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Abstract 

 

Electrocardiography (also called ECG or EKG) is a non-invasive process using electrodes to 

interpret the electrical activity of the heart and thus measure the rate and regularity of 

heartbeats. This is useful because it can be used to determine the size and position of the 

chambers, detect any damage to the tissue, and detect any cardiac pathologies that might be 

present. Our goal is to detect important characteristic points of ECG signals to determine if the 

patient’s heart beat is normal or irregular, accentuating one of several already pre-determined 

heart diseases. This will be accomplished by acquiring various ECG signals from an online 

database, and feeding the signal’s characteristic points through an artificial neural network 

which will train, test, and validate the ECG signal appropriately. 
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Introduction/Background 

 

Electrocardiography (ECG) is an interpretation of the heart’s electrical activity (amplitude) over 

time. By accurately measuring the heart beat of the patient, ECG has been clinically proven as 

an effective method for diagnosing heart diseases and other heart irregularities. An ECG test is 

performed with electrodes hooked up to a patient’s chest to pick up electrical activity of the 

heart. These electric signals are then sent to an external recording device so that visual data 

can be observed and compared to a normal heart rate in order to determine the health of the 

patient’s heart and heart chambers [4]. Due to its non-intrusive approach, ECG is widely 

accepted by both patients and doctors as a quick and effective procedure with real-time results. 

Figure 1 depicts the general hookup of electrodes to the human body to pick up neuron activity 

in the heart chambers. Accurately acquiring the electrical activity is of course critical to the 

doctor’s synopsis of the patient, so blocking out unwanted signal traces such as white noise, 

other respiratory and muscle noise, and 60 Hz  power line noise is imperative. Basic linear filters 

cannot be used when trying to rid of these unwanted signals since accuracy is of the utmost 

importance. A more systematic approach must be taken to deliver precise results. 

 Electrocardiography has developed significantly since its first contributions by Willem 

Einthoven’s beginning in 1901. Then, Einthoven’s string galvanometer invention paved the way 

for low current detection and recording of the human heart’s electrical activity. However, 

Einthoven’s ECG prototype itself was a laboratory and instead of electrodes the patients would 

immerse themselves into containers of salt solutions from which the recordings were made [1]. 

Just 20 years after Einthoven’s breakthrough, the string galvanometer decreased in size from 

600 lbs to 30 lbs. Today, with the development of computers and microelectronics, 

electrocardiography treatment has made great strides in terms of accuracy and reliability. 
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Currently, there are ECG records in the MIT-BIH (Massachusetts Institute of Technology-Beth 

Israel Hospital) Arrhythmia Database. Several signals will be chosen to simulate in MATLAB 

based on their determined heart problems at specific points of interest. By consulting with 

various references with information to accurately determine the specific heart 

irregularity/disease, we will be able to pick out the points of interest ourselves and acquire the 

QRS complexes in terms of amplitude (millivolts) and length (time in seconds) [8].  

 The project will utilize artificial neural networks (ANN) to “train” data results (QRS 

complexes). The ANN will be able to adapt to the behavioral model of non-stationary electric 

activity of the heart and provide the most accurate results.  

 

Figure 1: Electrocardiography Setup: The following is an example set-up for an 

electrocardiography diagnostic test. The standard 12-lead system consists of 10 electrodes: 
6 on the chest/heart, 1 on each inner forearm and 1 on the inside of each leg just above the 

ankle. Although only 10 leads are used, 2 of the leads are referenced to two separate points 

(two pathways) to give a 12-dimensional view of the heart’s electrical activity, hence the 12-
lead system [15]. 
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Background on Neural Networks 

 

Analysis of ECG is a complex issue that usually requires the expertise of a doctor to determine if 

the results are normal or classify any abnormalities that occur. This can be expensive and time 

consuming for someone who simply needs preliminary results. It can also save doctors time if 

they only need to confirm results. However, the non-linear, pattern recognition tasks required 

of ECG analysis can take hours using conventional computing methods [3]. 

Conventional computing is not necessarily the best solution for pattern recognition, as is 

required in applications such as analysis of an ECG signal. These types of applications can take 

a long time via conventional computing methods. However, the human brain is amazingly adept 

(and fast) with pattern recognition. To solve this problem, we can use the concept of an 

Artificial Neural Network (ANN). The idea of the ANN is derived from the massively parallel 

connection of neurons in the human brain (nervous system). In an artificial neural network, a 

computer is made to mimic these connections [3] [4]. 

