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Introduction: This study examines the data from single loop detectors on northbound (NB) US-101 in San 
Jose, California to estimate real-time crash risk assessment models. Method: The classification tree and neural 
network based crash risk assessment models developed with data from NB US-101 are applied to data from 
the same freeway, as well as to the data from nearby segments of the SB US-101, NB I-880, and SB I-880 cor
ridors. The performance of crash risk assessment models on these nearby segments is the focus of this re
search. Results: The model applications show that it is in fact possible to use the same model for multiple 
freeways, as the underlying relationships between traffic data and crash risk remain similar. Impact on 
Industry: The framework provided here may be helpful to authorities for freeway segments with newly 
installed traffic surveillance apparatuses, since the real-time crash risk assessment models from nearby free
ways with existing infrastructure would be able to provide a reasonable estimate of crash risk. The robust
ness of the model output is also assessed by location, time of day, and day of week. The analysis shows 

that on some locations the models may require further learning due to higher than expected false positive 
(e.g., the I-680/I-280 interchange on US-101 NB) or false negative rates. The approach for post-processing 
the results from the model provides ideas to refine the model prior to or during the implementation. 
1. Introduction 

Much progress has been made in recent years in shifting from 
reactive (incident detection) to proactive (real-time crash risk assess
ment) traffic strategies, as traffic safety on freeways continues to be 
a growing concern. Reliable models that can take in real-time loop 
detector information and discern normal flow conditions from 
crash-prone conditions are keys to implementing crash preventative 
measures. This area of research has gained increased attention with 
increased capabilities to collect, archive, and analyze these data 
throughout the world. The examples of this work from around the 
world include: Canada (Lee, Hellinga, & Saccomanno, 2003), Europe 
(Christoforou, Cohen, & Karlaftis, 2011), Japan (Hossain & Muromachi, 
2010), and several U.S. states including Florida (Pande & Abdel-Aty, 
2006a, 2006b), Southern California (Oh, Oh, Ritchie, & Chang, 2001), 
and Colorado (Yu, Abdel-Aty, & Ahmed, 2013). 

These studies, with ITS-related archived data from different 
sources and advanced modeling techniques, have demonstrated the 
feasibility of this proactive approach. A number of these studies 
have set up the problem in the form of binary classification (Pande 
& Abdel-Aty, 2006a, 2006b; Oh et al., 2001; Yu et al., 2013) and 
have developed sophisticated classifiers to separate crash prone 
conditions on uninterrupted flow facilities from ‘normal’ traffic 
conditions. A classification approach is applied in the present study 
as well, with classification trees providing a preliminary assessment. 
The classification tree models identified the most significant traffic 
variables for separating the conditions before historical crashes from 
traffic conditions drawn from random time/location on NB US-101 
freeway in the San Jose (California) area. These significant traffic vari
ables are then subject to Levenberg-Marquardt (LM) training algo
rithm to estimate MLP neural network based classifiers. The focus of 
this work is to examine the performance of these models in a variety 
of settings including at other freeways segments (SB US-101 and NB 
and SB I-880) in the area and at different times of day/days of week. 
This is a follow-up of one of the author’s most recent work in this 
area, where models developed from I-4 data in the central Florida re
gion were assessed with data from I-95 corridor (Pande, Das, Abdel-
Aty, & Hassan, 2011). 

1.1. Background 

Past studies have already demonstrated that statistical links can be 
established between real-time traffic flow variables (such as average 
speed, volume, occupancy, and their respective standard deviations) 
and crash likelihood (e.g., Golob & Recker, 2004; Xu, Liu, Wang, & 
Yu, 2011). However, most of these previous studies have focused on 
a single highway corridor. Some of the studies that did use data 
from multiple corridors combined the data from all freeways without 
transferability assessment (e.g., Abdel-Aty, Pande, Das, & Knibbe, 

lib-dc
Typewritten Text
Pande. Published in Journal of Safety Research,46,(2013):83-90



2008; Golob & Recker, 2004). In a recent study that did assess the 
transferability of the crash risk assessment models, the results did 
not appear to be promising, in terms of transferability for the model 
estimated from I-4 data onto the I-95 corridor in the central Florida 
region (Pande et al., 2011). 

