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With the advent of modern technology, manufacturing processes became so
sophisticated that a single quality characteristic cannot reflect the true product
quality. Thus, it is essential to perform the key factor analysis for the
manufacturing process with multiple-input (factors) and multiple-output
(responses). In this paper, an integrated approach of using the desirability
function in conjunction with the Mahalanobis-Taguchi-Gram Schmit (MTGS)
system is proposed in order to find and optimise the key factors for a multiple-
response manufacturing process. The aim of using the MTGS method is to
standardise and orthogonalise the multiple responses so that the Mahalanobis
distance for each run can be calculated and the multi-normal assumption for the
correlated responses can be relaxed. A realistic example of the solder paste
stencil printing process is then used to demonstrate the usefulness of our
proposed approach in a practical application.
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1. Introduction

With the advent of modern technology, manufacturing processes have become so

sophisticated that a single quality characteristic cannot reflect the true product quality.

Thus, it is essential to perform the key factor analysis for the manufacturing process

with multiple-input (factors) and multiple-output (responses).
A traditional experimental design and analysis method is typically used in finding and

optimising the key factors for one response variable. Simultaneous consideration of

multiple responses are difficult when (1) these multiple responses are highly correlated, and

(2) if one response belongs to ‘the bigger the better’, while the other belongs to ‘the smaller

the better’ quality characteristic in a multiple-response process. In this paper, we propose

a multivariate technique based on the Mahalanobis-Taguchi-Gram Schmit (MTGS)

system as well as the desirability function to explore and optimise the key factors for

a multiple-response manufacturing process.
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2. Literature review

Various multi-response methods have been proposed, for example, the dual response

approach proposed by Myers and Carter (1973), the distance function introduced by

Khuri and Conlon (1981), the desirability function proposed by Harrington (1965)

and modified by Derringer and Suich (1980). Logical solutions to multiple response

problems are to optimise overall quality characteristics by compromising between

important responses (Myers and Montgomery 1995).
The desirability function is used to reduce the dimension of a multi-response problem

into a single-response problem. Derringer and Suich (1980) modified Harrington’s (1965)

approach and extended to the following three types of quality characteristics:

(1) For the larger-the-better (LTB) type:
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where s and t are the
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exponential parameters that determine the shape of a

desirability function, and ci is the most likely acceptable value, Yi� � ci � Y�i ,

i.e. the target value of the NTB type response. The user has a greater flexibility

in the setting up an appropriate desirability function by selecting a suitable r, s, t.

After finding the individual desirability function for each response, an overall

desirability function can be obtained by

D ¼
p
k d
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where di, i ¼ 1, 2, . . . , k is the individual desirability function for each response. Chiao and
Hamada (2001) mentioned that the overall desirability D ¼ ðd1ðY1Þ, d ð

k
2 Y2Þ, . . . , d ðYkÞÞ
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is difficult to construct if its desirability is complex functions of the k responses, where
ðY1,Y2, . . . ,YkÞ are k responses and ðd1, d2, . . . , dkÞ are the individual desirability
functions. They proposed a quality measure to be the probability that the k responses
are simultaneously meeting a specification region for searching the key factors.

Since a traditional multi-dimensional or multivariate system only considers response
variables that are mutually independent, it is easy to make mistakes in determining the
key factors for the dependent response variables in a multi-dimensional system. Taguchi
and Jugulum (2002) proposed a Mahalanobis-Taguchi system (MTS) as shown in Figure 1
to modify the traditional multi-dimensional system.

MTS can be used to detect the abnormality of observations. If the Mahalanobis
distance of a data set is too large, then the observation is considered to be abnormal.
It should be pointed out that there have been debates on the MTS vs. classical multivariate
analysis approaches recently. (For details please refer to Woodall et al. 2003, Jugulum
et al. 2003, Abraham and Variyath 2003 and Hawkins 2003).

3. Research methodology and data analysis procedures

The data analysis procedures for determining and optimising the key factors of a multi-
response manufacturing process are shown in Figure 2. The determination of key factors
for a multi-response manufacturing process is discussed in Section 3.1. The main idea
in the data analysis procedures is to use the concept of Mahalonobis distance to convert
multi-response variables into a single dimensional performance index in analysis of
variance (ANOVA). The optimisation of a multi-response manufacturing process using
a desirability function is discussed in Section 3.2.

