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Abstract Self-reported questionnaires are widely used by

researchers for analyzing the dietary behavior of over-

weight and obese individuals. It has been established that

questionnaire-based data collection often suffers from high

errors due to its reporting subjectivity. Automatic swallow

detection, as an alternative to questionnaires, is proposed in

this paper to avoid such subjectivity. Existing approaches

for swallow detection include the use of surface elec-

tromyography and sound to detect individual swallowing

events. Many of these methods are generally too compli-

cated and cumbersome for daily usage in a free-living

setting. This paper presents a wearable solid food intake

monitoring system that analyzes human breathing signals

and swallow sequence locality. Food intake is identified by

detecting swallow events. The system works based on a

key observation that the otherwise continuous breathing

process is interrupted by a short apnea during swallowing.

A support vector machine (SVM) is first used for detecting

such apneas in breathing signals collected from a wearable

chest belt. The resulting swallow detection is then refined

using a hidden Markov model (HMM)-based mechanism

that leverages the known temporal locality in the sequence

of human swallows. Temporal locality is based on the fact

that people usually do not swallow in consecutive breath-

ing cycles. The HMM model is used to model such tem-

poral locality in order to refine the SVM results.

Experiments were carried out on six healthy subjects

wearing the proposed system. The proposed SVM method

achieved up to 61% precision and 91% recall on average.

Utilization of HMM in addition to SVM improved the

overall performance to up to 75% precision and 86% recall.

Keywords Wearable sensors � Swallow detection � Food
intake monitoring � Support vector machine (SVM) �
Hidden Markov model

1 Introduction

According to data from the World Health Organization,

worldwide obesity has increased by over 200% since 1980

[1]. It has been proven that obesity can cause coronary

heart disease, type-2 diabetes, and various types of cancer

[2]. Diet control and physical exercise are the two most

important components of obesity control. Self-reported

questionnaires are widely used by researchers for estimat-

ing both food intake and physical activity levels for high-

risk individuals. In recent years, accelerometers, gyro-

scopes, and pressure sensors have been widely utilized for

instrumented physical activity monitoring with high

detection accuracy [3]. However, not many efforts on

instrumented diet monitoring have been reported in the

literature. Diet monitoring can reduce the subjectivity [4]

associated with questionnaire-based self-reporting systems.

An instrumented system can potentially detect each

instance of food/drink intake, and can have a significant

impact on obesity and overall health monitoring and

management. Together with the self-reporting of dietary

habits at a high level, the system can quantify calorie intake

trends and estimates for its users.

Non-invasive methods use biological signals such as

electromyography (EMG), sound, and movement to detect

swallows. Surface EMG (sEMG) and sound signals have

been used to detect the activation of muscles and the sound
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associated with swallow events [5]. sEMG electrodes are

normally attached to the bare skin in the neck region, which

may cause user acceptability concerns for prolonged usage

due to cosmetic and safety reasons. A two-microphone

system was developed [6] for recording chewing and

swallowing sound through the ear canal as well as exter-

nally through the air. In another study [7], an inertial

measurement unit (with an accelerometer, a gyroscope, and

a magnetometer) was attached to the chin to measure jaw

movement during free chewing. Similarly, Imtiaz et al. [8]

put two inertial measurement units on the shoulder and the

back of the head to measure the head movement angle and

an EMG unit under the chin to measure chewing activity.

Microphones have been placed in the neck area near the

laryngopharynx for detecting the sound of swallowing by

either a stretchy band or elastic structure [9, 10]. Wang et al.

[11] used a piezoelectric sensor mounted on the neck region

to determine the best place for swallow detection. In one

study [12], an electroglottograph sensor and a microphone

were integrated into an elastic collar band tied to the neck. It

has been shown that above-mentioned methods [5–12] can

provide promising results. However, placing sensors in face

and neck regions has cosmetic and usability issues, and thus

their suitability for prolonged usage is questionable In a

study [13] where a microphone and elastic bands were used,

subjects consistently stated that equipment on the neck was

uncomfortable and that it often impacted their swallowing

habits. Respiratory inductance plethysmography (RIP) has

been used for swallow detection by measuring the airflow in

the trachea [14]. The RIP signal acquisition equipment used

for this method is too involved to be useable for prolonged

use in daily life settings. The RIP experiments [14] were

conducted in a strictly controlled environment. Adib et al.

[15] developed a wireless breath monitoring system using

5.46–7.25 GHz radio-frequency signals to detect minor

movements of the chest caused by breathing and heartbeats.

