatory (WMO), the 
Faulkes Telescope South at Siding Spring Observatory, and the 
Palomar 1.5 m telescope (Cenko et al. 2006). Our goal was to 
obtain nightly imaging for each target, but weather and schedul
ing issues led to some gaps in coverage, particularly during 
the initial portion of the campaign. The temporal sampling ca
dence of our observations is described in Table 1. Exposure 
times were typically 180–300 s. All images were bias-subtracted 
and flattened, and cosmic-ray hits were removed using the 
LA-COSMIC routine (van Dokkum 2001). 

Image-subtraction photometry was carried out using a version 
of the ISIS code (Alard & Lupton 1998) modified by the High-z 
Supernova Search Team (Tonry et al. 2003) and with additional 
modifications by W. Li, and also using the HOTPANTS package 
by A. Becker,24 which is based on the methods described by 
Alard (2000). For each telescope, a high-quality template image 
was chosen, and the template was then aligned with each night’s 
image and convolved with a spatially varying kernel to match the 
point-spread function of that image. After subtracting the scaled 
template image, the variable AGN flux is left as a point source in 
the subtracted image, allowing for aperture photometry using the 
IRAF25 DAOPHOT package. The photometric aperture radius 
used for each telescope was set to match the average point-
source FWHM for images from that telescope. 

Light curves were initially constructed separately with the 
data from each telescope, and then combined together to 
assemble a single light curve for each AGN. Normalization 
was done by modeling the variability using Gaussian processes 
to obtain a finely sampled model version of the light curve for 
each AGN, following the same procedure described by Pancoast 
et al. (2011). Additive and multiplicative scaling factors were 

24 http://www.astro.washington.edu/users/becker/c_software.html
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applied to match the modeled light curve to each telescope light 
curve, using the WMO light curve as the reference data for the 
model. The normalization code simultaneously constrained all 
scaling factors to obtain the best fit between all the telescope 
light curves using a Markov Chain Monte Carlo algorithm. Then, 
scaling factors determined from the modeling were applied to 
the image-subtraction light curves to normalize the data from 
all telescopes to a common flux scale. The final light curve was 
prepared by taking a weighted average of observations taken 
within six hours of one another. The V-band light curves are 
shown in Figure 1, in arbitrary units of differential flux. 

2.2. Spectroscopy 

Our Spring 2011 observing campaign consisted of 69 nights 
at the Lick 3 m telescope between 2011 March 27 and June 13 
UT. Observations were done using the Kast dual spectrograph 
(Miller & Stone 1993). A D55 dichroic was used to separate 
the blue and red beams with a crossover wavelength of about 
5500 Å. In this paper, we discuss only measurements from the 
blue arm of the spectrograph, where we used a 600 lines mm−1 

grism over ∼3440–5520 Å at a scale of 1.0 Å pixel−1. All  
observations of these two AGNs were done with a 411 wide 
slit oriented at a position angle of 45◦ . Standard calibration 
frames including arc lamps and dome flats were obtained each 
afternoon, and flux standards were observed during twilight. 
Exposure times were normally 2 × 600 s and 2 × 900 s for 
NGC 4593 and Mrk 1511, respectively. The weather at Mt. 
Hamilton was somewhat worse than average during Spring 
2011; we were able to observe NGC 4593 on 43 of the 69 
nights, and Mrk 1511 on 40 nights. 

Spectroscopic reductions and calibrations followed standard 
methods implemented in IRAF and IDL. A large extraction 
width of 1011.3 was used in order to accommodate the full extent 
of the AGN spatial profiles observed on nights with poor seeing. 
Error spectra were extracted and propagated through the full 
sequence of calibrations. In the reduced spectra, the median 
signal-to-noise ratio (S/N) per pixel in the range 4600–4700 Å 
is 122 for NGC 4593 and 71 for Mrk 1511. 

3. SPECTROSCOPIC DATA ANALYSIS 

3.1. Spectral Fitting Method 

The reduced spectra were first normalized to a uniform 
flux scale by employing the procedure of van Groningen & 
Wanders (1992). This method applies a flux scaling factor, a 
linear wavelength shift, and a Gaussian convolution to each 
spectrum in order to minimize the residuals between the data 
and a reference spectrum constructed from several of the best-
quality nights. The scaling is determined using a wavelength 
range containing the [O iii] λ5007 line, which is assumed to 
have constant flux. The upper panels of Figure 2 show the mean 
of all scaled spectra for each object. 

To assess the accuracy of the scaling procedure, we measured 
the light curve of the [O iii] λ5007 line in the scaled spectra and 
calculated the residual “excess” scatter σx in the [O iii] light 
curve. We follow the usual definition for the normalized excess 
variance (Nandra et al. 1997): 

N
1  [ ]

2 2σ = (Xi − μ)2 − σ , (1)x iNμ2 
i=1 

where N is the total number of observations, μ is the mean 
flux, and Xi and σi are the individual flux values and their 
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Figure 1. Light curves of the V band, the AGN featureless continuum (FC), Hβ, Hγ , He  ii (for Mrk 1511 only), and Fe ii. The Balmer-line and He ii light curves 
contain flux from narrow components, including [O iii] λ4363 in the Hγ light curve. The V-band photometric light curves are given in differential flux units (i.e., 
relative to the flux in a reference image), as determined by the image-subtraction photometry procedure. The FC and emission-line light curves are those measured 
from the spectral fits which used the Véron-Cetty et al. (2004) Fe  ii template. 

uncertainties. Then σx gives a measure of the fractional scatter 
in the light curve due to random errors in flux scaling, over and 
above the scatter that would be expected based on the propagated 
photon-counting uncertainties. For NGC 4593 and Mrk 1511, 
we obtain an excess scatter of σx = 1.2% and 2.0%, respectively. 
These low values indicate that the scaling procedure worked 
well. As we describe below, these measures of residual scatter 
will be added to the error budget of the emission-line light curves 
to give a more realistic estimate of the total uncertainties. 

Traditionally, broad emission-line fluxes in reverberation-
mapping data have been measured by choosing continuum 
regions on either side of an emission line, fitting a line to 
the continuum, and integrating the flux above that line (e.g., 
Kaspi et al.  2000). However, in AGN spectra, there may be 
no pure continuum regions at all surrounding Hβ, because 
Fe ii, He  ii, and other emission features are present. Choosing 
continuum regions that contain some emission-line flux could 
potentially bias a reverberation lag measurement, particularly 
for velocity-resolved reverberation signals in the faint high-
velocity wings of Hβ. An alternative approach is based on 
decomposition of spectra into continuum and emission-line 
components, so that the flux contributions of individual emission 
features can be isolated. Our multi-component fitting method 

was previously applied to Mrk 50 (Barth et al. 2011b) and is 
similar to the method used by Park et al. (2012). We carry out 
fits over the wavelength range extending from just blueward of 
the Hγ line (λrest ≈ 4150 Å) up to 5470 Å near the dichroic 
cutoff. Over this wavelength range, each nightly spectrum was 
fit with a model consisting of several components: a power-
law featureless continuum (FC), a starlight template broadened 
in velocity by convolution with a Gaussian, emission lines 
including Hβ, [O  iii] λλ4959, 5007, He ii λ4686, and three He i 
lines (4471, 4922, and 5016 Å), and an Fe ii template broadened 
in velocity by convolution with a Gaussian. 

