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DISCLAIMER

STATEMENT OF DISCLAIMER

This project is the result of a class assignment, thus it has been graded and
accepted as fulfllment of the course requirements. Acceptance does not imply
technical accuracy or reliability. Any use of information in this report is done at
the risk of the user. These risks may include catastrophic failure of the device or
infingement of patent or copyright laws. California Polytechnic State University
at San Luis Obispo and its staff cannot be held liable for any use or misuse of the
project.
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Abstract

Sean is a young boy living with ataxic cerebral palsy. Ataxic cerebral
palsy affects Sean’s balance and coordination, so he uses a walker to
increase his mobility. Sean would like to play Special Olympics Floor
Hockey but his walker prevents him from participating. The goal of this
Senior project was to develop a device to be attached to his previous
walker to allow Sean to play floor hockey in the least restrictive
environment possible. The Adaptive Floor Hockey Device is the product
we designed to satisfy this need, and the following report details how
our final product was developed.
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Introduction

The purpose of this mechanical engineering senior project at
California Polytechnic State University, San Luis Obispo, was
to design and build an adaptive walker for a young boy named
Sean to play Special Olympics Floor Hockey. Sean is seven
years old and was born with Ataxic Cerebral Palsy, a rare, less
severe form of Cerebral Palsy causing poor muscle tone,
coordination, and balance. Sean has the strength to support
his body weight, but due to a lack of balance he uses a walker
to help steady his upper body and increase his mobility.

Our goal was to adapt Sean’s walker (Figure 1) to allow him to
play Special Olympics Floor Hockey as competitively as
possible. We aimed to design an adaptive device for his
walker that would improve his stability and control while
holding a floor hockey stick. Sean has the physical strength
and ability to run at a comparable pace with children his age,
but handling the stick and walker at the same time is difficult
and restricts his mobility.

Our team of mechanical engineering students consisted of Figure 1. Sean using his walker
Chris Gaul, Ricardo Gaytan, and Matt Spaulding in addition to while practicing hockey.
assistance from Shannon Brant, a senior kinesiology student.

Funding for this project was provided by a National Science Foundation grant acquired by Dr.
Kevin Taylor, Chair of the Kinesiology Department, along with Dr. Brian Self and Dr. Jim
Widmann, both of the Mechanical Engineering Department at California Polytechnic State
University, San Luis Obispo.

Professor Sarah Harding was the senior project faculty advisor, and Michael A. Lara, the
Regional Sports Advisor for Special Olympics Southern California, was the project sponsor.
Our stakeholders were Sean, his mother, the National Science Foundation, Dr. Kevin Taylor,
Dr. Jim Widmann, Dr. Brian Self, and Special Olympics. This project is especially important
since it has given Sean the opportunity to play hockey for the first time. Michael Lara of Special
Olympics sponsored the project because of his on-going work with adaptive devices for people
with disabilities through Special Olympics and California Polytechnic State University, San Luis
Obispo. The National Science Foundation is “the source for approximately 20 percent of all
federally supported basic research conducted by America's colleges and universities,”" and
“the only federal a?ency whose mission includes support for all fields of fundamental science
and engineering.

Background

The following sections discuss four different topics related to the project that impacted the final
design. Research on ataxic cerebral palsy was compiled because it was necessary for the
team to understand the extent of the physical limitations for Sean and others in his position.
We also have included information regarding disability education that has helped us better
understand the idea of inclusion and how to respectfully communicate with people who have
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disabilities. Research into floor hockey’s history and guidelines gave us a better idea of the
structure of the sport and the expectations of players’ skills. A section on the typical equipment
utilized by Special Olympic floor hockey athletes is also included. Lastly, the background
concludes with a section describing existing technology that may be useful in our design.

Ataxic Cerebral Palsy

Cerebral palsy is an umbrella term for a group of non-progressive brain disorders affecting
body movement, coordination, and balance. The onset of cerebral palsy may occur during
pregnancy, birth, or a few months after birth and is caused by damage in one or more parts of
the brain responsible for motor control (chiefly the cerebrum). It is rarely known what
specifically causes cerebral palsy in an infant due to the developing nature of the brain.
Cerebral palsy can have a number of effects on mental and physical ability, like poor muscle
tone, problems with coordination and balance, slowed speech and response, and mental
retardation.