Such a system can be used without physical contact and can

be used for multiple users, but it requires a specific infras-

tructure setup.

The idea of swallow detection through breathing signals

proposed in this paper is based on the concept of swallow

apnea. Anatomically, breathing is inhibited during part of

the swallow process, thus causing swallow apnea. The

swallowing process is divided into three steps [5]: (1) the

oral preparation phase, (2) the pharyngeal phase, and (3)

the esophageal phase. During the oral phase, food is

chewed into a viscous bolus. The volume and viscosity of

the bolus is also sensed in this phase, so that the swal-

lowing apparatus can adapt to the bolus. In the pharyngeal

phase, the bolus travels through the pharynx and passes the

upper esophageal sphincter. A set of muscles is activated to

propel the bolus and the epiglottis moves downward to

cover the vocal folds and to protect the trachea from

contamination. Finally, the bolus is pushed towards the

stomach during the esophageal phase. During the pharyn-

geal phase, since the trachea is blocked by the epiglottis,

breathing is temporarily stopped, causing apnea.

We present a wearable sensor system for solid food

intake monitoring based on swallows detected in breathing

signals. We detect swallows by detecting apneas extracted

from breathing signals captured by a chest belt. Since the

belt can be worn inside, outside, or between garments (it

does not need skin contact), it has potential for prolonged

comfortable daily usage without raising any cosmetic and

discomfort concerns.

This paper specifically focuses on solid food intake

monitoring. Future work will attempt to distinguish liquid

and solid intake. We have chosen to focus on solid intake

detection first because people are more likely to eat solid

food over an extended period of time during a meal.

Drinking, on the other hand, usually happens with one or

two gulps at a time during relatively shorter periods. Also,

the majority of swallows during a food intake episode

consist of solid intake swallows.

It should also be noted that although the proposed system

cannot detect the consumed food content and its exact asso-

ciated calorie intake, it can tell when swallows happen and

how long a sequence of swallows lasts. By analyzing such

sequences, the estimated timing and duration of a subject’s

dietary habits can be determined. For example, it can tell

whether a subject skips breakfast frequently or whether they

have a considerable amount of late-night snacks, which have

been proven to be strongly correlated with obesity. More

specifically, previous studies [16, 17] have shown that regular

breakfast consumption can greatly reduce the risk of being

obese oroverweight.Other studies [18, 19] havedemonstrated

that large amounts of late-night snacks can lead to severe

obesity. The recording of swallow sequences can also help

detect any change in the trends of dietary habits in terms of

timing, frequency, and duration of meals. Analyzing dietary

habit change trends can be useful for evaluating the efficacy of

various obesity management programs.

This study focuses on solid intake detection using a two-

stage support vector machine-hidden Markov model

(SVM–HMM) processing strategy. After the swallow

sequence is recorded, an SVM is used for detecting apneas

in breathing signals collected from a wearable chest belt.

The resulting swallow detection is then refined using an

HMM-based mechanism that leverages the known locality

in the sequence of human swallows (utilizing prior

knowledge of the swallowing pattern). As people usually

do not swallow in consecutive breathing cycles (BCs), we

are able to improve swallow detection accuracy.

The contributions of this paper are: (1) the use of a

piezoelectric wearable chest belt as a non-invasive sensor

for swallow detection, (2) development of a wireless data
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collection system for day-to-day use, (3) the use of a

combination of SVM and HMM methods for processing

breathing signals for solid food intake detection, and (4)

experimental demonstration of the detection accuracy and

effectiveness of the proposed system and the signal pro-

cessing methods.

It should be noted that the presented system design was

not optimized for its ergonomics, and that the system can

be improved in terms of power consumption. At this stage,

the system is mainly a proof-of-concept. In its product

form, the system can be simplified and integrated within

the chest belt, and possibly be embedded into clothes and

connected to a smartwatch.

2 Methods

2.1 Sensing System Components

As shown in Fig. 1, an embedded wearable sensor system

is worn on the chest for collecting breathing signals and

transmitting them to a smartphone through Bluetooth. The

embedded belt system contains: (1) a piezo-respiratory belt

for converting the changes of tension during breathing into

a voltage signal, (2) a 20-dB amplifier and an anti-aliasing

low-pass filter with a cut-off frequency at 30 Hz for

maximizing the signal-to-noise ratio (SNR) and for

avoiding aliasing components being sampled by the ana-

log-to-digital converter (ADC), (3) a processor and radio

subsystem (EZ430-RF256x, Texas Instruments, Texas),

and (4) a 3.7-V 300-mAh polymer rechargeable battery.

