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Feasibility of CubeSat Formation Flight Using Rotation to 

Achieve Differential Drag 

Skyler M. Shuford
*
 

California Polytechnic State University, San Luis Obispo, CA, 93401 

This paper presents the results of a study conducted to understand the feasibility of 

CubeSat formation flight.  The mechanism for separation and formation studied was 

differential drag, achieved by rotating the CubeSats to give them different cross-sectional 

areas.  Intuitively, lower altitude orbits provide much higher separation effects.  Although 

the most influential orbital effects occur with maximum and minimum cross-sectional areas, 

an attitude-controlled and a tumbling CubeSat may provide enough differential drag to 

meet separation requirements of a mission.  Formation flight is possible, but due to the non-

linearity of the system, gain scheduling may be the most effective method of long term 

formation control.  Formation flight on missions with sun-tracking is also possible using the 

time in eclipse as the control time.  Future studies will need to see how long formation can be 

maintained, as well as how significant altitude affects the total possible formation duration.  

Nomenclature 

A = CubeSat cross-sectional area 

a = acceleration 

e = error 

h = angular momentum 

k = control gain 

m = CubeSat mass 

r = position 

v = velocity 

 

Greek 

μ = gravitation parameter of Earth 

ρ = atmospheric density 

Ω = rotation rate of the chief coordinate frame 

 

Subscripts 

chief = chief spacecraft 

d = derivative 

deputy = deputy spacecraft 

desired = the desired target value for the control scheme 

drag = effect of drag 

ECI = Earth-centered inertial 

grav = effect of gravity 

I, J, K = components of ECI coordinate frame 

LVLH = local-vertical local-horizontal 

nom = nominal 

p = proportional 

x, y, z = components of the LVLH coordinate frame 

 

Symbols 

                                                 
*
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Cd = coefficient of drag 

 ̅ = state vector 

δA = differential cross-sectional area 

δr = relative postion 

δv = relative velocity 

I. Introduction 

UBESATS are spacecraft of the picosatellite class that follow the standard created by California Polytechnic 

State University (Cal Poly) and Stanford University.  This standard limits 1 unit (1U) CubeSats to 1.5 kg and a 

10 cm cube (fig. 1), and 3U CubeSats to 4 kg 

and a 10 cm x 10 cm x 30 cm envelope.  This 

standard allows ease of integration into the 

Poly-Picosatellite Orbital Deployer (P-POD).  

The P-POD secures the CubeSats to the launch 

vehicle and ensures the protection of the 

primary payload from the secondary, CubeSat 

payload. Flying CubeSats as secondary payload 

gives companies and universities low-cost, 

reliable access to space. 

 The ever-increasing capabilities of 

CubeSats, along with relatively inexpensive 

development and flight costs, create the 

opportunity for multi-satellite formations and 

constellations.  However, the CubeSat standard 

does not currently allow for propulsion 

pressurant tanks onboard the spacecraft due to 

the risk of rupture or misfire.  Therefore, 

CubeSat developers must use means other than pressurized thrusters in order to change and control the orbit of the 

CubeSat.  Electric propulsion, solar sails, the Lorentz force using Earth’s magnetic field, and differential drag
1
 are 

four non-pressurized options that would allow for orbit changes.  The focus of this paper is to study the feasibility of 

simple means of attaining differential drag in order to separate and maintain formation. 

 Drag is a function of drag coefficient, atmospheric density, mass, cross-sectional area (CSA), and velocity.  

Assuming a constant drag coefficient and mass, the logical control surface for achieving differential drag is CSA.  A 

difference in CSA creates differential accelerations on the CubeSats involved, which changes the orbits of both 

spacecraft.  Consequently, the atmospheric density, which is a function of altitude in the simplified model, and 

velocity would also be changed.   