To understand the idea of the artificial neural network, we must first understand the 

concepts it is based on. A silicon IC has a response time in the range of nanoseconds (10-9 s), 

but a neuron has a response time in the millisecond (10-3 s) range. It would seem as if the brain 

should be slower that a computer, however this is not the case. This can be attributed to the 

fact that the brain is massively parallel.  It consists of billions of neurons connected to each 

other by trillions of connections (called synapses) [2]. 
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Figure 2: Biological model of a neuron. Dendrites receive several differently weighted inputs 

and the output is sent down the axon to several other neurons [16].  

As seen in Figure 2, a neuron has several inputs as well as several outputs that contribute to 

the parallel structure of the brain. All the inputs (consisting of different strengths) are added 

together and then output to many more neurons.  

While we can’t have billions of processing units as the brain does, we can use the 

properties of the biological neural network to model small parts of the brain to perform a 

specific task [4]. There are several advantages to using this approach: [2] 

1. Non-linear 

Many real world problems, such as pattern recognition, are not linear. 

 

2. Input-Output mapping 

This allows for a learning mechanism where one can feed a given input and 

specify the corresponding output. If the output does not match the specified 

output, the system can adjust its parameters. 

 

3. Adaptability 

The ability to adjust parameters allows neural networks to adapt to changes in 

the environment. 
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4. Evidential Response 

Decisions can be made with a certain measure of confidence. 

 

5. Fault Tolerance 

Failures result in a graceful degradation. 

 

6. VLSI Implementation 

Transistors can be exploited to build very efficient neurons. 

 

Figure 3: Equivalent electronic model of a neuron. Several weighted inputs are summed to 

make up the net signal. This is then output to other neurons [17]. 

 

 As seen in figure 3, we can create an equivalent electronic model of a neuron with 

several inputs with different weights. The net signal of the neuron is the sum of the weighted 

inputs [3]. The network can “learn” by changing the weight of any input to any neuron. We will 

discuss our inputs and outputs in a later section.  

By consulting with various references with information to accurately determine the 

specific heart irregularity/disease, we will be able to pick out the points of interest ourselves 

and acquire th QRS complexes in terms of amplitude (millivolts) and length (time in seconds).  
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Neural Network 

 

Our neural network consisted of 10 input nodes, a hidden layer with 100 neurons, and 6 output 

nodes as seen in figure 4. We chose 100 hidden neurons for increased accuracy and due to the 

fact that it did not require a large computational sacrifice but increased accuracy. We used a 

scaled conjugate gradient back-propagation training function with MATLAB over 18 iterations 

because scaled conjugate gradient algorithms don’t require much computational power and are 

thus very fast. We set sigma, which determines change in weight for second derivative 

approximation, to be 5.0e-5. We found this to be optimal for accuracy. We set lambda as 5.0e-7 

because it was a good balance between performance and speed.  

 

Figure 4: Architecture of the neural network used. 
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 The input data is fed to the neural network which then computes the output as either 

normal, LBBB, RBBB, APC, PVC, or paced, based on the expected values in the target data [9]. 

The activation function of the output layer is a log-sigmoid transfer function. We used 

one hot encoding for interpreting the max output in each column as 1 and the rest as 0, 

assuming that there is only one output that can be 1. This does not consider a situation where 

more than one abnormality is present. For example, in a situation where an output is 0.48, if 

the 0.48 is the maximum value in the output column for the wave, then 0.48 would be 

interpreted as a 1.  Here is an example of the output of one waveform: 

Table 1: Output table of the NN for the normal wave form. 

Normal sinus rhythm 0.992880 

LBBB 0.019367 

RBBB 0.000039 

PVC 0.000231 

APC 0.001282 

Paced Beat 0.000027 

 

 The output of the NN should be a list of 1’s and 0’s as it computes which disease is 

present based on the inputs and target data (which is also 1’s and 0’s). Here, the numbers are 

slightly off the theoretical 1’s and 0’s because of some error in the training, validating, and 

testing samples used. In this example, the normal sinus rhythm would be identified as the 1 

and is within 0.7% of 1. LBBB, which had the next closest value to 1 is not even within 98.0% 

of 1. The Data set was 20 samples with training being 50%, validation being 35%, and test 

being 15%. 

 MATLAB has a neural network toolbox that was helpful in quickly making changes to 

variables such as network size and testing additional sets of data. The toolbox also generated 

the script in Appendix C, which is editable for changing parameters. 
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Figure 5: First page of the NN toolbox allows the user to select input and target data. 