For the starlight template, we use an 11 Gyr old simple 
stellar population model at solar metallicity from Bruzual & 
Charlot (2003). We experimented with adding younger stellar 
population components, but the 11 Gyr model provided a 
sufficiently good fit that more complex stellar population models 
are not warranted, and the flux of a young population component 
is usually not very well constrained over this limited wavelength 
range. 

We used two different templates to model the Fe ii lines, 
from Boroson & Green (1992, hereinafter BG92) and Véron-
Cetty et al. (2004, hereinafter V04). The overall quality of 
the fits is very similar with the two Fe ii templates, but there 
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Figure 2. Mean and rms spectra of Mrk 1511 and NGC 4593. Upper panels: mean spectrum (black) overlaid with the model fit done using the Véron-Cetty et al. 
(2004) Fe  ii template (red). Individual fit components include the AGN power law (green), old stellar population (purple), Fe ii emission (gray), Hβ (magenta), [O iii] 
(blue), He ii (light blue), and He i (orange). Lower panels: the standard rms spectrum (top) and an rms spectrum constructed from individual nightly spectra after the 
AGN power-law and stellar components were removed (bottom). 

(A color version of this figure is available in the online journal.) 

are some subtle differences that affect the reverberation lag 
measurements. We find that the V04 template produces better 
results than the BG92 template (see Section 4.4), but we describe 
measurements and reverberation lags derived from both sets of 
spectral fits in order to illustrate the dependence of the results 
on the choice of Fe ii template. 

The broad component of Hβ, as well as the  [O  iii] lines, 
are represented by fourth-order Gauss–Hermite functions, while 
Gaussians were used to represent weaker features including nar
row Hβ, the broad and narrow components of He ii, and the He i 
lines. We found that the complex shape of the Hγ +[O iii] λ4363 
blend was difficult to model, and instead of adding more model 
components we simply set the wavelength range subtended 
by this feature to have zero weight in the fit (4280–4395 Å 
rest wavelength). Additionally, a uniform foreground extinc
tion was applied to the model spectrum using the Cardelli 
et al. (1989) reddening law. This extinction correction represents 
the combined effects of Galactic foreground extinction, extinc
tion within the AGN host galaxy, and wavelength-dependent 
slit losses resulting from the nonparallactic slit orientation 
(Filippenko 1982). Since these slit losses differ from night to 
night, we allowed the value of E(B − V ) to vary freely in 
each fit. 

The full model includes 29 free parameters, and was fit
ted to the observed spectrum by χ2 minimization using a 
Levenberg–Marquardt technique (Markwardt 2009). For each 
galaxy, the fit was first carried out on the high-S/N mean spec
trum, and then the parameters from the best fit to the mean 
spectrum were used as starting parameter estimates for the fit to 
each nightly spectrum. 

For both objects, the fit optimization always drove the flux 
of He i λ4471 to zero, using either Fe ii template. However, 
inclusion of the other He i lines at 4922 and 5016 Å does 

significantly improve the fit quality compared to model fits that 
omit these lines, at least when using the V04 template. Previous 
work has shown that these two He i lines can be important 
contributors to the “red-shelf” region redward of Hβ (Véron 
et al. 2002). The red shelf also contains some Fe ii emission 
(Korista 1992) and the I Zw 1 templates contain some Fe ii flux 
in this region. However, the relative amount differs between 
the BG92 and V04 templates, such that the V04 template has 
relatively weaker Fe ii emission in the Hβ red shelf, and this 
leads to noticeably different fitting results for the two templates. 
Using the V04 template, we found that the Fe ii template alone 
did not produce an adequate fit to the red shelf unless the He i 
lines were added as separate components. When fits are carried 
out using the BG92 Fe ii template instead, the fluxes of the 
He i λλ4922, 5016 components in the Hβ red shelf region go to  
zero or nearly zero, and essentially all of the flux in the Hβ red 
shelf is taken up by the Fe ii template. 

Another difficulty in fitting this region is that the He i λ4922 
line is degenerate with the red wing of Hβ; in order to achieve 
a consistent deblending of this spectral region into Hβ and 
He i flux, we constrained the 4922 Å and 5016 Å lines to have 
identical fluxes (following Vestergaard & Peterson 2005) and 
identical velocity widths. In the fits, these two components 
essentially track the same shape as two broad bumps in the 
broadened Fe ii templates. Due to the degeneracy between the 
several features contributing to the Hβ red shelf, we are unable 
to determine a physically unique decomposition of this region 
into separate contributions from Hβ, Fe  ii, He  i, and [O iii]. 
The fits are able to match the observed spectra well in this 
region using either Fe ii template, but the slight differences 
in the red shelf decompositions may be partly responsible 
for the dependence of the reverberation lags on the choice of 
template. 
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Figure 3. Same as Figure 2, but for fits done using the Boroson & Green (1992) Fe  ii template. 

(A color version of this figure is available in the online journal.) 

The strength and broadening of the Fe ii component in the fit 
are primarily determined by the prominent blend around λrest = 
4500–4700 Å containing several transitions from Fe ii multiplets 
37 and 38. The velocity-broadening width of Fe ii was allowed to 
vary independently to optimize the fit to each nightly spectrum, 
but the variation from night to night was relatively small. From 
the best fit to each night’s data using the V04 template, the 
median velocity broadening (i.e., the dispersion of the Gaussian 
broadening kernel) applied to the Fe ii template is 1885 ± 
75 km s−1 for NGC 4593 and 1635 ± 50 km s−1 for Mrk 1511. 
The V04 template itself was constructed using Lorentzian 
profiles for each line, with a width of FWHM = 1100 km s−1 

to match the line profiles in I Zw 1 (V ́eron-Cetty et al. 2004). 
We find a similarly small night-to-night scatter in the width 
of the Fe ii broadening kernel when using the BG92 template 
(±65 km s−1), although the overall amount of broadening is 
substantially smaller due to the different template structure. 