 CSA can be varied in a few different ways.  The simplest is to rotate the CubeSat so that there is a different area 

in the ram direction.  Consequently, a tumbling CubeSat has a different effective CSA than a controlled CubeSat 

with a constant face in the ram direction.  Another method of changing CSA is to deploy solar panels or a sail.  This 

allows for much larger differences in CSA, however the mechanisms for deployment add complexity and risk to the 

design.   

 Colony II is a 3U CubeSat bus created by Boeing.  It has deployable solar panels that deploy to create a 

maximum CSA of 2100 cm
2
.  The spacecraft has 3-axis control in order to track the sun with the solar panels.  Since 

rotating the CubeSat for drag-based formation flight is impossible while it tracks the sun, the only opportunity for 

orbit control is during eclipse. 

II. Procedure and Equations 

A MATLAB simulation propagated the orbits of two CubeSats
2
.  This was done using ode113 to integrate the 

derivative of the state vector in Earth Centered Inertial (ECI) coordinates. 
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Figure 1:  Drawing of CubeSat 1U Standard (courtesy cubesat.org) 
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 The velocity was updated from the state vector input to ode113.  The accelerations included were from gravity 

and drag.  The acceleration from gravity was in the reverse position vector and assumed the Earth to be a point mass.  

The acceleration from drag was in the reverse ram direction.  The acceleration vectors are 

 

 
r

r

r
ag ra v 




2




 (2) 

 

 
v

v

m

vAC
a d

drag 


 2

2

1 


 (3)

 

where  is the gravitational parameter of Earth, r is the position, Cd is the coefficient of drag, A is the CSA,  is the 

atmospheric density, v is the velocity, and m is the mass.  The atmospheric density was estimated using the 

exponential model, which is a function of altitude. 

The code converts the position and velocity vectors into the Local Vertical Local Horizontal (LVLH) coordinate 

frame in order to plot it in an easily analyzed format
3
.  Since LVLH is a rotating coordinate frame, the relative 

velocity vector has an extra term to account for the rotation.  The relative position and velocity vectors can be found 

using 

 

 chi efchi efchi ef vrh



 (4)

 

 

 

2

ch ief

ch ief

r

h







 (5)

 

 

 c hi e fde put yECI rrr



 (6)

 

 

 
)( ECIc hi e fde put yECI rvvv


 

 (7)
 

 

where chiefr


 is the position vector of the chief in ECI, 
chiefv


 is the velocity vector, chiefh


 
is the angular velocity 

vector, 


 is the rate of the rotating relative coordinate frame, and ECIr


  and EC Iv


 are the relative position and 

velocity vectors of the deputy in ECI, respectively.  The relative position and velocity vectors are then converted 

from the ECI frame to the LVLH frame through a transformation matrix.  The equations used are 
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where î , ĵ , k̂  are unit vectors that define the LVLH coordinate frame, 
LVLH

ECIQ  is the transformation matrix, and 

LVLHr

  and LVLHv


  are the relative position and velocity vectors in LVLH.   

 The code also has an option to control the CSA in order to separate two CubeSats to a desired relative axial 

separation.  The controller takes into account the error in relative position and velocity from desired to get an 

estimated differential area necessary.  The equations are propagated for both spacecraft with the chief at a nominal 

CSA and the deputy having an area utilizing the differential area.  This is limited to the maximum and minimum 

deputy areas using an if-statement.  The error, differential area, and final acceleration vectors are 
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where e  and e  is the relative axial position and relative axial velocity error, respectively,  A   is the differential 

area, pk  and dk  are the proportional and derivative gains, respectively, and n o mA  is the nominal CSA. 