There are nine types of cerebral palsy, each with different characteristics and severities. The
most common type of cerebral palsy is spastic (or pyramidal) cerebral palsy. Muscles are stiff
and movements can be jerky or awkward. Spastic cerebral palsy is defined by which part of
the boo[lgg is affected. Approximately 70-80% of all cerebral palsy cases are defined as
spastic.

One of the rarest forms of cerebral palsy is ataxic cerebral palsy, affecting only 5-10% of all
people will cerebral palsy. Ataxic cerebral palsy falls under the category of Dyskinetic (or extra
pyramidal), which chiefly affects muscle coordination and balance. Ataxic cerebral palsy is one
of the less severe forms of cerebral palsy, where most patients have an awkward or unsteady
gait but usually have the ability to walk and even run with the use of specialized walkers or
walking assistance. Since muscle coordination is affected, speech is usually slow and
deliberate, but mental capacity is not diminished. In fact, more times than not a patient exhibits
higher than average mental abilities, but the brain struggles to communicate these signals
through the nervous system.

Sean has ataxic cerebral palsy, and the preceding section describes him well. While his
coordination and balance are affected, he still has the ability to run at almost full speed with the
use of his old walker, and is an extremely bright young boy. Sean has all the skills and abilities
to play hockey, he just required a device that integrated a floor hockey stick with his walker.

Disability Education

Unfortunately, throughout history people with disabilities have often been unwelcomed or put
down in society. We can utilize adaptations in many different ways to encourage and facilitate
inclusion of all people. The goal of adaptation is not to make it easier on a person with a
disability; rather, the purpose of the device is to enable the person to accomplish the same
tasks as an able bodied person.”! There is a need for a tool that the person can use to
succeed in the world. In Sean's case, this need is in floor hockey.

The disability etiquette presentation given by Shannon Brant of the Kinesiology Department
included several key points that can be highlighted here. The primary focus should always be
the client (Sean) over the product, and maintaining the least restrictive environment (LRE)
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possible for Sean's mobility with the device that was created for him. It is also important to treat
any future clients with the Guidelines to Inclusion, including but not limited to:

e Keeping in mind the LRE concept.

e Treating the person with respect and compassion, not pity.

e Expressing a willingness to work on a case-by-case basis, and assuming that all
disabilities present their own unique challenges and opportunities.

e Keeping focus on empowerment and inclusion of all individuals regardless of ability.

These guidelines were used to facilitate our communication with Sean, and can be employed
when communicating with all people with disabilities."

Floor Hockey History and Guidelines

Special Olympics Floor Hockey was introduced for the first time as a Special Olympics sport in
the Winter Special Olympics of 1970. It is a modified version of ice hockey that is usually
played on smooth, flat surfaces with shoes instead of skates. Thus, similar rules and
requirements of ice hockey apply to floor hockey. A floor hockey team consists of six players:
one goalkeeper, two defenders, and three forwards. Official games have three 9-minute
periods with a 1-minute break between each period. There are three line shifts per period and
by the end, the total number of lines played by any player must not exceed the total number of
lines played by any other teammate by more than one line, with the exception of the goalie.
Special Olympics Floor Hockey has three official events: Individual Skills Competition (ISC),
Team Competition, and Unified Sports Team Competition. ISC has five different competitions:
Shoot Around, Pass, Stickhandling, Shoot for Accuracy, and Defense. ISC scores of each
player are used to place the athletes in the appropriate division of the sport. Team competition
is the traditional game played solely by Special Olympics athletes. Unified Sports Team
Competition is played with both Special Olympic athletes and partners.”” Figure 2 below
depicts players participating in team competition.