3.1 The key factor analysis for a multi-response manufacturing process

Denote n observations of the k responses by W1,W2, . . . ,Wk, where Wi ¼

ðwi1,wi2, . . . ,winÞ
0, i¼ 1, 2, . . . , k. The original data structure for a multi-response process

is shown in Table 1.

Step 1: Perform the standardisation.
The original experimental data (wij) need to be standardised as below

w
¼

ij w�
zij

� i i ¼ 1, 2, . . . , k

S2 j
i

�
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Figure 1. The Mahalanobis-Taguchi multidimensional system.



Collect n observations Wi for the 

k-responses, where

W = (w ,w ,...w )i i1 i2 in ',i = 1,2,...k

Standardise each wij  into  zij ,

i =1 …, 2, , k   j =1 …, 2, , n

Use GSP to convert (Z1,Z2,…,Zk)

into an orthogonal basis. 

Calculate Mahalonobis distance for

each run using
1 ′MD Vj

−D 1Vj ,j =
k

where Vj = (u1j , u2j , …, ukj)′ is the 

jth run after standardisation and

orthogonalisation.

Determine the initial key factors for

the response MDj by effect normal

probability and Pareto plots. 

Determination of the key factors 
Optimisation of the 

multi-response process  

Perform analysis of variance to
confirm the significant main and 
interaction effects. 

Calculate the desirability 

function for each response 

under different 

combinations of key factors 

Calculate the overall 
desirability function under 
different combinations of 
key factor levels, i.e. 

D = k d1× d2 × × dk . 
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desirability function that is 

the optimal combination of 

key factor levels. 

(1)

(8)

(2)

(9)
(3)

(4)
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(6)

Perform confirmatory tests 
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model and calculate Mean 
(11)

Absolute Percent Error 

(MAPE). A MAPE less than 

15% is preferred. 

Perform regression and residual 

(7) analyses to construct a fitted 

regression model. 

Figure 2. The data analysis flowchart for determining and optimising the key factors of a
multi-response process.

Table 1. The original data structure for a multi-response process.

Response i W1 W2 . . . Wk

Run j

1 w11 w21 . . . wk1

2 w12 w22 . . . wk2
...

...
...

...
...

n w1n w2n . . . wkn
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Step 2: Perform the orthogonalisation.
According to the orthogonal procedure of Gram-Schmidt process (GSP) described

below, the standardised response Z1,Z2, . . . ,Zk can be converted to an orthogonalised

response U1,U2, . . . ,Uk. The orthogonal data for a multi-response process is

shown in Table 2.

U1 ¼ Z1 ¼ ðu11, u12, . . . , u1nÞ
0

U2 ¼ Z2 � c2,1U1 ¼ ðu21, u22, . . . , u2nÞ
0

U3 ¼ Z3 � c3,1U1 � c3,2U2 ¼ ðu31, u32, . . . , u3nÞ
0

ð6Þ

...

Uk ¼ Zk � ck, 1U1 � ck, 2U2 � � � � � ck, k U�1 k�1 ¼ ðuk1, uk2, . . . , uknÞ
0

where ci, j ¼ ðZ
0
iUj=U

0
jUjÞ are the coefficients of vectors in the Gram-Schmidt process.

Step 3: Compute the Mahalonobis distance.
Let Vj ¼ ðu1j, u2j, . . . , ukjÞ

0, j¼ 1, 2, . . . , n be the jth run data after standardisation

and orthogonalisation, then the Mahalonobis distance for the jth run data can be

calculated by

MDj ¼ V0j D
�1Vj

where D is a variance-covariance matrix of U1,U2, . . . ,Uk. Since U1,U2, . . . ,Uk are

orthogonalised data and they are uncorrelated, D is denoted by:

�2U 0 . . . 0
1

0
D

0
¼

BBBB ..B .

1
. . : 7@ . .. .

CC
0 � � � �2

C
Uk

CC ð ÞA

Table 2. The standardised and orthogonal data for a multi-response process.

Response i U1 U2 . . . Uk

Run j

1 u11 u21 . . . uk1
2 u12 u22 . . . uk2
...

...
...

...
...

n u1n u2n . . . Ukn



Thus, the Mahalonobis distance for the jth run data in MTGS can be rewritten as:

MDj ¼ V0jD
�1Vj
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According to Taguchi and Jugulum (2002), one can use yj ¼
pffiffiffiffiffiffiffiffiffi
MDj

ffi
as a single response

variable. Following the above three steps the multi-response variables can be reduced

into a single dimensional performance index, i.e. Mahalonobis distance.

