
Credit-Based Dynamic Reliability Management Using
 
Online Wearout Detection
 

John Oliver
 
Cal Poly State University
 

San Luis Obispo, CA
 
jyoliver@calpoly.edu
 

Rajeevan Amirtharajah

University of California
 

Davis, CA

ramirtha@ece.ucdavis.edu
 

ABSTRACT 
As circuit geometries continue to shrink, and supply voltages re­
main relatively constant, circuit wearout becomes a concern. We 
propose that the relative reliability of the circuits of a processor be 
exposed to the operating system, and be managed by a credit-based 
wearout monitor. This wearout monitor receives dynamic updates 
of the reliability of circuits through the use of stability detector cir­
cuits that are small enough to be widely deployed. We find that 
through the combined use of the wearout monitor and stability de­
tectors, we can efficiently and accurately manage the reliability of 
a processor, and re–coup the performance of a processor that would 
otherwise be lost when processors are over–provisioned to meet an 
expected lifetime. We simulate a 16 core DSP with a wearout mon­
itor and stability detectors on a mix of four different media algo­
rithms. Using the wearout monitor and stability detectors, we find 
that by reducing average performance by only 5%, we can increase 
the lifetime of the processor by 46%. 

Keywords 
Reliability, Wear-out 

1. INTRODUCTION 

Transistor scaling has yielded unprecedented performance gains 
for modern processors. However, similar reductions in supply volt­
age have not been possible due to the need to limit power con­
sumption drawn by leakage current. By not reducing the supply 

Venkatesh Akella
 
University of California
 

Davis, CA

akella@ece.ucdavis.edu
 

Frederic T. Chong
University of California 

Santa Barbara, CA
chong@cs.ucdavis.edu 

Figure 1: Shows the relationship between the lifetime of a pro­
cessor and the amount of extra delay for processors built with 
two different circuit technologies. 

voltage, we find the that the electric fields of the transistors are of­
ten stronger than required, that the current densities of the metal 
wires on our processors are higher, and the operating temperature 
of our processors is undesirable. This combination of strong elec­
tric fields, high current densities and high temperatures have caused 
concern that the transistors of our processors will wear out over 
time. 

Wearout is not only a problem that impacts the reliability of a 
processor, but is also an effect that can impact the performance of a 
processor because as transistors wear out, they also become slower. 
To determine the clock period of the processor, the designer of the 

processor must first find the delay through the critical path logic 
for a voltage, temperature and process technology corner. Die-to­
die and intra-die process variations also need to be accounted for 
when setting the clock period of a processor. On top of this, the 
designer needs to provision some added delay in a clock cycle to 
allow for wearout. 

We demonstrate the impact that wearout has on both the lifetime 
of a processor and the operation frequency of a processor using 
Figure 1. A processor manufacturer needs to guarantee a specific 
lifetime for a processor under some specified operating conditions. 
In technologies where circuit wear out is negligible, the additional 
delay that we need to pad each clock cycle with is also negligible. 
However, as we continue to shrink transistor geometries we find 
that wearout can become a problem in a time–frame where we are 
still interested in using the processor. As a consequence, to ensure 
the lifetime of a processor, the designer needs to make some as­
sumptions about the rate of processor wearout. Then, the designer 
must pad the clock period with an amount of overhead in order to 
accommodate this wearout that happens over time. We refer to the 



amount of clock–cycle padding required to meet a processor life­
time as ΔWearout. In Figure 1, for the 65 nm technology node, D1 
is the amount of ΔWearout that is required for a processor lifetime 
of T1. If we use the same amount of ΔWearout for the 65nm curve 
and the 32nm curve, we find that the lifetime of the 32nm processor 
is now T2, where T2 is smaller than T1. On the other hand, if we 
wanted to preserve T1 as the lifetime of our processor in 32 nm, 
we would need to add D2 ΔWearout to the clock cycle time of our 
processor. 

What are the consequences of adding a constant ΔWearout to 
the clock period of a processor? First, when the processor is new, 
and has no added latency due to wearout, the processor is actually 
running at a lower frequency than it is capable of. The proces­
sor is leaving some early–life performance "on the table" in order 
to ensure a given lifetime. This over-provisioning of the proces­
sor leads to a loss in possible performance while the processor is 
new. Second, eventually the processor will wear out where signals 
will no longer meet the clock cycle time (padded with ΔWearout). 
However, the processor could continue to operate at reduced fre­
quency. The consequence is that we are losing some end–of–life 
performance. 

One way to reclaim early-life and end-of-life performance is to 
make ΔWearout represent the actual amount of wearout of the pro­
cessor at any given time. We propose the use of stability detection 
circuits that can be used to find ΔWearout for an individual pro­
cessor. We could then have the freedom to operate the processor 
at higher frequencies than nominal during the early–life phase of 
a processor, or at lower frequencies during the end–of–life phase 
of a processor. On-line detection, rather than static computation of 
ΔWearout is important for many reasons. First, it may be difficult to 
create models that accurately describe wearout because the physics 
of some wearout mechanisms are not well understood. Second, the 
companies that manufacture semiconductors may be reluctant to 
release detailed information about the wearout of transistors made 
using their fabrication process. Third, because of die–to–die and 
other manufacturing variations, configuring a static wearout model 
to a single manufactured processor is difficult. 