Figure 2. Athletes compete for the puck in a game of
Special Olympics Floor Hockey.["]
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Equipment

Special Olympics Floor Hockey requires typical ice hockey equipment such as a helmet, shin
guards, gloves, and elbow pads. The obvious differences between both sports are the shoes,
sticks, and pucks. Running shoes must be worn by all the athletes on the playing surface. The
hockey sticks used are rods or dowels made of wood or fiberglass ranging from 3-5 feet in
length with a diameter of about one inch. The bottom of the stick is rounded with a felt tip to
lessen friction. The puck is a circular felt disc of about 5-8 ounces with an outer diameter of 8
inches and a center-hole diameter of 4 inches.!®

Existing Products/Technology

One of the first steps in our research was to find United States patents that would relate to our
project. Due to the unique nature of the adaptive floor hockey device we designed, there were
no patents that directly pertained to our project. No patents currently existed or were pending
that described adapting any type of hockey stick for persons with disabilities or that described
adapting walkers for use in sports. Additionally, there were very few United States patents that
pertained to Special Olympics related games, and none that mentioned Special Olympics Floor
Hockey. As we delved into the design process, we performed more patent research on
individual components of our design, however throughout the course of the project we were
unable to find any patents that related to our project as a whole.®

During the design process the team received the aluminum tube walker (Figures 3 and 4)
Sean was previously using for his everyday activities. It was a relatively lightweight piece of
equipment that allowed Sean to move quickly on smooth surfaces. It was also strong and
stable enough to support Sean’s entire body weight. This is important because as Sean runs,
he likes to lift his feet up off the ground and coast on his walker for small stretches of time.
Additionally, the walker did not have any components across the front, which allows Sean
complete freedom of motion when he is running without worrying about running into his own
walker. The walker also had brakes that automatically engage if it starts to roll backwards,
which was important for Sean’s safety when walking up inclines. One major drawback of this
walker, however, was the wheels. The wheels resembled the wheels of a shopping cart, and
they rattled and wobbled when Sean was running at full speed.

Figure 3. Sean’s aluminum tube walker. Figure 4. Rendering of Sean’s

walker at the start of the project.
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Figure 5. The Nurmi Neo
Gait Trainerl®

We were able to use his aluminum tube walker for our device because Sean acquired a new
Nurmi Neo Gait Trainer (Figure 5) for his everyday use at the beginning of the project. The
Nurmi Neo Gait Trainer has many of the same positive qualities as Sean’s aluminum tube
walker. It is lightweight, strong, and stable, and it has the same basic structure that is
unobtrusive to Sean’s movement. The Nurmi Neo Gait Trainer has higher quality wheels, and
angled handgrips that are more comfortable for Sean to use.’® Since Sean acquired the
Nurmi Neo Gait Trainer at the start of the project, the team was able to use his aluminum tube
walker for our design and final product. This is the only time Sean’s Nurmi Neo Gait Trainer will
be mentioned since it did not directly influence the scope of our project. For the entirety of this
report we will be referencing his aluminum frame walker simply as “Sean’s walker.”

In summary, there weren’'t any specialized walkers for floor hockey on the market during
project development, but there were several designs of adapted walkers used for increasing
stability and mobility that helped us adjust Sean’s walker based on his needs. Gait trainers and
other walkers in the market were examined to see how they solved similar problems we
needed to account for. The addition of new components and wheels was eventually employed
to meet our design requirements, as discussed later in this report.

Objectives

The overarching goal of the project was to enable Sean to play Special Olympics Floor
Hockey. Before designing an appropriate device for Sean, it was important to translate the
needs of Sean, his mother, and our sponsors into engineering specifications. Our final device
has the potential to increase the quality of Sean’s life by allowing him to safely and
competitively participate in Special Olympics Floor Hockey.
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Through interviews with those involved, we discovered our device needed to:

e Give Sean at least as much mobility as he currently has with his normal walker. This
includes speed and maneuverability of the walker.

e Be comfortable for Sean to use. He should not have to perform any movements over
the course of a floor hockey game that he finds awkward or painful.

e Be stable and strong. It should support Sean’s full body weight without ever being in
danger of tipping or breaking.

e Withstand years of use. It must be durable, so that it will not weaken and break over
time. It also must be height-adjustable, so that Sean can continue to use it as he grows.

e Be completely safe for Sean. It should not tip or break, even under conditions beyond
the intended use of the device. It also should be free of sharp corners or pinch points
that could hurt Sean.

e Be reasonably repairable. The components of the device should be simple enough that
Michael Lara or Sean’s mother would be capable of repairing it if something were to
break.

e Be easy to use. It should not be more difficult for Sean than it is for any other player to
gain control of the puck, run with it, pass it, or shoot it.

