
Set-Top Box Simulator
Senior Project Report

Author & Developer: Philip Tyler
philip.b.tyler@gmail.com

Sponsor: TiVo Corp.
www.tivo.com

Advisor: Christopher Lupo
clupo@calpoly.edu

California Polytechnic State University
San Luis Obispo

June 7, 2013

mailto:philip.b.tyler@gmail.com
mailto:philip.b.tyler@gmail.com
http://www.tivo.com
http://www.tivo.com
mailto:clupo@calpoly.edu
mailto:clupo@calpoly.edu

Table Of Contents
Section Number Section Title Page Number

I. Introduction
1. Abstract
2. Terminology
3. Problem Statement
4. Project Goals

3
3
4

II. Background
1. Initial Project Guidelines
2. Customer Requirements
3. Engineering Requirements
4. Design Decisions

5
5
6
7

III. Description
1. System Requirements
2. Simulator Engine
3. Graphical User Interface

9
9

13

IV. Evaluation
1. Testing
2. Verification
3. Troubleshooting
4. Fine Tuning
5. Results

15
15
16
17
17

V. Conclusion
1. Project Summary
2. Future Development

18
18

VI. Appendix
1. References
2. Acknowledgements

20
20

2

I. INTRODUCTION

1. Abstract

This report presents a python-based Set-top box simulation program utilizing a
Simulation library called SimPy (See Appendix 1) to simulate real-time operation
of a Set-top Box, or DVR. A graphical user interface, designed with PyQt4,
allows a user to customize many simulation parameters such as hard drive
speeds, buffer sizes, length of simulation, etc. The GUI also shows the user any
errors that occur during the simulation such as buffer overflows/underflows. The
results of this simulator lie within 85%-95% accuracy depending on the user-input
parameters. With this simulation program, a Set-top box hardware or firmware
developer can interchange the scheduling algorithms and simulation parameters
to find the ideal system to manufacture.

2. Terminology

ATR: (Adjacent Track Repair) A self-maintenance function of modern HDDs.
When a small group of tracks is rewritten a few times, the HDD will flush its
cache memory and check the grouping for errors, rewriting where necessary.
This causes a small break in HDD processing time.
Benchmark: A time measurement of a task, run from start to finish, within a
known system.
Buffer: A region of a physical memory storage used to temporarily store data
while it is being moved from one place to another.
Buffer Watermark: A defined amount of used memory in a buffer. When the
amount of valid bytes in the buffer exceeds (high watermark) or precedes (low
watermark) the defined amount, the system is warned the buffer might overflow
or underflow.
DVR: (Digital Video Recorder) A Set-top Box specifically designed for consumer
recording of cable/satellite channels.
GUI: (Graphical User Interface) Allows users of a program to interact with images
rather than text commands.
Header: The small parts of a disk drive, that move above the disk platter and
transform the platter's magnetic field into electrical current (read the disk) or vice
versa – transform electrical current into magnetic field (write !the disk)
HDD: (Hard Disk Drive) A data storage device used for storing and retrieving
digital information using rapidly rotating discs (platters) coated with magnetic
material.
IDE: (Integrated Development Environment) A software application providing
software development utilities for computer programmers, usually consisting of a
source code editor, syntax highlight/code-completion tools and a debugger.
Python: A dynamic programming language and interpreter used in a variety of
application domains with features like: clear readable syntax, large built-in library
and full modularity.
PyQt4: Python v2 and v3 library for Digia's Qt GUI application framework and

3

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/User_(computing)
https://en.wikipedia.org/wiki/User_(computing)
https://en.wikipedia.org/wiki/Human-computer_interaction
https://en.wikipedia.org/wiki/Human-computer_interaction
http://en.wikipedia.org/wiki/Disk_drive
http://en.wikipedia.org/wiki/Disk_drive
http://en.wikipedia.org/wiki/Data_storage_device
http://en.wikipedia.org/wiki/Data_storage_device
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Hard_disk_platter
http://en.wikipedia.org/wiki/Hard_disk_platter
http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Computer_programmer
http://en.wikipedia.org/wiki/Computer_programmer
http://en.wikipedia.org/wiki/Source_code_editor
http://en.wikipedia.org/wiki/Source_code_editor
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Debugger
http://qt.digia.com/
http://qt.digia.com/

runs on all platforms supported by Qt including Windows, MacOS/X and Linux.