However, simply re-claiming the performance during the early– 
life and end–of–life phase of a processor does not measure the re­
maining lifetime of a processor. So we are still left with the prob­
lem of ensuring a processor’s lifetime that over-provisioning a pro­
cessor’s clock cycle time in the face of wearout had solved. To ad­
dress this issue, we propose that a credit-system be used to account 
for the reliability of a processor. A processor is given a number of 
credits that is proportional to the manufacturer’s guaranteed life­
time if that processor is operated at certain constraints (frequency, 
voltage, temperature, etc.). For every time unit we run the proces­
sor at the nominal frequency, we deduct some number of credits. 
If we continue to use credits at this rate and the number of relia­
bility credits of the processor becomes very low, the probability of 
wearout of the processor occurring in the near future is high. We 
can run the processor at higher frequency than nominal, the pro­
cessor uses more credits per time unit. Or, for every time unit the 
processor is idle, we will be saving credits that could be spent at 
later times of high processor demand. Likewise, a similar behavior 
is seen if the processor runs at higher or lower temperatures. 

For instance, processor in a data center may be on an upgrade 
schedule where they are replaced by new processor every 3 years 
to do improvements in performance of new processors. Addition­
ally, if we know that a processor will fail if run at maximum perfor­
mance after two years, it may be wiser to slightly reduce the pro­
cessor’s performance in order get the processor to last for 3 years. 

There are two goals of this paper. The first is to address problem 

of ensuring an expected lifetime of a processor using a credit-based 
wearout monitor (WM) that allows an operating system or user to 
manage reliability-performance trade-offs of a processor. We show 
that a WM also allows the operating system or user to budget the 
remaining reliability of the processor in order to maximize the per­
formance of the processor for an expected lifetime. 

The second goal of this paper is to employ a method for accu­
rately measuring the wear out of a processor. To measure ΔWearout, 
we employ a low-overhead stability detection (SD) circuit that can 
be widely deployed on a processor [1]. Accurate on–line measure­
ments of the wearout of different structures on a processor allow us 
to capture the performance normally lost in a processor’s early–life 
and end–of–life due to conservative allocation of ΔWearout. Addi­
tionally, the combination of the credit-based WM and SD circuitry 
allows us to improve the accuracy of the WM by dynamically up­
dating the relative wearout of the processor. 

The rest of this paper is organized as follows. In Section 2, we 
discuss wearout–related work and contrast what is novel about our 
contribution. Section 3 gives a brief overview of wearout mecha­
nisms that we model in this work. We then introduce our credit-
based WM in Section 4.1. The SD circuitry and it’s benefits are 
detailed in Section 4.2. We evaluate the WM and SD in the context 
of a multi–core digital signal processor with a mesh interconnect 
in Section 5. Finally, in Section 6, we discuss future directions for 
reliability aware architectures and then conclude. 

2. RELATED WORK 
One early work on architectural–level techniques for mitigating 

processor wear out was published by Srinivasan et al. in 2004 [2] [3]. 
This work describes a detailed wearout model of the processor to 
quantify the impact of scaling on lifetime reliability. They find that 
a 65nm design is over 3 times as likely to fail as a similar design 
in 180nm, and that time-dependent dielectric breakdown and elec­
tromigration are the primary modes of wear out in geometries of 
65nm and smaller. 

Later in 2004, the same group published two architectural meth­
ods for mitigating wear out [4]. They propose a Dynamic Relia­
bility Management (DRM) strategy that explores the potential ben­
efit of architectural re-configuration and dynamic voltage and fre­
quency scaling (DVS). Their solutions has a drawback of requiring 
a precise device wearout model (called RAMP) to effectively pre­
dict wear out. Wearout models are difficult to accurately build, es­
pecially because the physics of all the wearout mechanisms are not 
fully understood. It is also difficult to build RAMP-like wearout 
models accurately because silicon foundries are reluctant to release 
detailed information about their process technology. Finally, be­
cause of die-to-die variations, it will be increasingly difficult to ac­
curately characterize the parameters of semiconductors. 

Building off the HotSpot tool [5], previous work has been done 
to show how much lifetime can be saved by reducing the operation 
frequency of the processor [6] [7]. Our WM techniques is one way 
to implement a method for managing these performance–reliability 
trade-offs. 

To motivate how difficult it is to build accurate models of the 
wear out of processor, Figure 2 demonstrates how crucial small 
changes in the failure modes of semiconductors can be. In this 
figure, the "SPEC–FP Avg." and "SPEC–Int Avg." bars represent 
the results for a POWER4 processor as presented in [8]. Using 
a RAMP-like wearout model, we decrease the activation energy 
of metal by 0.1 eV and also allow the thickness of gate oxide to 
vary by 20%. We assume that these changes only impact the elec­
tromigration and time-dependent dielectric breakdown wear out, 
and those two wearout mechanisms account for 78% of all possible 



Figure 2: Demonstrates the impact of process variability on 
MTTF. 

wearout modes [2]. From Figure 2, we can see that if this vari­
ability is introduced into the RAMP-like wearout model, the actual 
MTTF of the processor can be off by 24%, leading to pre-mature 
failure of the processor. 

Instead of building static reliability models, we use stability de­
tection circuits to accurately diagnose the level of wearout on the 
processor. This avoids the need for extremely accurate device wearout 
models. Additionally, since our stability detectors are used along 
side the datapath, they will experience the same activity as well as 
temperature as the circuit under test, providing an accurate assess­
ment of the operating conditions of the processor. 

Srinivasan et al. also proposed using structural duplication as 
well as allowing some structures to degrade in performance over 
time [8]. However, some structures were not protected, such as the 
instruction fetch and decode mechanisms, due to their size. The 
primary drawback of sparing is that having redundant structures on-
chip is often costly in terms of area. This would typically be true for 
large on-chip structures, such as on-chip inter-core interconnects 
and instruction decoders. 