Step 4: Perform ANOVA and regression analysis.
If one only considers the main and two-factor interaction effects in an experimental

design, then the effect model for a multi-factor experiment is

Yij...ml

>8 i ¼ 1, 2, . . . , k

j ¼ 1, 2, . . . , n

.
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>>>>>><
.>>>>>>:>m ¼ 1, 2, . . . , o

l ¼ 1, 2, . . . , p

ð9Þ

where � is the overall mean, �i is the ith treatment effect of the first factor, �j is the
jth treatment effect of the second factor, (��)ij is the ith and the jth interaction effect of

the first and second factors. Similarly, �m and � l are the mth and lth treatment effects,

(��)ml is the mth and lth interaction effect. The three assumptions for the experimental

errors in ANOVA are:

(1) Normality, i.e. the error terms "i are normally distributed.
(2) Constant variance, i.e. Var("i)¼ �

2.
(3) Independence, i.e. the error terms "i are mutually independent.

Since we are interested in testing the treatment and interaction effects against zero, the

null hypotheses of the treatment and interaction effects can be expressed respectively as:

>8>>H0 : �1 ¼ �2 ¼ � � � ¼ �k ¼ 0><H0 : �1 ¼ �2 ¼ � � � ¼ �n ¼ 0>> .> .:> .

H0 : �1 ¼ �2 ¼ � � � ¼ �p ¼ 0

and 8>><H0 : ð��Þij ¼ 0 for all i, j

.> . :>: .

H0 : ð��Þlm ¼ 0 for all l,m



The main and interaction effects are considered to be significant if the null hypotheses
are rejected. Normally, data analysis procedures for finding the key factors include the
following five steps:

(1) Determine the initial key factors by using effect normal probability and Pareto
plots.

(2) Confirm the key factors using ANOVA, and highlight the significant main and
interaction effects.

(3) Construct a fitted regression model.
(4) Perform ANOVA and residual analyses including checking the three assumptions

for errors, i.e. normality, independence and constant variance.
(5) Perform confirmatory tests by using the fitted regression model, and calculate

mean absolute percent error (MAPE) by

1

m

Xm jyi � ŷij

y
i¼ i1

where yi are the actual observations and ŷi are the predicted values. It is assumed
that no important factors were omitted from the experiment if the percent
contribution due to error is less than 15% (Ross 1988). Thus, a MAPE less than
15% is recommended.

3.2 Searching the optimal combination of key factor levels

After finding the key factors, the multi-response manufacturing process can be optimised
using the desirability functions. Assume that

Bij...ml ¼ �þ �i þ �j þ � � � þ �m þ �l þ ð��Þij þ � � � þ ð��Þml

where Bij...ml is a function of �,�i,�j, . . . , �m, �l, ð��Þij, . . . , ð��Þml. The least squares
estimators of the parameters in a multi-factor effect model can be found by minimising
the sum of squares of the errors from Equation (9), i.e.

k n p
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X
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The solution to Equation (10) is not unique and depends on the following constraints:Xk Xn Xp Xk Xn Xo Xp
�i
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Using the above constraints, the least square estimators

^

�̂, �̂i, �̂j, . . . , �̂m, �̂l, ð��Þij, . . . , ð��
^
Þml

to the normal equations can be found. Hence, the predicted values Y00ij...ml is
obtained by plugging the above least square estimators into Equation (9). Once the
predicted values for different combinations of key factor levels are determined, the
individual desirability function proposed by Derringer and Suich (1980) can be

ð



calculated for each of the k responses. The given engineering specification may be
either the larger the better, the smallerffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffithe better, or the nominal the best. Finally,
the overall desirability function D

p
¼ k d1 � d2 � � � � � dk for k responses is calculated

for each different combination of the key factor
of

ffiffiffiffiffiffiffiffiffiffiffiffi
levels

ffi
and an optimal combination

the key factor levels can be determined by maximising the overall desirability
function.