Set-top Box: An information appliance device with a tuner connected to a
television, turning the source signal into content in a form that can then be
displayed on the television screen or other display device. They are used in
cable television and satellite television systems, as well as other uses.
SimPy: An object-oriented, process-based discrete-event simulation language for
Python, released under the GNU Lesser GPL (LGPL) license.
SIP: A tool to create Python bindings for C and C++ libraries, originally developed
to create PyQt.
Tuner: A component of set-top box hardware. Converts a radio frequency analog
or digital television transmission into audio and video signals which can be
further processed to produce sound and video output.

3. Problem Statement

After joining TiVo Corp. as an intern summer of 2011, the engineers were
designing the next generation TiVo DVRs. DVRs with more channel tuners/
recorders, higher resolutions and a multitude video outputs. However, the
current single Hard disk drive minimal architecture bottlenecked the set-top box.
The single HDD could handle the constant stream of media data reads and
writes, but only if they were processed in the most efficient scheduled order.
Some other architecture features brought into question were buffer sizes, size (in
MegaBytes) of HDD read/write requests and what HDD to choose.

Instead of designing the multiple hardware schematics, spending tens of
thousands of dollars ordering the prototype boards, then running countless time-
consuming high-stress tests with different HDDs and scheduling algorithms our
team, the hardware team, set out to build an all-inclusive Set-top box simulator.

4

http://en.wikipedia.org/wiki/Information_appliance
http://en.wikipedia.org/wiki/Information_appliance
http://en.wikipedia.org/wiki/Tuner_(radio)#Television
http://en.wikipedia.org/wiki/Tuner_(radio)#Television
http://en.wikipedia.org/wiki/Content_(media_and_publishing)
http://en.wikipedia.org/wiki/Content_(media_and_publishing)
http://en.wikipedia.org/wiki/Television_screen
http://en.wikipedia.org/wiki/Television_screen
http://en.wikipedia.org/wiki/Display
http://en.wikipedia.org/wiki/Display
http://en.wikipedia.org/wiki/Cable_television
http://en.wikipedia.org/wiki/Cable_television
http://en.wikipedia.org/wiki/Satellite_television
http://en.wikipedia.org/wiki/Satellite_television
http://www.riverbankcomputing.com/software/pyqt
http://www.riverbankcomputing.com/software/pyqt
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Sound

II. BACKGROUND

1. Initial Project Guidelines

The main goal of this project was to create a design tool for the TiVo engineers.
A flexible and quick software tool for testing purposes. At the time, TiVo was
preparing for the release of their newest DVR, the TiVo Premiere XL the first TiVo
set-top box capable of recording four channels at once. Months of beta testing
the new equipment yielded results of high HDD traffic. The engineers had plans
of adding more tuners and media output streams to the next generation of DVRs,
but not enough HDD bandwidth with the current systems in place.

The tool would allow TiVo engineers to test their latest hardware and HDD
scheduling improvements against a user-modified virtual set-top box simulation.
The simulator engine would be fine tuned to exact timing values found in results
of real-time hardware testing. The tester could enter system parameters such as
buffer sizes, scheduling priorities and input/output bitrates then let the simulation
run for however long. While running, the simulation could collect errors, warning
and log messages the tester could read through after completion.