Recently, Blome et. al. [9] [10] proposed a wearout detection 
unit, which measures wear out using a similar technique to what we 
propose. Their wearout detection unit (WDU) is similar to our SD 
circuit, but does additional statistics tracking in hardware to help 
filter out transient errors. Unfortunately, due to the size (7.5 um2 in 
130nm for each signal monitored) of the wearout detection unit, it 
may be expensive to deploy on a wide scale. By comparison, the 
SD circuit that we employ is much smaller citefrancoVLSI1994, 
allowing broader deployment for better monitoring of wear out. 

The WDU uses chains of inverters to determine the delay of a 
signal, and includes statistical tracking circuitry that may be better 
computed in software. The reduced area of the SD is accomplished 
through the use of a feedback patch and by pushing the respon­
sibilities of filtering transient instabilities to the operating system 
(OS). 

Another unique contribution that we propose is the use of a credit-
based WM that exposes the remaining lifetime reliability of a pro­
cessor to the OS. Neither the WDU work, nor the RAMP work 
propose a strategy on how to ensure an expected lifetime of a pro­
cessor, or how to maximize the performance of a processor during 
an expected lifetime. 

The Razor work [11] shows architectural and circuit techniques 
for using DVS efficiently. They use time delayed redundant latches 
to detect timing violations due to data dependencies to determine 
if lower voltages may be used. This delayed latch-comparison 
scheme is somewhat similar to our SD circuit, but with different 
goals. Razor is looking for instability events, due to data depen­
dencies, that happen on a much finer time–scale in order to change 

Figure 3: Overview of our lifetime management strategy. 

the voltage to minimize power consumption. The SD circuits that 
we employ, are looking for wearout events that happen over a much 
longer time frame. The advantage of our stability detection system 
is that it is simpler as the Razor system provides some features that 
our technique does not need. 

In summary, while our SD circuit is similar to the Razor and 
WDU, there are significant differences in the implementation of 
the SD with the Razor and WDU stability detectors. The RAMP 
wearout model is similar to the WM that we propose, but does not 
provide strategies for managing performance over the expected life­
time of a processor. Finally, the combination of the SD and WM 
is a unique contribution that provides both wearout detection and 
management. 

3.	 WEAROUT MODELING 
There are four wearout mechanisms that may result in increased 

delay in signaling that we simulate for this work. Electromigration 
(EM) is due to exchange of momentum between electrons and the 
metal atoms in wires, resulting in increase resistance, or in the crit­
ical case, a void. Time-dependent dielectric breakdown (TDDB) is 
the wear out of the insulating properties of silicon dioxide, which 
results in shifting threshold voltages. Hot carrier injection (HCI) is 
a phenomenon where either holes or electrons gain enough kinetic 
energy to embed themselves in the gate oxide or substrate of tran­
sistors. Negative bias temperature instability (NBTI) significantly 
shifts the threshold voltage of a transistor when under a constant 
electric field over time. 

The wearout models for these failure mechanisms are similar to 
those used in [2, 8, 12] Additionally, similar to [2], we use a sum– 
of–failure–rates model to obtain the overall reliability of different 
computing structures. The constants that we use for the failure 
model are also borrowed from [2], and augmented where possible 
by values available in the ITRS roadmap [13] 

The inputs to the wearout model that we use are: activity fac­
tor, frequency, voltage and temperature. To compute temperature, 
we use the default settings from HotSpot [5]. The outputs of the 
wearout model is the relative mean–time to failure (MTTF). 

4.	 LIFETIME MANAGEMENT OF A PRO­
CESSOR USING A WEAROUT MONITOR 
(WM) AND STABILITY DETECTOR (SD) 
CIRCUITS 

Now that we have described the wearout mechanisms that we use 
in this study, we will describe the lifetime management strategy that 
we propose in this paper. This lifetime management strategy con­
sists of two main parts, the WM and the SD circuits. Their relation­
ship to the processor hardware and the operating system are shown 
in Figure 3. The hardware is augmented with SD circuits that mon­
itor the wear out of the processor hardware. The wearout informa­



tion of circuits is passed from the SD circuits to the WM. The WM, 
which is in software, tracks the operation history of a processor and 
implements lifetime management policies, as directed by the OS. 
Wearout information passed from the SD circuits to the WM can 
be used to update the lifetime management policies of status of the 
processor. The rest of this chapter will describe the operation of the 
WM, and the SD. 

4.1	 Managing Processor Lifetime Using a
Credit-Based Wearout Monitor (WM) 

Let us assume that a processor has been given a nominal operat­
ing frequency for a given expected lifetime. For instance, a semi­
conductor manufacturing company could claim that their processor 
can run at 2 GHz for about three years before failing. From this ex­
pected lifetime, we assign a number of credits that represents this 
lifetime of the processor. For illustrative purposes, lets suppose that 
for every day the processor can run at 2 GHz, we give the proces­
sor 1 reliability credit. If the processor can run for nearly 3 years at 
2 GHz, the total number of credits would be approximately 1000. 
For every day we operate the processor at 2 GHz, we will deduct 
one credit per day. As the number of credits the processor has ap­
proaches zero, we know that the processor should be getting closer 
to failure due to wear out. Of course, simply because we have ex­
hausted all of the available credits does not mean that the processor 
has worn out, as any given processor may be more or less reliable 
than the typical case. However, the number of remain credits at 
any given time is an indicator of how worn the processor may be 
and premature failure of a processor should be a sufficiently rare 
occurrence if the characterization of a processor is done well. In 
Section 4.2, we will explain the use of SD circuits that allow us to 
modify the value of credits in order to get an accurate measure of 
the lifetime of a processor. 