In this regard, the authors view transferability as one critical issue 
that still needs further addressing. This study advances the current 
body of knowledge by exploring whether traffic and crash patterns 
are similar enough in close geographic proximity to apply the estimat
ed classification models from one roadway segment onto another. 
Since gathering data from different sources and combining them is 
a significant effort, it would be worthwhile to know whether models 
developed from one freeway can be applied to the data from other 
freeways. While it may be unreasonable for models developed with 
data from a dense urban freeway environment to perform well on a 
rural freeway corridor, no studies have yet tested models from the 
same geographical area to other freeways in close proximity. This 
study makes an effort in that direction. The effort would be helpful, 
for example, since the overall objective of the work recently done in 
Japan was to layout the infrastructure for traffic surveillance data 
collection (Hossain & Muromachi, 2010). Additionally, classification 
errors by the models (both in the form of false positives and false neg
atives) are analyzed for any pattern, with regards to the day of the 
week, time of the day, and physical location on the route. 

This paper is organized as follows: In the next section, data collec
tion and preparation, including the study area, are described. The 
following section details the steps of the data mining-based classi
fication process. The section after that briefly discusses the model 
estimation process, along with the performance of the model on 
the validation dataset from the same freeway segment (NB US-101) 
as the training dataset. Note that since the focus of this study is on 
transferability and robustness, the model estimation and validation 
process (essentially testing the models with data from the same free
way corridor) is not very detailed. The section after that demonstrates 
the classification performance of the model on nearby freeway 
sections. After a discussion on transferability, the model outputs are 
examined in different settings. This examination provides insights 
into settings where the neural network-based model may require fur
ther learning. 
2. Data collection and preparation 

2.1. Study area 

For this study, crash data from a 16-month period (January 2010 
through April 2011) were collected on four freeway corridors: 
US-101 NB and SB and I-880 NB and SB in the San Jose area. These 
corridors in the city of San Jose run through dense urban develop
ment and are among the busiest in the South Bay Area. The mile 
point boundaries and number of crashes for these corridors during 
the aforementioned period are provided in Table 1. 

Note that the crash counts listed in Table 1 are total crash counts 
and that not all of these crashes could be used for the analysis, since 
mechanical failure occasionally rendered the corresponding loop 
detectors unable to record any data for some crash observations. 
The segments are shown in a map in Fig. 1. 
Table 1 
Freeway sections details and crash counts. 

Freeway Starting Milepost Ending Milepo

US-101 NB 375.31 392.37 
US-101 SB 392.45 375.81 
I-880 NB 0.13 8.27 
I-880 SB 9.01 0.9 
2.2. Data preparation 

Both traffic and crash data were downloaded from Caltrans’ PeMS 
(Performance Measurement System) clearinghouse (Varaiya, 2007). 
The downloaded traffic data included the following variables for 
each vehicle detection station (VDS): time and date, milepost, average 
speed, volume, and lane-occupancy information measured every 
30 seconds at the corresponding VDS. It is worth mentioning that 
among these variables, volume and lane-occupancy are measured var
iables. The 30-second average speed is calculated using these two 
measurements along with a predetermined effective vehicle length. 
This is in contrast with dual loops which can measure speeds directly. 
In this study we have chosen to use only the data reported by the loop 
detectors independently and have not use speed information. 