2. Customer Requirements

The Hardware team at TiVo needed a simulator with the following features:

A. User-editable parameters including
i. HDD: Cache size, Max/Min R/W speeds
ii. HDD: Time to move HDD head one track, from first to last track and

rotate the disk 360 degrees (all physical test-verified times)
iii. Chance of Adjacent Track repair or similar HDD self-maintainence
iv. Time to run simulation.
v. Size of media buffers, separate values for input/output
vi. Number of input channels with corresponding average bitrate
vii. Number of output channels with corresponding average bitrate
viii. High and Low watermarks for buffers
ix. Max MB-size of read/write HDD requests
x. HDD request timeout to generate request deadlines
xi. CPU processing time
xii. RAM read/write time

5

B. A Graphical User Interface, or GUI, to show
i. Dialog for user to edit parameters above
ii. Error messages
iii. Log messages
iv. Used space in buffers
v. Progress Bar running simulation
vi. Interface to start/stop/reset simulator

C. The application had to be portable and easy to use
i. Packaged for easy transfer
ii. Ready to install on any operating system
iii. Simple interface so any employee could use it
iv. Easy to understand code for easy manipulation

3. Engineering Requirements

The above customer requirements were converted to engineering requirements:

A. A programming language with the following features:
i. Simple installation on (almost) every OS
ii. Large selection of advanced GUI libraries
iii. Expansive Modular simulation package(s)
iv. Availability of tutorials, well-written APIs
v. Object Oriented
vi. Open Source License

B. A Simulation Library With the following features:
i. Simple Installation
ii. Well-written documentation and tutorials
iii. Open Source License
iv. Minimal-to-no dependency on other libraries
v. Time-based
vi. Fully Modular
vii. Object Oriented

C. A GUI library with the following features:
i. Simple Installation
ii. Well-written documentation and tutorials
iii. Open Source License
iv. Minimal-to-no dependency on other libraries

6

D. The Source code for the application must be
i. Easily readable so future developers and team members can quickly

understand code
ii. Commented where necessary to explain more complex algorithms
iii. Utilize Object-Oriented properties for application expansion and

Polymorphism
iv. Able to interchange scheduler and HDD classes for different Set-top

box simulations

4. Design Decisions

Python over Java and C++

After discussion with other developers, Python became the language and base-
layer of the software. The choices were Python, Java or C++. C++ had quick
execution time, but a steep learning curve with odd complexities. Java met all
the engineering requirements, but other developers were concerned about the
performance of the Java Virtual Machine (JVM) and few simulation libraries.
Python stood out as the perfect fit.

Python’s readability, extensive standard library with thorough API documentation
and tutorials provided an easy learning curve. It’s licensed as open source and
rich with thousands of open source packages for many application domains,
inlcuding simulation and GUI.

SimPy for simulation

The director of the Hardware Team, David Platt, suggested SimPy as the
simulation skeleton library. After some research, it met all requirements with
great reviews from other developers. SimPy utilizes a process-based, discrete-
event simulation library with classes for Processes, Resources, Stores, Monitors,
Levels, Interrupts and Events. The developers provide a detailed API and
tutorials to get developing quickly. SimPy even included its own GUI.

GUI Built with PyQt4

During the first few months of development, the GUI was programmed with
SimPy’s GUI. However, its graphical architecture could not handle constant
refreshing to update the progress bars representing the used data with in a
simulation data buffer. Two other Python GUI libraries were praised by other
developers online and in-office: wxPython and PyQt. The documentation and
capabilities of PyQt far exceeded that of wxPython, making it the obvious choice.

7

The final GUI was built with PyQt4.2, the most recent build of the Python port of
Digia’s Qt GUI framework developed in C++. It’s open source, and used in
hundreds of applications. The most impressive library feature, Signals and
Sockets, provided a simple architecture for connecting GUI elements such as
buttons, dials and textboxes to python functions.

Development Tools

The first decision involved choosing a strong Python IDE to edit, debug and
consolidate the application. The development program had to be compatible
across all OS environments for the convenience of future developers. Must be
feature-rich with extensive text-editor preferences.