 



P a g e  | 14 

 

 

Figure 6: Second page of the NN toolbox allows the user to adjust percentage of samples to 
be used for training, validation, and testing. 
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Figure 7: Third page of the NN toolbox allows the user to adjust NN size. 
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Figure 8: Fourth page of the NN toolbox allows the user to train data, see results, and retain 
the network if desired. 
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Figure 9: Fifth page of the NN toolbox allows the user to train the network again, adjust 
parameters, import new data sets, and perform additional testing. 
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Figure 10: Sixth page of the NN toolbox allows the user to save results and generate scripts. 
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Figure 11: This plot shows the difference between our target or expected data and the actual 

simulation of the neural network. The best performances occurred at epoch 12, or iteration 
12. 

 

QRS Complex Detection 

 

The QRS complex is a name for the deflections of a heart’s electrical activity. In ECG 

monitoring, each heartbeat is acquired via electrodes hooked up to the patient’s body that pick 

up traces of the heart signals. These signals are graphically displayed with various spikes and 

bumps in terms of amplitude (millivolts) that yield important information about a patient’s 

health [7]. The heart has various parts that all work together to pump blood in and out of the 

muscle as seen in Figure 13. Each heartbeat begins with an electrical signal derived in the 

sinoatrial node, or SA node, near the entrance of the superior vena cava [14]. Blood enters your 



P a g e  | 20 

 

right and left atriums, and when these compartments are filled, the electrical signal potential 

across the atriums causes them to contract, producing the P wave. The atriums contract the 

blood into the right and left ventricles which then also fill up with blood. The left and right 

ventricles are the largest parts of the heart and contract heavily with each heartbeat so that the 

potential difference between them is large and easily visible as the QRS complex. This is due to 

the depolarization of left and right ventricles. Once contracted, the right ventricle pumps blood 

into the pulmonary artery to your lungs while the left ventricle pumps blood through the aortic 

valve to the rest of the body. As the electrical signal passes along, the heart’s ventricles relax 

resulting in the T wave [14].  

 

Figure 12: Example ECG waveform with intervals labeled [18]. 
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Figure 13: Diagram of blood flow in the heart [19]. 

 There are nominal ranges for the PR and QT intervals as well as RR intervals from 

preceding or proceeding heartbeats to determine whether a person’s heart is normal or 

irregular. For a normal heartbeat, the QRS duration is in the range of 0.6-0.10 sec, the PR 

interval is usually 0.12-0.20 sec, and the QT interval is under 0.4 sec [7]. All these numbers are 

based on a person’s heartbeat, and since a normal heartbeat is in the range of 60-100 beats 

per minute, each person’s nominal values will be different from another person. Differences in 

age, gender, stress, and illness can also affect a person’s heart rate. We will simulate several 

ECG signals from the MIT-BIH Arrhythmia Database to acquire each person’s QRS points as well 

as relevant PR, QT, and RR intervals and validate whether a person has a heart problem by 

running their ECG characteristics through an artificial neural network. 
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QRS Detection 

Our QRS detection is mainly done through use of the derivative. We look for the maximum and 

minimum of the derivative of a wave. The highest peak (R wave) should be the zero crossing 

between the maximum and minimum of the derivative. Likewise, the Q point should be at the 

zero crossing before the maximum and the S point should be at the zero crossing after the 

minimum. The P and T waves are done similarly by looking for local maximums in the original 

waveform and then using the derivative to identify peak and end points. 

 However, not all waves were ideal, and we had to take into account different conditions 

where the ECG signal might not be correctly identified by the previous algorithm. To do this, we 

compared values such as the median and minimum and if the minimum was very low such as in 

the waves for LBBB or PVC; we looked for if the minimum was before or after the maximum (R 

wave) and ran a similar algorithm to the one above that takes into account the unique structure 

of heartbeats with different conditions. 
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Figure 14: QRS detection program flowchart. 
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To be able to classify each cardiac condition, we needed to identify the following ten 

characteristics of each signal: [10] this is done outside of the neural network using the QRS 

detection method described above and shown in figure 14. Each of the following ten 

characteristics is an input to the neural network given as a raw number. 

1) RS Interval 

2) PR Interval 

3) QRS Interval 

4) QT Interval 

5) R-R with previous signal 

6) R-R with subsequent signal 

7) Q wave amplitude 

8) R wave amplitude 

9) S wave amplitude 

10) T wave concavity 
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We first filtered the signal to remove artifacts such as power line interference using a zero 

phase Butterworth filter with a cutoff frequency of 30 Hz. The transfer function of the filter was: 

 

     
    

    
 

                                                                                                                                 

                                                                                     
 

 Next, we developed a script in MATLAB to identify each relevant data point (P, Q, R, S, 

and T) using derivatives and thresholds in both the waveform and its derivative [10].  

