
 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

Collective Chord Behavior in Large Flexible Diaphragms 

J. W. Lawson1 and C. N. Yarber2 

ABSTRACT 

The seismic behavior of large low-rise buildings with rigid walls and flexible 
diaphragms will be dominated more by the diaphragm’s seismic response than by the 
very stiff vertical walls. For practitioners, estimating the stiffness of large flexible 
diaphragms is important for computing building setbacks from property lines and 
adjacent structures as well as evaluating structural integrity under seismic loads. In 
addition, researchers attempting to accurately model a building’s dynamic behavior 
need to assemble an accurate diaphragm stiffness prediction. The traditional 
diaphragm chord model consists of a single continuous line of axial resistance at the 
diaphragm boundaries; however, as this paper will demonstrate a collective series of 
structural members distributed across the diaphragm will function intentionally or 
unintentionally as a collective chord, adding significant flexural stiffness and 
reducing chord forces. In seismically active areas, masonry and concrete wall 
anchorage forces utilize code-mandated continuous cross-ties within the diaphragm, 
and often these cross-ties are sufficiently strong and stiff to unintentionally develop 
collective chord behavior whether in steel or in wood diaphragm systems. While 
neglecting this embedded collective chord behavior results in conservative chord and 
diaphragm drift designs, researchers or practitioners trying to predict seismic 
response of these buildings will potentially underestimate the true seismic response. 

INTRODUCTION 

The use of flexible roof diaphragms in low-rise buildings is very common in the 
United States, and consists typically of either untopped steel decking or wood 
structural panels across a low-slope structural roof system. Design of these 
diaphragms simulates a simple beam model where the decking or wood structural 
panels are assumed to provide the beam’s shear resistance (web action), and 
designated chords are assumed to provide the beam’s bending resistance (flange 
action). Because of the dimensions of this deep beam, both shear and flexure criteria 
need to be checked during the design process, both in terms of strength and stiffness. 

The need to design for both bending and shear forces is provided by ASCE 7-10 
§12.10.1. Additionally, the computation of diaphragm deflection is used by 
practitioners to determine building setbacks from property lines and adjacent 
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buildings as well as investigate deformation compatibility and structural integrity 
within the building per ASCE 7-10 §12.12. Additionally, diaphragm deflection can be 
used to investigate building stability due to PΔ effects using ASCE 7-10 §12.8.7 
(SEAOC 2012). 

These roof systems are very common in big-box retail, distribution warehouses, and 
commercial/industrial occupancies; and are often used in conjunction with concrete 
and masonry wall systems. Typically, a traditional chord model assumes a perimeter 
continuous tie element at the diaphragm extreme. The design provisions also require 
these heavy wall buildings to be anchored well into the roof diaphragm structure to 
prevent wall-to-roof connection failures that have been common during past 
earthquakes (SEAONC 2001, SEAOC 2008). These seismic design forces and 
detailing requirements have increased significantly over time causing diaphragms to 
become much more interconnected and robust to resist seismic wall anchorage forces.  

This internal interconnection of beams and girders, called continuity ties in ASCE 7, 
results in a structure that has different flexural behavior from a traditional diaphragm 
chord model, and can have a substantial effect on the design and actual response of 
the structure. Wall anchorage forces are required to be distributed across the 
diaphragm depth with continuous cross-ties in Seismic Design Categories C and 
higher (ASCE 7-10 §12.11.2.2.1). These continuous cross-ties involve numerous 
parallel framing members tied together to resist wall anchorage tension forces during 
seismic events (Figures 1 & 2). The requirement for continuous cross-ties dates back 
to the 1973 Uniform Building Code provisions introduced after observing the wall 
anchorage failures from the 1971 San Fernando earthquake (SEAOC 2008) and is 
implemented in large flat flexible diaphragms in high seismic regions. Designed 
primarily for the wall anchorage system, these continuous cross-ties can 
unintentionally also act as chord elements collectively. This is especially true in 
buildings with large diaphragms where numerous repetitive interconnected beams or 
joists occur in parallel as well as several or more parallel girder lines. 