4. A comparative analysis using simulation

The Taguchi method using signal-to-noise ratios (S/N) is commonly used in finding the
key factors for a multi-response process. However, the key factor levels obtained by
Taguchi method may not be an optimal one. To compare the two methods, an example of
advertising styles (Sharma 1996) is used for illustration. There are three advertising styles
in his study, i.e. the humour, sentiment and contrast-oriented. Since the evaluation of an
advertising style is also affected by the gender, 12 males and 12 females are randomly
selected and divided into three groups. Each group consists of four males and four females.
Under the influence of each advertising style, every group member is asked to give two
scores on the categories of reliability and degree of information for evaluating the
advertising impact. The given scores were ranging from 1 to 10 and the correlation
coefficient between the reliability and degree of information for each advertising style were
found in a range from 0.6 to 1.0, i.e. the two response values are highly correlated.
Performing a multivariate ANOVA (MNOVA), the main effect of advertising style and
the interaction effect of advertising style and gender are significant at a 90% significance
level (�¼ 0.1). The observations can be expressed in a matrix form Y¼XBþE as shown
below, where Y and E are 24� 2 matrices, X is a 24� 12 matrix, and B is a 12� 2
coefficient vector of regression.2

y111 y211

y112 y212

3 2
1 1 0 0 1 0 1 0 0 0 0 0 e111 e21166 777 666 6 1 1 0 0 0 1 0 1 0 0 0 0

3 2 3
772 3

e112 e212777 �1 �2 6666 7 6 7766 y113 y213

y121 y221

y122 y

7
222

7 ¼ 66 1 0 1 0 1 0 0 0 1 0 0 0
666 a

7 66777 1 a2 77 6 e113 e21366 7 76 77 666 1 0 1 0 0 1 0 0 0 1 0 07746 b1 b2

þ
e121 e22164 57 64 1 0 0 1 1 0 0 0 0 0 1 07 ab1 ab

7
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7
y

5 6 7

123 y 1

6 7
223 0 0 1 0 1 0 0 0 0 0 1

766 e122 e222

e123 e223

77
where ylij ¼ ðylij1, ylij2, ylij3, ylij4Þ

0, al ¼ ð�l1,� ,

5
l2Þ
0 bl ¼ ð�l1,�l2,�l3Þ

0, ab

4 5
l ¼ ð��l11,��l12,

��l13,��l21,��l22,��l23Þ
0, "lij ¼ ð"lij1, "lij2, "lij3, "lij4Þ

0, ð"1, "2Þ
0
ijk � N2ð0,DÞ, l¼ 1, 2, i¼ 1, 2,

j¼ 1, 2, 3, k¼ 1, 2, 3, 4, andX �2
¼

" #
adv covðadv, genderÞ

:
covðadv, genderÞ �2gender

Since B and E could be estimated from data, 10,000 times of simulation run were
^ ^repeated using this model fðYjB,EÞ. We then performed the key factors analysis based on

the MTGS and the Taguchi (S/N) methods. The simulation results are summarised
in Table 3. It shows that percent accuracies for advertising style and gender using the



MTGS method are equal to 89.16% and 94.03% respectively, which are more accurate
than using the Taguchi method (30.8% and 78.81%). Note that both the MTGS and

Taguchi methods can achieve more than 90% accuracy for the interaction effect. Table 3

shows that the MTGS method is more accurate than the Taguchi method in finding
the key factors. Therefore, the MTGS method is suggested for finding the key factors

for a multi-response process.

5. A numerical example of the solder paste stencil printing process

In this section, we perform the statistical analysis of solder paste stencil printing data
(Pan et al. 2004) using an integrated MTGS and desirability function approach.

5.1 Introduction to the solder paste stencil printing process

The experiment conducted by Pan et al. (2004) has four quality characteristics, i.e.

the solder paste deposited volume, area, height, and transfer ratio. Six input variables/

factors are:

. stencil thickness,

. solder paste type,

. board finish,

. print speed,

. aperture size, and

. aperture shape.

Aperture size and shape are considered to be the blocks. The specifications for the
experimental design are listed in Table 4. There are 24� 5� 4¼ 320 levels of combination

in this experimental design. The experimental data contained 21,106 observations. For the

sake of convenience ‘aperture size’, ‘stencil thickness’, ‘aperture shape’, ‘board finish’,
‘solder paste type’, ‘print speed’, and ‘transfer ratio’ are abbreviated thus: Pitch, ST, AS,

BF, SPT, PS and TR respectively.
Pan et al. (2004) found the key factors affecting solder deposited volume are aperture

size (pitch), stencil thickness (ST), aperture shape (AS), board finish (BF), print speed (PS);
Pitch*ST, pitch*BF, ST*AS, ST*SPT, ST*PS, AS*PS, BE*SPT, SPT*PS.