III. Results and Discussion 

A. Separation and Approach 

To study the possible separation and approach rates, the orbits of 1U chief and deputy CubeSats were propagated 

at starting altitudes of 200 km, 400 km, and 600 km using ode113.  Since CubeSats are released from the P-POD in 

very close proximity, it was assumed that the chief and deputy had identical initial orbits.  The chief was propagated 

with a constant minimum CSA, which was 100 cm
2
.  Three cases for the deputy were propagated: 3-axis-control 

maximum, yaw-control maximum, and tumble.  The 3-axis-control maximum case is the absolute maximum 

differential area between the chief and the deputy.  In this case, the deputy was rotated in the yaw and pitch axes so 

that the cross-section was a hexagon with CSA of 173.2 cm
2
.  The yaw-control maximum case rotated the deputy 

yaw angle to 45°.  This put the deputy CSA at 141.2 cm
2
.  For the tumble case, it was assumed that every orientation 

of the deputy had an equal likelihood of occurring.  The effective CSA was calculated by integrating the CSA for 
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every orientation in spherical coordinates and dividing by the range of limits of integration.  This set the effective 

CSA of the tumbling deputy to 144.7 cm
2
. 

Intuitively, lower altitudes have much greater atmospheric densities, which allow for much faster relative motion 

between the two CubeSats.  Initially, the differential area has a much greater effect since the density is higher.  

However, the effect is even more pronounced as the deputy continually lowers its orbit significantly more than the 

chief.  Figures 2-4 show the separation distances and separation rates at 200 km, 400 km, and 600 km initial orbits, 

respectively.  The periodic variation, which is most pronounced in the relative radial velocities, is a byproduct of the 

integration error in ode113.  The amplitude of this error in the 400 km relative radial velocity is on the order of 

millimeters per second, so it can be assumed negligible.  This error may be able to be avoided by propagating using 

a Variation of Parameters method. 

 
Figure 2:  Separation of 1U CubeSats starting at 200 km altitude 

 
Figure 3:  Separation of 1U CubeSats starting at 400 km altitude 
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Figure 4:  Separation of 1U CubeSats starting at 600 km altitude 

B. Control Scheme 

The gains for the control scheme in eq. (16) were chosen using a guess-and-check method.  The proportional and 

derivative gains chosen to produce the response in fig. 6 were 8 x 10
-8

 and 1.2 x 10
-2

, respectively.  Figure 5 shows 

the necessary changes in deputy area to achieve control.  The control scheme allowed the relative axial separation to 

converge near the desired separation within approximately three weeks.  The seemingly unstable motion in figs. 5 

and 6 is caused by the periodic error that is prevalent in the relative velocity.  Since the unstable motion is caused by 

integration error, a 1000-value moving average
4
 was used as a low-pass filter to remove the instability and better 

show the convergence (figs. 5 and 7).  Figure 7 shows the limits of the CSA as well as the pseudo-convergent CSA 

for formation.  The system eventually goes unstable, which is most likely caused by the continued buildup of 

integration error.  Further investigation may prove that the system will remain stable indefinitely.   

 
Figure 5:  Variation in Deputy Area over first 40 days 

 



 

American Institute of Aeronautics and Astronautics 
092407 

 

8 

 Since the system is non-linear, gain scheduling is 

a possible method for continued control of the 

separation.  Figure 8 shows the averaged relative 

positions when a gain scheduling approach was used.  

In this case, time was used as the trigger for the 

change in gain.  When the time reached 60 days, the 

code set the derivative gain to zero.  With only 

proportional gain in the system, the relative position 

oscillates around the desired position.  The gain 

scheduling can be further analyzed to minimize 

amplitude of oscillation; this analysis used a guess-

and-check method to determine that gain scheduling 

is feasible.  Figure 9 shows that the CubeSats remain 

at a relatively similar altitude throughout the 

simulation time.  For longer duration flights and at 

lower altitudes, this may not remain true. 

  

 

 

 

 
Figure 9:  CubeSat altitude throughout simulation 

Figure 6:  Relative Position of CubeSats starting at 770 km 

altitude 
Figure 7:  Relative Position of CubeSats starting at 770 km 

altitude and including moving average for low-pass filter 

Figure 8:  Gain scheduled control of relative axial position.  

