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Abstract The effect of physical agingon themechanics of amorphous solids aswell asmechanical rejuvenation
is modeled with nonequilibrium thermodynamics, using the concept of two thermal subsystems, namely a
kinetic one and a configurational one. Earlier work (Semkiv and Hütter in J Non-Equilib Thermodyn 41(2):79–
88, 2016) is extended to account for a fully general coupling of the two thermal subsystems. This coupling
gives rise to hypoelastic-type contributions in the expression for the Cauchy stress tensor, that reduces to the
more common hyperelastic case for sufficiently long aging. The general model, particularly the reversible
and irreversible couplings between the thermal subsystems, is compared in detail with models in the literature
(Boyce et al. inMechMater 7:15–33, 1988;Buckley et al. in JMechPhys Solids 52:2355–2377, 2004;Klompen
et al. in Macromolecules 38:6997–7008, 2005; Kamrin and Bouchbinder in J Mech Phys Solids 73:269–288
2014; Xiao and Nguyen in J Mech Phys Solids 82:62–81, 2015). It is found that only for the case of Kamrin
and Bouchbinder (J Mech Phys Solids 73:269–288, 2014) there is a nontrivial coupling between the thermal
subsystems in the reversible dynamics, for which the Jacobi identity is automatically satisfied. Moreover, in
their work as well as in Boyce et al. (Mech Mater 7:15–33, 1988), viscoplastic deformation is driven by the
deviatoric part of the Cauchy stress tensor, while for Buckley et al. (J Mech Phys Solids 52:2355–2377, 2004)
and Xiao and Nguyen (J Mech Phys Solids 82:62–81, 2015) this is not the case.

Keywords Physical aging · Mechanical rejuvenation · Kinetic and configurational subsystems ·
Hypoelasticity · Nonequilibrium thermodynamics

1 Introduction

The mechanical properties of solids often depend on the way they are produced. For example, in the case
of semicrystalline polymers, the processing conditions determine the crystal structure, which in turn affects,
e.g., the yield stress. Also in amorphous solids, i.e., structural glasses, the mechanical properties depend on
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processing, most prominently on the cooling rate. The difference of amorphous to (semi)crystalline solids
is that amorphous solids typically show ongoing changes over extended periods of time. This is because
the amorphous solids, being rapidly quenched to temperatures below their glass transition temperature, are
manifestly in a nonequilibrium glassy state. While the kinetics in that state is extraordinarily slow, the system
still evolves toward lower energy states. With this dynamics, called aging, changes in physical properties of the
material can be observed over time.1 A comprehensive overview over the main physical effects due to aging
dynamics in the case of polymers is given in [1,2]. In particular, the effect of physical aging on the mechanical
behavior of glassy polymers has been studied in [3–7]. The effects of physical aging can (to some extent)
be reversed by the application of a significant nonelastic deformation, which coined the term of mechanical
rejuvenation [8].

The formal description of aging dynamics often is based on a concept of internal state variables [3],
particularly in the form of configurational temperature, first proposed by Tool [9], and then used intensively,
e.g., in [10–16]. According to this concept, the amorphous solid is described by two, rather than one, thermal
degrees of freedom, namely a kinetic one and a configurational one. Generally, the character of these two
thermal degrees of freedom is either that of temperature, entropydensity, or internal energy density, respectively.
While the kinetic (vibrational) degree of freedom accounts for intra-basin thermodynamics, the configurational
one describes the inter-basin thermodynamics [17–24]. Models have been developed for the evolution of the
kinetic and configurational thermal degrees of freedom [10–15], as well as constitutive expressions have been
formulated for a stress tensor and for a plastic flow rule for the mechanical deformation of aging solids.
However, in these models the mutual interaction of the kinetic and configurational subsystems is in general
incomplete, as discussed in the sequel of this paper, and leaves room for further investigation and generalization.

In a recent publication [16], a closed-form dynamic model for the elasto-viscoplastic deformation of aging
amorphous solids has been developed, according to nonequilibrium thermodynamic principles and making use
of kinetic and configurational entropy densities. Next to evolution equations for the thermal and mechanical
degrees of freedom, constitutive relations for the stress tensor as well as for the plastic flow rule have been
formulated. As elaborated in detail in [16], the split of the energy dissipated by the viscoplastic deformation
into the kinetic and configurational thermal subsystems is nonunique from a thermodynamics perspective. It
has also been observed that the choice for that split significantly affects the driving force for plastic flow. All
this concerns the irreversible dynamics of the model. With respect to the reversible dynamics, no coupling of
the kinetic and configurational subsystems, namely the respective entropy densities, has been considered so
far.

The main goal of this paper is, in view of these lessons learned from the irreversible dynamics, to system-
atically explore the possibilities for letting the kinetic and configurational subsystems interact nontrivially also
through the reversible contributions to the dynamics and to study the ramifications of doing so.

The paper is organized as follows. After presenting the nonequilibrium thermodynamics framework
(Sect. 2), the model for the elasto-viscoplastic behavior of aging amorphous solids is developed (Sect. 3),
specifically including the nontrivial reversible coupling between the kinetic and configurational degrees of free-
dom. This general model is then compared in detail with other approaches in the literature, i.e., [3,6,10,14,15]
(Sect. 4), before drawing conclusions (Sect. 5).

Before starting with the main content, some general comments are made about the notation used in this
paper. Greek indices are used for Cartesian components, and Einstein’s summation convention is used for
indices that occur twice. Furthermore, with respect to operators, subscripts α and (α, β) imply contraction
with any vector Aα and any tensor Aαβ multiplied from the left, respectively, while subscripts γ and (γ, ε)
imply contraction with the vector Aγ and tensor Aγ ε multiplied from the right, respectively. With respect
to partial derivatives, the quantity f,Xi stands for the partial derivative of a function f with respect to the
variable Xi . Unless stated otherwise, it is tacitly assumed that this derivative is taken at constant X \Xi , with
X = (m, s, η, Fe). Finally, Ad

αβ denotes the deviatoric part of the tensor Aαβ , i.e., Ad
αβ ≡ Aαβ − (Aμμ/3)δαβ .

2 GENERIC framework

The framework used in this paper to formulate the dynamics of the system is the general equation for the
nonequilibrium reversible–irreversible coupling (GENERIC) [25–27], which has also been used in our pre-
ceding work [16]. It is a formal thermodynamic procedure to set up evolution equations for a set of variables
X . As discussed in [16], the reversible (“rev”) and irreversible (“irr”) contributions are clearly distinguished,

1 In this paper, only physical aging is discussed, while chemical aging is neglected.
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∂tX = ∂tX |rev + ∂tX |irr , (1)

with

∂tX |rev = L δE

δX , (2)

∂tX |irr = M δS

δX , (3)

where ∂t denotes the partial derivative with respect to time t . The reversible dynamics is driven by the gradient
of energy E , mediated by the Poisson operator L, while the irreversible dynamics is driven by the gradient
of entropy S, mediated by the friction matrix M. As part of the GENERIC structure, on the one hand, the
reversible dynamicsmust not change the entropy, and the Poisson operator must be skew-symmetric and satisfy
the Jacobi identity, i.e.,

L δS

δX = 0 , (4)

LT = −L , (5)

{A, {B,C}} + {B, {C, A}} + {C, {A, B}} = 0 , (6)

with the Poisson bracket defined by {A, B} = 〈δA/δX ,L δB/δX 〉 based on the inner product 〈·, ·〉, and
functionals A, B, and C . With these conditions, the Hamiltonian structure of the reversible dynamics is
guaranteed, and specifically the time-structure invariance is respected by way of the Jacobi identity [27]. On
the other hand, the irreversible dynamicsmust not change the energy, and the frictionmatrixmust be symmetric
and be positive semi-definite, i.e.,

M δE

δX = 0 , (7)

MT = M , (8)

M ≥ 0 . (9)

The resulting irreversible dynamics is thus a generalization of the Ginzburg–Landau equation. The reversible
(2) and irreversible (3) contributions are coupled by the degeneracy conditions (4) and (7). For completeness,
it is mentioned that M generally must be Onsager–Casimir symmetric, but for the application in this paper
M is assumed to be (Onsager) symmetric. For more details, the reader is referred to [25–27].