The BG92 template is characterized by an intrinsic FWHM ≈ 
900 km s−1 (e.g., Hu et al. 2008b), but as an empirically 
derived template it contains features with a range of widths, 
and shapes that do not correspond precisely to simple Gaussian 
or Lorentzian profiles. As a result, it is not straightforward to 
compare the inferred Fe ii widths as measured using the two 
different templates, but for each template the fitting procedure 
consistently converges on a value for the Fe ii broadening that 
varies only by a few percent from night to night. We comment 
further on the Fe ii profile widths in Section 5. 

Figures 2 and 3 show the mean spectrum for each AGN 
with its best-fitting model, and the individual fit components, 
for the fits done using the V04 and BG92 Fe ii templates. 
The root-mean-square (rms) spectrum is constructed by taking 
the standard deviation of the scaled spectra (e.g., Kaspi et al. 
2000). In each of these figures, we show the rms spectrum, 
as well as a modified version constructed by subtracting the 
AGN FC and stellar-continuum components from each nightly 
spectrum before calculating the rms. Removing the continuum 

components gives an improved rms spectrum by eliminating 
small residual stellar absorption-line features (Park et al. 2012), 
and the continuum-subtracted rms spectrum more accurately 
depicts the rms variability profiles of the emission lines. Fits 
done using the BG92 template assign relatively more flux to 
Fe ii than fits with the V04 template. For the BG92 fits, the 
increased Fe ii flux (at the expense of the FC component) results 
in a higher rms flux in the continuum-subtracted rms spectra. 

3.2. Light-curve Measurements 

Light curves were measured for individual emission lines 
from continuum-subtracted spectra. For Hβ and the Hγ +[O iii] 
blend, we produced a residual spectrum by subtracting all other 
model components, and then measured the emission-line light 
curves by summation of the residual flux. The Hγ and Hβ 
integration regions were 4320–4450 Å and 4800–5000 Å for 
NGC 4593, and 4420–4560 Å and 4920–5120 Å for Mrk 1511 
(in the observed frame). The resulting light curves include 
the constant contributions of narrow Hβ and Hγ as well as 
[O iii] λ4363 blended with Hγ . 

Light curves for He ii λ4686 were measured by summation 
of the best-fitting broad and narrow He ii model components. 
This produced a less noisy light curve than the alternate ap
proach of calculating a He ii residual spectrum for each night 
by subtracting all of the other model components. However, 
for NGC 4593 the He ii emission was too weak to produce a 
useful light curve. The Fe ii light curves were computed by 
summation of the best-fitting Fe ii model over 4400–4900 Å, 
but any wavelength range would yield the same overall light-
curve shape since the model fit assumes a uniform flux scal
ing factor for the Fe ii template. The FC light curves were 
measured by integration over the same wavelength range used 
for Fe ii. 

As described above, the residual scatter measured from 
the [O iii] light curves represents a major contribution to the 
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error budget in the light-curve measurements. Therefore, we 
combine the residual scatter (1.2% for NGC 4593 and 2.0% for 
Mrk 1511) in quadrature with the measurement uncertainties 
in the individual light-curve points to obtain a more realistic 
estimate of the true overall uncertainties. The emission-line light 
curves displayed in Figure 1 are shown with these expanded 
error bars. Addition of the residual flux-scaling scatter to the 
error budget widens the measurement uncertainties in the cross-
correlation lags described below, but only slightly. In Figure 1, 
we show only the spectroscopic light curves measured using the 
V04 template fits because the light curves measured from the 
BG92 fits are extremely similar in overall appearance. 

Observations of other AGNs have shown that the amplitude 
of Fe ii variability is typically somewhat smaller than that of 
Hβ. For example, in NGC 5548, Vestergaard & Peterson (2005) 
found that the Fe ii variation amplitude was ∼50%–75% of that 
of Hβ. To characterize the variability amplitude in NGC 4593 
and Mrk 1511, we use σx as defined in Equation (1), which 
gives a measure of the normalized rms variability, corrected for 
measurement uncertainties. Based on the V04 fits, the results 
for NGC 4593 are σx(Hβ) = 0.199 and σx(Fe ii) = 0.138, 
while for Mrk 1511 we measure σx(Hβ) = 0.102 and 
σx(Fe ii) = 0.085. With the BG92 template fits, the σx values 
for Hβ are essentially unchanged, while σx(Fe ii) increases by 
∼10% relative to the values determined from the V04 fits. Thus, 
both objects show a somewhat higher amplitude of variability 
in Hβ than Fe ii, similar to the behavior seen in NGC 5548 
(Vestergaard & Peterson 2005). 

For AGNs having a very low starlight fraction, it is often 
possible to measure the AGN continuum flux from the spectra 
directly, without carrying out a decomposition to separate 
the AGN flux from the host galaxy contribution (e.g., Kaspi 
et al. 2000). However, this approach is much less successful 
for AGNs having a substantial host galaxy component in the 
spectra, since the starlight dilutes the variability of the AGN 
continuum and introduces additional random noise due to 
nightly variations in seeing and target centering within the slit 
(e.g., Bentz et al. 2008). Given the substantial contributions 
of both stellar continuum and Fe ii in these two objects, the 
spectral decomposition method is necessary in order to measure 
the AGN continuum flux without contamination or dilution by 
these other components. 

4. MEASUREMENT OF REVERBERATION LAGS 

4.1. Methods 

In order to measure the cross-correlation function (CCF) for 
unevenly sampled time series, we employ the interpolation 
cross-correlation function (ICCF) methodology and Monte 
Carlo error-analysis techniques described by Gaskell & Peterson 
(1987), White & Peterson (1994), and Peterson et al. (2004). 
Emission-line lags for Hβ, Hγ , He  ii, and Fe ii were measured 
relative to both the V-band and FC light curves. CCFs were 
computed over a temporal range of −20 to +40 days in 
increments of 0.25 days. For each CCF we compute two 
measures of the lag time: τpeak, which is the lag at the peak 
of the CCF, and τcen, the centroid of the CCF for all points 
above 80% of the peak value (Peterson et al. 2004). Table 2 lists 
the lag values. The quantity rmax listed in Table 2 gives the peak 
amplitude of the CCF and is a measure of the significance of the 
correlation between the two light curves. We obtain higher rmax 
values for NGC 4593 than for Mrk 1511, primarily owing to the 
higher S/N of the NGC 4593 light curves. Lag values are given 

Measurement V04 Template Fits 

rmax τcen (days) τpeak (days) 