Desired distance of 0.1 km. 
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C. Control in Eclipse 

The sun-tracking capability of the Colony II bus only allows for formation control in eclipse.  To study the 

feasibility of eclipse-only control, the propagation code contains a check using the Vallado’s “shadow” algorithm
5
 

along with the properties of the Colony II bus (max CSA of 2100 cm
2
, 4 kg).   If both the chief and deputy were in 

eclipse, then the previously mentioned control scheme was used.  If one of the spacecraft was not in eclipse, then 

that spacecraft was set to an assumed nominal CSA of 1200 cm
2
.  The proportional and derivative gains for the 

control scheme were 8 x 10
-7

 and 1.2 x 10
-2

, respectively.  The control scheduling time where the derivative gain 

was set to zero was 25 days.   

Figure 10 shows the CSA of the deputy for the first 20 days of the simulation.  This was done to show the 

periodic resetting of the CSA during the sunlit parts of the orbit, which may have not been visible if the entire 

duration was shown.  The gains that were used showed that the system was slowly converging (fig. 11) on the 

desired distance of 0.1 km.  These gains were also found using a guess-and-check method and could be much further 

refined.  The moving average of the altitudes of both spacecraft stay very close together for the duration of the 

simulation (fig. 12), which allows for formation to be kept much more easily.   

 
Figure 10:  Variation in Deputy Area over 20 days and showing nominal reset when not in eclipse 

   

 

 
Figure 11:  Gain scheduled control of relative axial  

position.  Desired distance of 0.1 km and only eclipse  

control 

 

Figure 12: CubeSat altitude throughout eclipse simulation 
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IV. Conclusion 

This paper shows that significant separation and formation flight is possible using rotated control to achieve 

differential drag.  The extent of the capabilities possible must be studied in more depth and for more specific 

mission requirements.  For example, formations with more than two CubeSats add much more complexity and 

would need to be investigated.  Also, altitude may have a significant effect on the duration of formation capable.   

In terms of accuracy, future studies should verify that a Variation of Parameters method of orbit integration 

would eliminate the error.  This may allow for a very useful control scheme to be implemented that would create a 

very stable formation.  Other control schemes may be simpler, more effective, or more robust for the given system.   

Also, an industry standard propagator such as STK or an internal propagator can be used to verify accuracy or 

provide a higher level of precision.   
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Appendix 

%Skyler Shuford 
%Feasibility of CubeSat Formation Flight Using Rotation to Achieve 

Differential Drag 

  
clear all;close all;clc 

  
%Assumptions, CubeSat properties, Initial Conditions 
date = 'Jan 1 2014'; 
mu = 398600; 
Cd = 2.2; 
m = 1;%kg 
drdes = .1;%km 
kp = 8e-8; 
% ki = 1e-14; 
ki = 0; 
kd = 1.2e-2; 
Rc = [0;770+6378;0]; 
Rd = Rc;%[0;-500-6378;0]; 
Vc = [-sqrt(mu/norm(Rc))/sqrt(2);0;sqrt(mu/norm(Rc))/sqrt(2)]; 
Vd = Vc;%[sqrt(mu/norm(Rc))/sqrt(2);0;-sqrt(mu/norm(Rc))/sqrt(2)]; 
er0 = drdes; 
y0 = [Rc;Vc;Rd;Vd;er0]; 
tspan = [0,60*60*24*200]; 

  
opt = odeset('AbsTol',1e-8,'RelTol',1e-8); 
[t,y] = ode113(@(t,y) ff_fun(t,y,mu,m,Cd,drdes,kp,ki,kd,date),tspan,y0,opt); 
%  
% save max600 
for i = 1:length(t) 
   

[~,Arc(:,i),Ard(:,i),rc(i),rd(i),dA(i),er(i),er_s(i),ers(i),rhod(i),Vd(:,i)] 