Other building code requirements that can potentially create unintentional collective 
chord elements are the ASCE 7-10 provisions for structural integrity (§1.4) and 
minimum structural interconnection (§12.1.3). Similar to continuous cross-ties, these 
provisions require the building and diaphragm to be interconnected for robustness and 
distribution of lateral forces. This interconnection of elements has a tendency to add 
additional collective chord elements.  

TRADITIONAL CHORD BEHAVIOR ASSUMPTION 

The current state of design practice is to design flexible diaphragms using a simply 
beam analogy. Chords are critical to carry the tension forces developed by the 
flexural bending moments in the diaphragm under lateral load. Traditionally, 
diaphragm chords are thought of as Tension/Compression force couples at the 
diaphragm extreme edges.  The following model and equations illustrate a traditional 
chord approach for a flexible diaphragm. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

 

 

  
  
  

  
  
 

 
 

  
  
  

 

 

 

Chord tension 

W 

w = Diaphragm load (lbs/foot) 

L = Diaphragm length (feet) 

W = Diaphragm width (feet) 

MDiaph  = Diaphragm moment (ft-kips) 

T = C = Chord force couple (kips) 
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Figure 1. Plan View of Traditional Chord Forces. 

Besides resisting bending forces, chords also resist bending deformation of the 
diaphragm. More specifically, the deflection of a flexible diaphragm is composed of 
bending component Δf associated with the chords (or flanges), and a shear component 
Δw associated with the deck (or web). 

Δdiaph = Δf + Δw 

Reference design standards for both wood and steel deck diaphragms recognize this 
two component approach to computing deflections (AF&PA 2009, SDI 2004). The 
chord dependent bending deflection Δf may be computed by the following equation 
from SDPWS-2008 Equation 4.2-1 (AF&PA 2009) when the traditional single chord 
model is assumed. 

5vL3 

Δ f = 
8EAW 

where: 

E = Modulus of elasticity of chords (psi) 
A = Area of chord cross-section (in2) 
W = Diaphragm width (ft) 
L = Diaphragm length (ft) 
v = Maximum diaphragm shear in the direction under consideration (plf) 
Δf = Maximum mid-span diaphragm deflection from bending (in) 
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COLLECTIVE CHORD BEHAVIOR 

As mentioned earlier, the interconnection of the diaphragm members may result in 
intentional or unintentional collective chord behavior. The efficiency of each 
continuous chord element to resist bending is a function of its distance from the 
diaphragm’s neutral axis. To analyze the forces introduced into these collective chord 
elements, strain compatibility is utilized instead of a simplistic tension/compression 
force couple. Assuming the behavior as linearly elastic, Figure 2 depicts a diaphragm 
plan view illustrating the force distribution. 

w = Diaphragm load (lbs/foot) 
L = Diaphragm length (feet) 
W = Diaphragm width (feet) 
MDiaph  = Diaphragm moment (ft-kips) 
s = Continuous tie spacing 
Fx = Force in continuity tie “x” 
F0 = Force in extreme tie 

0 
Chord tension 

W 

s 

Chord compression 

w 
L 

Figure 2. Collective Chord Force Distribution. 

Each continuous cross-tie has a different chord force proportional to its distance from 
the bending neutral axis. Simple equations may be derived for the design engineer to 
compute the reduced forces (Lawson 2007). To simplify the equation presentation, 
the various continuous cross-ties forces Fx can be expressed in terms of the extreme 
cross-tie’s force F0. For example, the first tie inward from the diaphragm’s extreme 
tie has a force F1, and for all ties the force may be expressed as Fx: 

W W− s − sx2 2 ⎛ 2sx ⎞F1 = F0 W 
Fx = F0 W 

= F0 ⎜1 − 
W 

⎟ EQ. 1 
⎝ ⎠2 2 

Equation 1 defines the force in each chord element relative to the extreme (traditional 
chord) element. When sx > W/2, the collective chord forces determined in Equation 1 
go negative crossing the neutral axis.  It is this point that the chord forces go from 