The entire package weighs approximately 40 g. The

300-mAh polymer battery can support the system for more

than 30 h of continuous operation on a single charge. Noise

control was implemented in every stage of data acquisition.

Thick wires and a low-noise op-amp were adopted in the

hardware design. The anti-aliasing low-pass filter and

digital low-pass filter after the ADC were used to minimize

the noise caused by the ADC. The amplifier gain was set to

maximize the SNR. After the signal is received by the

smartphone, it is stored on an SD card attached to the

phone. For the 12-bit ADC and 100-Hz sampling frequency

used in this paper, a 32-MB SD card can store up to 46 h of

data. It should be noted that the current swallow detection

algorithms are performed offline on computers. Since the

detection algorithms are implemented in Java, they can be

easily ported to smartphones. Performance on smartphones

in terms of speed and power are not covered in this paper.

The advantage of using an embedded wireless link is that

the developed swallow sensor can be networked with other

physiological [20] and physical activity sensors [3] to

develop a networked sensing/detection system to provide a

complete monitoring instrumentation package in the future.

A piezoelectric-based commercial belt (1132 Pneumo-

trace II, UFI Instruments, Morro Bay, CA) is adopted for

breathing signal collection. Compared to a conductive

rubber belt, it has higher linearity and smoother transient

responses. Unlike with RIP, piezoelectric sensors do not

need a loop connection or power sources. This makes them

more suitable for embedding into clothes for better con-

venience and comfort.

2.2 Swallowing and Apnea

Figure 2 (left side) shows a number of experimentally

obtained breathing signal segments for different human

subjects. The ADC readings in the figure are directly pro-

portional to the elongation and contraction of the piezo-

electric sensing belt. The rising edges correspond to

inhalations and the falling edges correspond to exhalations.

As shown in the figure, a BC can be either normal (i.e.,

normal BC) or elongated due to swallow-triggered apnea.

A cycle that is elongated due to an apnea at the beginning

of an exhale (see top figure on the left in Fig. 2 for subject

1, session 1) is denoted as a BC with exhale swallow. For a

second subject, the bottom figure on the left in Fig. 2

shows swallows (i.e., apnea) during the inhale process,

which are denoted as BCs with inhale swallow.

2.3 Detection Scheme

Figure 2 depicts the logic for classifying BCs on the right.

Before sending the data to the ADC, an anti-aliasing analog
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& 
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Fig. 1 Proposed wearable wireless food intake monitoring system
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low-pass filter circuit with a cutoff frequency of 30 Hz is

applied. The signal is then sampled by the ADC at 100 Hz

and fed into a software-based low-pass filter to remove

quantization noise caused during the A–D conversion.

Because the power spectrum of breathing signals is mainly

below 2.5 Hz, 100 Hz is a sufficient sampling rate. The

next step is to run the filtered data stream through a peak

and valley detection software module to extract individual

BCs. In order to perform peak and valley detection, the

data stream is first divided into 10-s windows with 30%

overlap, and then a threshold-based algorithm [21] is used.

The threshold is set to 0.3(maxd(m)[Cd(m) - mind(n)[C-
d(n)), where C is a set that includes all the data points in the

10-s window, and d(m) and d(n) are the mth and nth sample

points in the 10-s window. Data from one session of the

experiment in the Sect. 3 are used for testing the perfor-

mance of the proposed peak and valley detection algo-

rithm. Table 1 shows the performance of BC extraction

using peak and valley detection with various threshold

values. Based on the data collected during one experi-

mental session (see the Sect. 3), an optimal threshold of 0.3

was chosen. A threshold of 0.3(maxd(m)[C-
d(m) - mind(n)[Cd(n)) provides an accuracy of 99%.

After individual BCs have been extracted, they are

normalized in both time and amplitude dimensions. Each

cycle is normalized to be between 0 and 100 vertically, and

interpolated to 128 sample points in time. Considering an

average length of a BC of 3.77 s in our experiments, the

normalized sampling rate after interpolation is mapped to

34 Hz. Although different cycles may originally have differ-

ent time and amplitude ranges (person-to-person or cycle-to-

cycle for a given person), the normalization process removes

such variance in duration and amplitude, thus making the

cycles more suitable for the apnea detection process.