Engineering Specifications

We applied quality function deployment (QFD) to our design by using the House of Quality.
Quiality function deployment is a design tool used to create the crucial relationships between
customer needs and engineering specifications. The House of Quality is a diagram relating
these customer requirements with engineering specifications, in addition to noting a positive or
negative correlation between different specifications. The House of Quality can be seen in
Appendix A.*Y By using this tool, we were able to gain a better understanding of our client’s
needs and translate them into quantitative engineering specifications. Table 1 on the following
page lists the engineering specifications that we have developed to ensure that our device
meets Sean’s needs.

Table 1 is a summary of the numeric values of our major design parameters. The
requirement/target column indicates the value that we hoped to reach for the given design
parameter. As can be seen in the tolerance column, these are not absolute values but instead
they represent the ideal target values for each parameter, with a range of values being
acceptable. The risk column indicates how difficult the requirement would be to achieve; a high
(H) risk indicates that it will be difficult, a low (L) risk indicates that it will be easy, and a
medium (M) risk indicates that it falls somewhere in between. Lastly, the compliance column
shows how we will assess whether or not we met each requirement, either through analysis
(A), testing (T), inspection (I), or some combination of these assessments.
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Table 1. Specifications for the Adaptive Floor Hockey Device.

Parameter Description Target Goal Tolerance Risk Compliance
1 Additional weight added to 5 pounds max M Al
walker
2 Pinch points 0 max M
3 Vertical stick movement 2 inches min L
4 Area of stick movement on floor | 2 square feet min H Al
5 Time to acquire puck 2 seconds min M T
6 Distance puck can be 10 feet min M T
passed/shot
7 Height adjustment range 6 inches min L
Force applied downward at
8 any point on walker handle to 20 pounds force min L AT
tip it

The “additional weight” requirement was a medium risk because it was strongly dependent on
the materials that we chose to use. The “pinch points” requirement was a medium risk because
it required an additional step of designing to eliminate any pinch points present in our final
product. The “vertical stick movement” requirement was low risk because it required very little
overall movement in the system (less than two inches to position the stick over the edges of
the puck). The “area of stick movement on floor” requirement was evaluated to be high risk
because it required multiple degrees of freedom in the stick movement mechanism. The “time
to acquire puck requirement” and the “distance puck can be passed/shot” requirement were
both determined to be medium risks because they relied on Sean'’s testing of the device to
ensure these requirements were met. The “height adjustment” requirement was a low risk
because Sean’s old walker was already height adjustable, and “the downward force”
requirement was a low risk because the walker was stable when we received it.

Management Plan

Staying on schedule and effectively managing communication were essential during the
development of this project. To ensure this occurred, our team spent a minimum of ten hours
per week meeting together and discussing project details, designs, and potential problems in
an attempt to maximize efficiency. The team was adamant about keeping close communication
with each other, as well as with Michael Lara, Sean, and his mother throughout the entire
design process.

While team cohesion was essential for a project of this magnitude, we broke up individual
tasks based on the strengths and skills of each team member to maximize efficiency. All three
members were adept technical writers, so we divided all research and documentation evenly
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between the three mechanical engineers, with each team member taking an editorial role
before any final documents were released.

Chris Gaul was especially skilled in the areas of mechatronics and electro-mechanical
systems, so if any mechatronic issues presented themselves, Chris led the effort to come to an
appropriate design solution. He also had more programming experience and expertise than the
rest of the team, which was useful when using Matlab to solve engineering equations.