Since the modeling approach adopted here was binary classi
fication, the same traffic data were also collected for randomly-
generated non-crash cases. The traffic data corresponding to the 
‘non-crash’ cases would be representative of the ‘normal’ conditions 
on the freeways, as opposed to the traffic data corresponding to the 
historical crash cases, representing crash prone conditions. Each 
crash and non-crash event was merged with corresponding traffic 
data from six VDS locations, the three nearest in both the upstream 
and downstream directions. The authors note that the Caltrans loops 
are typically spaced between 0.5 and 0.8 miles apart in this study area. 

One of the previous studies by one of the authors (Pande & 
Abdel-Aty, 2008) noted that there is significant noise in the raw 
30-second loop detector data and therefore they are not suited for 
modeling purposes. Hence, for each of the six VDS locations, individual 
variables were averaged across all lanes, and aggregated into five 
minute intervals. These intervals are: 0-5 minutes after the crash 
(time slice 0), 0-5 minutes before the crash (time slice 1), 5-10 mi
nutes before the crash (time slice 2), 10-15 minutes before the crash 
(time slice 3), and 15-20 minutes before the crash (time slice 4). For 
each of the time slices, standard deviations of the variables were also 
calculated, since past studies (e.g., (Lee et al., 2003) note that variation 
in traffic parameters is critically associated with the freeway crash po
tential. Based on the results documented in Pande, Nuworsoo, and 
Shew (2012), it was found that time slice 2 is the most appropriate pe
riod for real-time crash risk estimation. Therefore, the analysis 
presented here focuses on models developed with variables aggregat
ed for the interval 5-10 minutes before the crash. 

The aim of this research is to develop models with the ability to 
separate conditions prone to crashes on these San Jose area freeways 
from ‘normal’ freeway traffic. The normal conditions were represent
ed by the random sample of non-crash loop detector data. To gener
ate a random non-crash sample, the total study period was divided 
into one minute periods from which a random sample of times 
could be selected as the time of the non-crash ‘event.’ Similarly, mile
post location for non-crash cases could also be drawn from any mile
post from the beginning to the end of the corresponding corridor. 
From all possible combinations of date-time and mileposts, a sample 
of non-crash cases were derived. To ensure that the neural network 
based classifier adequately learns ‘normal’ conditions, there were 10 
non-crash ‘events’ for every crash event used in the analysis. 

The nearest three VDS locations in both upstream and down
stream directions of the event location milepost were also identified 
for all of these non-crash events. The time horizon (5-10 minutes 
st Study Segment Length Crash Counts 

17.1 mi. 2176 
16.6 mi. 1903 
8.1 mi. 937 
8.1 mi. 1128 



Fig. 1. Map of the San Jose freeways with highlighted study segments (Source: Google Maps™). 
before the time of event) was also the same as the crash events and 
was used to calculate the averages and standard deviations of all traf
fic variables. To relate these data with crash and non-crash cases, a 
data mining approach was adopted. 

3. Modeling methodology 

Data mining is the analysis of “observational” databases to find 
potentially useful relationships (Hand, Mannila, & Smyth, 2001). Free
way traffic surveillance data, collected through loop detectors, is one 
such “observational” database maintained for various ITS (Intelligent 
Transportation Systems) applications, such as travel delay estimation 
and dissemination. In this research, a data mining process is used to 
relate the measures of traffic conditions (data from VDS) with historical 
crashes on freeways. Note that data mining based analysis is preferred 
here, since techniques from traditional statistics are more suitable for 
handling the data obtained through an experimental design, which is 
clearly not the case here. The data mining process applied for this 
study has two key components, namely a variable selection procedure 
(based on classification tree) and a neural network-based modeling 
procedure, with parameters identified through the preceding classi
fication tree as inputs. These components of the data mining process 
are described in the ensuing sections. 