The feature extraction module takes BCs before and

after normalization and extracts the following features: (1)

BC length, (2) inhalation duration and depth, (3) exhalation

duration and depth of BCs before normalization, (4) ±10

crossing counts, and (5) first five fast Fourier transform

(FFT) coefficients of normalized BCs. Details of the

extracted features are demonstrated in a later section. The

features are then fed into the SVM detection module with

posterior probability outputs, which are illustrated in more

detail in a later section. At this stage, a posterior proba-

bility indicates the SVM-detected probability of a given

BC to be of the type normal breathing or breathing with

swallows. Information about swallow sequence locality is

not utilized at this stage. Finally, the HMM is applied to the

posterior probability outputs of the SVM module to

improve detection performance by leveraging a priori

knowledge about swallow sequence locality.

2.4 Two-Tier Swallow Detection

In our previous work [22, 23], SVM was shown to be the

best classifier for liquid swallow detection. As in traditional

usage of SVM [24], the classification output for each BC
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Fig. 2 Respiratory signal with swallow signature (left) and swallow detection modules (right)

Table 1 Accuracy of breathing cycle extraction using peak and

valley detection

Threshold Accuracy (%)

0.2(maxd(m)[Cd(m) - mind(n)[Cd(n)) 84

0.3(maxd(m)[Cd(m) - mind(n)[Cd(n)) 99

0.4(maxd(m)[Cd(m) - mind(n)[Cd(n)) 90
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was a class label (i.e., normal breathing or breathing with

swallows). After analyzing the classification errors, it was

realized that many of the errors can be corrected by

applying known locality information in human swallow

sequences. For example, people rarely swallow in many

consecutive BCs. Thus, whenever the classification output

shows many consecutive BCs, errors can be anticipated and

the misclassified instances can be identified/removed by

applying higher-level techniques such as the HMM. As in

many similar applications, HMM is effective in leveraging

temporal context information to improve accuracy. This

motivates the proposed two-tier detection using SVM and

HMM.

2.5 SVM-Based Swallow Detection with Posterior

Probability

Consider the following training set of size T:

x1; y1ð Þ; x2; y2ð Þ; x3; y3ð Þ; . . .; xT ; yTð Þ:

In each training instance (xi, yi), xi [ R
n represents a set if n

input features, and yi is the corresponding class label. For a

binary class system in our case, yi can be defined as:

A traditional SVM decision function can be derived as

[25]:

DðxÞ ¼
XT

k¼1

ykakK xk; xð Þ þ b; ð1Þ

where ak and b are trained using the training data set, T is

the number of training instances, and K(xk, x) is the kernel

function of the SVM. Classification for a test feature set xj
using the decision function can conducted as follows:

xj 2 Breathing cycle with swallows; if DðxjÞ[ 0;
xj 2 Normal breathing; otherwise:

�

The distance between xj and the decision boundary (i.e.,

the boundary that separates a BC with swallows and nor-

mal breathing) with the maximum margin can be expressed

as D(xj)/C [25], where C is a positive constant depending

on ak (k = 1, 2,…,T), training feature set xk (k = 1,

2,…,T), and the kernel function. Therefore, |D(xj)| is pos-

itively correlated to the confidence of correct detection;

that is, the closer it is to the decision boundary, the less

confidence in correct classification.

In order for the HMM to be able to process the SVM

output, the latter needs to be in the form of posterior

probability [25] as opposed to the class labels used by

traditional SVM models [24], as described above. An

appropriately designed SVM [25] can indicate the proba-

bility that a given input feature set corresponds to a specific

class. This probability is referred to as the posterior prob-

ability for that class. In what follows, we describe the

mechanisms for computing such probabilities, which are

the input for the swallow-sequence-based HMM.

Posterior probability for classi is formally defined as

prob(classi|input features) = prob(±1|xi). This indicates

the probability that a given input feature set xi corresponds

to a BC with swallows or a normal BC. It follows that

prob(1|xi) ? prob(-1|xi) = 1. We use the following

method for computing posterior probability using the SVM

decision function D(xj), as proposed by Wahba [26]:

prob classijinput featuresð Þ ¼ probðy ¼ 1jxÞ
¼ 1

1þ expðA � DðxÞ þ BÞ ;

ð2Þ

where A and B are constants and estimated by minimizing

the negative log likelihood of the training data set using

regression methods.