Continuing with our example, most processors are not run at a 
constant voltage and frequency throughout their lifetime. For pe­
riods of time where the processor is running faster than nominal 
frequency and voltage, the processor will wear out more quickly. 
Therefore, processors that operate at higher voltage and frequency 
should consume more credits per unit time than the same processor 
running at a lower voltage and frequency. Likewise, if the pro­
cessor is running slower or even idle, the amount of wear on the 
processor is much lower. A similar effect is used for cases where 
the processor operated at different temperatures. 

As an example, let us assume that running at 3 GHz per day 
requires 3 credits per day, while running at 1 GHz per day requires 
only one-quarter of a credit. If we go back to our example processor 
with 1000 credits, this processor could operate at 3 GHz for 333 
days, or 1 GHz for 4000 days, or any combination in-between. 

We compute the relative wearout of running a processor at a 
given voltage and frequency using the failure models in Section 3 
with the assumptions of a processor manufactured in a 32nm pro­
cess technology and a 25 FO4 pipeline. This yields a credits-per 
unit time curve that is quadratically related to operation frequency 
and exponentially related to temperature. 

Figure 4 shows the relative amounts of wearout for different 
operation frequencies. This figure shows curves for a processor 
operating at 400 K and 300 K temperature, and assigns a credit 
amount proportional to the amount of wearout that can be expected 
for a circuit under these operating conditions. We can see that the 
wearout of a processor running at 3 GHz is more than three times 
the wearout of the same processor running at 2 GHz, which in turn 
is about five times more wearout than the same processor running 
at 1 GHz (similar to the values we used in our example). Another 
way to view Figure 4 is that a processor running at 3 GHz has an 

Figure 4: Shows the number of reliability credits required to 
operate a processor at different frequencies. Values have been 
normalized so that a 2 GHz operation frequency consumes one 
credit per time unit. 

expected lifetime that is one–third of the same processor running at 
2 GHz. Similarly, if the processor is running at higher temperature, 
wear out will be exacerbated, and the number of credits consumed 
per unit of time will be higher. 

While it is possible to implement a WM in the hardware, we 
propose that the recording of credits be done in software. This 
should allow the OS to make some intelligent, wearout-aware deci­
sions about how to use processor resources. Some examples of how 
the OS may use the wearout information of the processor include 
workload migration to avoid worn portions of a processor Another 
advantage of having the WM in software is that it could alert the 
user or administrator of processor components with dwindling re­
liability credits. The alternative is to maintain the credit values in 
hardware, which has the main advantage of less overhead. How­
ever, if the granularity of time unit at which credits are evaluated is 
sufficiently large (credits could be deducted only once per minute, 
for instance), we should be able to still get accurate representation 
of the processor usage while minimizing the amount of OS over­
head. 

4.1.1	 Application of a Credit-Based

Wearout Monitor (WM)
 

The WM lets the OS know the remaining lifetime of a proces­
sor through the accounting of reliability credits. With this knowl­
edge, we may choose to run a processor at a frequency lower than 
its maximum in order to reduce the wearout on the processor and 
maximize the number of computations the processor can do within 
the lifetime desired from the processor. We call the desired lifetime 
of a processor (the amount of time before we replace the processor 
with a new processor), the "expected lifetime" of a processor. The 
expected lifetime of a processor is still subject to some minimum 
performance requirements, but that decision may be made by the 
user of the processor. 

This trade-off between processor lifetime and performance is po­
tentially useful in many computing applications. For example, a 
data center could potentially benefit financially by not having to re­
place worn processors and instead limiting the wear on older pro­
cessors by limiting the frequency of these older processors. Mean­
while, a computer "gamer" may decide to run the newest computer 
game at the highest possible rate, and doesn’t mind replacing their 
processor relatively quickly in order to maximize their enjoyment 
of the computer game. 

Figure 5 shows the results of three example policies for credit 
use. The vertical axis of Figure 5 is the operation frequency, and 
the horizontal axis is time. The solid black bars in Figure 5 rep­



resent the application demand at any given time. The demand of 
the applications is generated randomly, and required the processor 
to run anywhere between 0 and 3 GHz to meet the demand of the 
application. Application demand may or may not be met by the 
processor, depending on the policy that governs the use of cred­
its, and the availability of credits (remember, if there are no credits 
left, the processor has likely failed due to wearout). For this exam­
ple, we again assume the credit system from Section 4.1 where the 
processor is capable of frequencies ranging up to 3 GHz (using 3 
credits per time unit) and is at a constant temperature. 

We test three different WM policies for managing the perfor­
mance of a processor. The first policy is "DVS", which uses dy­
namic voltage scaling and is a greedy policy with respect to cred­
its. This policy simply requests the necessary performance from the 
processor to match the demand of the application. The next policy, 
"Frequency Clipping", is similar to the "DVS" policy except that 
applications may only be granted frequencies up to 2.7 GHz. Fi­
nally is a "Linear Averaging" policy that tries to save credits for the 
end of the expected lifetime. 

From the graph, we can see that all three policies continue to exe­
cute until a certain point. After that point, only the "Linear Averag­
ing" policy has "saved" enough credits for the processor to continue 
to meet the demand of the application. The "Frequency Clipping" 
and "DVS" policies, since they are unaware of the expected lifetime 
of the processor, can not even partially meet the demand of the ap­
plication during the last four time slots. Also of interest is that 
"Linear Averaging" out-performs the "DVS" policy by 8% in terms 
of maximizing the number of computations over the lifetime of the 
processor. Similarly, "Linear Averaging" outperforms "Frequency 
Clipping" by another 2% for this random application demand. 