Ricardo Gaytan excelled at structural, static and dynamic analysis. These facets of mechanical
engineering proved to be extremely useful in the material selection and design process.
Design for manufacture is one of the most crucial aspects of any senior project, and Ricardo’s
skills proved very useful in this regard.

Matt Spaulding also excelled at structural analysis, but his major strength for the project came
in his skills using SolidWorks to develop the solid model of each design iteration.
Understanding how components fit together and the clearances associated with multiple
assemblies saved countless hours in the shop and maximized manufacturing efficiency, while
reducing costs by preventing material waste.

Shannon Brant was a kinesiology student paired with the team. Her primary role was to
educate the team of mechanical engineers regarding disabilities, in addition to facilitating
communication between the team and Sean’s family.

Method of Approach

In order to ensure that our final device was completed in a timely manner, we outlined a
methodical procedure that we followed over the course of the project.

Ouir first step was to perform extensive background research to give us an understanding of
ataxic cerebral palsy, Special Olympics Floor Hockey, and any existing devices that perform
similar functions to our desired device. This research helped us to better understand the scope
of the project regarding Sean’s physical limitations. The results of our research are discussed
in detail in the Background section earlier in this report.

Next, we conducted interviews with Michael Lara, Sean, and his mother to determine their
requirements for the Adaptive Floor Hockey Device. We worked together with them until we
were able to narrow down their needs into a set of objectives for our project. Then, by using a
QFD House of Quality, we were able to convert these needs into quantitative engineering
specifications. These specifications are covered in depth in the Objectives section of this
report, and were later used to choose the best design for each design problem in the Idea
Selection section.

After developing the requirements our product must meet, we began brainstorming and
formulating as many ideas and options as possible. At the conclusion of our brainstorming and
sketching sessions, we moved forward with idea selection as outlined in the ldea Generation
and ldea Selection sections of this report. The evaluation of the various design concepts was
done through the use of decision matrices, engineering analysis and, most importantly, testing
physical prototypes with Sean. Once we chose the best overall design that most effectively
met our engineering specifications, we continued the design process by filling in the smaller
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details, like how to attach our device to the Sean’s walker, and what kind of stick geometry
would work best.

After finalizing our design in early January, we finished the remaining design objectives in the
detailed design phase. This process included stress analysis and material selection of
individual parts in the system, specification of part tolerances, final prototype construction, and
machining procedures, in addition to failure modes analysis, testing plan development and
production of a detailed bill of materials. Summaries of these documents can be found later in
this report, with more detailed information in the Appendices. We made small revisions to our
earlier designs during this process, following the results of continued prototype testing with
Sean. The design phase officially concluded with the writing of the Critical Design Report and a
Critical Design Review with our sponsor Michael Lara and Dr. Kevin Taylor, Chair of the
California Polytechnic State University Kinesiology Department during the last week of
January.

Next we purchased material and began our final prototype manufacture after receiving
approval from our client and sponsor. During the last 3 months of the project we proceeded to
manufacture two very similar products, one labeled the “final prototype design” and the last
and final product that we delivered to our client was labeled the “final product.” The differences
between these last two designs are subtle, but necessary for our desired level of performance.
These last two designs and the differences between them are discussed at length in the “Final
Prototype Design” and “The Final Product” sections to follow in this report.

ldea Generation

To begin our brainstorming sessions we followed a format similar to the process presented by
IDEO, a multidisciplinary design firm specializing in innovative and creative designs. First the
team spent a few hours drawing up sketches and taping them to the wall of the design room.
The purpose for this exercise was to be as creative as possible without considering any
limitations. As more ideas and designs were taped to the wall, sketches became more refined
and detailed. The number one rule of this session was to never exclude an idea because it
might be too infeasible, expensive, or difficult to manufacture. It was important to start at the
far extremes of the design spectrum to give us the best shot at covering all the available
options. Examples of these preliminary sketches are shown in Figure 6 on the following page.
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Figure 6. Sketches from our initial brainstorming session.