2.6 Hidden Markov Model with Swallow Sequence

Locality

The key concept of HMM in swallow detection is as fol-

lows. A sequence of BCs is represented by a discrete time

Markov chain consisting of two states (i.e., normal BCs

and BCs with swallows) that are hidden from an observer,

meaning that the observer cannot directly determine which

state the system is in at any given point of time. However,

the posterior probability out of the SVM, which indicates

the likelihood of the system being in any state, is visible to

the observer. The idea of the HMM formulation is that if

the locality in swallow sequence dynamics and the map-

ping between the system’s state and posterior probability

observation are known (or measurable) to the HMM model,

then by observing the posterior probability out of the SVM,

the current state in the Markov chain can be estimated.

yi ¼ 1 if xi 2 Breathing cycle with swallows;
yi ¼ �1 if xi 2 Normal breathing;

; i ¼ 1; 2; . . .; T

�
:
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2.6.1 Hidden State Space

As shown in Fig. 3, a BC sequence can be modeled as a

hidden state machine with two hidden states, namely nor-

mal breathing and BC with swallows. The states are hidden

because they are not deterministically known from poste-

rior probabilities computed out of the SVM processing.

2.6.2 Transition Probability Matrix

It is defined as A = {aij}, where aij represents the proba-

bility of transitioning from state Si to state Sj.

aij ¼ prob qk ¼ Sjjqk�1 ¼ Si
� �

:

It is assumed that qk depends only on qk-1, which means:

prob qkjqk�1ð Þ ¼ prob qkjqk�1; qk�2; . . .; q1ð Þ:

A is a 2 9 2 matrix for two BC types in our case. The

transition probability matrix is constructed from the true

swallow sequence detected by a video camera and the push

button in our experimental apparatus, as shown in Fig. 1.

The probabilities in this matrix represent the swallow

sequence locality information, which is leveraged by the

HMM processing.

2.6.3 Observation Matrix

Although the states are considered hidden, the SVM-

computed posterior probability at each state can be con-

sidered as an observable parameter for HMM modeling

purposes. For a given statei, the posterior probability

prob(yi = 1|xi), generated by the SVM detector, is utilized

for constructing an observation bitmap Oi in the following

manner.

The posterior probability from the SVM in the range [0,

1] is divided into N equal windows (we used N = 10). Each

window is represented as a bit in the N-bit long bitmap Oi.

The bit corresponding to the window in which the posterior

probability prob(yi = 1|xi) falls on is set to 1, and all other

bits in Oi are set to 0. For example, with N = 10 and

prob(yi = 1|xi) = 0.71, the observation bitmap for statei will

be Oi = {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, with the eighth big set to

1 since 0.7\ prob(yi = 1|xi) = 0.71 B 0.8.

Now let bjm be the probability that if an observation

bitmap’s mth bit is 1 (i.e., all other bits are 0s), then the

system is in hidden state j. Formally stated:

bjm ¼ prob O ¼ bit1 ¼ 0; . . .; bitm ¼ 1; . . .f gjState ¼ Sj
� �

:

An observation matrix of size M 9 N (M number of

states, N number of bits in the observation bitmap) is

constructed as B = {bjm}. In this case, a 2 9 10 matrix is

constructed by combining the true swallow events detected

by a video camera and the push button, and the SVM

outputs prob(yi = 1|xi) after processing the chest belt

sensor data. This observation matrix, together with the

transition probabilities and the following initial probability

array, is used for HMM processing.

2.6.4 Initial Probability Array

The initial probability array is represented by a vector

p = [pi] of length M (i.e., 2), in which:

pi ¼ prob q0 ¼ Sið Þ 1� i�M:

pi indicates the probability that the initial state of the

hidden state machine is Si. Therefore, by definition:

XM

i¼1

pi ¼ 1:

This array is formed using true swallow data gathered by

the experimental system, as described in the Sect. 2. The

swallow system as modeled by HMM can be expressed as a

tuple: k = (A, B, p), where A, B, and represent the hidden

state transition matrix (i.e., known swallow sequence

locality), observation locality, and initial condition of the

state machine, respectively.

HMM Processing ModuleSVM 
Module

Features

Sequence of posterior 
probabilities observations (O)

Transit ion Probability Matrix (A)
[Swallow sequence locality]

Observation Matrix (B)
[Observation to hidden states mapping]

Initial Probability 
Array (π)

Sequence of estimated 
states (qt, t=1,2…T)

(a)

(b)

i = Normal 
Breathing 

j = Breathing 
Cycle with 
Swallows

a11 a22

a12

a21

Oi Oj

Fig. 3 Hidden breathing state machine
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3 Results and Discussion

3.1 Experimental Design

During the experiment, a subject was instructed to press a

button whenever they swallowed, and the smartphone

shown in Fig. 1 was used to record the breathing signals

sensed by the wireless chest belt. A video camera was

connected to a computer to record the movement of the

mouth and the laryngopharynx during the experiment for

validation purposes. The computer, smartphone, and button

recorder were synchronized before each experiment ses-

sion. The experiment setup is shown in Fig. 4.