NGC 4593 
Hγ vs. V 0.95 2.46+1.28 

−0.81 1.50+0.25 
−0.25 0.94 2.47+1.29 

−0.79 1.50+0.25 
−0.25 

Hγ vs. FC 0.94 1.33+1.11 
−1.02 0.50+1.00 

−0.25 0.80 5.46+3.39 
−3.37 3.75+2.00 

−3.00 

Hβ vs. V 0.92 4.33+1.32 
−0.79 3.25+0.50 

−0.75 0.94 3.52+0.95 
−0.81 2.25+0.50 

−0.75 

Hβ vs. FC 0.92 3.53+1.09 
−1.10 1.50+1.00 

−0.25 0.82 6.54+2.94 
−2.99 3.75+2.50 

−1.50 

Fe ii vs. V 0.88 8.35+1.29 
−1.51 6.25+1.25 

−1.50 0.85 5.37+1.18 
−1.41 5.50+1.00 

−1.75 

Fe ii vs. FC 0.85 7.37+1.21 
−1.75 5.75+2.25 

−2.00 0.82 7.63+2.34 
−2.99 5.75+2.25 

−2.75 

Mrk 1511 
He ii vs. V 0.84 −0.57+0.87 

−0.77 −0.25+1.25 
−1.25 0.83 −0.72+0.89 

−0.80 −0.50+1.25 
−1.25 

He ii vs. FC 0.81 −0.58+0.99 
−0.95 −1.25+2.00 

−1.25 0.79 −0.11+1.25 
−0.99 0.50+1.00 

−1.50 

Hγ vs. V 0.91 3.42+0.70 
−0.86 3.50+1.00 

−1.00 0.91 3.12+0.64 
−0.94 3.25+0.75 

−1.00 

Hγ vs. FC 0.83 3.87+0.98 
−1.16 3.50+1.25 

−1.00 0.80 4.41+1.11 
−1.24 3.50+2.00 

−0.75 

Hβ vs. V 0.89 5.89+0.93 
−0.85 7.00+0.75 

−1.75 0.88 5.33+1.07 
−0.86 6.50+1.00 

−1.75 

Hβ vs. FC 0.82 7.12+1.21 
−1.16 7.00+1.75 

−2.00 0.81 7.79+1.41 
−1.14 8.25+0.75 

−2.75 

Fe ii vs. V 0.80 8.63+1.35 
−1.31 9.25+1.00 

−1.25 0.81 6.40+1.40 
−1.32 7.75+0.50 

−1.75 

Fe ii vs. FC 0.75 8.75+1.66 
−1.32 8.50+1.00 

−1.25 0.73 8.25+1.61 
−1.27 8.25+1.25 

−2.75 

BG92 Template Fits 

rmax τcen (days) τpeak (days) 

Notes. All lags are given in the observed frame. Lag values measured from cross-
correlations between two spectroscopic light curves (i.e., between emission lines 
and FC, or between two emission lines) are unreliable as a result of correlated 
errors, which introduce a spurious signal at zero lag. This bias particularly 
affects the τpeak values. Cross-correlations measured relative to the V-band light 
curve are not susceptible to this bias. As described in the text, we conclude that 
the cross-correlations done relative to the V-band light curves, done using the 
V04 template fits, are the most reliable. 

in the observed frame and can be converted to the AGN rest 
frame by dividing by 1 + z, where the redshifts are z = 0.009 
for NGC 4593 and z = 0.0339 for Mrk 1511. 

There are advantages and drawbacks to using either the 
V-band data or spectroscopic FC light curves in the cross-
correlation analysis. The V-band light curves have more frequent 
sampling than the spectroscopic data, and better temporal 
sampling will always improve the determination of the CCF. 
Additionally, the spectroscopic data suffer from systematic 
effects including variable slit losses due to miscentering and 
differential atmospheric refraction, while the photometric data 
are not susceptible to these problems. However, the V-band 
data include contributions of emission-line flux in addition to 
the AGN continuum, while the spectroscopic decompositions 
can be used to produce a “pure” FC light curve without 
contamination by strong emission lines. A disadvantage of 
using the spectroscopic data in cross-correlation measurements 
is the effect of correlated flux-calibration errors between the 
emission-line and continuum light curves, which can introduce 
a spurious signal at zero lag. We find that using the V-band 
light curves produces consistently higher-quality results, but 
the reverberation lags are consistent when measured against 
either the V-band or FC light curves. For completeness, Table 2 
presents all of the lag measurements based on the spectral 
decompositions using both the V04 and BG92 Fe ii templates, 
and for cross-correlations computed with both the V-band and 
FC light curves. 

We tested the effect of detrending the data by subtracting 
a linear fit to the light curves before computing the CCFs. 
As described by Welsh (1999), removing long-term secular 
variations from light curves can often improve the accuracy 
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Figure 4. Cross-correlation functions for Hβ, Hγ , He  ii, and  Fe  ii relative to the 
V-band photometric light curves. The autocorrelation function of the V-band 
light curve is shown in gray. 

(A color version of this figure is available in the online journal.) 

and significance of cross-correlation results. For Mrk 1511, 
detrending had almost no effect on the CCFs, because the light 
curves are not characterized by any long-term brightening or 
fading. NGC 4593 does show a net increase in luminosity over 
the duration of our monitoring program, but CCFs computed 
using detrended data were actually of poorer quality than the 
original CCFs, having values of rmax that were lower by ∼0.1. 
Therefore, we chose not to use detrended light curves for our 
final measurements. 

4.2. Reverberation Lag Results 

We first describe the results based on light curves measured 
from the V04 template fits. Comparison with BG92 template 
fits is presented in Section 4.4. Figure 4 illustrates the CCFs 
measured relative to the V-band data for emission-line light 
curves measured from the V04 template fits, as well as the 
autocorrelation function (ACF) of the V-band light curve. For 
both AGNs  the Fe  ii CCF has a shape roughly similar to that of 
the Hβ CCF, but systematically shifted toward longer lags. 

Normally, the ICCF method computes two versions of the 
CCF: first, by interpolating the continuum light curve (shifted by 
each trial value of the lag) to the temporal steps of the emission-
line light curve, and then by interpolating the emission-line 
light curve to the time sampling of the continuum light curve. 
With high-quality data, the two resulting CCFs are normally 
very nearly identical, and the final CCF is taken to be the 
mean of the two (Gaskell & Peterson 1987). However, when the 
two light curves have significantly different temporal sampling 
frequency, or when the light curves have poor S/N, the two 
interpolated CCFs can sometimes differ significantly in shape, 
and occasionally one of the two CCFs may contain features 
that are clearly spurious while the other has a more regular 
appearance. In such a situation, it may be preferable to use just 
one of the two interpolated CCFs rather than taking their mean. 
For NGC 4593, the two interpolated CCFs are nearly identical, 

and we base our measurements on the mean CCFs as illustrated 
in Figure 4. However, for Mrk 1511, we found that the second 
version of the CCF (i.e., from interpolating the Fe ii light curve to 
the time steps of the V band) had a large and unphysical “notch” 
appearing just at the CCF peak. The other interpolation produced 
a smooth and regular CCF. Overall, the two interpolated CCFs 
had nearly identical shapes and widths, and they show the same 
overall lag response aside from the notch appearing at the peak 
of the first CCF. The presence of this notch in the mean CCF 
rendered the measurement of τpeak and τcen suspect. Since the 
first interpolated CCF results in a smoothly shaped peak, for 
Mrk 1511 we use only the first interpolated version of the CCF 
to calculate τpeak and τcen, rather than taking the mean of the two 
interpolations. This CCF is shown in Figure 4. 26 