The team decided on the Eclipse IDE with the PyDev plugin. The team had
previous experience using Eclipse for C++ and Java development on Linux, OSX
and Windows operating systems. Both the IDE and plugin were open source and
feature-rich. Initially the project was developed on

8

III. DESCRIPTION

1. System Requirements

In order to run the simulation on a desktop or laptop computer, the following
preconditions must be met:

A. The computer itself must meet Python v2’s system requirements
i. Windows

a. Windows 2000 or newer
b. Cygqin interpreter (optional)

ii. Macintosh
a. OS X (any version)

iii. Linux/Unix
a. Kernel version 2.5 or later
b. Distribution must have GUI such as Gnome

iv. Hardware minimums
a. 256 MB RAM
b. 500MHz processor

B. These software packages must be installed
i. Python 2.6 or 2.7 interpreter (not tested with Python 3)
ii. SimPy 2.3 (latest release)
iii. SIP 4.14 (latest release)
iv. PyQt 4.10 (latest release)

2. Simulator Engine

Class Descriptions

The SimPy library is Object Oriented and includes generic classes for Processes
(repeated tasks like scheduling HDD requests), Resources (modules needed for
a process to run) and Levels (a containing that can be filled or drained like a data
buffer). SimPy is a time-based simulation package for python. It utilizes a queue
of processes ordered by when they can run next. Processes call ‘yield’ to delay
processing for a set amount of time or until they receive a requested resource.
The specific simulation classes below extend the generic classes a specific
modeling purpose.

A. Input/Output data streaming model
i. Buffer - subclass of Level to model a single unit of capacity-defined

memory.
ii. Buffer Control - subclass of Process to model kernel checking level of

Buffer and determining if a HDD request should be made. Can only have
one open HDD request at a time.

9

a. IO Request - Class representing a HDD request with properties such
as read or write flags, byte size, a deadline, and origin buffer.

b. Read Requester - subclass of Buffer Control set to monitor an output
buffer. If the buffer contains less data than its low water mark, or it
has not created a HDD request for some time.

c. Write Requester - subclass of Buffer Control set to monitor an output
buffer. If the buffer contains less data than its low water mark, or it
has not created a HDD request for some time.

iii. Data streaming
a. Input Stream - subclass of Process to model a cable tuner constantly

filling a data buffer with demodulated audio/video data.
b. Output Stream - subclass of Process to model an MPEG decoder chip

constantly emptying a data buffer’s MPEG data and converting it to
sound and video signals ported to a display (television)

B. HDD scheduling model
i. Scheduler - subclass of Process with abstract function definitions

a. TiVo engineers create subclasses of Scheduler with specific
algorithms.

b. These specific subclasses must implement the abstract methods
called by other modules in the simulation. If the functions to no match
the parent class, the specific scheduler will not be run properly.

C. HDD model
i. Disk - subclass of Resource containing user-entered HDD properties.
ii. HDD Cache - subclass of Process to pull HDD requests off the

schedulers sorted queue when the cache is not full. Request in the
cache enter another queue, waiting to be written to/read from the HDD.

iii. HDD Controller - subclass of Process to perform HDD read/write request
simulation.
a. After performing a write request the HDD Controller may enter ATR

mode, stopping processing of HDD requests. The chance of ATR
state is given by the user.

D. Other System Models
i. CPU - subclass of Resource to model a single-core processor

a. Acts as a mutex that Process subclasses must have possession of in
order to simulate calculations and processing.

b. Mostly used by scheduler when sorting HDD requests
ii. RAM - subclass of Resource to model the time required to mov data

between buffers/caches.

10

Simulator Flowchart

Figure 1: Diagram of all simulator components

11

User Editable Parameters

Table 1 illustrates all the simulation parameters the user can change to affect the
simulation environment. Note that millisecond values are simulation
milliseconds, not real-time.

Variable Name Default value(s) Description
numTuners 6 input streams Number of inputs streams and buffers the

simulation uses
iBitrates 20 Mbps Average data per second written into all

input buffers
iBufferSize 8000 kBs Size of input buffers
numOutputs 4 output streams Number of outputs streams and buffers the

simulation uses.
oBitrates 20,20,20,20 Mbps Average data per second read from all

output buffers
oBufferSize 8000 kB Size of output buffers
iInterval 50 ms Time between input buffer checking its

used space to make a write request.
oInternal 50 ms Time between output buffer checking its

used space to make a write request, in
simulation milliseconds.

oThreshhold oBufferSize/2 Maximum amount of data needed in an
output buffer to not create read requests.