Figure 5: Shows the results of three different policies for using 
credits. The "Demand" bar shows the performance demands 
on the processor at any given time. 

So far, the WM that we propose is similar to the reliability man­
agement strategy of RAMP [4]. The main difference is that the 
credit-system has knowledge of the in-use application demand, and 
can take advantage of that application demand to potentially save 
reliability for the end of the processor’s expected lifetime. One 
limitation of this proposed WM, as well as RAMP is that they both 
assume that a processor’s reliability can be accurately estimated 
during manufacture. There are several reasons why this may not be 
possible, that we mentioned in Section 2. 

The consequence of inaccurate wearout modeling is that the credit-
based WM could over-estimate the reliability of the processor, lead­
ing to premature failures, or under-estimate the reliability of the 
processor, leading to possible premature replacement of old proces­
sors. As we show in Figure 2, the consequences of small deviations 

in manufacturing parameters can have large impacts on lifetime. 
In Section 4.2, we address the issue of accurately measuring the 
wearout of a processor by proposing an on-line reliability detection 
system using SD circuits. This system allows us to dynamically 
"validate" the wearout model assumptions used in the WM which 
in turn allows for more accurate tracking the processor lifetime. 

4.2	 Measuring Wearout: Using Stability
Detection (SD) to Calibrate the
Wearout Monitor 

It is difficult to accurately estimate the amount of wearout of 
circuits at design-time.Blome et al. [9] have recognized this short­
coming and implemented an on-line reliability measuring circuit 
that detects increases in latency using a circuit that measures in­
creases in delay of a given signal. This circuit is called a wearout 
detection unit (WDU). The WDU is composed of two stages. The 
first stage, or the stability detection stage, samples the latency of 
signals through the use of multiple inverter chains. The second 
stage, or accounting stage, filters out transient events to find long-
term trends of wearout. 

The WDU is relatively large, and may only be deployed on a 
handful of signals. The result is that signals with particularly high 
activity levels could possibly be missed and fail, undetected. In­
stead, we propose using a lighter-weight stability detection circuit. 
We employ a similar methodology to the WDU, and push the filter­
ing of transient events into software. Filtering in software should 
be sufficient because wearout-related events happen infrequently. 

Instead of the inverter chains used in the WDU, our SD circuits 
use a structure similar to the circuitry in the Razor [11] project, 
where a signal is compared against a delayed version of the sig­
nal after a clock edge. If there is a difference between the clock-
sampled signal and the delayed sampled signal, then the delay through 
the circuit has increased. While the Razor project uses this informa­
tion to fine-tune voltage scaling in order to save power, we use this 
latency information as evidence of the wear out of a circuit. Sec­
tion 4.2.1 will detail the stability detector design, and Section 4.2.2 
explain how we use the stability detector to determine wearout. Fi­
nally, Section 4.2.3 will describe how the stability detection cir­
cuitry works in conjunction with the credit-based wearout monitor. 

4.2.1 Stability Detection Circuitry 
The stability detection circuit that we employ is borrowed from 

Franco and McCluskey [1] and is small enough to be employed on 
every signal on every stage in a pipelined processor. Figure 6 shows 
an example implementation of the SD circuit we use in this study. 
While this example is a master–slave latch, stability detection-enhanced 
clocking elements can be implemented for many clocking struc­
tures [14]. The total overhead is a single transistor, which is circled 
in Figure 6. In addition to latching the clocked signal, this circuit 
continuously compares the input signal "D" with a time–delayed 
copy of "D". When the clock is high and "D" does not match the 
value of the time–delayed version of "D", then that means the in­
put signal has bit–flipped after the clock has transitioned. For this 
particular SD circuit, we can measure instabilities of about 2 FO1 
delays continuously until the next clock edge. In the event an insta­
bility is detected, the error signal is propagated to a counter register, 
which is accessible by the WM. Because of the small size of this 
stability detector, we believe that it could be widely deployed. The 
only additional area overhead is for routing of the ERRORn signals, 
which we do not model here. 

4.2.2 Accounting for Transient Events 
One concern with using the SD circuits is that we are using the 



9 

Figure 6: Example SD circuit which is built on top of a master– 
slave latch. Only a single transistor is added 

Time Domain (s) Mechanism 
1012 Lithography node 
109 Electromigration 
108 Hot Electron Effect 
106 Negative bias temperature instability 
104 Chip electrical mean variation 
10−1 Across-chip Lpoly variation 
10−4 Self heating/temperature 
10−8 SOI history effect 
10−10 Supply voltage 
10−10 Line–to–line coupling 
10−11 Residual source/drain charge 

Table 1: Time Scale of Variability in 65nm CMOS Devices [15]. 

SD to measure wear out, while other transient events could also 
trigger the SD. For example, if a processor is particularly hot, the 
latency of some signals on the processor may increase and trip our 
stability detector. Similarly, a fluctuation in the supply voltage may 
cause some signals to arrive late. How can we tell if the SD detects 
wear out or some other temporal event? 

We propose that when the SD detects instability, we reduce the 
frequency and voltage of the processor momentarily. After a short 
amount of time, we can restore the voltage and frequency of the 
processor back to its original level. If we repeat this process sev­
eral times, and the SD still detects instability, it is likely that the 
signal path’s latency has increased due to wearout. This is because 
wearout is a long-term trend while transient events happen at a very 
short time scale. Table 4.2.2 shows the time scales of different com­
mon effects. A similar approach is used by Blome’s WDU [9] cir­
cuit, which has statistical smoothing algorithms built into hardware 
in order to find long-term trends in signal stability. 