3 Dynamic model with general coupling between kinetic and configurational subsystems

3.1 Set of variables, and generating functionals

The first step in the model formulation concerns the specification of meaningful dynamic variables, for which
evolution equations are sought. To that end,we depart fromour earlier results [16],where the elasto-viscoplastic
behavior of amorphous materials was studied, with a focus on the effects of physical aging and mechanical
rejuvenation. In that work, the set of variables in an Eulerian (i.e., spatial) setting consisted of the momentum
density m, the elastic part of the deformation gradient, Fe, and the entropy densities (per unit volume) of
the kinetic- and configurational subsystems, s and η, respectively. In summary, the complete set of dynamic
variables, which shall also be used in this paper, is thus given by X = {m, s, η, Fe}.

It should be noted that the case of a single entropy density is equivalent to what has been studied in
[28,29] for describing finite-deformation nonisothermal elasto-viscoplasticity. However, in order to account
for the effect of physical aging, also called structural relaxation, a split of that thermal degree of freedom
into its kinetic and configurational contributions is considered, in analogy to [12,14,15,20,23]. While from a
practical (interpretation) point of view, one might be tempted to use two temperatures instead of two (partial)
entropies, this would result in unnecessary technical complications, which would rather disguise the essence
of the two-subsystem approach. Therefore, it has been decided on purpose in this paper to consider the kinetic
and configurational subsystem entropies as fundamental variables.
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In view of the set of variables X , it is convenient to write the energy and entropy in the form

E =
∫ (

m · m
2ρ

+ et(s, η, Fe)

)
d3r , (10)

S =
∫

st(s, η) d3r , (11)

with
st = s + η (12)

the total entropy density [19]. Specifically, the energy is split into its macroscopic kinetic energy and internal
energy parts. The mass density is given by ρ = ρ0/ det Fe, with ρ0 the mass density in the undeformed
state, in which it is tacitly assumed that all volumetric change is elastic in origin (see further below), i.e.,
det Fe = det F with F the total deformation gradient. Based on (10)–(11), the functional derivatives become

δE

δX =

⎛
⎜⎜⎝

vγ

T
θ

− vμvμ

2 ρ,Fe
γ ε

+ et,Fe
γ ε

⎞
⎟⎟⎠ , (13)

δS

δX =
⎛
⎜⎝
0
1
1
0

⎞
⎟⎠ , (14)

with velocity vγ = mγ /ρ, and with ρ,Fe
γ ε

= −ρFe,−1
εγ . Furthermore, we have introduced the kinetic (T ) and

configurational (θ ) temperatures, respectively, according to

T = et,s, (15)

θ = et,η, (16)

which have also been used frequently in the literature for modeling the two-subsystem thermodynamics [9–
15,19].

From a macroscopic perspective, the two temperatures defined in (15) and (16) denote the variables
conjugate to the respective subsystem entropies, which can be used to transition from the internal energy
density as a thermodynamic potential to the Helmholtz free energy density, by Legendre transformation.
However, in a statistical-mechanics setting, one can think of these temperatures as being the (inverse of the)
Lagrange parameters related to the respective subsystem energies in a generalized canonical formulation (see
[30]). Such statistical-mechanics background is also required to determine the two temperatures concretely.
For example, in the classical case of a single temperature only, the equi-partition theorem can be employed
to quantify the temperature, i.e., the absolute temperature being directly related to the kinetic energy of the
microscopic constituents. This suggests that, for the case of two subsystems discussed in this paper, the kinetic
temperature can be addressed in a similar way. As far as the configurational temperature is concerned, one can
examine the dependence of the thermodynamic potential on the configurational-subsystem variable. This has
been done by computational means [20], by determining the dependence of the configurational entropy on the
energy of inherent states [31]. The authors are not aware of any publication that addresses the measurement
of the two temperatures with experimental techniques.

3.2 Reversible dynamics

In order to specify the reversible dynamics (2), a choice needs to be made for the Poisson operator L. To that
end, we depart from our earlier results [16], where the evolution equation for X has been formulated. In that
earlier model, there is no reversible exchange between the subsystem entropy densities s and η, since they
evolve simply according to ∂t s|rev = −∇γ (svγ ) and ∂t η|rev = −∇γ (ηvγ ). However, one can imagine that
in general there is a coupling between the kinetic and configurational degrees of freedom during an imposed
(macroscopically affine) deformation. In the language of the potential energy landscape, this would mean that
when deforming the system, changes in the intra-basin and the inter-basin distributions would result that are
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nontrivially coupled. It is thus of interest to examine the possibility of a coupling between the subsystem
entropy densities upon (reversible) deformation. While the evolution equation for the total entropy density,
∂t st|rev = −∇γ (stvγ ), will be unaltered, specifically the possibility of an exchange term between s and η is
sought.

Since the coupling between s and η relates to the macroscopic velocity field v and in view of (13), it seems
natural to incorporate an exchange between s and η via the first column of L. It is thus suggested that the
Poisson operator in [16] is modified in its first column and, due to the anti-symmetry condition (5), also in the
first row, namely [16]

L =

⎛
⎜⎜⎝

−∇γmα − mγ ∇α −s∇α − ∇μYαμ −η∇α + ∇μYαμ (∇αFe
γ ε) + ∇μFe

μεδαγ

−∇γ s − Yγμ∇μ 0 0 0
−∇γ η + Yγμ∇μ 0 0 0

−(∇γ Fe
αβ) + Fe

μβ∇μδαγ 0 0 0

⎞
⎟⎟⎠ . (17)

The Y -related contributions in the first column represent the exchange between the subsystem entropies, since
the reversible contributions to their evolution (2) with Poisson operator (17) and energy gradient (13) becomes

∂t s|rev = −∇γ (svγ ) − Yγμ(∇μvγ ) , (18)

∂t η|rev = −∇γ (ηvγ ) + Yγμ(∇μvγ ) . (19)

The exchange term is proportional to the velocity gradient, i.e., homogeneous (bulk) translations do not lead
to any entropy exchange, as required. Therefore, this serves as a justification of the structure of the Y -related
contributions in the first column of (17). Due to the anti-symmetry condition (5), the Y -related contributions in
the first row of (17) can be derived. For this Poisson operator, also the evolution equations for the momentum
density and for the elastic part of the deformation gradient can be determined according to (2) with Poisson
operator (17) and energy gradient (13),

∂tmα|rev = −∇γ

(
mαvγ

) + ∇γ σαγ , (20)

∂t F
e
αβ |rev = −vγ (∇γ F

e
αβ) + (∇μvα)Fe

μβ , (21)

which is as expected. However, it should be noted that the Cauchy stress tensor contains a contribution related
to the exchange tensor Y ,

σαγ = (et − T s − θη) δαγ + et,Fe
αε
Fe

γ ε + (θ − T )Yαγ = ρ êt,Fe
αε

∣∣
ŝ,η̂ Fe

γ ε + (θ − T )Yαγ , (22)

with the abbreviation f̂ = f/ρ for any quantity f . This implies that the Cauchy stress tensor carries a
signature of the entropy exchange; however, (22) suggests that this contribution vanishes as the system tends
to thermal equilibrium, T � θ . This issue will be discussed below in more detail. If the system is not in thermal
equilibrium, the stress tensor is not simply related to the derivative of the thermodynamic potential with respect
to deformation (i.e., hyperelastic type), but rather it contains also another contribution, akin to hypoelasticity
[32].