3.1. Classification tree application for variable selection 

The basic idea in classification tree model is to recursively split 
each (non-terminal) node such that the descendent nodes are 
‘purer’ or further segmented with even larger (smaller) proportion 
of the majority (minority) class, than the parent node. In the context 
of binary classification the ‘purest’ node will have all observations 
belonging to only one of the two classes. Each rule assigns an obser
vation to a group based on the value of an input. One rule is applied 
after another, resulting in a hierarchy of groups within groups. The 
hierarchy is called a tree, and each group is called a node. The final 
or terminal nodes are called leaves. For each leaf, a posterior probabil
ity of the observations belonging to each class is calculated based on 
the proportion of the two classes (crash and non-crash cases in the 
present study) in that leaf. 

All possible splits for all variables are evaluated and ranked based 
on one of three criteria, namely, Chi-square test (used in this study), 
Entropy reduction, or Gini reduction, to choose amongst the available 
splits at every non-terminal node. According to Chi-square test criteri
on, the split resulting in the cross-frequency table with maximum –log 
(p-vlaue) (i.e., minimum p-value) is selected. Note that the selection 
of the split with the minimum p-value would ensure that Child nodes 
resulting from the selected split are more homogeneous in nature. 
The splitting process is continued until there is no (or less than a pre-
specified minimum) reduction in impurity and/or the limit for mini
mum number of observation in a leaf is reached (SAS Institute, 2011). 

Breiman (1984) devised a variable importance measure (VIM) for 
trees. This measure may be applied as a criterion to select a promising 
subset of variables for tools such as neural network. In this study, 
the VIM used has been scaled by maximum importance for the tree 
so that it lies between 0 and 1 with the VIM > 0.05, indicating a sig
nificant variable worthy of being included in neural network-based 
classification models. A detailed discussion of the application of VIM 
in this context may be found in Pande and Abdel-Aty (2006a). 

3.2. MLP neural network architecture and training 

A neural network is defined as a parallel-distributed processor 
made up of simple processing units having natural propensity for 
learning from an available training dataset and making generaliza
tions for future datasets (Christodoulou & Georgiopoulos, 2000). 
Generalization refers to the ability of a “trained” network to provide 
satisfactory responses even for the inputs that it has not seen during 
the training process. Neural network models may usually be specified 
by three entities, namely the model of processing elements them
selves, the model of interconnections and structures (i.e., network 
topology), and the learning rules. In this study, a multi-layer per
ceptron (MLP) network with feed-forward connections was used. 
The procedure adopted for training, crucial in the performance of a 
neural network, was the LM (Levenberg–Marquardt) algorithm. LM 
algorithm is an iterative optimization procedure to minimize the 
error of the neural network model. The theoretical details of the algo
rithm may be found in Wilamowski, Iplikci, Efe, et al. (2001). Details 
of the procedure for binary classification of traffic patterns in the 
present context may also be found in Pande and Abdel-Aty (2006a). 
According to Wilamowski et al. (2001), the LM algorithm becomes 
computationally impractical for large size neural networks with an 
increase in the number of independent variables. Therefore, the vari
able selection process through classification tree is quite useful for 
this application. 

4. Model estimation 

These modeling techniques were used to estimate 2-VDS, 
4-VDS, and 6-VDS models with traffic information aggregated from 
5-10 minutes before the crashes. 2-VDS model here refers to the 



fact that one VDS station in each direction upstream and downstream 
of the crash (or non-crash) location contributed traffic information as 
input to the model. Similarly, 4-VDS and 6-VDS model indicates that 
two or three stations, respectively, in each direction upstream and 
downstream of the crash (or non-crash) location contributed traffic 
information to the model. While this paper documents the models 
for time slice 2 only, further details of models for other time slices 
and variables found significant by the classification tree may be 
found in Pande et al. (2012). Once the significant variables were iden
tified, the variables were subjected to the LM algorithm-trained 
neural network model. It was found that 6-VDS model did not 
improve on the classification performance of the 4-VDS model. Com
bined with the fact that it required six VDS locations to report data 
simultaneously to produce the crash risk estimate, 6-VDS models 
were not considered practical for application. Hence, from here on, 
we will only discuss 2-VDS and 4-VDS models. The variables found 
significant by the classification tree for these sets of models may be 
found in Pande et al. (2012). The significant variables identified in 
this study were consistent with the findings from literature from 
past research. 