The strategy employed to find the relative wearout of a processor 
through the use of SD circuits is an adaptive policy. This policy is 
shown in Figure 7. The first time the SD is triggered, we increment 
a record of how many times an instability has been detected. If the 
number of times the SD has been triggered exceeds a threshold, we 
will permanently reduce the operation frequency. This threshold is 
programmable in the WM. How much we reduce the operation fre­
quency is also programmable. The assumption is that at the thresh­
old, the signal has been measured to be slow enough times that the 
likelihood that the signal’s delay has been increased by wearout is 
high. 

On the other-hand, if the threshold of the number of instabilities 

Figure 8: As increases in signal latency are detected by the sta­
bility detection circuit, the amount of credits required per unit 
time to operate at a given frequency increases. 

has not been reached, we follow the top chain in Figure 7. The 
frequency of the processor is then reduced by one step. When the 
frequency is reduced, the old frequency is recorded by the WM so 
it can be restored at a later time. How large this reduction in fre­
quency is again programmable by the WM. We then set a counter 
and decrement the counter after one time period has passed. If the 
counter has not reached zero, we simply wait another time period 
and decrement the counter by one. Once the counter has reached 
zero, we can then increase the frequency back to the previous op­
eration frequency. This waiting period before raising the frequency 
should be small, as we only need to filter out transient events shown 
in Table 4.2.2. We assume, that from a lifetime perspective, that the 
performance due to the filtering of transient events is negligible. 

We have now described the implementation of the SD and how 
we can use the SD to detect wearout. Section 4.2.3 will now de­
scribe how the combination of the SD and the MW allow us to 
manage the lifetime of processors accurately. 

4.2.3	 Using the Stability Detection Circuit to Cor­
rect the Wearout Monitor 

By using the stability detector, we can measure the increase in 
latency that is an indicator of wearout of the circuit that we are 
monitoring. If a circuit’s latency increases, but we want to keep the 
circuit running at the same frequency, we can increase the supply 
voltage. This would allow us to maintain performance in the face 
of wearout. However, because the voltage is now increased, we 
are putting further stress on the worn system for running at the 
same frequency as a non-worn system. The result is that the rate of 
wearout is higher for a worn circuit running at the same delay as a 
new circuit. 

Using the wearout measurements of the SD, we then propagate 
this information to the WM. The WM monitor in turn then needs 
to inflate the value of credits for operating at a given frequency 
because of the wear out measured by the SD. In this way, we are 
continually updating the the WM of the status of the hardware. If 
the processor happened to wear out early, the WM will detect it 
and in response, increase the number of credits to run at a given 
frequency earlier in the processor’s lifetime. 

Figure 8 shows the growth of credits for five different operation 
frequencies. We have assumed for this figure a temperature of 400 
K. The data for this figure is created by first varying the amount of 
wear out for a circuit, as shown on the horizontal axis. Given this 
additional delay caused by wearout and a fixed operation frequency 
(each line represents a different operation frequency), we can com­



Figure 7: Policy for filtering out transient events that may trigger the stability detection circuitry. 

pute the change in voltage required to maintain that frequency. The 
information of the voltage is then fed back into our wearout models 
from Section 3. Finally, in a similar manner to Figure 4, we nor­
malize the wearout assign a relative number credits, depending on 
how the rate of wearout of the worn circuit compares with a new 
circuit. 

5.	 APPLYING CREDIT-BASED WEAROUT 
MANAGEMENT TO A 
MULTICORE INTERCONNECT 

In this section, we apply our credit-based wearout monitor to 
a simulation of a multi-core processor with an on-chip mesh in­
terconnect network. The purpose of this simulation is quantify 
the amount additional lifetime performance the WM provides. We 
consider a multi–core processor with 16 processor connected by a 
packet switched mesh interconnect network in 32nm process tech­
nology. Our cores are modeled as Blackfin DSPs. The area estimate 
of the Blackfin core is 8.5 mm2 in 130nm technology, scaled to 
1.06 mm2 in 32nm. The current consumption of our cores was esti­
mated by using a combination of published power results for micro-
architectural structures and VHDL synthesized using the Synopsys 
Design compiler in 130nm process technology. Through this esti­
mate, we find that the Blackfin-based cores operate at 0.64 mW/MHz 
at a 1V supply in 130nm, which we scale to just over 0.8 mW/MHz 
in 32nm. 

Interconnect transactions are assumed to be 256b and requests 
and acknowledges are 32b. We assume that the mesh is routed 
over the cores on metal layers M5–M6. Code is executed on Sim­
plescalar [16] which is configured with similar parameters as a 
Blackfin DSP. The code trace is captured and turned into a data– 
flow graph, which then is partitioned iteratively using spectral bi­
section using a tool called Chaco [17]. The partitioned graph is 
then simulated using a mesh simulator called FlexSim, written at 
USC [18]. FlexSim was configured in a 2-D space for up to 32 
switches, where each switch is attached to an end-node with one 
injection channel to the switch. The default latencies were reduced 
to allow low-overhead flit-level routing as expected for an on-chip 
network. Routers are assumed to be 0.2 mm2 in area. The overall 
area of this processor is 27.3 mm2. For our inter-core interconnect 
power model, we employ power costs as abstracted from the Orion 
interconnect power model [19] from Princeton University. Link 
switching energy cost were taken from the "The Future of Wires" 
paper [20]. We find that our wires are using in the neighborhood 
or 10 pJ/bit for a 10mm trace, similar to Stanford’s Smart Mem­
ories [21]. Given the floor-plan of the multi–core processor and 
the power consumption of the different units of the processor, we 
use HotSpot [5] to find the temperature of each of the units. We 
track the temperature of the cores, the routers, and the links of the 

processor using the Hotspot default parameters. A summary of the 
tool-chain used in this work is shown in Figure 9. 