 
  

  

      

 

 

 

 

 
 
 

           
 

    

 
 
 

 

  

 

 

 

 

 

 
 

 
 

 

 

tension to compression. Figure 3 graphically illustrates the distribution and labeling 
of collective chord forces. Using statics, the following simple series is developed: 

M = F W + F (W − s) + F + F (W − 3s)K + F (W − ns)(WDiaph 0 1 2 3	 n 

This may be also expressed simply as a summation: 

M = ∑ 
n 

Fx (W − sx) where… n ≈ W 
Diaph
 

x=0
 s 

Substituting Equation 1 into Equation 2 and 
simplifying: 

n ⎛ 2sx ⎞M Diaph = ∑ F0 ⎜1 − 
W 

⎟(W − sx) 
x=0 ⎝ ⎠ 

F0 2 2 2M Diaph = ∑ 
n 

(2s x − 3Wsx + W )
W x=0 

F1 

F3 
F2 

Fn-1 

− 2s) 

    EQ.  2  

F0 

Fn 

Solving for F0:	 Figure 3. Collective Chord Forces. 

M W	 WDiaphF =	 where… n ≈   EQ.  3  
s2 2 2 

0 

∑ 
n 

(2s	 x − 3Wsx + W ) 
x=0 

The only variable in Equation 3 is x, and F0 can be solved by using a simple 
summation in the denominator.  Using some additional math, the summation in the 
denominator can be simplified further for a direct solution. Simplify the denominator: 

n 
2 2 2∑(2s x − 3Wsx + W ) where… n ≈ 

W 
sx=0
 

n n n
 
2 2	 2 2=W + 2s	 ∑ x −3Ws∑ x + W ∑1 

x=1 x=1 x =1 

⎛ n(n + 1)(  2n + 1)⎞ ⎛ n(n + 1)⎞2 2	 2=W + 2s	 ⎜ ⎟ − 3Ws⎜ ⎟ + W n 
⎝ 6 ⎠ ⎝ 2 ⎠ 

2 2 3 2 2 1 2 3 2 3 2 2= s n + s n + s n − Wsn − Wsn + W n + W
3	 3 2 2 

The variable n represents the number of cross-ties evenly spaced across the 
diaphragm depth.  This may also be expressed as the diaphragm depth divided by the 



 

 

 

 

 

        

 

 
 

 

 

  

 
 

 

     

 

  
  
  
 

 

 
 

cross-tie spacing n = W/s. Substituting W/s for n, our denominator equation can be 
further simplified as follows: 

2 2 2 2 22s W 3 s W 2 s W 3WsW 3WsW W W 
= + + − − + + W 2 

3 2 23s s 3s 2s 2s s 

= W (W + s)(  W + 2s)
6s 

Substituting the simplified summation above into Equation 3, we can solve for F0: 

6sM Diaph EQ. 4F0 = (W + s)(  W + 2s) 

Equation 4 is particularly useful in large diaphragms with high traditional chord 
forces, and where numerous collective chord elements are likely to exist. Often the 
resulting chord force developed in the repetitive members is less than the wall 
anchorage axial design load in the members, and thus will not govern the design. 

Also, recall that a diaphragm’s overall deflection has a bending contribution, and this 
contribution is a direct function of the chord model assumed. Beginning with the 
traditional deflection equation of a uniformly loaded beam, a suitable equation can be 
developed that incorporates a collective chord: 

5wL4 

Δ f = 
384EI 

All variables utilize pounds and inches.  In order to accommodate more customary 
units of feet for length L and pounds per linear foot for uniform load w, the bending 
deflection equation is modified as follows for unit consistency: 

⎛ w ⎞ 45⎜ ⎟(L × 12) 4 4⎝ 12 ⎠ 5wL (1728) 45wL
Δ = = = EQ. 5bending 384EI 384EI 2EI 

where: 
w = Applied uniform loading (plf) 
L = Diaphragm length (ft) 
E = Elastic modulus of chords (psi) 
I = Moment of inertia (in4) 

It is desirable to have an equation in terms of the maximum diaphragm shear v (plf) 
instead of the applied uniform load w in order that the diaphragm deflection of other 
non-uniformly loaded conditions can be approximated. 