The output for the LM trained neural network model was the pos
terior probability (between 0 and 1) of an observation being a crash, 
with a higher number indicating a greater risk of crash. It should also 
be noted the posterior probability is not the probability of crash oc
currence at a given point in time/location but is a measure providing 
the relative likelihood of crash occurrence given the composition of 
the sample. The model’s classification performance can be assessed 
by the proportion of crashes identified within certain percentiles of 
observations with highest posterior probability. A 30 percentile crite
rion was used in this study to assess classification performance. If one 
were to randomly classify observations (referred to as a random 
‘baseline’ model) from a dataset, within any set of 30% observations 
one would expect to capture 30% of all crashes in the dataset. Any 
model can be assessed for its classification based on the difference 
between crashes it identifies within the top 30 percentile observa
tions with highest posterior probability versus 30%. This comparison 
on the validation dataset is provided in the next section. Note that 
the validation dataset comprises of the NB US-101 data not used in 
the training of the neural network model or classification tree-based 
variable selection. 

4.1. All crash model comparison: US 101 validation dataset 

The performance of best 2-VDS and 4-VDS model are shown along 
with a random baseline model in Fig. 2. 
Baseline Model 
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Fig. 2. Model performance comparison on validation dataset from US 101 NB section. 
The curves in Fig. 2 show the percentage of the crashes in the 
validation dataset captured within various deciles (10 percentiles) 
of posterior probability by 2-VDS and 4-VDS model on the y-axis. 
On the x-axis the percentiles are shown at equal intervals of 10. 
Fig. 3 also demonstrates ‘performance’ of the random baseline model 
that represents the expected percentage of crashes identified in the 
validation sample if one randomly assigns validation dataset obser
vations as crash and non-crash. A model can be assessed by examin
ing the separation of its corresponding lift curve from the random 
baseline curve. The crash identification performance of the models 
(up to 50 percentiles) corresponding to these curves is provided in 
Table 2. The threshold may be selected at the application stage, 
based on the desired number of warnings. 

The margin in the parentheses shows the differential between 
crashes identified by the corresponding model and the Baseline 
model. It may be seen from Table 2 that the 4-VDS model identifies 
62.79, 68.60, and 75.58% crashes in the validation dataset, respec
tively, at 30, 40, and 50 percentile thresholds. For the 2-VDs model, 
the percentages are 55.81, 66.28, and 74.42% respectively. As we in
crease the percentage of observations declared as crash (i.e., higher 
percentile threshold), the crash identification will obviously improve, 
but the percentage of non-crash cases correctly identified would 
decrease. Hence, there is a trade-off involved, since as one assigns 
more patterns as crashes, the ‘false alarms’ increase. These percent
ages, when compared to the baseline model, clearly show that the 
both 2-VDS and 4-VDS neural network models are capable of identi
fying relative crash risk based on the posterior probability output 
measure. While the 4-VDS model does appear to be more capable 
with higher proportion of crashes being identified at various thresh
olds, the performance needs to be seen in the context of the higher 
data requirement. Note that the output from this model requires 
data to be available from 4 VDS locations simultaneously. Therefore, 
it was decided that the robustness and transferability analysis will 
be carried out for both models. 

5. Are these models robust and transferable? 

5.1. Transferability evaluation 

Transferability evaluation, that is the potential to apply the predic
tive model developed on one freeway segment to other similar facilities 
in the region, is the focus of this research. The two models, 2-VDS and 
4-VDS, were applied to the datasets from the US-101 SB, I-880 NB, 
and I-880 SB freeway sections described earlier in the paper. As was 
discussed in the literature review, previous studies have either NOT 
addressed the issue (which is critical to real-time application in a net
work) or tried to apply the model on dissimilar facilities (such as in a 
different study area) and subsequently reported lack of transferability 
(Pande et al., 2011). 
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Fig. 3. Transferability Analysis for the Models on other freeways. 