Once the team was content with the quantity and quality of design sketches we brainstormed
over the different concepts and how we might incorporate them into our device. We discussed
ideas such as push-button shooting, gear drives, pneumatics, springs, bearings and hinges to
make sure that nothing was omitted from our list of possible designs. When the team came to
an agreement that we had a diverse group of creative and feasible engineering solutions, we
transitioned from idea generation to idea selection.

ldea Selection

Overall Design

The first step in the idea selection process was to determine which holistic design was best
suited for Sean and his walker using our wall of ideas. We started by narrowing the field down
to five general designs using engineering intuition and our sense of design. The designs
incorporating electrical systems like motors, gears and power screws were pushed aside first
due to the weight of battery packs and fragility of conducting wires. A motor driven gear train or
power screw would also be fairly heavy in relation to the weight of Sean’s walker, which was
contradictory to our primary goal of a lightweight, non-restrictive device.
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Next we noticed that each one of the three team members had sketched some variation of a
horizontal rail system for the floor hockey stick to slide along. As we looked at the design wall
we also noticed a large percentage of drawings involved some combination of pivot arms,
hinges, universal joints, and bearings. After a quick discussion regarding how we could
synthesize different ideas together, we decided to move forward and compare five designs,
each with their own unique benefits and drawbacks. See Figure 7 below for a sketch of each
overall idea.

AR/ “ManER L $Tiek R Gnck
/ ERML { HoL- DER H""EE‘?‘
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ST K WIRE

Figure 7. Simplified overhead drawings of the five different concepts we initially considered.

Concept Descriptions

1. The Bar/Rail System: A curved bar or “rail” rigidly attached to the walker in the
horizontal plane, where the bearing and hockey stick assembly slides along the rail.

2. Pivot Arm: Arm rigidly attached to left side of walker, connected to another rod by a
universal/ball joint combination which holds the end of the stick.

3. Two Sticks (left and right sides): Follows the same kind of logic as the “Pivot Arm.”
Instead of having one complicated mechanism on Sean’s left, there are two smaller,
simpler pivot arms holding a stick on each side of the walker.

4. Track in Plate: Similar to the “Bar/Rail System,” where the stick will follow the track cut
into the plate.

5. Wire: By far the simplest of the five designs mentioned. Simply consists of a wire
running directly across the front of the walker handles.

As our senior project group discussed the advantages and disadvantages of varying concepts
we slowly gained a clearer picture of how each concept could be manufactured, but most
importantly we either gained confidence or lost faith in its ability to perform given Sean’s
needs. Up to this point in the idea generation and selection process our trio was very confident
that the bar/rail system was going to be our best solution, but for verification we evaluated the
five concepts within a traditional decision matrix.
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Table 2. A precursory, qualitative comparison of the five device concepts.

Concept Concept Pros Cons
i ~_Name

Lightweight, stable, greatest . .
. g gnt, 0'e. 9 Safety: Fall concern with rail and
1 Bar/Rail System | freedom of motion of any o
stick in front of Sean.
concept.
If functioning properly and High risk of part/assembly failure, no
. smoothly, Sean should be able to . .
2 Pivot Arm . . access to puck on right side of
control the stick quickly and . .
. walker, awkward biomechanics.
precisely.
Two Sticks Very unwieldy, increases walker
Access to the most floor area out yu Y .
3 (Left and ! footprint greatly, difficult to turn
. of all five concepts
Right) walker.
. Accomplishes same goal as the Rail
. Plate can be rotated to adjust mp ) 9
4 Track in Plate but will automatically have more
track curvature. . .
material, heaviest of all concepts.
Safety: Sharp wires can lacerate,
' Extremely easy to manufacture . ) .
5 Wire wire would have to cross inches in
and test.
front of Sean.

Referring back to our “House of Quality” derived from quality function deployment, we updated
our list of customer requirements and the relative weights of each requirement. Weighing each
requirement accurately according to the project goals was essential for a decision matrix to
output the correct design solution. We chose a scale from 1 to 5; a rank of 1 being for the least
important requirements, 5 being for the most crucial customer needs. As can be seen in the
decision matrices to follow, the most important customer requirements were found to be:
creating the least restrictive environment possible, overall device safety, Sean’s comfort while
using the device, and the general ease of use. These customer requirements were
incorporated into every part of our design, including other system-specific requirements.