   

 
  

 

       

 

 
 

 
 

 

 
 

 

   

 

   

 

 

   

 

V wL 1 2vW v = = or rewritten, w = 
W 2 W L 

where V is the diaphragm shear reaction (lbs), and W is the diaphragm width (ft). 
Substituting into Equation 5: 

3 345(2vb)L 45vbL
Δ = = EQ. 6bending 2EI EI 

Using the parallel axis theorem for the moment of inertia, a new expression for the 
collective chord’s moment of inertia can be derived. The moment of inertia of each 
individual chord element Ix is insignificant and assumed as zero. 

2 2I = ∑(I x + Ax d x ) = ∑(An d x ) 
Using Figure 3 but replacing the force Fx with the chord area Ax, the following series 
represents the collective chord moment of inertia, where s represents the uniform 
spacing of the continuous chord elements. 

2 2 2 2
⎛ W ⎞ ⎛ W ⎞ ⎛ W ⎞ ⎛ W ⎞I = A0 ⎜ ⎟ + A1 ⎜ − s ⎟ + A2 ⎜ − 2s ⎟ + K + An ⎜ − ns ⎟ 
⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ 

n ⎛ W ⎞
2 

= ∑ Ax ⎜ − sx ⎟ 
x=0 ⎝ 2 ⎠ 

This can be simplified further by removing the summation operator.  In addition, the 
chord element areas can be assumed to be all equal, or conservatively consider the 
smallest occurring chord element area. 

2 3 2 2 2 2 2 2⎛ s n s n s n Wsn Wsn W n W ⎞ WI = A⎜⎜ + + − − + + ⎟⎟ where n = .
3 2 6 2 2 4 4 s⎝ ⎠ 

Substituting and simplifying, the following is obtained for the moment of inertia 

I = 
AW (W + 2s)(  W + s)       EQ.  7  
12s 

This expression represents the collective chord moment of inertia.  Customarily the 
diaphragm width W and collective chord spacings s are in feet, but the area A and 
moment of inertia I are in inches2 and inches4 respectfully. To maintain consistency 
of units Equation 7 is modified as follows: 

I = 
12AW (W + 2s)(  W + s)       EQ.  8  
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Substituting Equation 8 into Equation 7, a new bending deformation component for 
horizontal diaphragms is achieved for the collective chord model. 

45vWL3 45vWL3 

Δ f = = 
EI ⎛ 12AW ⎞E⎜ ⎟(W + 2s)(  W + s)

⎝ s ⎠ 

15vL3 s 
EQ. 9Δ f = 

4EA(W + 2s)(  W + s) 

IMPACT OF COLLECTIVE CHORD BEHAVIOR 

Current diaphragm design methodology by practitioners assumes a traditional chord 
model, where a continuous structural element is at the diaphragm extremes to resist 
the compression and tension forces from diaphragm bending. By ignoring the interior 
chord elements that may participate collectively, designers and researchers should 
understand the impact this may have on their work. Ignoring collective chord 
behavior can be a conservative design option; however, at times it may produce 
unconservative results for certain applications. 