= ff_fun(t(i),y(i,:)',mu,m,Cd,drdes,kp,ki,kd,date);    
   [Rrel(:,i),Vrel(:,i)] = 

relMot(y(i,1:3)',y(i,4:6)',y(i,7:9)',y(i,10:12)',mu); 
   vrel(i) = norm(Vrel(:,i)); 
end 

  
% figure(1) 
% plot(t/60/60/24,dTA) 
% title('Difference in True Anomaly') 
% xlabel('Time (days)') 
% ylabel('\delta\theta') 
%  
% figure(2) 
% plot3(y(:,1),y(:,2),y(:,3)) 
% grid on 
% title('Chief Orbit') 
% xlabel('(km)') 
% ylabel('(km)') 
% axis square 
% axis equal 
% axis([-8000 8000 -8000 8000 -8000 8000]) 
%  
figure(3) 
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plot(t/3600/24,rc-6378,t/3600/24,rd-6378) 
title('Orbital Altitude') 
xlabel('Time (days)') 
ylabel('Altitude (km)') 

  
figure(4) 
plot(t/3600/24,Rrel(1:2,:)) 
title('Relative Position @ 770 km') 
xlabel('Time (days)') 
ylabel('\deltar (km)') 
legend('Radial','Axial') 
% hold on 

  
figure(5) 
plot(t/3600/24,Ard*1e10) 
title('Deputy Area') 
xlabel('Time (days)') 
ylabel('Area (cm^2)') 
axis([0 20 3e2 21e2]) 

  
% figure(6) 
% plot(t/3600/24,dA) 
% title('Differential Area') 
% xlabel('Time (days)') 
% ylabel('Area (km^2)') 
% %  
figure(7) 
plot(t/3600/24,kd*ers,t/3600/24,kp*er,t/3600/24,ki*er_s) 
title('Errors') 
xlabel('Time (days)') 
ylabel('Error Function') 
legend('Derivative','Proportional') 

  
% figure(8) 
% plot(t/3600/24,Vrel) 
% title('Relative Velocity @ 600 km') 
% xlabel('Time (days)') 
% ylabel('vRel (km/s)') 
% legend('Radial','Axial','Out of Plane') 

  
% figure(9) 
% plot(t/3600/24,rhod) 
% title('Atmospheric Density @ 600 km') 
% xlabel('Time (days)') 
% ylabel('\rho (kg/km^3)') 
% axis([0 1 1.454e-4 1.4544e-4]) 
% %  
% figure(10) 
% plot(t/3600/24,eccd) 
% title('Eccentricity @ 600 km') 
% xlabel('Time (days)') 
% ylabel('ecc') 
%  
% figure(11) 
% plot3(Vd(1,:),Vd(2,:),Vd(3,:)) 
% title('Velocity direction @ 600 km') 
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% % xlabel('Time (days)') 
% % ylabel('km/s') 
%  
% figure(12) 
% plot(t/3600/24,vdirmag) 
% title('Velocity magnitude @ 600 km') 
% xlabel('Time (days)') 

  

  
% vrel(1:8) = vrel(9); 
% fit = polyfit(t,vrel',4); 
%  
% figure(13) 
% plot(t/3600/24,fit(1)*t.^4+fit(2)*t.^3+fit(3)*t.^2+fit(4)*t+fit(5)) 
% hold all 
% plot(t/3600/24,vrel) 
% title('Magnitude of Relative Velocity') 
% hold off 

  
Rrelavgx = moving(Rrel(1,:),1001); 
Rrelavgy = moving(Rrel(2,:),1001); 
figure(14) 
plot(t/3600/24,Rrelavgx,t/3600/24,Rrelavgy) 
title('Moving Average of Relative Distance') 
xlabel('Time (days)') 
ylabel('\deltar (km)') 
legend('Radial','Axial') 