As far as the conditions (4)–(6) are concerned, it is clear from the above that the anti-symmetry condition
(5) is satisfied by construction. Furthermore, it can be shown readily that the degeneracy condition (4) is
fulfilled. One can thus concentrate on the Jacobi identity (6), which puts a constraint on the tensor Yαβ , namely

(
Ŷγβδαδ − Ŷαδδγβ

)
+

(
Ŷγ δ

∂Ŷαβ

∂η̂

∣∣∣∣∣
ŝt,Fe

−Ŷαβ

∂Ŷγ δ

∂η̂

∣∣∣∣∣
ŝt,Fe

)
+

(
∂Ŷαβ

∂Fe
γ ε

∣∣∣∣∣
ŝt,η̂

Fe
δε−

∂Ŷγ δ

∂Fe
αε

∣∣∣∣∣
ŝt,η̂

Fe
βε

)
= 0. (23)

For technical convenience, in all partial derivatives in relation to the Jacobi calculation here, ŝt is used as a
thermal variable rather than ŝ, together with η̂. To proceed, it is noted that the requirement of a symmetric
stress tensor implies that also Yαβ is symmetric. Therefore, one can write

Ŷαβ = Fe
αγ

ˆ̄Yγ δF
e
βδ , (24)
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with a symmetric tensor ˆ̄Yαβ . Note that this factorization (24) is without loss of generality, as long as Fe
αβ is

invertible. Inserting this factorization into (23), one obtains

(
ˆ̄Yαβ

∂ ˆ̄Yγ δ

∂η̂

∣∣∣∣∣
ŝt,Fe

− ˆ̄Yγ δ

∂ ˆ̄Yαβ

∂η̂

∣∣∣∣∣
ŝt,Fe

)
+

(
Fe,−1

αε

∂ ˆ̄Yγ δ

∂Fe
εβ

∣∣∣∣∣
ŝt,η̂

− Fe,−1
γ ε

∂ ˆ̄Yαβ

∂Fe
εδ

∣∣∣∣∣
ŝt,η̂

)
= 0 . (25)

While this condition (25) holds in full generality, we now proceed to discuss it by making two assumptions,

for the purpose of illustration. The first assumption is that ˆ̄Yαβ depends on Fe
μν only through the right Cauchy–

Green strain tensor Ce
γ δ = Fe

μγ F
e
μδ . Making use of the general relation ∂g/∂Fe

αβ = 2 Fe
αγ (∂g/∂Ce

γβ) for any
function g of the right Cauchy–Green strain tensor, the condition (25) turns into

(
ˆ̄Yαβ

∂ ˆ̄Yγ δ

∂η̂

∣∣∣∣∣
ŝt,Ce

− ˆ̄Yγ δ

∂ ˆ̄Yαβ

∂η̂

∣∣∣∣∣
ŝt,Ce

)
+ 2

(
∂ ˆ̄Yγ δ

∂Ce
αβ

∣∣∣∣∣
ŝt,η̂

− ∂ ˆ̄Yαβ

∂Ce
γ δ

∣∣∣∣∣
ŝt,η̂

)
= 0 . (26)

The second assumption concerns the tensorial character of ˆ̄Yαβ . Particularly, it is assumed that ˆ̄Yαβ is of quasi-

potential form, i.e., ˆ̄Yαβ = (1/y1)(∂y2/∂Ce
αβ)|ŝt,η̂ with y1 and y2 two scalar-valued functions of the variables

ŝt , η̂, and Ce. Doing so, the condition (26) becomes

∂y2
∂Ce

αβ

∣∣∣∣∣
ŝt,η̂

∂

∂Ce
γ δ

∣∣∣∣∣
ŝt,η̂

(
∂y2
∂η̂

∣∣∣∣
ŝt,Ce

+ 2y1

)
= ∂y2

∂Ce
γ δ

∣∣∣∣∣
ŝt,η̂

∂

∂Ce
αβ

∣∣∣∣∣
ŝt,η̂

(
∂y2
∂η̂

∣∣∣∣
ŝt,Ce

+ 2y1

)
. (27)

This condition can be processed further if the functions y1 and y2 depend onCe only through the three invariants
J1 = trCe, J2 = ln det Ce, and J3 = −trCe,−1 ofCe, that have the useful property ∂ Jk/∂Ce = Ce,1−k [27,33].
In this case, the nontrivial part of condition (27) can be cast into the form

∂y2
∂ Jk

∣∣∣∣
ŝt,η̂, J̄k

∂

∂ Jl

∣∣∣∣
ŝt,η̂, J̄ l

(
∂y2
∂η̂

∣∣∣∣
ŝt,J

+ 2y1

)
= ∂y2

∂ Jl

∣∣∣∣
ŝt,η̂, J̄ l

∂

∂ Jk

∣∣∣∣
ŝt,η̂, J̄k

(
∂y2
∂η̂

∣∣∣∣
ŝt,J

+ 2y1

)
, for all k �= l

(28)

with J = (J1, J2, J3) and J̄k = J \ Jk .
It is straightforward to show that (28) is indeed a nontrivial condition. For example for y1 ≡ 1, one concludes

from (28) that only if y2 depends only on a single invariant Jk (e.g., on det Ce, by way of ρ = ρ0/
√
det Ce,

which implies Yαβ ∝ δαβ ), the Jacobi identity is trivially satisfied. In contrast, if y2 depends on more than one
of the invariants of Ce, the Jacobi identity puts a constraint on the function y2. It is mentioned that another
example where the Jacobi identity imposes nontrivial constraints on the dynamics has been discussed in the
context of complex fluids [27,33].

This elaboration of the implications of the Jacobi identity on the choice of the tensor Y is concluded by

a comment about the stress tensor. Using the representation (24), if ˆ̄Y is of quasi-potential form, and if êt
depends on Fe only through Ce, the stress tensor (22) can be written as

σαβ = ρFe
αγ

(
2êt,Ce

γ δ

∣∣∣
ŝ,η̂

+ θ − T

y1
y2,Ce

γ δ

∣∣∣
ŝ,η̂

)
Fe

βδ . (29)

It is important to note that (θ − T )/y1 is in general a function of Ce, ŝ, and η̂, also by virtue of the definitions
(15)–(16). Therefore, the expression in the parenthesis in (29) cannot always be written as the Ce

γ δ-derivative
of a potential.
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3.3 Irreversible dynamics

The irreversible dynamics, due to (3), involves the friction matrix M and is driven by the entropy gradient
δS/δX . While the previous section explained in detail how to account for entropy exchange due to reversible
dynamics, it is pointed out that entropy exchange due to irreversible dynamics has been accounted for already
in [16]. For this reason, only the main results about the irreversible dynamics are summarized here as far as
they are relevant for this paper, while the reader interested in the full details is referred to [16].