 

Figure 15: The normal ECG signal is in blue and the red wave is produced after applying the 
Butterworth zero-phase filter. 
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 The MIT-BIH database gives points of interest for each ECG signal with the time and a 

description of the feature present (e.g. RBBB). We simply looked up the waveforms at the given 

times and fed the waveform into our QRS point detection program. To the untrained eye, it is 

difficult to determine exactly where an irregular heart beat is and which class of diseases it 

belongs to so although this information was very helpful we had to use several references to 

confirm the class of the signal. An example of the patient record with points of interest is as 

follows: 

Record 100 (MLII, V5; male, age 69) 

Medications: Aldomet, Inderal 

Beats Before 5:00 After 5:00 Total 

Normal 367 1872 2239 

APC 4 29 33 

PVC - 1 1 

Total 371 1902 2273 

Supraventricular ectopy 

 33 isolated beats 

Rhythm Rate Episodes Duration 

Normal sinus rhythm 70-89 1 30:06 

Signal quality Episodes Duration 

Both clean 1 30:06 

Points of interest: 

11:03 Normal sinus rhythm 

25:13 PVC 

26:09 APCs 

27:55 Normal sinus rhythm 

 
Figure 16: Record for patient 100. We used this patient to extract normal sinus rhythm, PVC, 
and APC heartbeats. 

http://www.physionet.org/physiobank/database/html/mitdbdir/samples/1001103.xws
http://www.physionet.org/physiobank/database/html/mitdbdir/samples/1002513.xws
http://www.physionet.org/physiobank/database/html/mitdbdir/samples/1002609.xws
http://www.physionet.org/physiobank/database/html/mitdbdir/samples/1002755.xws
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Figure 17: Detection of characteristic points with ECG in blue and its derivative in red. 

 

Cardiac Conditions 

We wanted be able to detect 6 different classes of cardiac conditions: [10] 

1) Normal beat 

2) Left Bundle Branch Block beat (LBBB) 

3) Right Bundle Branch Block beat (RBBB) 

4) Atrial Premature Contraction beat (APC) 

5) Premature Ventricular Contraction beat (PVC) 

6) Paced beat 

 

On the following pages are descriptions, symptoms, and pictures for each class. 

 

 

 

Figure 18: Flow chart showing the process of determining the class of an ECG signal. 
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Normal Heartbeat: 

 

Normal heartbeats are characterized by the following: [12] 

 

1) QRS duration between 60 ms and 100 ms 

2) R-R interval between 600 ms and 1200 ms 

3) PR interval between 120 ms and 200 ms 

4) QT interval up to 420 ms 

5) Q amplitude less than ¼ of R amplitude 

 

An example can be seen in figure 19 below: 

 

 
Figure 19: Example of normal sinus rhythm from patient 100 of MTI-BIH Arrhythmia 

database.  
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Left Bundle Branch Block (LBBB): 

LBBB is a condition where the left ventricle contracts later than the right ventricle due to 

delayed activation of the left ventricle. It is primarily diagnosed by the following characteristics: 

[12] 

 

1) Widened QRS with duration greater than 120 ms  

2) ST wave is deflected opposite of the QRS complex. 

 

 An example can be seen in figure 20 below: 

 
Figure 20: Example of LBBB from patient 109 of MTI-BIH Arrhythmia database. 
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Right Bundle Branch Block (RBBB): 

RBBB is a condition where impulses travelling through the right bundle branch do not directly 

activate the right ventricle. The left bundle branch, however, still activates the left ventricle 

normally. It is primarily diagnosed by the following characteristics: [12] [11] 

 

1) Widened QRS with duration greater than 120 ms  

2) Slurred S waves 

3) The QRS complex sometimes shows an extra deflection 

 

An example can be seen in figure 21 below: 

 

 
Figure 21: Example of RBBB from patient 118 of MTI-BIH Arrhythmia database. 
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Premature Ventricular Contractions (PVC): 

PVC is a common condition where the ventricles contract before the atria optimally fill the 

ventricles with blood because the Purkinje fibres in the ventricles initiate the heartbeat rather 

than the sinoatrial node, the normal heartbeat initiator. Single beat PVC arrhythmias are usually 

nonthreatening. PVCs are primarily diagnosed by the following characteristics: [12] 

 

1) Widened QRS with duration greater than 120 ms  

2) Different than the normal QRS morphology  

3) Premature, with a compensatory pulse 

 

An example can be seen in figure 22 below: 

 
Figure 22: Example of PVC from patient 102 of MTI-BIH Arrhythmia database. 
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Atrial Premature Complex (APC): 

APC is a condition in which premature heartbeats originating in the atria occur due to another 

region of the atria depolarizing before the sinoatrial node, the normal heartbeat initiator. APCs 

are primarily diagnosed by the following characteristics: [12] 

 

1) Premature, with a shortened R-R with the previous beat 

2) Compensatory pause, with a lengthened R-R with the subsequent beat  

3) Narrow QRS duration 

 

An example can be seen in figure 23 below: 

 
Figure 23: Example of APC from patient 100 of MTI-BIH Arrhythmia database. 
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Paced Beat: 

A paced beat is simply the result of a patient with an artificial pacemaker, which is a device that 

contracts the heart muscles using electrical pulses to help regulate the beating of the heart. 