  
Ardavg = moving(Ard,1001); 
figure(15) 
plot(t/3600/24,Ardavg) 
title('Moving Average of Deputy Area') 
xlabel('Time (days)') 
ylabel('Area (km^2)') 
axis([0 20 .03e-6 .21e-6]) 

  
figure(16) 
subplot(2,1,1) 
plot(t/3600/24,Ard*1e10) 
title('Deputy Area') 
xlabel('Time (days)') 
ylabel('Area (cm^2)') 
axis([0 40 80 160]) 
subplot(2,1,2) 
plot(t/3600/24,Ardavg*1e10) 
title('Moving Average of Deputy Area') 
xlabel('Time (days)') 
ylabel('Area (cm^2)') 
axis([0 40 80 160]) 

  
rcm = moving(rc,2001); 
rdm = moving(rd,2001); 
figure(17) 
plot(t/3600/24,rcm-6378,'.',t/3600/24,rdm-6378,'r') 
title({'Orbital Altitude','with Moving Average'}) 
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xlabel('Time (days)') 
ylabel('Altitude (km)') 
legend('Chief','Deputy') 
 

 

 

%Skyler Shuford 

  
function [dy, Arc, Ard, rc, rd, dA, er, er_s, ers, rhod, Vd] = 

ff_fun(t,y,mu,m,Cd,drdes,kp,ki,kd,date) 

  
Rc = y(1:3); 
rc = norm(Rc); 
Vc = y(4:6); 
vc = norm(Vc); 

  
Rd = y(7:9); 
rd = norm(Rd); 
Vd = y(10:12); 
vd = norm(Vd); 

  
%shadow irrelevant 
sc = 1; 
sd = sc; 

  
%Only Shadow control 
% [sc] = shadow(Rc,Vc,date,3); 
% [sd] = shadow(Rd,Vd,date,3); 

  
Agravc = -mu/rc^3*Rc; 
Agravd = -mu/rd^3*Rd; 

  
%get rho 
hElc = rc-6378; 
hEld = rd-6378; 

  
h0 = [0 25 30 40 50 60 70 80 90 100 110 ... 
    120 130 140 150 180 200 250 300 350 ... 
    400 450 500 600 700 800 900 1000]; 

  
rho0 = [1.225 3.899e-2 1.774e-2 3.972e-3 1.057e-3 3.206e-4 ... 
    8.770e-5 1.905e-5 3.396e-6 5.297e-7 9.661e-8 2.438e-8 ... 
    8.484e-9 3.845e-9 2.070e-9 5.464e-10 2.789e-10 7.248e-11 ... 
    2.418e-11 9.518e-12 3.725e-12 1.585e-12 6.967e-13 1.454e-13 ... 
    3.614e-14 1.170e-14 5.245e-15 3.019e-15]; 

  
H = [7.249 6.349 6.682 7.554 8.382 7.714 6.549 5.799 ... 
    5.382 5.877 7.263 9.473 12.636 16.149 22.523 29.740 ... 
    39.105 45.546 53.628 53.298 58.515 60.828 63.822 71.835 ... 
    88.667 124.64 181.05 268]; 
k = 1; 
if hElc>1000 
    k = 28; 
else 
    while hElc>h0(k) 
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        k = k+1; 
    end 
end 
l = 1; 
if hEld>1000 
    l = 28; 
else 
    while hEld>h0(l) 
        l = l+1; 
    end 
end 

  
rhoc = rho0(k)*1e9*exp((h0(k) - hElc)/H(k));%kg/km^3 
rhod = rho0(l)*1e9*exp((h0(l) - hEld)/H(l)); 

  
%Get LVLH 
[Rrel,Vrel] = relMot(Rc,Vc,Rd,Vd,mu); 

  
%3U 50% Area 
% ArMin = .01e-6; 
% ArMax = .01*3e-6*sqrt(2); 
% Ar1 = (ArMin+ArMax)/2; 

  
%CubeSat 50% area 
ArMin = .01e-6; 
ArMax = .01e-6*sqrt(2); 
Ar1 = (ArMin+ArMax)/2; 