Four different irreversible processes are accounted for in this model. These are specifically: heat conduction
in each of two thermal subsystems (kinetic and configurational), heat exchange between the subsystems, and
viscoplastic deformation. Correspondingly, for each of these four processes, there are thermodynamic fluxes,
namelyJ s andJ η for the bulk subsystem heat fluxes,J  for the subsystem exchange heat flux, andJ Fe

for
the viscoplastic deformation, related to the irreversible dynamics of Fe. It has been shown earlier that these
thermodynamic fluxes result in irreversible dynamics of X , according to (3), of the form [16]

∂tmα|irr = 0 , (30)

∂t s|irr = − 1

T
∇γJ s

γ + 1

T
J − ψ

T
Pγ εμνet,Fe

μν
J Fe

γ ε , (31)

∂tη|irr = −1

θ
∇γJ η

γ − 1

θ
J − (1 − ψ)

θ
Pγ εμνet,Fe

μν
J Fe

γ ε , (32)

∂t F
e
αβ |irr = Pγ εαβJ Fe

γ ε , (33)

which satisfies the degeneracy condition (7). The parameterψ defines how the dissipation caused by viscoplas-
tic deformation is distributed among the kinetic and configurational entropies. The tensor Pγ εαβ is a projection
defined by Pγ εαβ = δαγ δβε − (1/3)Fe,−1

εγ Fe
αβ to ensure that the viscoplastic change to Fe is indeed isochoric

[29].
The evolution equations (30)–(33) highlight the physics of thermodynamic fluxes, forwhich the constitutive

expressions are required in order to complete the model formulation. Specifying suitable constitutive relations
for these thermodynamic fluxes (see [16] for details), the irreversible contributions to the evolution equation
can be written in the form

∂tmα|irr = 0 , (34)

∂t s|irr = − 1

T
∇γ

(
−λsγ δ∇δT

)
+ 1

T
μx

(
1

T
− 1

θ

)
− 1

T
ZμνD

p,d
μν , (35)

∂tη|irr = −1

θ
∇γ

(
−λ

η
γ δ∇δθ

)
− 1

θ
μx

(
1

T
− 1

θ

)
+ 1

θ

(
Zμν +

[
et,Fe

με
Fe

νε

]d)
Dp,d

μν , (36)

∂t F
e
αβ |irr = −Dp,d

αμ Fe
μβ . (37)

The thermal conductivities for the two subsystems are denoted by λs and λη, both of which must be symmetric
and positive semi-definite to ensure the conditions (8) and (9). Similarly, the quantity μx, which describes the
heat transfer between the two subsystems, must be nonnegative. The quantity Dp,d

αβ is the deviatoric part of

Dp
αβ = �αβγ δ�

d
γ δ , (38)

driven by the stress-like quantity

�d
γ δ = 1

θ

[
et,Fe

γ ε
Fe

δε

]d −
(
1

T
− 1

θ

)
Zγ δ . (39)

The fact that�d
γ δ is deviatoric implies that also Zγ δ must be a traceless tensor, which is tacitly used throughout

this paper. In order to comply with the condition for symmetry (8), the tensor �αβγ δ must be symmetric,
i.e., �αβγ δ = �γδαβ , and furthermore, we impose �αβγ δ = �βαγ δ = �βαδγ ; the positive semi-definiteness
condition (9) is guaranteed by requiring Aαβ�αβγ δAγ δ ≥ 0 for any tensor Aαβ . Based on the evolution

equation (37), it can be concluded that Dp,d
αβ stands for the plastic strain-rate tensor.

The quantity Zμν (which contains the effect ofψ discussed earlier) in the evolution equations for the kinetic
and configurational entropy densities, (35) and (36), describes the split of the dissipation due to viscoplastic
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deformation among the two (partial) entropies. While the specification of this split is the main purpose of Zμν ,
it is worthy to note that nonequilibrium thermodynamics (i.e., the conditions (7)–(9)) require that Zμν also
occurs in the driving force for viscoplastic deformation �d

�λ, see (39).

3.4 Complete dynamic model, and its temperature and energy reformulations

Combining the results of the previous subsections, the complete set of evolution equations, (1) together with
(2) and (3), one finds

∂tmα = −∇γ

(
mαvγ

) + ∇γ σαγ , (40)

∂t s = −∇γ

(
s vγ

) − Yγμ

(∇μvγ

) − 1

T
∇γ

(
−λsγ δ∇δT

)
+ 1

T
μx

(
1

T
− 1

θ

)
− 1

T
ZμνD

p,d
μν , (41)

∂tη = −∇γ

(
η vγ

) + Yγμ

(∇μvγ

) − 1

θ
∇γ

(
−λ

η
γ δ∇δθ

)
− 1

θ
μx

(
1

T
− 1

θ

)

+1

θ

(
Zμν +

[
et,Fe

με
Fe

νε

]d)
Dp,d

μν , (42)

∂t F
e
αβ = −vγ (∇γ F

e
αβ) +

(
(∇μvα) − Dp,d

αμ

)
Fe

μβ , (43)

with the Cauchy stress tensor σαγ given by (22), and the traceless plastic strain-rate tensor Dp,d
αμ , which is the

deviatoric part of (38), with driving force (39). The fact that the plastic strain-rate tensor is traceless serves, in
hindsight, as a justification of the assumption that the viscoplastic deformation is isochoric, and therefore one
can indeed use ρ = ρ0/ det Fe for the mass density, as discussed in Sect. 3.1.

To make the proposed model suitable for practical applications, constitutive choices need to be made for
the static aspects (namely et), for the transport/relaxation coefficients (namely λsαγ , λ

η
αγ , μx, and �αβγ ε), and

for the quantities that regulate the exchange and coupling between the thermodynamic subsystems (namely
Yαβ and Zαβ ), in terms of the system variables X . Particularly, Yαβ and Zαβ are of interest in this paper and
will be discussed in the following section in more detail, when comparing our model with other models in the
literature.

It is pointed out that the complete model (40)–(43) with (22) and (38)–(39) is symmetric with respect to the
two subsystems, keeping in mind that the sign convention for the exchange tensors Yαβ and Zαβ is arbitrary.
This fundamental symmetry of the model is also preserved when transforming to the other sets of variables
discussed in the remainder of this section.

Similar to [16], to simplify the comparison with the literature, it is useful to transition from the entropy
densities s and η as dynamic variables to other two equivalent variables, for example the temperatures, (15)–
(16). There are two main consequences of this change of variables for the above model. First, the stress tensor
(22) can be expressed in terms of the Helmholtz free energy per unit volume a = a(T, θ, Fe), which is the
Legendre transform of the internal energy density et = et(s, η, Fe) [19]. If in addition a split of the internal
energy et into its kinetic (e) and configurational (ε) parts, analogous to (12),

et = e + ε , (44)

is introduced for later convenience, one finds for the Helmholtz free energy

a = e + ε − T s − θη . (45)

With this, it can be shown that the stress tensor (22) can be written in the form

σαβ = ρ â,Fe
αε

∣∣
T,θ

Fe
βε + (θ − T )Yαβ = σ e

αβ + σ ε
αβ + σ s

αβ + σ
η
αβ + σ

[sη]s
αβ + σ

[sη]η
αβ , (46)

with â = a/ρ, and the six stress tensor contributions defined by

σ e
αβ = ρ ê,Fe

αε

∣∣
T,θ

Fe
βε, σ ε

αβ = ρ ε̂,Fe
αε

∣∣
T,θ

Fe
βε, (47)

σ s
αβ = −Tρ ŝ,Fe

αε

∣∣
T,θ

Fe
βε, σ

η
αβ = −θρ η̂,Fe

αε

∣∣
T,θ

Fe
βε, (48)