iReqTimeOut 1000 ms Max time input buffer will wait before
making an IO request of the largest size
possible

oReqTimeOut 1000 ms Max time output buffer will wait before
making an IO request of the largest size
possible

wMaxSize 2048 kB Max size of HDD write request
rMaxSize 2048 kB Max size of HDD read request
cpuTime 2 ms Time yielded for a single unit of CPU

processing such as scheduling lists,
moving memory, ect.

maxTime 5000000 ms Time simulation will run for in simulation
milliseconds.

sIOPeriod 100 ms Average time between small IO HDD
queries, in simulation milliseconds. To
model kernel system calls.

sIOMaxSize 5 sectors Max number of sectors small IO HDD
queries will write.

sIOBurstTime 50 ms Time between IO requests in one burst.
sIOMaxQueries 2 requests (in one burst) Max number of MySQL IO queries sent

after mfsPeriod.

12

Variable Name Default value(s) Description
sqIOPeriod 2000 ms Average time between MySQL IO HDD

queries, in simulation milliseconds.
sqIOBurstTime 20 ms Time between IO requests in one burst.
sqIOMaxSize 4 sectors Max number of sectors MySQL IO queries

will write.
sqIOMaxQueries 5 requests (in one burst) Max number of small IO queries sent after

mfsPeriod.
hddNumTracks 100 tracks Time to simulate the HDD processing a

new command sent from the driver in
simulation milliseconds.

hddMaxTurn 11.1 ms Time for disk to make 1 full rotation. Used
to generate time needed for adjusting the
needle to a certain sector on a track.

hddTrackMove 1.63 ms Time to simulate the HDD moving its head
across 1% of all total sectors.

hddFullStroke 28.55 ms Max time to simulate rotating the disk to
the correct orientation in simulation
milliseconds.

hddOneMedia 1.2 ms Time to simulate the HDD writing one
128kB section of data to the disk.

hddCacheSize 16 MB Size of HDD cache
hddHoldTime 100ms Time to simulate repairing one hdd track.

Table 1: All simulation parameters, default values and descriptions

3. Graphical User Interface

The simulator’s GUI is built with the PyQt4. The custom simulator GUI classes
subclass PyQt’s GUI objects such as QDialog, QMainWindow, QLabel,
QStatusBar, etc. Each subclass corresponds to a specific element in the GUI,
and contain functions and an overridden constructor. All the GUI coding and
class declarations. Because Python allows multiple inheritance, some GUI
components also subclass SimPy’s Process class, thereby allowing them to be
updated during simulation such as the error log window and buffer bars.

The following images display the two GUI windows (dialogs) for the simulation.
Figure 2 shows the main window containing the error log window, progress bars
for each buffer representing the used space inside the buffer refreshed every
tenth of a second, menu bar, status bar and an overall simulation progress bar.
Figure 3 shows the parameter editor dialog. Every parameter has a spinbox
preloaded with default values. When the user clicks apply, the main window is
redrawn with new parameters.

13

Figure 2: Main window for simulation GUI

Figure 3: Simulation parameter editing window.

14

IV. EVALUATION

1. Testing

Testing for this software tool was done in two main ways. Code testing and
debugging were done through the Eclipse Debugger and Terminal window.
Larger scale feature and component testing occurred in simulator code reviews
by the Hardware Team.

Eclipse Debugger and Terminal

Most of the testing process involved trail and error. In order to add a new feature
to the simulator, the feature was split into phases. Each phase was implemented
in the code, then tested before adding the next phase. For example, when
coding a scheduler class, the first phase consisted of a function called by
Request Creator objects to add new requests to be scheduled. A test was written
with four Request Creator objects set to send a request to the new scheduler
object, then delay for a pseudo-random amount of time. The correct scheduler
operation was verified using The Eclipse Debugger to visually display object
properties and the Terminal window to display log/error messages. The entire
course of the project utilized this basic testing strategy

Code Review Meetings

Every two to three weeks, the team would meet up for a simulator review. The
meeting would begin with a demonstration of the newest simulator features and
changes since the previous meeting. The team would discuss the accuracy and
capabilities of the new features, possibly suggesting different algorithms or
tweaks for improvement. A conversation on future development of the simulator
followed the code review session, resulting in a prioritized list of new features.
Between meetings the new features would be added in priority order.