Paced beats are characterized by: [13] 

 

1) Spikes representing electrical pulse of pacemaker (before either the P or Q wave) 

2) QRS complex that is wide, bizarre, and resembles a ventricular beat 

 

An example can be seen in figure 24 below: 

 
Figure 24: Example of a paced beat from patient 104 of MTI-BIH Arrhythmia database. 
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Results 

 

As seen in figure 25 below, our neural network was able to correctly identify 85% of the 

waveforms it was given. It correctly identified 100% of all PVC, RBBB, Paced, and Normal 

beats. It correctly identified 66.7% of all APC beats and 33.3% of all LBBB beats. Although the 

APC beat identification rate was far below what we hoped to achieve, our overall rate of 

identification was still very good.  

 

Figure 25: Confusion matrix, showing the number of each class of inputs correctly and 
incorrectly identified. There are 20 samples and for this iteration in the neural network, 

there were 3 samples that were determined incorrectly, as seen in the red squares. The total 
number of samples determined correctly is the 85%, or 17 samples, and the rest is the 15%, 

or 3 samples.  

 

 The error, as seen in figure 26, follows a narrow bell curve with very little significant 

error. This agrees with the results in the confusion matrix. Because our target data is binary (a 
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wave can only either belong or not belong to a class), only significant errors where the output is 

closer to 1 when it should be 0 or closer to 0 when it should be 1 make a difference.  

 

Figure 26: Error histogram showing how outputs deviated from target. 

 

Table 2: Statistics table showing the training and testing performance of the Neural Network 
with 17 sets of training data and 20 sets of testing data 

 Max Min Mean Standard Dev. 

MSE (Training) 0.1218 0.0037 0.044375 0.033427 

MSE (Test) 0.193082102 1.54246E-07 0.029769 0.067138 

 

Our results have both advantages and disadvantages when compared to the results of the 

Intelligent Heart Disease Recognition using Neural Networks [10]. We had an average MSE of 

0.02977 compared to 0.00484. Although our MSE was larger, in some categories, we had 

higher recognition rates. This can be seen in table 3 below. 
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Table 3: Comparison of our NN’s recognition rate to that of another report on ECG detection. 

 Normal APC PVC RBBB LBBB Paced 

Their Recognition Rate (%) 88 96 91 98 84 87 

Our Recognition Rate (%) 100 67 100 100 33 100 
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Conclusion 

 

We were able to use an artificial neural network to classify different heartbeat waveforms into 1 

of 6 different categories. Our neural network was able to achieve an 85% correct identification 

rate. With such a high rate of identification, it could easily be used as a preliminary analysis 

before a cardiologist is consulted to save time and money. It could also be used to analyze ECG 

signals in remote places where people do not have easy access to a professional doctor.  

 Although our results proved efficient, the ANN could be improved even more with better 

accuracy if more inputs and associated target values were used. Unfortunately, the database 

has a limited number of ECG signals with diseases that are not separate from others in the 

signal. For example, although several PVC beats may be graphically displayed, they are also 

associated with another disease such as ventricular couplets which makes it very difficult to 

distinguish where the exact PVC wave is to the naked eye unless you are a licensed doctor. In 

the future, this project could be improved by acquiring more similar input signals so that the 

ANN can better classify the heart signals as diseased or normal. Once many more inputs are 

used and the ANN provides steady, high accuracy (98% or better) results, an interface can be 

developed to test on real patients and deliver real time results to them about their heart 

condition and whether they need further diagnosis. In addition, our simulations assumed that 

there was only one heart condition present at any given time. In the future, work could be done 

to account for heartbeats where symptoms of more than one condition are present. 
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APPENDIX A – Butterworth Zero-Phase Filter 

 

fNorm = 30 / (360/2); %30Hz cutoff frequency, 360Hz sample rate 

[b, a] = butter(10, fNorm, 'low'); %generates some vectors, b & 

a for the filter 

Y = filtfilt(b, a, waven2); %filter the data vector data and 

return Y 
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APPENDIX B – Code for PQRST Detection 

 

signal = diff(Y) 

 

%find Threshold 

Top = max(signal) 