σ
[sη]s
αβ = −TYαβ, σ

[sη]η
αβ = θYαβ. (49)
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The second major consequence of the transition (s, η) → (T, θ) is the replacement of (41) and (42) by
evolution equations for the two temperatures. Specifically, it can be shown that

DtT = T−1T,s

[(
σ s

αγ + σ [sη]s
αγ

)
∇γ vα + T s̊

]
+ θ−1T,η

[(
ση

αγ + σ [sη]η
αγ

)
∇γ vα + θη̊

]
, (50)

Dtθ = T−1θ,s

[(
σ s

αγ + σ [sη]s
αγ

)
∇γ vα + T s̊

]
+ θ−1θ,η

[(
ση

αγ + σ [sη]η
αγ

)
∇γ vα + θη̊

]
, (51)

with Dt = ∂t + vγ ∇γ the material (substantial) time-derivative, and with the irreversible contributions

T s̊ = −∇γJ s,h
γ + μx

(
1

T
− 1

θ

)
+ (−Zμν − σ s,d

μν

)
Dp,d

μν , (52)

θη̊ = −∇γJ η,h
γ − μx

(
1

T
− 1

θ

)
+ (

Zμν + σ e,d
μν + σ ε,d

μν + σ s,d
μν

)
Dp,d

μν . (53)

The driving force for viscoplastic deformation, (39), can be re-written with the aid of the relation

[
et,Fe

αε

∣∣
s,η Fe

βε

]d = σ
e,d
αβ + σ

ε,d
αβ + σ

s,d
αβ + σ

η,d
αβ . (54)

Finally, it is noted that the prefactors on the right-hand side of (50) and (51) are generalizations of inverse heat
capacities.

Instead of replacing the entropy densities by the two temperatures, one could also think of other replace-
ments. In view of the literature, it is useful to consider instead the energy densities (per unit mass) of the kinetic
and configurational subsystems, ê and ε̂, respectively. From the above, it can be shown that the evolution equa-
tions for the partial energy densities become

ρDt ê = T−1 ê,ŝ

∣∣
η̂,Fe

[(
σ s

γμ + σ [sη]s
γμ

)
(∇μvγ ) + T s̊

]

+ θ−1 ê,η̂

∣∣
ŝ,Fe

[(
ση

γμ + σ [sη]η
γμ

)
(∇μvγ ) + θη̊

]
+ σ e

μν

(
Dt F

e
με

)
Fe,−1

εν , (55)

ρDt ε̂ = T−1 ε̂,ŝ

∣∣
η̂,Fe

[(
σ s

γμ + σ [sη]s
γμ

)
(∇μvγ ) + T s̊

]

+ θ−1 ε̂,η̂

∣∣
ŝ,Fe

[(
ση

γμ + σ [sη]η
γμ

)
(∇μvγ ) + θη̊

]
+ σ ε

μν

(
Dt F

e
με

)
Fe,−1

εν . (56)

This completes the formulation of the model for physical aging and mechanical rejuvenation of glasses using
subsystem entropies, and of alternative formulations of it in terms of other variables for the kinetic and
configurational subsystems, namely temperatures or kinetic energies.

4 Discussion: comparison with the literature

In Sect. 3, we have presented a general model to describe physical aging and mechanical rejuvenation of
amorphous solids, by considering the evolution of two (rather than one) thermal degrees of freedom, i.e.,
kinetic and configurational entropies, or the corresponding temperatures or internal energies, respectively. In
particular, as shown in (41) and (42), these entropies are coupled nontrivially in the reversible dynamics through
the tensor-valued function Yαβ , while the distribution of dissipated energy (due to viscoplastic deformation)
between the two thermal subsystems is controlled by another tensor-valued function, Zαβ , in the irreversible
dynamics. In this section, the model developed in Sect. 3 is compared with approaches in the literature, with
the particular goal to learn about the common choices made for the quantities Yαβ and Zαβ . In this comparison
that follows below, the models of the other references are always (transformed to and) written in an Eulerian
formulation, using as much as possible the same symbols and definitions as in our approach, to simplify the
comparison. If other symbols and definitions are used as compared to our approach, this is explicitly stated.
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4.1 Comparison with Boyce et al. [3]

We start our discussion with considering the work of Boyce et al. [3], where an additional variable is introduced
to account for the effects of aging and mechanical rejuvenation. However, [3] does not rely on any thermal
(temperature, energy density, or entropy density) variable to describe a configurational subsystem. Rather, a
general structural variable is employed, here denoted by s̄. For this quantity, used in the yielding kinetics, a
differential equation of the following form is studied (eqn. (28) in [3])

Dt s̄ = ā(s̄) + r̄(s̄)γ̇ p , (57)

with the function ā(s̄) describing the physical aging, while r̄(s̄) describes how the plastic strain rate γ̇ p gives
rise to mechanical rejuvenation. Since both of these effects are also present in our modeling approach (as well
as in the other models discussed below), one can say that they are in this sense equivalent. We now aim at
relating the approach of [3] to ours, by identifying the quantities Yαβ and Zαβ in the following way. First, it is
noted that in [3] the Cauchy stress tensor is based on the derivative of the Helmholtz free energy with respect
to deformation [see their discussion around their Eq. (20) and (21)]. This implies in view of our relations
(46)–(49) that

Yαβ = 0 . (58)

Second, it is concluded from the explanations in [3] that the Helmholtz free energy does not depend on the
structural variable s̄. In the context of our model with effective temperature, this means that the Helmholtz
free energy density (45) does not depend on the configurational temperature θ , and hence in the stress tensor
expression (46)–(48) one can set ση

αβ = 0, since η = a,θ |T,Fe
αβ

= 0. Third, it is pointed out that in our model,
we do not account for strain-hardening. Therefore, we should also not consider the effects of entropic strain-
hardening, which are actually included in [3]. While neglecting strain-hardening does in principle not imply
that the stress tensor is completely free from (other) entropic contributions, the discussion around eqn. (21) in
[3] suggests that one might indeed assume σ s

αβ = 0, and so it follows

σαβ = σ e
αβ + σ ε

αβ. (59)

Using this result in relation to the temperature evolution equation discussed in Sect. 2.5 in [3], and then
comparing this with our temperature evolution Eq. (50) with (52), one obtains

Zαβ = −
(
σ
e,d
αβ + σ

ε,d
αβ

)
, (60)

where we have used that the thermodynamic potential does not depend on the structural variable s̄, which
in our context implies that the thermodynamic potential does not depend on η, leading to T,η = 0. Inserting
expression (60) into our driving force for viscoplastic deformation (39) with (54), one obtains

�d
αβ = 1

T

(
σ
e,d
αβ + σ

ε,d
αβ

)
, (61)

which corresponds to eqn. (7) used in the viscoplastic constitutive relation (11) in [3].