Experiments were carried out on six subjects (two

female and four male) without any known swallow

abnormalities. Each subject was asked to conduct three

experiment sessions. During an experiment session, the

subject was asked to wear the instrumented chest belt and

have their lunch at their own pace. The lunch type was

chosen by individual subjects based on their dietary pref-

erences. Lunches included diverse food types, including

rice, bread, salad, and cooked vegetarian and non-vege-

tarian items. Note that the subjects were allowed to drink

during the experiments. However, since this study focused

on only solid intake, BCs during drinking were first iden-

tified from the video recording, and then removed during

data processing. Each experiment lasted around 10–15 min

with 200–300 BCs depending on the eating speed and the

amount of food, and thus for each subject 600–900 BCs of

data were collected. Leave-one-out validation, i.e., data

from each subject was used for testing while those of others

were used for training, was applied in the data processing

to avoid over-fitting. For each training and testing iteration,

3000–4500 BCs from five subjects were used for training,

and 600–900 BCs of the last subject were used as the

testing data set. This process was repeated using each

subject’s data as the testing data set. The average accuracy

of using each subject’s data as the testing data set gives us

a good performance estimation of the system when used on

future subjects whose data have not been used for training

the model.

It should be noted that the subjects were restricted from

sleeping, running, walking, or moving exaggeratedly dur-

ing the experiments. As part of a complete monitoring

instrumentation package with other physiological and

physical activity sensors (see Fig. 1), the food intake

detection algorithm was suspended during sleeping, run-

ning, and other vigorous activities. This is reasonable since

it is not very common for people to eat during such

activities.

3.2 Performance Indices

To evaluate the detection performance (i.e., both SVM only

and SVM combined with HMM), we adopted the metrics

precision and recall, which are commonly used [5, 6] in

biomedical signal processing and information retrieval.

Precision and recall are defined as:

Precision ¼ TP

TPþ FP
¼ Recognized swallows

Retrieved swallows
;

Recall ¼ TP

P
¼ Recognized swallows

Relevant swallows
:

In this definition, recognized swallows (i.e., true posi-

tives, TPs) indicate the number of swallow events that were

correctly detected. Retrieved swallows correspond to the

number of detected swallows, including both TPs and

incorrectly detected swallows (i.e., false positives, FPs).

Relevant swallows (i.e., positive, P) refer to the number of

actual swallow events annotated from video, observations

reflecting the ground truth.

3.3 Results and Discussion

Both time- and frequency-domain features can be used for

detecting liquid swallows. The discriminative power of

these feature types, however, can be different. Figure 5

shows the discrimination power of time- (Fig. 5a) and

frequency-domain (Fig. 5b) features in solid swallow

detection using the SVM classifier. The merit of a feature

in Fig. 5a, b refers to information gain [27], which is

defined as the reduction in classification entropy [i.e.,

H(*)] with additional information provided by the corre-

sponding feature about the target classes. Assuming A as

the feature set and C as the set of classes, i.e., normal BC

and BC with swallows, the following two equations indi-

cate class entropies before and after the use of the feature,

where a represents a feature in A and c represents a class

in C:

Smartphone

Push bu�on

Video camera

Chest belt

Fig. 4 Experimental setup
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HðCÞ ¼ �
X

c2C
pðcÞ log2 pðcÞ;

HðCjAÞ ¼ �
X

a2A
pðaÞ

X

c2C
pðcjaÞ log2 pðcjaÞ:

A feature with higher merit indicates lower class entropy

when this feature is adopted. Merit can be also used when

feature reduction is needed in the presence of limited

computational and storage resources.

Figure 5a, b depict the merit of time- and frequency-

domain features, and Fig. 5c, d show the use of ±10

crossing features. For time-domain features, as shown in

Fig. 5a, where 128 sample points in normalized BCs are

used as features, sample points near the 27th and 53rd

sample points are the most important for classification. For

frequency-domain features, as shown in Fig. 5b, where the

first 64 FFT coefficients are used as features, lower-fre-

quency components have the most discriminative power. It

was also found that the discriminative power distribution of

frequency-domain features is more consistent across sub-

jects than time-domain features, which is why frequency-

domain features were used in a previous study [22].