Table 3. Comparison of the simulation results for MTGS and Taguchi (S/N) methods.

MTGS method Taguchi (S/N) method

Factors Times* Percent accuracy Times* Percent accuracy

Advertising style 8916 89.16% 3080 30.80%
Gender 597 94.03% 2119 78.81%

(100%–5.97%) (100%–21.19%)
Interaction 9123 91.23% 9266 92.66%

Note: *Number of times a factor has been classified to be significant at a 90% confidence level. Percent accuracy
for the gender¼ 1�false alarm rate since it is not a significant factor by MANOVA.



5.2 The key factor analysis for the solder paste stencil process

According to the key factors analysis procedure illustrated in Figure 2, the original
multi-response data were first standardised. Then, the GSP was employed to obtain an
orthogonal basis for the standardised data, which is used for calculating the
Mahalonobis distance of k responses for each run. Finally, yj ¼ MDj was used as a
performance index. It was found that the residuals did not follow a normal distribution.
After a Box-Cox transformation with � the

p ffi
¼ 0.15, normal assumption

ffiffiffiffiffiffiffiffiffi
is tested to be

valid. The ANOVA results for the transformed data are summarised in Table 5. The
main effect plot and the two-factor interaction effect plot are shown in Figures 4 and 5,
respectively.

Both Figure 4 and Table 5 show that the main factors affecting the QFP manufacturing
process are aperture size (Pitch), board finish (BF), solder paste type (SPT). Both Figure 5

Figure 3. Test pattern.

Table 4. Input variables and their levels for a QFP solder paste stencil printing process.

Stencil thickness

Solder paste type

Board finish

Print speed

Aperture size

Aperture shape
(see Figure 3)

Thickness (mil)
Level
Type
Level
Method
Level
Speed (in/sec)
Level
Pitch (mil)
Level
Shape

Level

4
1

Type 3
1

Immersion Ag
1
2
1

30 25
1 2

BSQFP SQFP

1 2

20
3

QFP1

3

6
2

Type 4
2

HASL
2
8
2
16
4

QFP2

4

12
5

Note: QFP1 represents vertical rectangle and QFP2 represents horizontal rectangle.



and Table 5 show that the significant two-factor interactions are aperture size and
stencil thickness (Pitch*ST), aperture size and board finish (Pitch*BF), aperture size
and print speed (Pitch*PS), stencil thickness and aperture shape (ST*AS), stencil thickness
and board finish (ST*BF), aperture shape and board finish (AS*BF), aperture shape and
print speed (AS*PS), and board finish and solder paste type (BF*SPT). Adding three

Table 5. ANOVA for QFP data after Box-Cox transformation.

Source d.f. Seq. SS Adj. SS Adj. MS F P

Pitch 4 24.03401 24.03401 6.00850 149.53 0.000
ST
AS
BF

1
3
1

0.06130
0.17222
1.11963

0.06130
0.17222
1.11963

0.06130
0.05741
1.11963

1.53
1.43

27.86

0.218
0.235
0.000

SPT 1 0.38961 0.38961 0.38961 9.70 0.002
PS
Pitch*ST

Pitch*AS
Pitch*BF

Pitch*SPT
Pitch*PS

1
4

0.02913
0.44115

0.02913
0.44115

0.02913
0.11029

0.73
2.74

0.395
0.029

12
4

0.73673
0.41793

0.73673
0.41793

0.06139
0.10448

1.53
2.60

0.114
0.037

4
4

0.24493
0.47021

0.24493
0.47021

0.06123
0.11755

1.52
2.93

0.196
0.022

ST*AS

ST*BF

ST*SPT
ST*PS
AS*BF

AS*SPT
AS*PS
BF*SPT

3 5.78590 5.78590 1.92863 48.00 0.000
1 0.85804 0.85804 0.85804 21.35 0.000
1
1
3