Bottom = min(signal) 

 

%find max & min point 

NumSamples = length(signal) 

for(i=1:NumSamples) 

    if(signal(i) == Top) 

        TopLocation = i 

    elseif(signal(i) == Bottom) 

        BottomLocation = i 

    end 

end    

 

%find Q 

j=TopLocation 

    while(signal(j)>.05*Top) 

        j=j-1 

    end     

Q=j; 

 

%find R 

k=TopLocation 

    while(signal(k)>.05*Top) 

        k=k+1 

    end     

R=k; 

 

%find S 

l=BottomLocation 

    while(signal(l)<.05*Bottom) 

        l=l+1 

    end     

S=l; 

 

%find T peak 

Tp=S 

peakT=Y(S) 

for m=S:NumSamples, 

    if Y(m) > peakT 

        Tp = m 

        peakT = Y(m) 
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    end 

end 

 

%Find T end 

p=Tp+7 

while(signal(p)<-.0035) 

        p=p+1 

    end     

Te=p; 

 

%find P peak 

Pp=Q 

peakP=Y(Q) 

for n=Q:-1:40, 

    if Y(n) > peakP 

        Pp = n 

        peakP = Y(n) 

    end 

end 

 

%find P start 

Ps=Pp 

startP=Y(Pp) 

for o=Pp:-1:2, 

    if Y(o) < startP 

        Ps = o 

        startP = Y(o) 

    end 

end 

 

plot(Y) 

hold all 

plot(Q,Y(Q),'o',R,Y(R),'o',S,Y(S),'o',Tp, Y(Tp),'o',Te, 

Y(Te),'o',Pp, Y(Pp),'o', Ps, Y(Ps),'o' ) 

plot(signal,'r') 

hold off 
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APPENDIX C – Code for Neural Network 

% Solve a Pattern Recognition Problem with a Neural Network 

% Script generated by NPRTOOL 

% Created Thu May 23 12:21:57 PDT 2013 

% 

% This script assumes these variables are defined: 

% 

%   input - input data. 

%   target - target data. 

 

inputs = input; 

targets = target; 

 

% Create a Pattern Recognition Network 

hiddenLayerSize = 100; 

net = patternnet(hiddenLayerSize); 

 

% Choose Input and Output Pre/Post-Processing Functions 

% For a list of all processing functions type: help nnprocess 

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 

net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 

 

 

% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help nndivide 

net.divideFcn = 'dividerand';  % Divide data randomly 

net.divideMode = 'sample';  % Divide up every sample 

net.divideParam.trainRatio = 50/100; 

net.divideParam.valRatio = 35/100; 

net.divideParam.testRatio = 15/100; 

 

% For help on training function 'trainscg' type: help trainscg 

% For a list of all training functions type: help nntrain 

net.trainFcn = 'trainscg';  % Scaled conjugate gradient 

 

% Choose a Performance Function 

% For a list of all performance functions type: help 

nnperformance 

net.performFcn = 'mse';  % Mean squared error 

 

% Choose Plot Functions 

% For a list of all plot functions type: help nnplot 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', 

... 

  'plotregression', 'plotfit'}; 
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% Train the Network 

[net,tr] = train(net,inputs,targets); 

 

% Test the Network 

outputs = net(inputs); 

errors = gsubtract(targets,outputs); 

performance = perform(net,targets,outputs) 

 

% Recalculate Training, Validation and Test Performance 

trainTargets = targets .* tr.trainMask{1}; 

valTargets = targets  .* tr.valMask{1}; 

testTargets = targets  .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,outputs) 

valPerformance = perform(net,valTargets,outputs) 

testPerformance = perform(net,testTargets,outputs) 

 

% View the Network 

%view(net) 

 

% Plots 

% Uncomment these lines to enable various plots. 

figure, plotperform(tr) 

%figure, plottrainstate(tr) 

figure, plotconfusion(targets,outputs) 

%figure, plotroc(targets,outputs) 

%figure, ploterrhist(errors) 

%mse(net,target,outputs) 
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APPENDIX D – Input, Target, and Output Tables for 20 Different Simulations 