Table 2 
Performance of the classification models over the validation dataset. 

Percentiles of Posterior Percentage of crashes identified in the validation 
Probability dataset 

Baseline model 4-VDS 2-VDS 

10 10 44.19 (+ 34.19) 26.74 (+ 16.74) 
20 20 55.81 (+ 35.81) 45.35 (+ 25.35) 
30 30 62.79 (+ 32.79) 55.81 (+ 25.81) 
40 40 68.60 (+ 28.60) 66.28 (+ 26.28) 
50 50 75.58 (+ 25.58) 74.42 (+ 24.42) 
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Fig. 4. Robustness of the best model.
 
The posterior probability of the observation being a crash was 
estimated for each observation in the datasets. We then examined 
the proportion of crashes in the dataset captured within the 30% 
observations having the highest posterior probability. Note that the 
model that identifies higher proportion of crashes within 30th 
percentile is considered a better model. The cumulative percentages 
of identified crashes for the best model (either 2-VDS or 4-VDS) on 
each of the three corridors are depicted in Fig. 3. 

In addition to these three nearby freeway corridors, the model 
was also applied on the complete set of US-101 NB data. It was 
done since the results shown in Table 1 and Fig. 2 are based on apply
ing the tree model on the validation dataset (which is only 30% of 
observations from US-101 NB). Applying the model on the US-101 
NB dataset allows us to compare all four models based on a consistent 
measure. It is worth mentioning that these percentages of captured 
crashes for transferability analysis are obtained from different models 
(4-VDS or 2-VDS), identifying higher percentages of crashes depend
ing on the model. The figure also provides the model type with the 
percentage of crashes identified. 

I-880 SB is the corridor where the model estimated from US-101 
NB data seems to be the most readily transferable, based on the clas
sification performance. Overall, all three models are better than the 
random baseline performance, but are not as good as the US-101 NB 
data. Hence, the conclusion from this analysis is that while the models 
do transfer, the performance may be improved by adding data from 
the same freeways at the model calibration (training and validation) 
stage. 

5.2. Analysis of robustness: classification errors 

Of course, no model will be a perfect classifier of crashes and 
non-crash cases. However, it is important to identify situations in 
which a model is more ‘perfect’ than other situations. Hence, these 
models’ outputs for US-101 NB, as well as to data from the three 
other freeway segments, were then assessed for their classification 
performance in a variety of situations. This analysis of robustness has 
not been carried out in the similar studies and may help in identifying 
location and times of day/days of week for which additional training of 
the neural network may be warranted. To study the robustness of the 
models, for each model (2-VDS and 4-VDS models discussed above), 
all cases (crash and non-crash) were sorted in descending posterior 
probability output so the ones most likely to be a crash were at the 
top and the least likely ones at the bottom. All non-crashes in the 
top 10% observations (most likely to be crashes according to the 
model) were labeled as “false positives” and all crashes in the bot
tom 10% of observations (least likely to be crashes according to the 
model) were labeled as “false negatives.” This process was repeat
ed for cases in all four segments of the freeway. 

To examine the robustness of the model, we examined patterns 
in these “false positives” and “false negatives:” day of week/time of 
day (off-peak, morning peak, or afternoon peak), and location of the 
crash/non-crash case. While potentially significant, incident duration 
could not be analyzed in this framework since the California Highway
 
Patrol database from PeMS was missing this information for most 
of the cases. The findings for the false positives and false negatives 
for each model were compared to the model performance on all 
crash and non-crash cases. It should be noted that the false negative 
(crash cases deemed safe by the model) is less conclusive due to the 
smaller sample size, although there are clearly observable trends. 
The trends shown below are from 4-VDS model for US-101 NB. 