The second set of SVM classification features is derived

from the first derivative of the breathing signal. As shown

in the Sect. 2, it was found that the swallows generally

create more fluctuations in breathing signals compared to

those created by normal BCs. To capture such fluctuations,

an additional classification feature was derived from the

first derivatives of the breathing signal. More specifically,

the number of ±10 crossings (NTCs) is used as a feature,

which is defined as the number of points in the breathing

signal at which the first derivative of the signal is exactly

?10 or -10. Compared to the number of zero crossings

(NZC), NTC can better capture swallow signatures.

Figure 5c, d show an example comparison between a

representative normal BC and a representative BC with

swallows and their corresponding NZC and NTC of the first

derivatives. For both types of BC, NZC is 2, but NTC is 3

for normal breathing and 5 for breathing with swallows. The

additional 2 NTCs (i.e., -10 crossings) are contributed by

the swallow event. Differences in NTCs were consistently

observed between BCs with and without swallows, thus

indicating the usefulness of the NTC of the first derivative as

a useful classification feature for the SVM engine.

The third set of features is derived from the duration and

amplitude of the BCs before normalization. In summary,

the SVM features used in this paper are: first five Fourier

transform coefficients, NTC, inhalation duration, exhala-

tion duration, total BC duration, inhalation amplitude, and

exhalation amplitude.

It should be noted that we used leave-one-out validation

in this paper, and the optimized feature set for one subject

may be different from that for another subject. In order to

be generalizable, we used the same feature set for all

subjects.

3.4 Swallow Detection with SVM

The features mentioned above were fed into the posterior

probability SVM classifier described in the Sect. 2. The

classifier was trained and validated using data collected

through experiments outlined in Fig. 4. We used a leave-one-

out validation approach, in which a subject’s data are exclu-

ded in the training set if their data are used as the test set.

Figure 6 reports the distribution of the SVM-produced

posterior probabilities (i.e., the probability of a BC being a

BC with swallows). The distribution was plotted from all

BCs obtained during the experiment. The posterior prob-

ability is first quantized as follows: 0.1 for posterior

probability falling in [0–0.1], 0.2 for (0.1–0.2],…,1 for

(0.9–1.0]. The percentage of BCs in each region is plotted

as bars in Fig. 6. In the absence of classification errors,

there would have been only one bar at probability 1 for the

cycles with swallows. Similarly, there would have been

only one bar at probability 0 for the cycles without
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swallows. In Fig. 6, it can be observed that in spite of some

classification errors (i.e., indicated by the scattered bars

over the probability axis), the SVM is able to separate the

two cycle types fairly distinctly. Such errors are often

caused by swallow signatures that are too short (in time) to

be captured by the specified features, and by BC modula-

tion by adjacent swallows [13].

By applying a probability threshold Pth to the SVM-

produced posterior probabilities, it is possible to classify

each cycle as a normal or swallow-containing BC in the

following manner.

normal breathing cycle; if probð1jxiÞ\Pth;
breathing cycle withswallow; otherwise:

�

Figure 7 shows the SVM-only classification accuracy

(i.e., precision and recall) for threshold Pth values of

0.1–0.9. Each point on the SVM curve for a given subject

corresponds to a precision and recall pair for a given

threshold value. When the threshold is increased, precision

increases, whereas recall decreases, indicating fewer FPs

and TPs. Since the breathing signals during lunch are

imbalanced (i.e., there are many more normal BCs than BCs

with swallows), a higher threshold gives more preference

over normal BCs and therefore reduces the number of FPs,

thus increasing precision and decreasing recall. The reverse

effect was observed when the detection threshold Pth was

decreased. The SVM-only performance lines in Fig. 7 pro-

vide a means for choosing an appropriate Pth for a required

balance between precision and recall. Table 2 presents the

precision and recall performance for all six subjects obtained

with a threshold of 0.5 for swallow classification.

3.5 Improved Detection Using HMM

HMM processing, as outlined in the Sect. 2, was applied to

the posterior probabilities out of the SVM to improve

detection performance. Such improvements are accom-

plished by correcting some of the SVM errors by lever-

aging known locality information in human swallow

sequences. As described in the Sect. 2, for each subject, the

A (2 9 2) matrix is derived by computing the transition

probability between the two states (i.e., normal BCs and

BCs with swallows) using the ground truth indicated by the

pushed button results. The B (2 9 10) matrix is calculated

from the posterior probability from the SVM module and

the given ground truth. Each element thus represents the

probability that a 1 appears in one of the N positions, given
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Table 2 Performance summary of SVM and SVM ? HMM schemes

SVM SVM ? HMM

Precision (%) Recall (%) Precision (%) Recall (%)