The Hβ lags measured relative to the V-band light curves are 
in the range of ∼3–4 days for NGC 4593 and ∼5–7 days for 
Mrk 1511. Due to asymmetry in the CCFs, the values of τcen and 
τpeak differ slightly, but not by a significant amount considering 
the uncertainties in the lag measurements. The observed trend of 
Hβ having a longer lag than Hγ is expected based on previous 
measurements (e.g., Bentz et al. 2010b). Similarly, the fact 
that the He ii lag is unresolved in Mrk 1511 is consistent with 
expectations based on previous measurements. In AGNs having 
Hβ lags of �10 days, the He ii lag time is usually undetectable 
in data sets with nightly sampling (e.g., Bentz et al. 2010b; 
Barth et al. 2011b). The Fe ii emission has a longer lag than Hβ 
for both AGNs. In both cases, the cross-correlation between the 
Fe ii and V-band light curves produces a significant CCF peak, 
with rmax = 0.88 for NGC 4593 and 0.80 for Mrk 1511. 

We also measured the emission-line lags relative to the AGN 
FC component light curves. The resulting τcen and τpeak values 
are generally consistent within the uncertainties with the lag 
values measured against the V-band data. However, the CCFs 
measured using the FC light curves have lower peak amplitude 
rmax than the corresponding CCFs measured against the V 
band, which we attribute to the poorer temporal sampling and 
greater calibration uncertainties of the spectroscopic data. Thus, 
we consider measurements relative to the V band to be the 
best determinations of the emission-line lags, while the lags 
measured relative to the FC serve as a useful consistency check. 
As another check, we measured the FC light curves over a 
different wavelength range (5050–5150 Å rest wavelength) and 
measured the cross-correlations of the Hβ light curves relative 
to this revised FC light curve. The measured lags only changed 
by a negligible amount (much smaller than the 1σ uncertainties) 
in comparison with the lags measured to the FC light curves as 
listed in Table 2. 

Figure 5 shows the Fe ii versus FC CCFs for both sets of 
template fits. For Mrk 1511, the choice of Fe ii template has very 
little impact on the CCF shape or the lag in this measurement. 
However, the difference between the two templates is significant 
for NGC 4593, where the light curves measured from the BG92 
template produce a very jagged and irregular CCF and yield 
very unreliable lag measurements with large uncertainties on 
τcen and τpeak. The  V04 template, on the other hand, gives a 
better-behaved result and smaller lag uncertainties. The cause 
of this difference is not obvious, but it does appear that 

26 For Mrk 1511, if we use the mean of the two interpolated forms of the CCF 
instead of the first interpolated version, then we obtain τcen −2.12 days.= 7.67+1.98 

This is consistent with the value listed in Table 2 but with a larger uncertainty 
due to the peculiar shape of the peak region of the mean CCF. The value of 
τcen(Hβ) is nearly unchanged if we use the mean CCF instead of the first 
interpolated version. 
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Figure 5. Cross-correlation functions for Fe ii relative to the AGN FC measured
 
from the spectral fits done using the BG92 and V04 Fe ii templates.
 

(A color version of this figure is available in the online journal.)
 

the V04 template gives a clearly superior result at least for 
NGC 4593. 

An additional possible concern is degeneracy between the 
stellar and AGN continuum components in the fit. For both ob
jects, the light curves of the starlight component do not show any 
significant time-dependent features other than random noise. 
We measured cross-correlations between the stellar continuum 
component and the V-band light curves in order to test whether 
the stellar continuum light curves might contain some residual 
AGN flux. The resulting CCFs had very low peak amplitudes 
of rmax = 0.31 and 0.43 for NGC 4593 and Mrk 1511, respec
tively, and had such irregular structure that no clear lag signal 
could be measured in either case. This provides further evi
dence that the spectral decompositions are properly separating 
the contributions of the continuum components. 

4.3. Estimating Biases in Reverberation Lags 

A small bias in reverberation lag measurements can occur 
when broad-band photometry is used for the continuum flux 
measurement, due to the contribution of emission-line flux to the 
photometric light curves. The passband of the V filter includes 
flux from both Hβ and Fe ii, both of which lag the continuum 
variations. When cross-correlating spectroscopic emission-line 
light curves against the V-band light curves, this emission-
line contamination in the V-band data will tend to bias the 
cross-correlation lag toward values that are lower than the 
true lag (Barth et al. 2011a). To determine the level of this 
contamination for Mrk 1511 as an example, we extrapolated 
our mean-spectrum fit over a broader wavelength range (up to 
6500 Å) and carried out synthetic V-band photometry on the 
individual model components. In the mean spectrum, the ratios 
of emission-line to AGN FC flux as measured through a V-band 
filter are f(Hβ)/f(FC) = 0.073, and f(Fe ii)/f(FC) = 0.155. 

We simulated the effect of the emission-line flux in the V-band 
light curves by creating mock reverberation data sets having 
properties similar to those of our observed data. Following the 

method of Timmer & K ̈onig (1995), we began by generating 
simulated AGN continuum light curves on a finely sampled 
temporal grid with bin size equal to 0.01 day, based on a power-
density spectrum of the form P (f ) ∝ f −2.7 (similar to slopes 
measured from Kepler AGN light curves by Mushotzky et al. 
2011). Each light curve was generated over a total duration 
of 1000 days. A shorter segment of length 100 days was then 
selected randomly and normalized to have an rms variability 
equal to 15% of the median flux. The Hβ and Fe ii lines were 
assumed to respond linearly to continuum variations, with a 
delta function as the transfer function for simplicity, and with 
lag times of 6 days for Hβ and 9 days for Fe ii. Variability 
amplitudes for the emission lines were normalized so that Hβ 
had the same 15% rms variability as the continuum, while Fe ii 
was set to have a lower rms variability amplitude of 12%. Then, 
a “contaminated” V-band light curve was created by adding 
scaled versions of the Hβ and Fe ii light curves to the FC 
light curve, in the relative proportions listed above for Mrk 
1511. All of the light curves (FC, V band, Hβ, and Fe ii) 
were then degraded to approximate the sampling and S/N of  
real data. From the finely sampled light curves, one flux point 
was chosen per night, randomly sampled from a window of 
±2 hr relative to a uniform 24 hr cadence, and over a total 
spectroscopic monitoring duration of 80 days. Weather losses 
were approximated by randomly removing 10% of the points 
from the FC and V-band light curves and 40% of the points 
from the emission-line light curves. Random Gaussian noise 
was added to attain S/N = 100 for the FC and V-band data, and 
S/N = 50 for the emission-line light curves. The Fe ii light curve 
was cross-correlated against both the pure FC light curve and 
the contaminated V-band light curve, to determine the typical 
level of the bias, and this procedure was repeated 104 times to 
build up a distribution of lag measurements for different initial 
realizations of the light-curve shape. 