4.2 Comparison with Buckley et al. [10]

The work of Buckley et al. [10] formulates a model in terms of temperature evolution. In that model, the
Cauchy stress tensor σαβ is written as a sum of two contributions, specifically a (traceless) “bond-stretching”
contribution σ b

αβ and a “molecular-conformation” contribution σ c
αβ . The thermal evolution equation (eqn. (30)

in [10]) can then be written in the form

ρ c̄ Dt T + ρ c Dtθ =
(
σγμ − σ b

γμ

)
∇μvγ + σ b

γμD
p,d
γμ , (62)

with c̄ the heat capacity andc the heat capacity step across the glass transition. Based on the two temperature
equations in our model, (50)–(51), under the assumptions of no cross-coupling effects, T,η = θ,s = 0, and no
heat fluxes, one can derive an evolution equation analogous to (62). By comparing (62) with our counterpart,
particularly with respect to the Dp

αβ -terms (or conversely the (∇βvα)-terms), one finds σ b
αβ = σ e

αβ + σ ε
αβ . This
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result is valid for any Yαβ and Zαβ . Both of these quantities describe the exchange between the two thermal
subsystems, and therefore they cannot be determined from a single evolution equation, as (62). However, both
of these quantities can actually be determined by considering the constitutive relations for the Cauchy stress
as well as for the driving force for viscoplastic flow. As far as the Cauchy stress is concerned, it is explained in
[10] that the stress tensor is the sum of amechanical visco-elasticMaxwell element and of a purely hyperelastic
part. Therefore, the entire stress tensor can be derived from a Helmholtz free energy, and one thus concludes
that

Yαβ = 0 . (63)

Furthermore, let us consider the driving force for viscoplastic flow. By combining eqns. (15) and (26) in [10],
one finds that the driving force for viscoplastic deformation is given by the (traceless) stress contribution
σ b

αβ = σ e
αβ + σ ε

αβ . Equating this driving force to T�d
αβ in our approach, with T a positive prefactor with units

of temperature and �d
αβ given by (39) with (54), one can write

Zαβ = −1 − θ
T

1 − θ
T

(
σ
e,d
αβ + σ

ε,d
αβ

)
− 1

1 − θ
T

(
σ
s,d
αβ + σ

η,d
αβ

)
. (64)

Clearly, the second contribution (and for T �= T also the first one) in this expression diverges as |θ − T |
approaches zero. In view of the expression for the driving force for viscoplastic flow, �αβ , this is not a
problem, since Zαβ is multiplied there by a prefactor that vanishes as |θ − T | vanishes. However, we note that
the split of the viscoplastic contribution between the kinetic and configurational subsystems, see (50) and (51)
with (52) and (53), does suffer from this divergence in Zαβ as |θ −T | tends to zero. This issue deserves further
attention in a future study.

4.3 Comparison with Kamrin and Bouchbinder [14]

In the work of Kamrin and Bouchbinder [14], a two-temperature-based continuum thermomechanics model
was formulated to describe physical aging and mechanical rejuvenation of deforming amorphous solids.
Specifically, by assuming weakly interacting kinetic and configurational subsystems, the evolution equations
for corresponding energy densities (their eqns. (9) and (10)) read as follows [14]

ρDt ê = −∇γJ s,h
γ + J,x + σ dis

γμD
p,d
γμ , (65)

ρDt ε̂ = −∇γJ η,h
γ − J,x + σγμ

(
∇μvγ − Dp,d

γμ

)
+ σ store

γμ Dp,d
γμ , (66)

with the split of the Cauchy stress tensor σαβ = σ store
αβ +σ dis

αβ . The plastic stress-power is split into a contribution
that represents the “stored plastic power” and affects the configurational subsystem, while the “plastic dissipa-
tion” gives a contribution to the kinetic subsystem [14]. Further, to provide a direct comparison between their
and our approaches, we neglect in our approach the cross-coupling terms in the energy evolution equations
(55) and (56), i.e., ê,η̂ = ε̂,ŝ = 0, leading to ê,ŝ = T and ε̂,η̂ = θ . Doing so, the comparison of their (65)–(66)
with our (55)–(56) is straightforward. Specifically, with the choice

TYαβ = σ e
αβ + σ s

αβ , (67)

one can match the (∇βvα)-terms in Dt ê (or alternatively in Dt ε̂). On the other hand, by analyzing the Dp
αβ -

terms in Dt ê (or alternatively in Dt ε̂), in view of the Cauchy stress tensor together with (67), one can establish
the connection between σ dis

αβ and Zαβ , explicitly

σ
dis,d
αβ = −Zαβ −

(
σ
e,d
αβ + σ

s,d
αβ

)
. (68)

In [14], the split of σαβ into σ store
αβ and σ dis

αβ stands for the split of the effect of viscoplastic dissipation into
the kinetic and configurational subsystems. In our approach, this corresponds equivalently to the choice of
Zαβ , as exemplified by (68). However, as we can see from the discussion above, from the evolution equations
of the energies one can only determine Zαβ in relation to σ dis

αβ , but not in absolute terms. To make further
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progress in this direction, one can now proceed by filling this expression for Zαβ into our driving force for
viscoplastic deformation (39) with (54), leading to

�d
αβ =

(
1

T
− 1

θ

)
σ
dis,d
αβ + 1

T

(
σ
e,d
αβ + σ

s,d
αβ

)
+ 1

θ

(
σ

ε,d
αβ + σ

η,d
αβ

)
. (69)

For a most general comparison of the driving force for viscoplastic flow used in [14] (eqn. (24) therein), σ dis,d
αβ ,

with our approach, one needs to solve σ
dis,d
αβ = T�d

αβ , whereT is a positive prefactor with units of temperature.
Doing so, one obtains the specific relation

σ
dis,d
αβ = 1

1 + θ
( 1
T − 1

T

)
[

θ

T

(
σ
e,d
αβ + σ

s,d
αβ

)
+

(
σ

ε,d
αβ + σ

η,d
αβ

)]
. (70)

Together with (68), this leads to

Zαβ = − 1

1 + θ
( 1
T − 1

T

)
[(

1 + θ

T

)(
σ
e,d
αβ + σ

s,d
αβ

)
+

(
σ

ε,d
αβ + σ

η,d
αβ

)]
. (71)

In other words, [14] uses nontrivial choices for both Yαβ and Zαβ , in general.
We conclude by noting that for the specific case discussed in Sect. 3 of [14] (see specifically assumptions

in eqn. (17) therein), one finds σ e
αβ = σ s

αβ = σ
η
αβ = 0, which implies Yαβ = 0, and Zαβ becomes proportional

to σ
ε,d
αβ , by virtue of (67) and (71), respectively.

4.4 Comparison with Xiao and Nguyen [15]

For the comparison of the work of Xiao and Nguyen [15] with our approach, we start by considering the
evolution equations for the temperatures. In [15], it is assumed that the kinetic (e and s) and configurational (ε
and η) subsystem quantities do not depend on the temperature of other subsystem (θ and T , respectively). In
our context, in view of (50)–(51), this implies T,η = θ,s = 0. Expressing the temperature equations (29) and
(30) in [15], one obtains

cgDtT = −∇γJ s,h
γ + J,x + σ s

γ ε∇εvγ + σ e
γ εD

p,d
γ ε , (72)

cDtθ = −∇γJ η,h
γ − J,x + ση

γ ε∇εvγ + σ ε
γ εD

p,d
γ ε . (73)

These equations are now discussed from the perspective of our corresponding equations (50)–(51). One can
naturally make the identifications for the subsystem heat capacities cg = T (T,s)

−1 and c = θ (θ,η)
−1.