An inherent benefit of a collective chord system is the flexural redundancy advantage 
over a single isolated chord. Current ASCE 7-10 provisions (§12.3.4) penalize 
buildings with non-redundant vertical lateral-force-resisting systems, such as shear 
walls and frames, but no such provisions currently exist for horizontal diaphragms. 
Researchers pondering the failure behavior of large flexible diaphragms supported by 
rigid walls anticipate that the structure’s failure mode may occur in the diaphragm 
instead of the main lateral force resisting system (rigid walls). With the consideration 
of numerous collective chord elements, a flexural diaphragm failure is not likely to 
govern. Instead, a shear failure mode diaphragm becomes much more likely. 
Experimental research indicate that diaphragm shear failure modes seldom rupture the 
deck material, but instead fail the fasteners such as nails with wood systems and 
welds/screws/pins with steel deck systems (Tissell 2000, Rogers 2003) 

When numerous collective chord elements engage as the diaphragm bends, the 
perimeter chord force significantly reduces from the traditional model. A large 
diaphragm example (480-ft square) investigated by one author found an 84% 
reduction in calculated perimeter chord force when considering collective chord 
behavior (Yarber 2012). Practitioners designing large diaphragms may welcome this 
approach to reduce chord forces to a more manageable level. 

Another benefit of the collective chord model is that diaphragm deflections are less 
than that computed with a traditional chord model, because the bending portion of the 
diaphragm deflection Δf is reduced. Depending upon the diaphragm configuration and 
traditional chord design, Δf can be a significant contribution to the total deflection. As 
mentioned earlier, ASCE 7 limits diaphragm deflections for purposes of building 



 

 
 

 

 
 

  

 
 

 
 

 
 

 
 

 
 
 

 

setbacks and separations as well as deformation compatibility, structural integrity, 
and building stability. 

On the other hand, the traditional chord model may produce unconservative results 
for practitioners and researchers conducting an analysis that utilizes the diaphragm’s 
dynamic response as criteria in determining seismic forces within the building. The 
development of the diaphragm deflection Equation 4.2-1 for wood structural panels 
(AF&PA 2009) neglected any bending stiffness within the web structure, and thus the 
stiffness will be somewhat underestimated in that regard (ATC 1981). Additionally 
other researchers have found evidence that computing building or diaphragm periods 
using dynamics, FEMA 356 (ASCE 41), and other analytical methods tend to 
overestimate the period when compared with instrumented building records (Harris 
et. al. 1998, Graf 2004) and thus underestimate the response forces. Collective chord 
behavior is one source of additional stiffness that is likely contributing to this 
disparity. 

When using ASCE 31-03 to evaluate and/or ASCE 41-06 to rehabilitate an existing 
one-story building with a flexible diaphragm, the diaphragm period is estimated based 
on the computed diaphragm deflection (ASCE 31-03 §4.2.2.1.2 and ASCE 41-06 
§3.3.1.2.3) and in turn used to compute seismic response and forces. If the diaphragm 
stiffness is underestimated, ASCE 31 & 41 will underestimate the lateral force used in 
evaluation and rehabilitation. Under a traditional chord model, Δf often contributes a 
significant amount of calculated deflection to the total, potentially resulting in an 
underestimation of stiffness. In heavy wall buildings with numerous collective 
chords, it is the authors’ recommendation that the bending component of diaphragm 
deflection Δf be assumed as zero for the purpose of computing seismic forces.  

The low chord forces and high chord redundancy are likely to cause an elastic 
response in at least one orthogonal direction even at maximum expected force levels 
(Yarber 2012) and this can result in unexpected diaphragm force amplification. 
Research indicates that the dynamic amplification associated with flexible 
diaphragms is worst in the longitudinally loaded direction of buildings with large 
flexible diaphragms (Harris et. al. 1998). Transverse seismic resistance begins to go 
non-linear near maximum seismic loads, thus reducing the amplification, but because 
tilt-up buildings are often long and narrow, diaphragm shear design is more governed 
by transverse forces, resulting in conservative overstrength in the longitudinal 
direction. Additionally, roof framing systems typically have the more numerous 
transverse beams acting as cross-ties compared with the few longitudinal girder lines, 
causing strong collective chord behavior for the longitudinal loaded direction.  This 
results in more elastic diaphragm behavior and thus greater force amplification in the 
longitudinal direction. 