We compiled the values of τcen for the subset of simulations 
that produced “successful” measurements of lag, meaning that 
the CCF had rmax > 0.6 and yielded a nonnegative value of 
τcen; by these criteria, 83% of the simulations were successful. 
For this subset, the median lag of Fe ii relative to the pure 
AGN continuum is τcen = 9.1 ± 1.8 days, which is closely 
consistent with the input lag of 9 days. (The uncertainty of 
±1.8 days represents the 68% confidence interval on τcen for the 
set of successful simulations.) When the simulated Fe ii light 
curves are cross-correlated against the simulated V-band data 
including emission-line contributions, we find a median lag of 
τcen = 8.4 ± 2.1 days. As expected, this is shorter than the 
lag measured with respect to the pure AGN continuum, but the 
difference of 0.7 days in the median measurements is smaller 
than the uncertainty in the measured Fe ii lag for either of our 
targets. Thus, the impact of this bias on the emission-line lag 
measurements is fairly small, most likely below the level of the 
1σ uncertainties in the Fe ii lags. The effect of emission-line 
contamination in the V-band light curves would be similar for 
all of the cross-correlation measurements for a given AGN, so 
the inferred relative sizes of the Fe ii and Hβ emission regions 
would be only modestly affected. 

4.4. Differences due to Fe ii Template Structure 

Among the reverberation measurements listed in Table 2, 
the strongest differences between results based on the V04 and 
BG92 template fits are in the lag of Fe ii relative to the V band. 
The BG92 fits give τcen values that are two to three days lower 
than the values measured from the V04 fits. This difference 
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appears to stem from the different proportions of FC and Fe ii 
fluxes for the two sets of spectral fits. As can be seen in Figures 2 
and 3, the broadened V04 template approaches zero flux density 
for the Fe ii emission in the blue wing of Hβ, as well as at the  
blue end of our fitting region. The broadened BG92 template, 
on the other hand, does not reach zero flux density anywhere 
in our fitting region, producing a higher “pseudo-continuum” 
level from blended Fe ii lines and forcing the FC component to a 
lower overall flux than in the V04 fits. We suspect that the BG92 
template fits are including a small amount of AGN continuum 
flux into the Fe ii fit component. This small contribution of AGN 
continuum flux in the Fe ii light curves would add a spurious 
signal at zero lag to the cross-correlations between Fe ii and the 
V-band data, slightly biasing the lags toward low values. 

These differences stem from the methods used to construct 
the Fe ii templates. The BG92 template is based on an observed 
spectrum of I Zw 1. Emission lines from several transitions 
other than Fe ii were removed, and the continuum was removed 
by fitting a polynomial to regions between strong emission 
lines, leaving an approximate Fe ii emission spectrum. The V04 
template is also based on an observed spectrum of I Zw 1, 
but was constructed by removing a much larger list of non-
Fe ii emission features, and also removing narrow permitted and 
forbidden Fe ii lines which were found to be much stronger in I 
Zw 1 than in most typical Seyfert 1 spectra. Each Fe ii line in the 
remaining spectrum was then modeled with a Lorentzian profile 
of FWHM = 1100 km s−1, producing a noise-free template. 
The more rigorous removal of non-Fe ii emission features and 
narrow Fe ii lines by V04 is a major reason to prefer the V04 
template over the BG92 template for these fits. Furthermore, the 
empirical and somewhat subjective procedure used to remove 
the AGN continuum by BG92 may be responsible for the fitting 
degeneracy between the Fe ii and FC components described 
above. If the AGN continuum were undersubtracted when 
constructing the BG92 template, then there would be almost 
no noticeable impact on the quality of individual spectral fits 
that used the template, but the mixing of FC and Fe ii emission 
would likely bias the reverberation lags measured for the Fe ii 
component. 

For NGC 4593, the CCF measured between the Fe ii and 
FC light curves is certainly better when the V04 template 
is used, compared with the BG92 template. The reason for 
this difference is not clear, and it only appears to occur for 
NGC 4593 and not Mrk 1511, but it does add one additional 
reason to prefer the V04 template fits. For all of these reasons, 
we consider the measurements done using the V04 template 
fits to be our best-quality results. Most importantly, our main 
results are independent of the template choice: in either case, 
we find that Fe ii emission does show a strong reverberation 
response, with a lag time longer than that of Hβ. As described 
in the Appendix, we find similar results when using the newly 
released multi-component Fe ii templates of Kovaˇ c et al.  cevi´
(2010). With these new templates, we obtain slightly different 
values of τcen for the emission lines, but the Fe ii lags are still 
consistently longer than those of Hβ, with τcen(Fe ii)/τcen(Hβ) ≈ 
1.5. This further confirms that the larger size of the Fe ii-emitting 
region (compared with Hβ) is genuine and not an artifact of 
template choice. 

It is also worth noting that the different template fits yield 
differing amounts of Fe ii and He i emission underlying the 
broad Hβ profile. The uncertain amount of blending of Hβ with 
other emission features (each having a different lag relative to 
the continuum) could represent a limiting factor for the accuracy 

of high-fidelity reverberation measurements, particularly for 
velocity-resolved lag measurements which attempt to determine 
the distribution of lag across the velocity width of the line. Any 
ambiguity in decomposing the Hβ spectral region into different 
emission-line components should be considered as a source of 
systematic uncertainty in determining the Hβ lag distribution 
across the line profile. 