  
%Colony II 50% area 
% ArMin = .01e-6*3; 
% ArMax = .01e-6*21; 
% Ar1 = (ArMin+ArMax)/2; 

  
%Control 
% if sc ~= 0 && sd ~= 0 
    er = drdes-Rrel(2); 
%     if t>3600*24*60 
%         kd = 0; 
%     end 
%     er_s = 0; 
    er_s = y(13); 
    ers = -Vrel(2);% 
    dA = kp*er-ki*er_s+kd*ers; 
    if abs(dA) > Ar1-ArMin 
        dA = sign(dA)*(Ar1-ArMin); 
    end 
    Arc = Ar1; 
    Ard = Arc+dA; 
% else 
%     er_s = NaN; 
%     ers = NaN; 
%     Arc = Ar1; 
%     Ard = Arc; 
%     er = 0; 
%     dA = 0; 
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% end 

  

  

  
% %Max Separation or Approach 
% Arc = .01e-6; 
% Ard = .01e-6*1.7320; 

  
% Separation of tumbling cube 
% Arc = .01e-6; 
% Ard = .01e-6*1.4472; 

  
% Max sep with only yaw control 
% Arc = .01e-6; 
% Ard = .01e-6*sqrt(2); 

  

  
Adragc = -1/2*Cd*Arc/m*rhoc*vc^2*Vc/vc; 
Adragd = -1/2*Cd*Ard/m*rhod*vd^2*Vd/vd; 

  
% %thrust test 
% Adragc = .00005*Vc/vc; 
% Adragd = .00005*Vd/vd; 

  
Ac = Agravc+Adragc; 
Ad = Agravd+Adragd; 

  
dy = [Vc;Ac;Vd;Ad;er]; 
end 

 

 

function [y]=moving(x,m,fun) 
%MOVING will compute moving averages of order n (best taken as odd) 
% 
%Usage: y=moving(x,n[,fun]) 
%where x    is the input vector (or matrix) to be smoothed.  
%      m    is number of points to average over (best odd, but even works) 
%      y    is output vector of same length as x 
%      fun  (optional) is a custom function rather than moving averages 
% 
% Note:if x is a matrix then the smoothing will be done 'vertically'. 
%  
% 
% Example: 
% 
% x=randn(300,1); 
% plot(x,'g.');  
% hold on; 
% plot(moving(x,7),'k');  
% plot(moving(x,7,'median'),'r'); 
% plot(moving(x,7,@(x)max(x)),'b');  
% legend('x','7pt moving mean','7pt moving median','7pt moving 

max','location','best') 
% 
% optimized Aslak Grinsted jan2004 
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% enhanced Aslak Grinsted Apr2007 

  

  
if m==1 
    y=x; 
    return 
end 
if size(x,1)==1 
    x=x'; 
end 

  
if nargin<3 
    fun=[]; 
elseif ischar(fun) 
    fun=eval(['@(x)' fun '(x)']); 
end 

  
if isempty(fun) 

  
    f=zeros(m,1)+1/m; 
    n=size(x,1); 
    isodd=bitand(m,1); 
    m2=floor(m/2); 

  

  
    if (size(x,2)==1) 
        y=filter(f,1,x); 
        y=y([zeros(1,m2-1+isodd)+m,m:n,zeros(1,m2)+n]); 
    else 
        y=filter2(f,x); 
        y(1:(m2-~isodd),:)=y(m2+isodd+zeros(m2-~isodd,1),:); 
        y((n-m2+1):end,:)=y(n-m2+zeros(m2,1),:); 
    end 

  
else 
    y=zeros(size(x)); 
    sx=size(x,2); 
    x=[nan(floor(m*.5),sx);x;nan(floor(m*.5),sx)]; 
    m1=m-1; 
    for ii=1:size(y,1); 
        y(ii,:)=fun(x(ii+(0:m1),:)); 
    end 

     
end 

  
return 
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