2. Verification

One of the most important aspects of the simulator was to yield accurate results,
closely matching actual set-top box benchmarks (see Terminology). Once the
core modules of the simulation components operated to spec, the next step was
to run simulations with parameters matching known set-top box systems. Then
verify the simulator results with predetermined hardware-tested benchmarks,
bandwidth tests, and manufacturer-supplied timing diagrams. If the simulator
could not reproduce matching results for known timings, its operation as a pre-
design tool would be highly inaccurate.

15

Supplementing Benchmarks for Estimations

In implementing the RAM component of the simulator, the timings used for
memory transfer delay calculation came from the timing diagram of the RAM
inside the newest TiVo DVR model. Previous RAM benchmarking tests produced
much longer memory transfer and overhead time. The team agreed those
numbers’ inaccuracy could be a fatal flaw in the performance of the SIM. More
C++ benchmarking tests, specifically for memory, were written and run on other
DVRs with known hardware. The constants, used for SimPy Process delay were
adjusted until the simulator’s known system results matched the tested
benchmarks.

Better HDD Modeling

The HDD proved the hardest component to model, with many inner components
including cache memory, firmware and magnetic heads to write onto disks. First
HDD simulator results showed much higher maximum data throughput compared
to previous set-top benchmarks by almost 20%. Even after reducing the HDD
read/write speed simulation parameter from 110MBps (from Wester Digital
Datasheet) to 88MBps (20% less), results still showed more data throughput
when compared to benchmarks. Further modeling of the HDD’s internal
maintenance was needed.

Adjacent Track Repair (ATR), Western Digital HDD’s disk-error checking and
correcting process, runs after four adjacent tracks called a Zipcode is written over
on separate occasions. Because of the close proximity between tracks, potential
for an accidental bit change is high. After speaking with the Vice President of
HDD Testing with WD, much more details of ATR were revealed. ATR can block
any HDD read or write traffic for up to 130 ms while checking and possibly
repairing the four adjacent tracks but usually averages about 100 ms. Once this
feature was implemented in the simulation, simulator results matched
benchmarks between 85-95%.

3. Trouble Shooting

Infinite Loops

Infinite loops caused the majority of errors observed. The GUI and terminal
would stop responding and require kernel-issued termination. In such cases,
breakpoints were placed in the code, and the Eclipse Debugger would step
single lines of code until the relentless loop was identified and removed. GUI
infinite loops presented challenges because the infinite loops were found within
the Library’s code, requiring a backtrace to find the incorrectly assigned
variable(s).

16

The Rebuild

The first iteration of the project completed after 3 months of development at TiVo
Corp. It used SimPy’s built-in GUI framework, very few Object Oriented design
principles and full of debug print statements. The team agreed to rebuild the
project from scratch, utilizing PyQt4 GUI, Inheritance/Polymorphism on buffer
control and scheduler Python modules and cleaner code. The second iteration
was completed August 2012, a year later.

4. Fine Tuning

The final additions to the simulator were GUI finishing touches. First, Adjusting
minimum and maximum parameter values. Ensuring when the minimum or
maximum parameter values were used, the simulator still produced realistic
results. Other minor fixes included correct progress bar response, adding reset/
redraw functions to the menu bar, and formatting log files.

5. Results

The final results of simulator testing proved simulations with parameters
matching those of two known the systems, the TiVo Premiere and TiVo Premier,
came within 95% accuracy for maximum HDD data throughput and timing
benchmarks. Further result details cannot be contained in a non-TiVo Corp.
document. With known system accuracy like this, the tool proved accurate
enough for future set-top box development simulation.