There are a few assumptions we make in this study. For the 
same temperature, frequency, voltage and activity level, we as­
sume the same amount of wearout for processor cores, intercon­
nect links and routers. However, different structures may be more 
or less susceptible to specific wearout types (the links are more 
likely to fail due to electromigration, for instance), this may not be 
strictly accurate. Since, the relative importance of the different fail­
ure modes in 32nm is not known, we perform a sensitivity analysis 
varying the failure rate of transistor–based wearout versus metal– 
based wearout. Regardless, the merits of the WM and the SD are 
independent of the source of wearout, as the SD circuits measure 
any wearout trend that results in increases in circuit latency. 

We assume that we have SD circuits in every clocking element of 
the chip. The SD circuit as shown in Figure 6 has an area overhead 
of only one transistor, and that transistor should only be active very 
infrequently. So we assume that the overhead of the SD circuits is 
negligible. The routing overhead for the stability error signals we 
ignore in this study. We note that SD circuits may only need to be 
placed on signals that are likely to wearout, which is likely far less 
than the total number of latched signals on–chip, but we leave this 
for future research. 

Another assumption we make is that a processor without a WM 
or SD is assumed to have a 20% ΔWearout added to it’s clock cy­
cle time to accommodate 10 years of wearout at 2 GHz freqeuncy, 
400K temperature. Finally, we assume that inactive circuits have 
negligible wearout. While leakage currents may induce wearout, 
we consider only active use of circuits as a first-order approxima­
tion of processor wearout. 

We test this multi-core processor with a mix of four different me­
dia algorithms (FFT, Software Radio, Viterbi Decoder and MPEG4 
encoding) that would be suitable to run on a multi-core signal pro­
cessor. The aggregate workload we assume to have a peak variance 
of 60% over time, simulating varying demand placed on the pro­
cessor. We assume that any processor that degrades to 20% of its 
orginal frequency is no longer usable. We test a processor with a 
WM with SD circuits on every clocking element using a linear aver­
aging wearout policy on three different mixes of these applications 
against a processor without a WM. 

Figure 10 shows the number of computations that our multi– 
core processor can perform over it’s lifetime without and with the 
wearout prevention techniques proposed by this paper. There are 
three pairs of bars, the left most pair shows the results for a mix 
of applications, the middle pair show the results for a communi­
cations intensive mix, and the right–most shows the results for a 
computationally demanding mix of applications. The even mix 
of applications shows an increase of 32% of computations over 
the lifetime of the processor with a reduction of 5% in average 



Figure 9: The tool–chain used for studying the impact of wearout on a multi–core processor. 

Figure 10: Lifetime performance of the processor 
cores on three different mixes of applications with­
out and with the WM. 

throughput. The reason for the drop in average throughput is the 
WM’s linear averaging policy begins to limit the maximum per­
formance of the processor in order to extend the lifetime of the 
processor. The communications-centric mix of applications shows 
a 37% increase in lifetime computations for a reduction of 6% in 
average throughput. Finally, the compute-intensive mix of appli­
cations shows only a 4% reduction in average throughput for an 
increase of 70% in lifetime computations. The aggregate result is 
that we can do 46% more computations for the life of the processor 
for a modest 5% reduction in performance. The reason some appli­
cations have longer lifetimes than others is due to how many stalls 
the applications have. 

Similar to Figure 10 is Figure 11, which shows the relative life­
time performance of the interconnect network for the three differ­
ent mixes of applications. There is very little improvement of the 
number of lifetime operations that can be performed by the inter­
connect with the WM versus without the WM. The primary rea­
son for this is because our applications have almost twice as many 
computational cycles as communications cycles and therefore don’t 
use nearly the entire reliability budget of the processor. Also, the 
mesh interconnect’s path diversity helps considerably to spread the 
wearout across the interconnect. The interconnect’s expected life­
time is 60.4% longer than the processor cores. 

Now lets vary the amount of electromigration-related wearout. 
We now assume that electromigration accounts for 25% of wearout 
in the processor cores and 100% for the interconnect links. Ad­
ditionally, we are going to double the rate of wearout of electro­
migration. Figure 12 shows the relative lifetime performance of 
the processor cores, and Figure 13 shows the relative lifetime of 
the interconnect. While similar to Figure 10 and Figure 11, there 
are a few noticeable differences. First, the overall lifetime perfor­
mance has decreased for both the interconnect and the processor 

Figure 11: Lifetime performance of the interconnect 
on three different mixes of applications without and 
with the WM. 

cores, with and without the WM. This is due to the fact that our 
processors are wearing out more quickly due to the higher rate of 
electromigration. Also, the difference in lifetime performance of 
the processor with and without the WM has increased. From this, 
we can conclude that the more prevalent wearout is, the more im­
portant it is to have a wearout management mechanism like the 
WM. Finally, Figure 13 shows that increasing the electromigration 
wearout impacts the lifetime performance of the interconnect more 
heavily than for the processors. 