Furthermore, by comparing the ∇αvβ -terms in the evolution equations for T (or alternatively θ ), one finds

Yαβ = 0. (74)

By comparing the Dp
αβ -terms in the evolution equations for T (or alternatively θ ), one finds

Zαβ = −
(
σ e

αβ + σ s
αβ

)d
. (75)

It should be noted that the zero-choice for Yαβ can also be obtained by comparing the expression for the Cauchy
stress in [15] [therein: based on eqn. (18)1 with eqn. (13)] with our form (46)–(49). Finally, it is interesting to
compare the driving force for viscoplastic flow. Using (75) in our driving force for viscoplastic deformation
(39) with (54), one obtains

�d
�λ = 1

T

(
σ e,d + σ s,d) + 1

θ

(
σ ε,d + ση,d) , (76)

which corresponds to eqn. (25) in [15].
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4.5 Comparison with Klompen et al. [6]

In the work of Klompen et al. [6], a model has been developed for describing the mechanical response of
glassy polymers. Like in all approaches discussed above, also in [6] an additional variable, the so-called state
parameter S̄, is introduced to describe the effects of physical aging and mechanical rejuvenation, by letting
the yielding kinetics depend on this parameter. However, in contrast to all approaches described earlier in
this section, the state parameter S̄ in [6] is not specified by way of an evolution equation, but rather in an
explicit form. Specifically, the state parameter is considered as a product of two explicit state functions, i.e.,
S̄ = S̄a R̄γ , where S̄a = S̄a(t, T ) represents the aging kinetics dependent on aging time t and temperature T ,
whereas the mechanical rejuvenation is described by R̄γ = R̄γ (γ p), where γ p is an equivalent plastic strain.
Specific procedures are developed and explained in [6,7] to determine the explicit functions S̄a(·) and R̄γ (·).
However, in order to establish links with the above discussed thermodynamic approaches to physical aging and
mechanical rejuvenation, we briefly comment on how the approach in [6] can be transferred into an evolution
equation for the state parameter. Simply differentiating S̄ with respect to time results in

˙̄S =
( ˙̄Sa
S̄a

+
(
dR̄γ /dγ p

)
R̄γ

γ̇ p

)
S̄ . (77)

One observes readily that the rate consists of two additive terms: one term representing physical aging and
the other representing mechanical rejuvenation. The evolution equation (77) for the state parameter S̄ strongly
resembles that of the state parameter s̄, i.e., (57). Particularly, the mechanical rejuvenation term is proportional
to the rate of the (equivalent) plastic strain. However, while the rate γ̇ p can instantaneously be expressed in
terms of the plastic strain-rate tensor Dp

αβ , in the approach of Klompen et al. [6] there is an explicit reference
to the plastic strain γ p itself. In practical numerical calculation, one can obtain that readily by time-integration
of the rate γ̇ p. However, from a fundamental modeling perspective it implies that γ p is elevated to the level of
a dynamic variable. Since our thermodynamic approach does not treat γ p as an independent dynamic variable,
we do not go into more detail about comparing our approach with that in [6].

Despite the fact that Klompen et al. [6] do not use an evolution equation for the state parameter, one can still
strive to make a more close connection with the dynamic approach in this paper. As an illustrative example of
how to achieve that task, we consider in the following physical aging in the absence ofmechanical deformation,
i.e., R̄γ = 1, in which case S̄ = S̄a. In agreement with literature, also Klompen et al. [6] use a logarithmic
dependence of S̄a on waiting time tw, i.e., S̄a ∝ ln(tw). In contrast, in the approach in this paper, the physical
aging in the absence of mechanical deformation is described by the μx-related contribution in evolution of the
configurational temperature (51) and (53),

Dtwθ = −θ−1θ,ημ
x
(
1

T
− 1

θ

)
, (78)

where we have assumed for simplicity θ,s = 0. The goal is to make a certain choice for the kinetic function μx

such that, with the resulting solution θ = θ(tw), one obtains S̄a(θ(tw)) ∝ ln(tw). If one assumes for illustration
purposes that S̄a(θ) = S̄0 + S̄1θ , one thus looks for a solution θ(tw) ∝ ln(tw). As it is shown in the following,
this solution is induced by the choice

μx = a
T θ

θ−1θ,η

eb δ − 1

δ
, (79)

which is always positive as required,μx > 0, if a > 0, b > 0, and the configurational heat capacity θ/θ,η > 0.
Considering constant kinetic temperature T , the evolution equation for the temperature difference

δ ≡ θ − T . (80)

can be derived from (78) and (79), leading to

Dtwδ = −a
(
eb δ − 1

)
, (81)

which is identical to the evolution equation (1) discussed in [34]. Particularly, for constant a and b, the solution
is given by [34]

δ(tw) = −1

b
ln

(
1 −

(
1 − e−b δ0

)
e−a b tw

)
, (82)
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Table 1 Specific forms of the functions Yαβ , Zαβ , and the driving force for viscoplastic deformation,�d
αβ , for different approaches

in the literature

Reference TYαβ −Zαβ T�d
αβ

Boyce et al. [3] (for this
comparison:σ s

αβ = σ
η
αβ = 0)

0 σ
e,d
αβ + σ

ε,d
αβ σ

e,d
αβ + σ

ε,d
αβ

Buckley et al. [10] 0
(
σ
e,d
αβ + σ

ε,d
αβ

)
+ 1

1− θ
T

(
σ
s,d
αβ + σ

η,d
αβ

)
σ
e,d
αβ + σ

ε,d
αβ

Kamrin and Bouchbinder [14] σ e
αβ + σ s

αβ

(
1 + θ

T

) (
σ
e,d
αβ + σ

s,d
αβ

)
+

(
σ

ε,d
αβ + σ

η,d
αβ

)
θ
T

(
σ
e,d
αβ + σ

s,d
αβ

)
+

(
σ

ε,d
αβ + σ

η,d
αβ

)

Xiao and Nguyen [15] 0 σ
e,d
αβ + σ

s,d
αβ

(
σ
e,d
αβ + σ

s,d
αβ

)
+ T

θ

(
σ

ε,d
αβ + σ

η,d
αβ

)

For the cases of Buckley et al. [10] and Kamrin and Bouchbinder [14], the most general forms are given in Sects. 4.2 and 4.3,
respectively, while in this table the special case T = T is considered, inspired by the relation implied by (59) and (61)

with δ0 = δ(tw = 0). Indeed, for e−b δ0 � 1 and a b tw � 1, one obtains logarithmic behavior,

δ(tw) � −1

b
ln (a b tw) , (83)

as desired. In contrast, for sufficiently long waiting times, a b tw  1, one obtains δ � 0. In view of the system
visiting ever deeper energy states in the course of physical aging, it seems more reasonable to have a limiting
value for δ for long waiting times, rather than a logarithmic behavior on all time scales.

4.6 Discussion of the above comparison, and a further possibility for Yαβ and Zαβ

In Sect. 4, we have compared our model with other models known in the literature [3,6,10,14,15], in order
to identify some choices made in the literature for the coupling tensors Yαβ , Zαβ , and the driving force for
viscoplastic deformation, �d

αβ . The results of that comparison are listed in Table 1. Notably, the cases of
Buckley et al. [10] and Kamrin and Bouchbinder [14], discussed in Sects 4.2 and 4.3, respectively, contain a
yet undetermined positive quantityTwith the units of temperature.While the general expressions for Yαβ , Zαβ ,
and �d

αβ are given in the respective sections, in Table 1 only the special case T = T is listed, for illustration

purposes. This choice is motivated by the relation implied by (59) and (61), namely T�d
αβ = σ d

αβ .
As shown in Table 1, only in the work of Kamrin and Bouchbinder [14] there is a nonzero entropy-coupling

term Yαβ . Particularly, according to Table 1 and with the help of the stress tensor contributions (47) and (48),
one can write

TYαβ = σ e
αβ + σ s

αβ = 2ρFe
αγ

(
ê,Ce

γ δ

∣∣∣
T,θ

− T ŝ,Ce
γ δ

∣∣∣
T,θ

)
Fe

βδ . (84)

Since according to [14] the kinetic and configurational subsystems are only weakly coupled, both ê and ŝ can
be assumed to be independent of θ , and thus the term in parenthesis in (84) can be written in the form ê,Ce

γ δ
|ŝ .