0.01328
0.08762
0.42955

0.01328
0.08762
0.42955

0.01328
0.08762
0.14318

0.33
2.18
3.56

0.566
0.141
0.015

3
3

0.23467
0.42388

0.23467
0.42388

0.07822
0.14129

1.95
3.52

0.122
0.016

1 0.41331 0.41331 0.41331 10.29 0.002
BF*PS
SPT*PS

Error

Total

1
1

262

319

0.11319
0.01422

10.52805

47.01856

0.11319
0.01422

10.52805

0.11319
0.01422

0.04018

2.82
0.35

0.094
0.552

Note: The bold, underlined abbreviation represents significant at � 0.05.¼

Figure 4. The main effect plots for QFP data after Box-Cox transformation.



factors ST, AS, PS, into the above 11 significant factors, a fitted regression equation can be

constructed as below:

4 3

Yt ¼ �þ
X

�i pitchi þ �� STþ
X

�kASk �
¼1 k¼1

þ � � BF
i

þ � SPTþ 	� PS

þ
X4 4 4

i

ð��Þi pitchi � STþ ð��Þi pitchi � BFþ ð�	Þi pitchi � PS
¼1

X
i¼1

X
i¼1

þ
X3 3

k 1

ð��ÞkST�ASk þ ð��ÞST� BFþ
X
k

ð��
1

ÞkASk � BF
¼ ¼

þ
X3

k

k 1

ð�	ÞkAS � PSþ ð��ÞBF� SPTþ "t,
¼

t ¼ 1, 2, . . . , 320 ð11Þ

where �,�i,�, �k, �, �, 	, ð�	Þi, ð��Þk, ð��Þ, ð��Þk, ð�	Þk, and (��), i¼ 1, 2, 3, 4, k¼ 1, 2, 3 are
coefficients of the fitted regression model. Table 6 shows that both the main and

interaction effects of the regression model are significant. If one wants to estimate the

response value for the combination of factors at Pitch¼ 2, ST¼ 2, AS¼ 2, BF¼ 1,

SPT¼ 1, PS¼ 2 level, then the predicted value can be obtained from

Ŷ ¼ �̂þ �̂1 þ �̂þ �̂1 þ 	̂þ ð��cÞ1 þ ð�	bÞ1 þ ��

(11).

b
1
þð�	bÞ1

based on Equation

� �

Figure 5. The 2-factor interaction effect plots for QFP data after Box-Cox transformation.



After checking the validity of the three assumptions of error terms for QFP data after
a Box-Cox transformation, the percent contribution for each factor is calculated by:

SS0

factor ¼

factor SS MSE

SST
� 100

� df
%

�
¼

factor factor pooled

SST
� 100%

where SS0factor is the pure sum of squares for factors, SST is the total sum of squares,
SSfactor is the sum of squares for factors, dffactor is a degree of freedom (d.f. ) for factor,
MSEpooled is the mean of squares for pooled errors. The significant factors are sorted by

the percent contribution and their results are shown in Table 7.
Table 7 indicates that the contributing factors of the solder deposited volume and

the transfer ratio for a QFP manufacturing process are aperture size (Pitch) and the
interaction of stencil thickness and aperture shape (ST*AS).

5.3 Using desirability function to find the optimal level of key factors

To find the optimal combination of key factor levels, we need to specify the quality
characteristics target values. In the solder paste stencil printing process, the target values of
solder paste deposited volume, area, and height are the volume, area, and height of stencil

apertures. The target value of transfer ratio is 1 or 100%. All the four quality

Table 7. The percent contribution of the key factors after a Box-Cox transformation.

Source d.f. Seq. SS Adj. MS
Percent

contribution (%)

Pitch
ST*AS
BF
ST*BF
BF*SPT
SPT
AS*BF
Pitch*PS
AS*PS
Pitch*ST
Pitch*BF
Pooled Error

Total

4
3
1
1
1
1
3
4
3
4
4

290

319

24.0340
5.7859
1.1196
0.8580
0.4133
0.3896
0.4295
0.4702
0.4239
0.4412
0.4179

12.2353

47.0186

6.0085
1.9286
1.1196
0.8580
0.4133
0.3896
0.1432
0.1176
0.1413
0.1103
0.1045
0.0422

50.76
12.04
2.29
1.74
0.79
0.74
0.64
0.64
0.63
0.58
0.53

Table 6. The result of ANOVA.