5. DISCUSSION AND CONCLUSIONS 

This is the first time that such clear reverberation signals have 
been seen for the optical Fe ii blends in Seyfert galaxies. Our 
high-cadence monitoring data reveal that the Fe ii emission in 
these galaxies does reverberate on short timescales in response to 
continuum variations, with a well-defined cross-correlation lag 
time. This gives direct evidence for an origin of the Fe ii emission 
in photoionized gas in the BLR. The ambiguity in previous Fe ii 
reverberation results for NGC 5548 (Vestergaard & Peterson 
2005) and Ark 120 (Kuehn et al. 2008) might be attributable to 
the lower cadence of the monitoring data used in these studies, 
although in both cases the monitoring duration spanned several 
years. It is also possible that the Fe ii variability behavior in 
our two objects is not representative of the entire population of 
Seyferts. Measurement of Fe ii variability over a broad range 
of AGN properties should be a high priority for future high-
cadence reverberation-mapping programs. By exploring a broad 
range of luminosities, it might be possible to test whether the 
optical Fe ii emission follows a radius–luminosity relationship 
similar to that of the Hβ line, with a luminosity dependence 
of approximately r ∝ L0.5 (Bentz et al. 2009). It would be 
particularly interesting to test whether the ratio of Fe ii to Hβ 
radii varies systematically along the Eigenvector 1 sequence as 
a function of L/LEdd. If the Fe ii-emitting gas is infalling toward 
the central engine, as proposed by Hu et al. (2008b), then there 
might also be observable correlations between the reverberation 
lag and the redshift of the Fe ii lines, although evidence for radial 
inflow remains controversial (Sulentic et al. 2012). 

The measured values of τcen give an approximate mean radius 
for the zone from which each line is emitted within the BLR. 
Comparing the lags of Fe ii and Hβ for the preferred V04 
template fits, we find τcen(Fe ii)/τcen(Hβ) = 1.9 ± 0.6 and 
1.5 ± 0.3 in NGC 4593 and Mrk 1511, respectively. This gives 
a direct indication that the Fe ii emission arises predominantly 
in the outer portion of the BLR on larger scales than the Hβ 
emission region. This conclusion is consistent with several other 
lines of evidence for an outer BLR location for the Fe ii emission 
(Keel et al. 1994; Rodrı́guez-Ardila et al. 2002; Sluse et al. 2007; 
Hu et al. 2008a, 2008b, 2012; Matsuoka et al. 2008; Popović 
et al. 2009; Gaskell  2009; Kova  ̌ c et al.  2010; Shields et al. cevi´
2010; Shapovalova et al. 2012; Mor & Netzer 2012). We use 
the term “outer BLR” to denote emission from a region having 
a larger mean size than the Hβ emission zone. Aside from Fe ii, 
the only broad emission lines seen to have lags longer than 
that of Hβ are C iii] λ1909 (Peterson & Wandel 1999) and Hα 
(e.g., Kaspi et al. 2000; Bentz et al. 2010b). Thus, the emission 
regions for these lines correspond to the outermost observable 
portion of the BLR. The BG92 template fits give different ratios 
of Fe ii to Hβ lag, but we find that τcen(Fe ii) > τcen(Hβ) for  
either template. 

The longer lag of Fe ii relative to Hβ does not mean that 
the Hβ and Fe ii emission regions are physically distinct; 
in fact, there must be a very substantial radial overlap be
tween them. Recent progress in transfer-function modeling for 
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reverberation-mapping data has provided direct illustrations of 
the radial extent of the BLR as seen in Balmer lines. For Arp 151, 
the transfer functions show that the Hβ emission extends over 
a broad radial zone with an outer extent that is more than twice 
as large as cτcen, and the Hα-emitting region is several times 
larger in extent than the mean Hβ radius (Bentz et al. 2010a). 
If the ratios of Fe ii to Hβ size for NGC 4593 and Mrk 1511 
are typical, then the Fe ii-emitting zone would encompass the 
outer portion of the Hβ-emitting zone of the BLR and beyond, 
probably corresponding roughly to the region emitting Hα. This  
echoes the recent finding by Hu et al. (2008a) that quasar Hβ 
profiles generically contain an intermediate-width component 
that may be emitted from the same region that produces Fe ii, 
while the very broad component of Hβ would be emitted from 
smaller radii. Further support for a link between the Fe ii region 
and the outer portion of the Balmer-line emitting zone of the 
BLR comes from a new principal-component analysis of quasar 
spectra by Hu et al. (2012). They demonstrate that one of the 
primary eigenspectra of their quasar sample is essentially the 
sum of two components: the Fe ii emission spectrum and an 
intermediate-width core component of the Balmer lines, which 
are readily interpreted as arising from a similar spatial region. 

Hu et al. (2008b) found that Fe ii line widths in SDSS quasars 
are typically about 3/4 of the  Hβ widths. In order to test whether 
NGC 4593 and Mrk 1511 are consistent with this trend, we 
examine the results of the spectral fits done using the BG92 
Fe ii template, since this closely follows the fitting method used 
by Hu et al. (2008b). We assume that the total velocity width 
of FWHM is given by the quadrature sum of the FWHM of 
the broadening kernel from the fit and the FWHM of the line 
profiles in the template itself which we take to be 900 km s−1 for 
consistency with Hu et al. (2008b). We also correct the observed 
widths for an instrumental broadening of FWHM ≈ 315 km s−1 

(Barth et al. 2011a). Then, we obtain Fe ii widths of FWHM = 
3330 ± 153 km s−1 for NGC 4593 and 3128 ± 143 km s−1 

for Mrk 1511, where the uncertainties are based on the night-to
night scatter in the width of the Fe ii Gaussian broadening kernel 
determined by the fitting procedure. The broad-Hβ component 
models for the two AGNs have FWHM = 4395 ± 362 km s−1 

−1for NGC 4593 and 4171 ± 137 km s for Mrk 1511. In 
both cases, then, FWHM(Fe ii)/FWHM(Hβ) is almost precisely 
0.75, closely consistent with the average result for the Hu et al. 
(2008b) sample. 

However, we also find that the inferred Fe ii widths seem to be 
substantially dependent on choice of template. Using our results 
from fitting with the V04 template, we obtain broader Fe ii 
widths of FWHM = 5044 ± 176 km s−1 and 4459 ± 116 km s−1 

for NGC 4593 and Mrk 1511, in both cases broader than the Hβ 
FWHM values. This appears to be the result of a combination 
of factors including different relative strengths for individual 
Fe ii lines between the two templates, and the fact that the 
V04 template is constructed using Lorentzian models fitted to 
each line. One consequence of these Lorentzian profiles is that 
the FWHM values of the template itself and of the Gaussian 
broadening kernel do not simply add in quadrature to give the 
FWHM of the total line profile; the FWHM of the Gaussian-
broadened template profile is broader than the quadrature sum 
of the template FWHM and broadening kernel FWHM. 

Based on the fits done using the BG92 template, we can 
conclude that these two AGNs have FWHM(Fe ii)/FWHM(Hβ) 
ratios consistent with the mean value found by Hu et al. (2008b) 
for a large SDSS sample, so there is no evidence that they 
are outliers from the normal AGN population. However, the 

absolute determination of Fe ii width seems to be subject to 
substantial systematic uncertainty due to the details of how the fit 
is performed and choice of template. Further investigation of the 
cause of this discrepancy in Fe ii widths for different templates 
is beyond the scope of this paper, but this problem is likely 
to affect all inferences about Fe ii profile widths measured by 
template fitting, particularly when the individual Fe ii features 
are completely blended into a pseudo-continuum as is the case 
in these two objects. 