17

V. CONCLUSION

1. Project Summary

In conclusion, the results of the software tool’s simulation results matched actual
hardware test results to provide a Set-top box design tool for TiVo engineers.
The final design is completely cross platform thanks to Python and its libraries’
compatibility. With a simple GUI and an array of editable parameters, almost any
member of the company could install and operate the simulation. The well
documented Python source code enables any future simulation developer to
continue additional editing of the software.

After the testing, verification and fine tuning processes the simulator yields
results 85% - 95% accurate results, when compared to equal real-time hardware
benchmarks. The closer the simulation parameters are the actual hardware
benchmarked, the more accurate results. In simulations where many parameters
vary far from those in the physical benchmark tests, results must be considered
for error. Hopefully this tool will remain in use for future set-top box development
and research.

2. Future Development

More Processes for More Realism

Though the simulation software as it stands appears complex, many smaller
components of the actual TiVo operating system, kernel and hardware are not
modeled yet in the simulation. Some components/processes to be modeled in
the simulator include:

A. The loading and processing of TiVo user interface. Bursty HDD traffic to
load flash and images needed to generate the UI.

B. Linux OS. The TiVo kernel is a private distribution of the Linux 2.6 kernel.
The OS has connection, self-maintenance and processing overhead not
currently modeled in the simulator.

C. Dual-HDD operation. The hardware team at TiVo has contemplated moving
to a two HDD architecture. Adding similar functionality to the simulator
would allow for TiVo engineers to maximize efficiency of such a system

A Post-Plotting GUI

Another simulation feature discussed with my superiors in multiple meetings was
a post-processing graphing function. When the simulation completed, a few
dialog windows would open up displaying graphs of the collected simulation data
on the Y axes and simulation time on the X axes. The graphs would be color-
coordinated to show errors and warning levels. A user could then cross check
those sim times, where errors have occurred, on the X-axis against the

18

generated log messages with similar time stamps to find the source of the error.

One graph would display the used space in all the buffers over time. This graph
would provide memory insight to engineers, pointing out time simulation time
values where buffers overflowed or underflowed. Another graph would show the
state of the HDD over the time of simulation. Different colors on the graph would
correlate to different states such as reading, writing, flushing cache, ATR, RAM
transport, etc. This graph could be used in accordance with the buffer graph for
visual understanding of error messages.

19

VI. APPENDIX

1. References

http://www.python.org/
"Python Programming Language – Official Website." Python Programming
Language – Official Website. N.p., n.d. Web. 11 June 2013.

http://simpy.sourceforge.net/
"SimPy Simulation Package." SimPy Home. N.p., n.d. Web. 11 June 2013.

http://www.riverbankcomputing.com/software/pyqt/intro
"What Is PyQt?" Riverbank. N.p., n.d. Web. 11 June 2013.

http://www.riverbankcomputing.com/software/sip/intro
"What Is SIP?" Riverbank. N.p., n.d. Web. 11 June 2013.

http://www.eclipse.org/org/
"About Eclipse." About the Eclipse Foundation. N.p., n.d. Web. 11 June 2013.

http://pydev.org/
"What Is PyDev?" PyDev. N.p., n.d. Web. 11 June 2013.

2. Acknowledgements

TiVo Corp.

Thank you to my supervisors and idea-generators at TiVo: Mukesh Patel,
Sudhakar Rao and David Platt. Also, this project could not have been completed
without the set-top box system knowledge of other TiVo firmware/hardware
engineers: Srinivas Jandhyala, David Harrison and Kurt Heaton.

Cal Poly San Luis Obispo

To all the teachers their hard work and staff for the professional connections with
TiVo. Finally, I would like to thank Dr. Christopher Lupo for advising the
conversion from industrial tool to computer engineering senior project.

20

http://www.python.org/
http://www.python.org/
http://simpy.sourceforge.net/
http://simpy.sourceforge.net/
http://www.riverbankcomputing.com/software/pyqt/intro
http://www.riverbankcomputing.com/software/pyqt/intro
http://www.riverbankcomputing.com/software/sip/intro
http://www.riverbankcomputing.com/software/sip/intro
http://www.eclipse.org/
http://www.eclipse.org/
http://pydev.org/
http://pydev.org/