Another repercussion of the collective chord model is its impact on the shear 
distribution across the diaphragm width W. With bending being resisted by 
distributed elements across W, the shear stresses could theoretically be 1.5V/A as in a 
classic rectangular cross-section. This is one area of future research being planned. 



 
 

 

 

 
  

 

 

 

 

 

  

 

SENSITIVITY TO CHORD CONNECTION BEHAVIOR 

The bending component of diaphragm deflection increases when slip occurs in the 
chord connections with a new component Δslip. SDPWS-2008 Equation 4.2-1 
(AF&PA 2009) contains a general-use chord connection slip component when the 
traditional single chord model is assumed, 

∑(ΔC X )
Δ = slip 2W 

where Σ(ΔCX) is the sum of individual chord splice slip values “ΔC” on both sides of 
the diaphragm, each multiplied by their respective distance “X” to the nearest lateral 
support. When considering collective chord behavior, this equation must be modified; 
however, today’s structural chord systems usually have no slip. Steel chord systems 
and continuous steel cross-tie systems are typically fastened with welds or slip-
critical bolts resulting in ΔC = 0. Continuous cross-tie systems involving wood 
member framing typically utilized pre-manufactured tie-down anchors for 
connections, and any slip or slack is taken out with a finger-tight nut plus 1/3 turn per 
the manufacturer’s instructions (Simpson Strong-Tie 2013, USP 2011). 

One concern to the authors was whether there was excessive flexibility or stretch 
within wood-to-wood tie-down (hold-down) connections commonly used in 
continuous cross-ties, preventing effective collective chord engagement. These types 
of connectors are often used for seismic retrofitting of existing panelized wood roof 
systems in California. An experimental testing program was conducted at Cal Poly, 
San Luis Obispo, measuring strength and stiffness behavior of four common 
connector assemblies, shown in Figure 4 (Yarber 2012). Simpson Strong-Tie 
connectors (MST60, HDU8-S2.5, HD7B) were fastened to 3-1/8” x 27” Douglas-fir 
glue-laminated (glulam) timber specimens and tested in conformance with ICC 
Acceptance Criteria AC155. The Simpson Strong-tie products were used due to their 
dominance in the seismic retrofit of these roof systems. The connectors and 
configurations involved nails, screws, and bolts, with a variety of single-sided and 
double-sided arrangements. 

Based on the results of these tests, Yarber concluded that the combined glulam axial 
and experimentally determined connector stiffnesses are sufficient to engage 
collective chord behavior whether intentional or unintentional.  In addition, it was 
determined that linearly elastic behavior is likely in the hold-down connectors when 
acting collectively in large buildings, even at maximum expected earthquake force 
levels due to the connectors’ excess capacity. Thus the linear distribution of forces 
relative to the diaphragm’s bending neutral axis is a reasonable assumption. 
Continuous cross-tie connectors installed with loose nuts or slack rods were not a part 
of this research and could affect whether the ties act as a chord collectively. 



 
 

 
 

 

 

 

 
 

 
 

 

 

 

 

         

 

Series Comparison of Force vs Deflection 
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Figure 4. Stiffness Comparisons of Various Wood Cross-tie Connectors 

CONCLUSION 

When a large flexible diaphragm consists of a series of interconnected elements, 
consideration of a collective chord model provides a significant reduction in chord 
forces and a reduction in horizontal diaphragm deflection. Often, the design of the 
interconnected elements does not change under this approach because their design is 
dominated more by the heavy wall anchorage provisions of the building code. 

While ignoring inherent collective chord behavior is conservative for diaphragm 
chord design, more research is needed to determine whether collective chord behavior 
changes the distribution of shear stresses across the diaphragm depth, potentially 
making today’s traditional design approach for unit shear stresses unconservative. 

Practitioners and researches using the diaphragm’s dynamic response to more 
accurately determine the seismic forces acting on the building must consider the 
inherent stiffening effect a collective chord model creates. Additionally, the chord 
redundancy and low axial force levels will likely preclude inelastic chord behavior in 
these types of buildings. 
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