In addition to the systematic issues related to the choice of 
Fe ii template, there are some additional and important caveats to 
note about the measured Fe ii lags. The CCF methodology only 
gives a single, simplistic measure of the lag time for an emission 
line, whereas in reality a given spectral line will be emitted 
over a broad range of radii. It might be possible to obtain more 
detailed information on the radial distribution of Fe ii emissivity 
by applying the geometric modeling methods described by 
Pancoast et al. (2011) or by applying techniques to extract the 
shape of the transfer function from the data (Bentz et al. 2010a; 
Grier et al. 2013). However, the Fe ii light curves are relatively 
noisy and higher-quality data might be required, perhaps over 
a longer monitoring duration, in order to go beyond the simple 
cross-correlation determination of the Fe ii lag presented here. 
Furthermore, our spectral fits assume a uniform flux scaling 
for the entire Fe ii template, which results in an average lag 
measurement for the entire complex of Fe ii blends, but this 
method is unable to explore the possibility of different response 
times for different Fe ii lines. Recent work has improved on 
traditional template-fitting methods by allowing for different 
behavior among different groups of Fe ii lines (Kova ̌ c et al.  cevi ́
2010), and Shapovalova et al. (2012) demonstrated that in Ark 
564, Fe ii lines from different multiplets showed differing levels 
of correlation with continuum variations. Application of such 
methods to reverberation-mapping data could potentially detect 
or constrain differences in reverberation timescale for different 
Fe ii multiplets as well. 

The primary conclusions of this study are that measurement 
of the reverberation lag of the optical Fe ii blends is indeed 
possible in favorable cases, and that in these two AGNs the Fe ii 
emission responds directly to continuum variations with a lag 
time that corresponds to the outer portion of the BLR, somewhat 
larger than the Hβ-emitting radius. With well-sampled data it 
is possible to detect this reverberation signature with a level of 
significance comparable to that of high-quality Hβ reverberation 
measurements. Detection of Fe ii reverberation does require 
some special circumstances, in particular a high amplitude of 
continuum variability, as well as relatively strong Fe ii emission 
overall. In all other objects from our 2011 sample, either the 
Fe ii emission was too weak (as in Mrk 50; Barth et al. 2011b), 
or the overall flux variability was too low for measurements like 
these to be successful. Finally, these results illustrate the value of 
carrying out spectral decompositions of reverberation-mapping 
data, in order to measure accurate light curves for Fe ii, He  ii, 
and other weak or low-amplitude spectral features. Application 
of these methods for measurement of emission-line light curves 
for our entire 2011 sample will be described in future papers in 
this series. 
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Figure 6. Same as Figure 2, but for fits done using the Kova ̌ c et al. (2010) Fe  ii templates. The gray curve represents the sum of the five individual Fe ii components.cevi ́

(A color version of this figure is available in the online journal.) 
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APPENDIX 

After this paper was submitted, the referee informed us 
that a public release of the multicomponent Fe ii templates 
from Kovaˇ c et al.  (2010) had recently been announced cevi ́
(Popović et al.  2013). Although a full study of Fe ii variability 
using these new templates is beyond the scope of this paper, 
we carried out an initial examination by adapting our fitting 
method to use these templates. As described by Kova ̌ ccevi ́

et al. (2010) and Shapovalova et al. (2012), the template 
set includes spectra describing Fe ii lines from four separate 
multiplet groups (denoted as the F, G, S, and P groups), as well 
as an additional template containing other lines found in the I 
Zw 1 spectrum. Carrying out fits using this set of five templates 
gives substantially more freedom to accurately fit observed Fe ii 
spectra than the monolithic templates of BG92 or V04, at the  
cost of adding four additional free parameters to allow for the 
individual flux scaling of each Fe ii component. 

Figure 6 illustrates the fits to the mean spectra using these 
multicomponent templates. Similar to the fits with the V04 
and BG92 templates, the model reproduces the overall spectral 
shape well, but there are significant differences in the fit details 
compared with the monolithic templates. Using the Kovačević 
et al. (2010) templates, the fit assigns relatively more flux to the 
starlight component and less to the FC. Also, these fits force 
the fluxes of all three He i lines to zero, and the red shelf of Hβ 
becomes dominated by Fe ii, similar to the results from using the 
BG92 template. Another notable difference is seen at the shortest 
wavelengths, below about λrest = 4400 Å. In this region, the 
primary Fe ii contribution is from the P group, and the fit forces 
the normalization of this component to zero. This is most likely a 
spurious result due to degeneracies in the model fitting process, 
but it occurs consistently when fitting each individual spectrum 
for both AGNs. These multicomponent templates are optimally 
suited for use with AGN-dominated spectra having very strong 
Fe ii emission, such as the objects studied by Kovaˇ c et al.  cevi ́
(2010) and Shapovalova et al. (2012), but the high starlight 
fraction and relatively weaker Fe ii emission in our targets 
presents a more difficult case study for constraining the weights 
of the five-component Fe ii model. 

In order to check for differences with respect to the previous 
spectral fits, we measured Hβ and Fe ii light curves based on 
these decompositions following the same methods described 
previously, and carried out cross-correlations of these light 
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curves against the V-band continuum. The Fe ii light curve was 
integrated over the same spectral region used for the monolithic 
templates, in this case corresponding primarily to flux from the 
F-group template. 

3.92+0.79For NGC 4593, we find τcen(Hβ) = days, and −0.74 

5.97+1.10(Fe ii) = days. For Mrk 1511, the results are τcen −1.05 

5.76+1.10 8.90+1.43τcen(Hβ) = days and τcen(Fe ii) = days.−0.94	 −1.25 
These results are generally consistent with the measurements 
done using the BG92 and V04 template fits, with the largest 
disagreements only being at slightly greater than the 1σ level. 
The modest disagreements further highlight the fact that the 
reverberation results are somewhat sensitive to the different 
structures of the Fe ii templates. Despite these differences, our 
primary result is essentially unchanged: the Fe ii reverberation 
lags based on the new template fits are ∼50% longer than 
those of Hβ, pointing to an origin for the Fe ii emission in the 
outer portion of the BLR. In future work, these multicomponent 
templates may prove to be most advantageous when fitting very 
high S/N spectra of AGNs having smaller starlight contributions 
and stronger Fe ii lines whose relative amplitudes can be more 
tightly constrained in the fits. 
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