Source d.f. Adj. MS F P

Main effect 11 2.345991 58.387031 0.000
Interaction effect 46 0.232274 5.780839 0.000
Error 262 0.040180
Total 319



characteristics belong to the nominal-the-best type. The specification limits are required

for setting up the desirability function proposed by Derringer and Suich (1980). In this

example, we use five-sigma specification limits for the volume, the area, and the height of

solder paste deposited and the data are listed in Table 8. The specification limit for the

transfer ratio is set to [0.8, 1.2] as it is commonly used in the industry. By plugging

different key factor levels into the fitted regression Equation (11), one can obtain the

predicted values for solder paste deposited volume, area, height, and TR for each

combination of key factor levels. Let t and s in Equation (3) equal to 1, the individual

desirability functions (d1, d2, d3, d4) of four responses (i.e. solder paste deposited volume,

area, height, and TR) can be calculated for different combinations of key factor levels.

The overall desirability function D¼ (d1� d2� d3� d 1/4
4) can be achieved by locating the

maximum overall desirability function for all the combinations of key factor levels.

The optimum combinations of key factor levels for different stencil thicknesses and

aperture sizes are shown in Table 9. Note that the levels of each input variables are listed

in Table 4. It should be pointed out that the effect of ST and AS cannot be ignored in

the optimisation stage although Table 5 shows that ST and AS are not significant main

factor. The reason is that their interaction ST*AS and ST*BF, AS*PS, AS*BF are

significant as shown in Table 5.

Table 8. The specification limits of quality characteristics under different combinations of stencil
thicknesses and aperture sizes.

Volume (mm3) Area (mm2) Height (mm)

Pitch (mil) ST (mil) LSL USL LSL USL LSL USL

30 4 0.039 0.119 0.476 1.104 0.060 0.140
6 0.070 0.165 0.513 1.047 0.103 0.097

25 4 0.011 0.099 0.252 0.847 0.048 0.152
6 0.043 0.123 0.312 0.788 0.090 0.210

20 4 0.009 0.069 0.112 0.668 0.052 0.148
6 0.024 0.094 0.162 0.618 0.089 0.211

16 4 0.004 0.048 0.057 0.463 0.049 0.151
6 0.013 0.065 0.000 0.555 0.101 0.199

12 4 0.000 0.038 0.000 0.339 0.000 0.210
6 0.005 0.429 0.000 0.444 0.095 0.205

Table 9. The optimal combinations of key factor levels under different combina-
tions of stencil thicknesses and aperture sizes.

ST (4 mil) ST (6 mil)

Pitch AS BF SPT PS AS BF SPT PS

30 4 1 1 2 3 1 2 2
25 4 1 1 2 3 1 2 2
20 4 1 1 2 3 1 2 2
16 4 2 2 2 3 1 2 1
12 2 1 1 2 4 2 1 1



The equation

1

m

Xm yi � ŷi

i¼1

��
yi

��
< 0:15

is used for calculating the mean absolute percent error (MAPE) after confirmatory tests,
where yi are actual observations and ŷi are predicted values. Normally, a MAPE less
than 15% is preferred to ensure that the accuracy of key factors found is greater than 85%.
The results in Table 10 show that all the MAPE’s of solder paste deposited volume, area,
height and transfer ratio (TR) are smaller than 0.15, which indicate that key factors for
the QFP manufacturing process are confirmed.

6. Discussions

Most multivariate analysis methods are based on the assumption that multi-responses are
mutually independent and follow multi-normal distribution. However, the four responses
in our stencil printing process are mutually dependent. To relieve the assumptions of
multi-normality and mutual independence among responses, an integrated approach of

Table 10. Summary of the confirmatory tests for the optimal combinations of key factor levels.

Level of the factors
ŷi

��	 yi �

yi

ŷi

��

Pitch ST AS BF SPT PS Volume Area Height TR

5

4

3

2

1

5

4

3

2

1

MAPE
1 X

1

1

1

1

1

2

2

2

2

2

10

i¼1

��

4

4

4

4

2

3

3

3

3

4

yi �

yi

ŷi
��

1

1

1

2

1

1

1

1

1

2

1

1

1

2

1

2

2

2

2

1

2

2

2

2

2

2

2

2

1

1

0.005
(0.084)
0.019
(0.127)
0.034
(0.154)
0.055
(0.092)
0.083
(0.148)
0.025
(0.091)
0.039
(0.002)
0.054
(0.037)
0.072
(0.122)
0.093
(0.120)

0.0977

0.202
(0.126)
0.325
(0.016)
0.459
(0.019)
0.649
(0.029)
0.893
(0.091)
0.122
(0.033)
0.245
(0.023)
0.379
(0.010)
0.569
(0.035)
0.786
(0.043)