Input Table 

 RS PR QRS QT R-R i R-R s Q amp R amp S amp T 

Simulation 1 0.117 0.000 0.378 0.000 0.772 0.861 -2.715 0.960 -0.280 0 

Simulation 2 0.133 0.000 0.333 0.000 0.728 0.667 -1.400 0.190 -0.190 0 

Simulation 3 0.125 0.000 0.369 0.000 0.747 1.344 -2.210 1.125 0.165 0 

Simulation 4 0.019 0.261 0.050 0.000 0.542 0.947 -0.430 1.355 -0.365 0 

Simulation 5 0.047 0.100 0.069 0.328 0.658 1.275 -0.530 1.530 -0.305 1 

Simulation 6 0.044 0.047 0.078 0.453 0.708 1.319 -0.980 1.285 -1.010 1 

Simulation 7 0.108 0.197 0.169 0.294 0.817 0.825 -1.040 0.540 -2.280 -1 

Simulation 8 0.069 0.194 0.111 0.414 0.681 0.756 -0.210 1.245 -0.750 -1 

Simulation 9 0.053 0.264 0.108 0.264 0.833 0.808 -0.895 0.400 -2.005 -1 

Simulation 10 0.122 0.303 0.172 0.419 0.697 0.681 -0.330 1.205 -0.915 1 

Simulation 11 0.322 0.308 0.397 0.406 0.906 0.883 0.650 -0.280 -0.565 1 

Simulation 12 0.253 0.228 0.308 0.564 0.775 0.881 -0.295 1.885 -0.785 1 

Simulation 13 0.086 0.000 0.144 0.567 0.886 0.856 -0.250 1.470 -1.860 1 

Simulation 14 0.119 0.000 0.175 0.578 0.875 0.883 -0.265 1.805 -2.385 1 

Simulation 15 0.117 0.000 0.172 0.550 0.858 0.875 -0.500 1.660 -2.765 1 

Simulation 16 0.058 0.189 0.086 0.386 0.844 0.836 -0.445 1.055 -0.470 1 

Simulation 17 0.025 0.219 0.056 0.369 0.858 0.850 -0.580 1.910 -0.535 1 

Simulation 18 0.047 0.186 0.083 0.381 0.697 0.678 -0.280 1.300 -0.390 1 

Simulation 19 0.022 0.156 0.047 0.386 0.792 0.800 -0.320 1.900 -0.650 1 

Simulation 20 0.017 0.186 0.042 0.450 0.892 1.053 -0.460 2.035 -0.700 1 
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Target Table 

 PVC APC RBBB LBBB Paced Normal 

Simulation 1 1 0 0 0 0 0 

Simulation 2 1 0 0 0 0 0 

Simulation 3 1 0 0 0 0 0 

Simulation 4 0 1 0 0 0 0 

Simulation 5 0 1 0 0 0 0 

Simulation 6 0 1 0 0 0 0 

Simulation 7 0 0 1 0 0 0 

Simulation 8 0 0 1 0 0 0 

Simulation 9 0 0 1 0 0 0 

Simulation 10 0 0 0 1 0 0 

Simulation 11 0 0 0 1 0 0 

Simulation 12 0 0 0 1 0 0 

Simulation 13 0 0 0 0 1 0 

Simulation 14 0 0 0 0 1 0 

Simulation 15 0 0 0 0 1 0 

Simulation 16 0 0 0 0 0 1 

Simulation 17 0 0 0 0 0 1 

Simulation 18 0 0 0 0 0 1 

Simulation 19 0 0 0 0 0 1 

Simulation 20 0 0 0 0 0 1 

 

Output Table 

 PVC APC RBBB LBBB Paced Normal 

Simulation 1 0.99942 0.00000 0.00005 0.00019 0.00046 0.00059 

Simulation 2 0.97716 0.00001 0.00003 0.00011 0.00396 0.13611 

Simulation 3 0.99902 0.00105 0.00013 0.00005 0.00007 0.00001 

Simulation 4 0.00065 0.99926 0.00061 0.00048 0.00003 0.00080 

Simulation 5 0.00047 0.99913 0.00019 0.00001 0.00004 0.00036 

Simulation 6 0.00067 0.99892 0.00010 0.00000 0.00093 0.00060 

Simulation 7 0.02417 0.00445 0.00017 0.36459 0.00527 0.00069 

Simulation 8 0.00204 0.14257 0.00004 0.00575 0.00005 0.00225 

Simulation 9 0.00487 0.05733 0.00060 0.39405 0.00537 0.03293 

Simulation 10 0.00027 0.00004 0.00024 0.99814 0.00016 0.00112 

Simulation 11 0.00327 0.00000 0.00127 0.99996 0.00153 0.00862 

Simulation 12 0.00058 0.00001 0.00040 0.99997 0.00085 0.00000 

Simulation 13 0.00026 0.00065 0.00027 0.00005 0.97755 0.08700 

Simulation 14 0.00026 0.00047 0.00034 0.00074 0.99649 0.00093 

Simulation 15 0.00027 0.00069 0.00049 0.00057 0.99868 0.00070 

Simulation 16 0.00051 0.00041 0.00006 0.00057 0.00016 0.99821 

Simulation 17 0.00060 0.00451 0.00027 0.00174 0.00015 0.96335 

Simulation 18 0.00018 0.00106 0.00017 0.00104 0.00066 0.99767 

Simulation 19 0.00014 0.01279 0.00035 0.00007 0.00195 0.98992 

Simulation 20 0.00015 0.21206 0.00055 0.00034 0.00036 0.56822 
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APPENDIX E – Project Analysis 