6. FUTURE WORK AND CONCLUSION 
In this paper, we provide both a method for managing proces­

sor wearout, as well as a way to monitor wearout. Regardless if 
the processor is used in an application with high computational de­
mands, like gaming, or large–scale throughput–based applications 
like data–centers, the combination of WM in conjunction with SD 
circuits allow the ability to accurately budget the reliable cycles of 
a processor as needed by the user. 

While trading performance for lifetime is a viable way to ex­
tend the life of a processor, other techniques like structural dupli­
cation or structural enhancement provide complementary benefits 
that could also be incorporated into the WM. In the future, we plan 
on studying the combination of structural duplication, structural en­
hancement as well as performance management to further extend 
processor lifetime. 

7. REFERENCES 
[1] P. Franco and E. McCluskey, “On-line delay testing of digital 

circuits,” in Proceedings, 12th IEEE VLSI Test Symposium, 
1994, IEEE Computer Society, 1994. 



Figure 12: Lifetime performance of the processor 
cores on three different mixes of applications without 
and with the WM, with twice the amount of electro­
migration wearout. 

[2] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The
 
impact of technology scaling on lifetime reliability,” in In
 
Proc. of International Conference on Dependable Systems
 
and Networks (DSN), 2004., 2004.
 

[3] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “A 
reliability odometer - lemon check your processor!,” in The 
Wild and Crazy Idea Session IV, in conjunction with ASPLOS 
XI, 2004. 

[4] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The 
case for lifetime reliability-aware microprocessors,” in ISCA 
’04: Proceedings of the 31st annual international symposium 
on Computer architecture, (Washington, DC, USA), p. 276, 
IEEE Computer Society, 2004. 

[5] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, 
K. Sankaranarayanan, and D. Tarjan, “Temperature-aware 
microarchitecture,” in ISCA ’03: Proceedings of the 30th 
annual international symposium on Computer architecture, 
(New York, NY, USA), pp. 2–13, ACM Press, 2003. 

[6] Z. Lu, J. Lach, M. R. Stan, and K. Skadron, “Improved 
thermal management with reliability banking,” IEEE Micro, 
vol. 25, no. 6, pp. 40–49, 2005. 

[7] Z. Lu, W. Huang, J. Lach, M. Stan, and K. Skadron, 
“Interconnect lifetime prediction under dynamic stress for 
reliability-aware design,” in ICCAD ’04: Proceedings of the 
2004 IEEE/ACM International conference on 
Computer-aided design, (Washington, DC, USA), 
pp. 327–334, IEEE Computer Society, 2004. 

[8] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, 
“Exploiting structural duplication for lifetime reliability 
enhancement,” in ISCA ’05: Proceedings of the 32nd annual 
international symposium on Computer Architecture, 
(Washington, DC, USA), pp. 520–531, IEEE Computer 
Society, 2005. 

[9] J. Blome, S. Gupta, S. Feng, S. Mahlke, and D. Bradley, 
“Online timing analysis for wearout detection,” in The 
Second Workshop on Architectural Reliability (WAR), 2006., 
2006. 

[10] J. Blome, S. Feng, S. Gupta, and S. Mahlke, “Self calibrating 
online wearout detection,” MICRO 40: Proceedings of the 
40th annual ACM/IEEE international symposium on 
Microarchitecture, 2007. 

Figure 13: Lifetime performance of the interconnect 
on three different mixes of applications without and 
with the WM, with twice the amount of electromigra­
tion wearout 

[11] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, 
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge, 
“Razor: A low-power pipeline based on circuit-level timing 
speculation,” in MICRO 36: Proceedings of the 36th annual 
IEEE/ACM International Symposium on Microarchitecture, 
(Washington, DC, USA), p. 7, IEEE Computer Society, 2003. 

[12] Joint Electron Device Engineering Council, “Failure 
mechanisms and models for semiconductor devices.” 
www.jedec.org/ download/search/jep122C.pdf, 2006. 

[13] ITRS, International Technology Roadmap For 
Semiconductors - 2006 Edition, System Drivers. 
Semiconductor Industry Association, 2006. 

[14] P. Franco, “Testing digital circuits for timing failures by 
output waveform analysis,” Dissertation, Stanford 
University, 1994. 

[15] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. 
Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer, 
“High-performance cmos variability in the 65-nm regime 
and beyond,” IBM J. Res. Dev., vol. 50, no. 4/5, pp. 433–449, 
2006. 

[16] D. C. Burger and T. M. Austin, “The simplescalar tool set, 
version 2.0,” Technical Report CS-TR-1997-1342, 
University of Wisconsin, Madison, June 1997. 

[17] B. Hendrickson and R. Leland, “The chaco user’s guide, 
version 2.0, technical report sand94-2692,” 1994. 
http://www.ti.com/ 
corp/docs/press/backgrounder/omap.shtml. 

[18] U. SMART Interconnect Group, “Flexsim 1.2 flit level 
simulator.” http://ceng.usc.edu/smart/tools.html. 

[19] X. Chen and L.-S. Peh, “Leakage power modeling and 
optimization in interconnection networks,” in ISLPED ’03: 
Proceedings of the 2003 international symposium on Low 
power electronics and design, pp. 90–95, ACM Press, 2003. 

[20] R. Ho, K. Mai, and M. Horowitz, “The future of wires,” in 
Proceedings of the IEEE, vol. 89, pp. 490–504, April 2001. 

[21] R. Ho, K. Mai, and M. Horowitz, “Efficient on-chip global 
interconnects,” in IEEE Symposium on VLSI Circuits, June 
2003. Stanford Univeristy. 