0.0425

0.059
(0.011)
0.076
(0.097)
0.081
(0.152)
0.083
(0.049)
0.086
(0.118)
0.110
(0.042)
0.126
(0.004)
0.131
(0.047)
0.128
(0.094)
0.127
(0.047)

0.0661

0.853
(0.106)
0.997
(0.113)
1.016
(0.076)
0.906
(0.003)
1.051
(0.144)
0.729
(0.069)
0.873
(0.043)
0.893
(0.007)
0.932
(0.061)
0.832
(0.120)

0.0742
10

Note: yi are the actual observations, ŷi are the predicted values, and the values in parentheses represent a MAPE.



using the desirability function in conjunction with the MTGS method is proposed to find

and optimise the key factors.
We performed another analysis for the same example using the Taguchi S/N (signal-

to-noise) method. Note that the four responses or quality characteristics in our stencil

printing process, i.e. the solder paste deposited volume, area, height and transfer ratio

belong to ‘the nominal-the-best’ type. Thus, one can apply the following formula of

Taguchi’s S/N ratio for ‘the nominal-the-best’ type:

Y�2
S=N ¼ 10� log10

	 

,

S2

where Y� ¼

transforming

P 2
y 2
i=n, S ¼ ðyi � Y�Þ =ðn� 1Þ, yi is the quality characteristic. After

the four response

P
values into S/N ratios under each combination of

factor levels, the sum of S/N ratios for the four quality characteristics becomes the

response value in our ANOVA using the Taguchi method. The ANOVA results using the

Taguchi method are shown in Table 11. The ANOVA results from the MTGS method

for main factors are compared with the ANOVA results from the Taguchi S/N method

and the comparisons are listed in Table 12. It shows that the conclusions drawn from

both methods are similar except for AS and BF. Further study is needed to test which

method is better in search of the key factors. It should be pointed out that the optimal

combinations of key factor levels described in Section 5.3 have not been validated by

experiments.

Table 11. ANOVA results using the Taguchi S/N method.

Source d.f. Seq. SS Adj. SS Adj. MS F P

Pitch
ST
AS
BF
SPT
PS
Pitch*ST
Pitch*AS
Pitch*BF
Pitch*SPT
Pitch*PS
ST*AS
ST*BF
ST*SPT
ST*PS
AS*BF
AS*SPT
AS*PS
BF*SPT
BF*PS
SPT*PS

Error

Total

4
1
3
1
1
1
4

12
4
4
4
3
1
1
1
3
3
3
1
1
1

262

319

292,989.5
36.1

19,579.1
6.0

4402.8
90.7

93,320.0
63,296.1

813.4
2443.1
767.9

15711
1714.3
758.3
627.1

7041.7
8382.5
5247.4
1304.2
202.9

3446.9

11,6945.6

63,9126.5

292,989.5
36.1

19,579.1
6.0

4402.8
90.7

93320
63,296.1

813.4
2443.1
767.9

15711
1714.3
758.3
627.1

7041.7
8382.5
5247.4
1304.2
202.9

3446.9

116,945.6

73,247.4
36.1

6526.4
6

4402.8
90.7

23330
5274.7
203.3
610.8
192

5237
1714.3
758.3
627.1

2347.2
2794.2
1749.1
1304.2
202.9

3446.9

446.4

164.10
0.08
14.62
0.01
9.86
0.20
52.27
11.82
0.46
1.37
0.43
11.73
3.84
1.70
1.41
5.26
6.26
3.92
2.92
0.45
7.72

0.000
0.776
0.000
0.908
0.002
0.653
0.000
0.000
0.768
0.245
0.787
0.000
0.051
0.194
0.237
0.002
0.000
0.009
0.089
0.501
0.006



7. Summary

A MTGS method was presented to find and optimise the key factors for a multiple-
response manufacturing process. Detailed procedures of finding and optimising the
key factors were described and illustrated with the example of a solder paste stencil
printing process. The advantage of this method is that it does not require the assumption
of multi-normality and mutual independence among multiple responses.

A comparison of ANOVA results from the MTGS method and the Taguchi S/N

method was made. The conclusions drawn from both methods are similar though there are
some inconsistencies. Further study is needed to explore both the benefits and limitations
of the MTGS method.
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