Project Title: Electrocardiography Detection 

Student’s Name: Sean Franklin, Joseph Wallcave  

 
Summary of Functional Requirements  

Our project detect abnormalities in ECG signals using an artificial neural network 
  

Primary Constraints  
Noise in signals makes analysis difficult, computational power is limited 

 

Economic  
Human Capital – Minimal human capital; this project aims to reduce the need for humans in ECG analysis 

Financial Capital – As no physical materials were used, the only financial capital would be in man-hours to 
deploy our system 

Manufactured or Real Capital – Our program should be able to run on any general purpose computer and 

shouldn’t need a dedicated computer for just this task 
Natural Capital – We don’t anticipate new computers being built specifically for our program, therefore 

natural capital should be limited to the cost of computers already made and in use 
 

The only inputs to our system are ECG data taken by a doctor 
 

The only cost accrued during this project was purchasing MATLAB with the neural network toolbox 

The student edition cost $130 
 

Although this project earns no money, it can help reduce cost for patient care and increase accessibility 
to care 

 

No additional maintenance or operation costs occur apart from regular computer maintenance 
 

Estimated Development Time: 6 months  
Actual Development Time: 6 months 

 
After the project ends, future work can be done to improve results or add more features 

 

• If manufactured on a commercial basis:  
We do not anticipate our project being manufactured on a commercial basis. Higher accuracy would be 

necessary to be competitive in the medical industry. 
 

• Environmental  

The only environmental resources needed are electricity to run a computer. Thus, this project only uses 
natural resources indirectly to generate power (e.g. coal, oil, natural gas). This project doesn’t affect 

species other than humans. 
 

• Manufacturability  

As there is no physical component to our project (only software), manufacturability is limited to software 
distribution. This can be done over the internet for little cost. 

 
• Sustainability  

Manufacturing and upgrading/updating our system are limited to software 

distribution. The only end of life concern is indirect (computer disposal).
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APPENDIX F – Parts List and Cost 

Part name Cost 

MATLAB R2013a Student Edition $100.00 

Neural Network Toolbox Student Edition $30.00 
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APPENDIX G – Specifications and Requirements 

 Use Neural Network to detect the following 6 Conditions: 

1) Normal beat 

2) Left Bundle Branch Block beat (LBBB) 

3) Right Bundle Branch Block beat (RBBB) 

4) Atrial Premature Contraction beat (APC) 

5) Premature Ventricular Contraction beat (PVC) 

6) Paced beat 

 Achieve At least 70% accuracy in recognition Rate 
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APPENDIX H – Time Estimates 

 

Task Description/Deliverables Task Description/Deliverables 

1. Choose Electrodes Select and purchase 
electrodes based on performance and cost 

1. Choose Electrodes Select and purchase 
electrodes based on performance and cost 

2. Design Filter  Design and construct active filters that remove 
noise such as 60Hz power line noise. Verify 
the performance.  

3. Interface ECG & Computer  Be able to read filtered ECG signal into 
computer. This data should be in a format 
usable by programs such as Matlab. 

4. Code Neural Network  Write code to implement artificial neural 
network. This will most likely be done using 
Matlab.  

5. Analyze ECG Data  Analyze ECG test data to train neural network  

6. Test 1: Proof of Concept  First use of the neural network to predict heart 
condition based on ECG signals. Accuracy will 
probably not be very high at this point, but 
this stage should demonstrate our idea is 
feasible  

7. Improve Noise Reduction  Based on observations from our system in use, 
we should be able to better understand what 
types of noise will be present. This will help us 
redesign our filtering as necessary.  

8. Improve Network Accuracy  Based on the results from our proof of 
concept, we should be able to adjust 
parameters such as the number of hidden 
layers and learning rate to achieve better 
performance.  

9. Build Working Prototype  This will be the final product shown at the May 
30th Project Expo  

 

12/1/2012 12/31/2012 1/30/2013 3/1/2013 3/31/2013 4/30/2013 5/30/2013 

choose electrodes 

design filter 

get ecg to interface with computer 

code neural network 

analyze ecg data in matlab 

test 1: proof of concept 

improve noise reduction 

improve neural network accuracy 

build working prototype 