5.2.1. Time of day and day of week 
Fig. 4 shows that while more than 80% of overall data were from 

the off-peak locations, among the “false positives” and “false negatives” 
off-peak periods represented a smaller proportion. The morning peak is 
overrepresented in “false positives.” It indicates that while the model 
deems the morning peak conditions to be crash prone, there are fewer 
crashes. It may be caused by the fact that the drivers are more attentive 
during morning peak periods and are able to successively navigate 
through crash prone conditions. 

While the trends is not as pronounced in the afternoon, it ap
pears that there are more false negatives indicating that in the 
afternoon drivers end up in crashes even when the model is not 
detecting these conditions. While drivers’ fatigue may play a role 
here, it could also be caused by the fact that congestion in the after
noon can back up much faster and those conditions are not captured 
by the model, since it uses data from up to 10 minutes before the 
crash. 

5.2.2. Location 
We next evaluated whether there are any locations that were 

over-represented in the misclassifications. The first upstream VDS 
location for all “false positives” and “false negatives” was determined 
as a subset of the original spatial distribution of all incidents. While 
most locations had the false positives and false negatives consistent 
with their proportion in the overall data, there were three locations 
that were noteworthy on US-101 NB: 

VDS 401890: Higher percentage of “false positives:” Fig. 5 shows 
that this VDS is located at the US-101/I-280/I-680 interchange, 
where a large amount of weaving, merging activity may lead to 
higher speed variations. Higher level of turbulence prevailing in 
this location means that the drivers need to carefully navigate 
through this section, since the model deems this location to be 
crash prone more often than others. 



Fig. 5. Location Map of VDS 401890 (High False Positives). 

Fig. 6. Location Map of VDS 400858 (High False Negatives). 
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Fig. 7. Location Map of VDS 400195 (High False Negatives). 
VDS 400858 and 400195: Higher percentage of false negatives: 
Figs. 6 and 7 show that these locations are on long, straight 
US-101 NB segments, where other factors (driver errors at high 
speed) are likely to be responsible for more crashes. 

It is worth mentioning that while results from all freeways dem
onstrated these trends; the trends from the other freeways mirror 
US-101 NB results to the degree of how well the original predictive 
US-101 NB model fit the other data. For example, I-880 NB was closest 
to the US-101 NB in terms of crash identification and hence the trends 
on I-880 matched most closely to the US-101 NB trends. 

6. Conclusions 

Research in the area of real-time crash risk estimation on uninter
rupted flow facilities have been enhanced in the past 10 years with 
sophisticated classification algorithms applied to a variety of available 
traffic surveillance data. The authors identified that the literature had 
not yet conclusively answered the question of transferability of a 
crash risk estimation model from one freeway to another. The other 
question that remained unanswered was whether the misclassifications 
from crash risk estimation models are concentrated on certain situa
tions of time of day/day of week or locations. 

Answering these questions is important since the uninterrupted 
flow facilities from the same region tend to have similar types of 
data collection infrastructure. Also, the objective of research con
ducted in Japan (Hossain & Muromachi, 2010), was to identify the 
setup of traffic surveillance infrastructure yet to be put in place. The 
conclusion from this study on the transferability of the same model 
can be beneficial to freeways where such infrastructure is either 
being currently or have been recently put in place. The crash risk on 
such sections can be estimated from a transferable model from the 
freeways nearby. It is also worth noting that while models for most 
locations may be transferable from one freeway to the other, some lo
cations on the same freeway may require additional training for crash 
risk estimation (e.g., the US-101 NB section near the I-680/I-280 inter
change). This study provided a framework to flag these locations for 
additional model training, through analysis of “false positives” and 
“false negatives” by locations. On a system of freeways, these locations 
with higher “false positives” or “false negatives” may be combined to
gether from different facilities by not restricting the freeway crash risk 
estimation model by the corridor. 
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