Subject 1 68 86 74 82

Subject 2 67 100 74 96

Subject 3 49 90 81 81

Subject 4 54 98 72 93

Subject 5 45 91 66 87

Subject 6 80 80 83 74

Average 61 91 75 86
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the state (i.e., normal BC or BC with swallows), as illus-

trated in the Sect. 2. As an example, for subject 1, the A

matrix was found to be:

A ¼ 0:76 0:24
0:96 0:04

� �

and the B matrix was found to be:

A¼ 0:84 0:03 0:01 0 0:03 0:01 0:01 0:01 0:01 0:06
0:08 0:02 0 0 0:04 0 0:04 0:02 0:06 0:74

� �
:

The swallow detection performance of the SVM ? HMM

approach is presented in Fig. 7. For each subject, there is

one point that indicates the corresponding precision and

recall performance. Observe that for subjects 1, 2, 3, and 6,

the SVM ? HMM point is situated higher and on the right

in comparison to the line for the SVM-only approach. This

indicates better performance of SVM ? HMM compared

to the SVM-only approach with all possible posterior

probability thresholds. For the remaining two subjects (i.e.,

4 and 5), the SVM ? HMM performance point is on the

SVM-only line, indicating that with certain posterior

probability thresholds, SVM-only can perform as well as

the SVM ? HMM approach. The variation of performance

across subjects results from the different way people eat

solid food. For example, some people eat faster, and thus

have shorter intervals between consecutive swallows, lar-

ger bolus sizes, or both.

Table 2 compares the performance of the SVM-only

solution using a threshold of 0.5 with SVM ? HMM. It

demonstrates that SVM ? HMM consistently outperforms

the SVM-only solution when the optimum threshold of

posterior probability is unknown.

These results validate the overall usefulness of the

proposed HMM processing that leverages known swallow

sequence locality information for removing certain classi-

fication errors that are introduced by the SVM-only

approach.

3.6 Performance of Existing Approaches

Passler and Fischer [6] achieved 91.3% precision and

81.8% recall with an in-ear microphone, with the subjects

restricted from talking, and ambient noise minimized to

reduce artifacts. In another study [28], inertial sensors were

used to track the movements of the arms and trunk. An in-

ear microphone was used to record the food breakdown

sound, and sEMG electrodes and a stethoscope microphone

were deployed to detect swallowing activities. A precision

of 20% and a recall of 68% were achieved. Makeyev and

colleagues [10] used a throat microphone to detect swal-

lowing; the average accuracy was 66.7% for the inter-

subject model (cross-validation).

In this paper, as shown in Table 2, the SVM ? HMM

had a precision of 75% and a recall of 86%, which are

comparable to, or better than, the reported performance in

the literature under comparable ambient and artifact

scenarios.

A detailed analysis of mistakenly detected BCs revealed

that the main cause for loss of accuracy is irregular

breathing during food intake caused by feeding and

chewing. More specifically, people tend to feed themselves

during inhalation and might subconsciously hold their

breath for a short period of time. During chewing, people

sometimes unnoticeably swallow saliva with a very small

amount of food.

4 Conclusion

This paper proposed a wearable wireless solid food intake

monitoring system. A processing mechanism based on

SVM and HMM, which analyzes collected breathing

signals and known swallow sequence locality information,

was also proposed. The system and processing mechanism

were experimentally proven to be effective for solid food

intake detection. Ongoing work on this topic includes the

following. (1) Development of a generalized unsupervised

swallow detection mechanism for both solid and liquid

swallows. It was found that people are more likely to eat

solid food continuously over a period a time, while

drinking usually happens with one or two gulps at a time

during a very short period. During drinking, the feeding

action usually coincides with the swallow, while for eat-

ing, people need to chew the food into a bolus before

swallowing. (2) Development of a detection and filtering

mechanism for artifacts introduced by movement and

speech. During talking, the vocal fold modulates the

expiration air flow to produce sound, which is different

from apnea caused by swallows. It is not very common

that people eat while walking, during which the breathing

signals are modulated by a periodic signal caused by

steps. It is feasible to extract step signals from breathing

signals using accelerometer data available on smart-

phones. (3) Implementation of a real-time swallow

detection system that can be used by health researchers

for retrieving dietary information from a targeted popu-

lation. (4) System feasibility testing for long experimental

duration (e.g., days). (5) Addition of a sensing modality

into the belt, such as an accelerometer to detect trunk

movement, and integration of the food intake monitoring

system with other physiological [20] and physical activity

sensors [3] to develop a networked sensing/detection

system to provide a complete instrumentation package for

calorie management.
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