Using that Yαβ is of quasi-potential form as discussed in Sect. 3.2, one obtains from (84)

1

y1

∂y2
∂Ce

αβ

∣∣∣∣∣
ŝt,η̂

= 2

T
ê,Ce

γ δ
|ŝ . (85)

Therefore, a possible choice is y1 = T/2 and y2 = ê, implying that both y1 and y2 depend only on ŝ and
Ce. According to the temperature definition (15), one can thus write ê,η̂|ŝt,Ce = −ê,ŝ |Ce = −T for the case
studied in [14], which implies

∂y2
∂η̂

∣∣∣∣
ŝt,Ce

= −2y1 . (86)

Inspection of the Jacobi condition (27) immediately leads to the conclusion that the Jacobi identity is automat-
ically satisfied, without any restriction on the thermodynamic potential for the kinetic subsystem. Therefore,
the choices made in Kamrin and Bouchbinder [14] are fully compatible also with the Hamiltonian structure of
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the reversible dynamics, which is noteworthy as this criterion, namely the Jacobi identity, has not been used
as a guideline in their work [14].

Furthermore, one can infer from Table 1 about the relation between the deviatoric part of the total Cauchy
stress tensor (46), σ d

αβ , and the driving force for viscoplastic deformation �d
αβ , (39) with (54). It turns out that

T�d
αβ = σ d

αβ holds for Boyce et al. [3] and Kamrin and Bouchbinder [14], while for the other cases σ d
αβ and

�d
αβ are not proportional to each other. In general, one might wonder about a condition to actually enforce that

�d
αβ is proportional to σ d

αβ , even if all stress tensor contributions in (46–49) are nonzero. In the following, we
thus consider the case

�d
αβ = 1

T
σ d

αβ , (87)

where T is an arbitrary positive factor with units of temperature that may depend on the dynamic variables.
Enforcing this condition (87) with the stress tensor σαβ (46–49) and the driving force for viscoplastic flow
�d

αβ , (39) with (54), one obtains

−Zαβ = T θ

T
Y d

αβ + T

T

(
θ − T

θ − T

) (
σ
e,d
αβ + σ

ε,d
αβ + σ

s,d
αβ + σ

η,d
αβ

)
. (88)

Notably, this relation between Zαβ and Y d
αβ depends on the factor T. Two special cases lead to drastic simpli-

fications of (88):

− Zαβ = TY d
αβ , for T = θ , (89)

−Zαβ = θY d
αβ +

(
σ
e,d
αβ + σ

ε,d
αβ + σ

s,d
αβ + σ

η,d
αβ

)
, for T = T, (90)

which differ from each other by the deviatoric part of the Cauchy stress tensor, namely Zαβ |T=θ − Zαβ |T=T =
σ d

αβ . To complete this section, it should be pointed out that at thermal equilibrium, i.e., θ = T , there seems to
be a divergence in the second term on the right-hand side of (88). However, since the temperature-like quantity
T is assumed to be directly related to T and θ , it is reasonable that upon |θ − T | → 0 also |θ − T| → 0,
implying that in the limit the divergence would not exist, but rather the entire relation (88) would remain well
defined.

5 Concluding remarks

By applying nonequilibrium thermodynamics in the form of the general equation for the nonequilibrium
reversible-irreversible coupling (GENERIC), a model has been formulated for describing the mechanical
behavior of amorphous solids (e.g., glassy polymers), in particular physical aging andmechanical rejuvenation.
A key ingredient in this approach is the split of the thermal system into kinetic and configurational subsystems
with corresponding degrees of freedom. Doing so results in evolution equations for the momentum density,
kinetic and configurational entropies (or their respective temperatures or energies), and the elastic part of the
deformation gradient. Moreover, constitutive expressions have been derived for the Cauchy stress tensor and
for the viscoplastic flow rule. The most prominent features of the proposed model are the following:

• The reversible dynamics (see Sect. 3.2), induced by the action of the Poisson operator on the energy gradient,
couples the evolution equations for kinetic and configurational entropies in a nontrivial manner, quantified
by the tensor-valued function Yαβ . Due to the anti-symmetry of the Poisson operator, this coupling in turn
leads to additional contributions to the Cauchy stress tensor, the latter being of hypoelastic rather than
hyperelastic nature in general. The reversible entropy-coupling, and thus also the additional stress tensor
contributions, is subject to conditions implied by the Jacobi identity.

• In the irreversible dynamics (see Sect. 3.3), the split of dissipation due to viscoplastic deformation onto
the two thermal subsystems (kinetic and configurational) is controlled by another tensor-valued function
Zαβ . This latter quantity occurs not only in the irreversible dynamics of the specific subsystem entropies,
but also in the constitutive relation for the viscoplastic flow.
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The tensor-valued functions, Yαβ and Zαβ , that couple the two thermal subsystems in the reversible and
irreversible dynamics, respectively, are still quite general. Specifying their form, one can represent many other
models known in the literature, as elaborated in detail in Sect. 4.

An essential part of this paper is devoted to devise appropriate coupling of the two thermal subsystems in
the reversible dynamics. In this respect, using GENERIC proves beneficial, since this framework respects the
Hamiltonian structure, and therefore imposes severe constraints for the model formulation. Particularly, the
importance of the Jacobi identity is highlighted, which represents the time-structure invariance of the reversible
dynamics [27]. In this paper, the implications of the Jacobi identity on the reversible coupling (quantity Yαβ

or ˆ̄Yαβ , respectively) of the kinetic and configurational entropies have been examined. It seems that this is a
research direction that to date has received only limited attention. To foster further research activities in this
direction, some comments in relation to the developments in Sect. 3.2 are added. While the condition (25) for
ˆ̄Yαβ is fully general, we believe that a large fraction of physically reasonable models are of quasi-potential

type ˆ̄Yαβ = (1/y1)(∂y2/∂Ce
αβ)|ŝt,η̂ as discussed in Sect. 3.2, in which case the relevant condition on the two

scalar-valued functions y1 and y2 is given by (27), or (28), respectively. It is noteworthy that a possible solution
to comply with the Jacobi identity, (27) or (28), is given by

∂y2
∂η̂

∣∣∣∣
ŝt,Ce

+ 2y1 = 0 . (91)

As a matter of fact, it can be shown that (91) results in a vanishing material time-derivative of y2,

Dt y2 = 0 , (92)

completely analogous to the evolution of ŝt , Dt ŝt = 0. Therefore, instead of working with the set of variables
X = (m, s, η, Fe) with reversible entropy-coupling described by (91), one could perform a transformation
of variables to X ′ = (m, ŝt, y2, Fe). The latter set is technically more convenient, since the Jacobi identity is
known to be fulfilled for (m, ŝt, Fe) [28]. Viewing this in a Lagrangian setting [35], it is immediately clear that
including an additional variable (namely y2) with dynamics given by (92) does not disturb the compatibility
with the Jacobi identity. Since the Jacobi identity is invariant with respect to a transformation of variables
X ↔ X ′, there is thus a clear understanding why the class of models described by (91) respects the Jacobi
identity, namely by viewing y2 as a fundamental dynamic variable. However, it is emphasized that from a
physical, modeling perspective, it may be beneficial to keep the configurational entropy (η or η̂, respectively)
as a fundamental variable instead. In any case, when formulating the thermomechanics of amorphous solids
with two thermal subsystems, the condition (91) makes it possible to include a reversible entropy-coupling
of quasi-potential form in a straightforward way. While the case of Kamrin and Bouchbinder [14] discussed
above is an example thereof, the class of models covered by (91) is even richer.
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