Once the customer’s requirements were weighted, the team proceeded to rate each concept
versus the datum, or the standard product Sean would use if he wanted to play floor hockey
today. Since no product exists for Sean’s needs, we chose the datum to be a simple two and a
half foot length of one inch diameter PVC attached to the left side of his walker using an elastic
bungee cord. We chose this as the datum because it would be difficult to find any other
materials more accessible or easily constructed than bungee cords and PVC.

In the following decision matrices a minus sign signifies the concept does not meet that
customer requirement as well as the datum. Subsequently, a plus sign signifies that the
concept meets the customer requirement better than the datum, which is ultimately our goal. A
double negative or double positive means the concept performs far better or far worse than the
datum, so the points associated with that requirement are doubled and either added or
subtracted from that concept’s total.
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Table 3. Decision matrix used to determine which of the five overall concepts would function best.

Customer Reguirements :?;?;i:; BarTrack Track inPlate  Pivot Arm (f 223";1 (:Uill;'li)
Lightwreight 4 - - - + . a
LRE i + + + + 0 0
Durable 3 + + 0 - 0 ]
Lowr cost 2 - - - - - 0
Few pinch points § + ] - + - U]
Ecsily repairable freplaceable 3 - - - - - ]
Easy to adjust haight 2 + + + + ] ]
Difficult to tip/stable 4 - - - 0 0 ]
Easy to manufacture 1 - - - - - 0
Acquire puck guickly 3 + + - + ] ]
Eadsy to maneuwwer g + + - + - U]
Fast puck speed 4 + + - - ] ]
Assthetically pleasing 2 + + 0 - + ]
Comfortable 8 + + - - - 0
safe for other players & + + - - - ]
Applicable to other walkers 2 - - - - - ]
Range in ® 4 ++ + + + + ]
Range in Y 3 ++ + + ] ] U]
TOTALS : - +17 - 32 -5 -2 ]

Table 3 clearly illustrates what the team was feeling early in the ideation process: the bar/rall

system was the most effective of the five designs for Sean’s walker. In addition to this
conclusion there were a couple of other interesting pieces of information that can be seen from
this decision matrix.

First off, it was not surprising that the track in plate system scored closely behind the rail. Both
systems performed similarly with respect to how Sean manipulated the stick and the
constraints placed on his arm movement. The rail system eventually won out because of the
larger floor area the rail allowed the stick to access, as well as the absence of pinch points on
the rail. The fixed angle slot in the plate would force the stick to stay at the same angle to the
horizontal, limiting Sean’s access to the puck. There was also a risk of pinching between the
sliding stick and the edge of the slot in the plate.

We were surprised by one thing, and that was how much better the wire scored than the pivot
arm or dual stick assembly. The wire most likely had an artificially high score with respect to
the other systems due to the safety issue. We knew from the beginning of this analysis that the

Page 19



wire was not an intelligent design option, but we followed through with the process to verify our
decision matrix was evaluating ideas correctly; that is, good designs score well, and poor
designs do not. We decided that the wire was so unsafe that it probably deserved 3 or 4
negatives in the safety column, but we set the rules at a double sign maximum for all
categories. The pivot arm and dual stick systems scored as low as they did because of the
team’s general belief that both assemblies would be so bulky and awkward that Sean would
barely be able keep up with the speed of the game due to the added weight, let alone handle
the puck efficiently.

It is important to note that for the rest of this report we will be calling this semi-circular rail
design the “curved rail.”

Stick Attachment Method

Once the curved rail was established as our best option, we realized that all five of the past
concepts were assumed to attach to Sean’s walker, thus the stick was always attached to the
walker as well. This led us to change our direction away from finalizing the rail system details,
and instead towards verifying that rigidly attaching Sean’s stick to his walker was the best
option. We compared four different methods of attachment against the bungee datum:
attaching the stick to the walker (using the curved rail), attaching the stick to Sean (similar to a
forearm brace), attaching Sean to the walker to leave his hands free for the stick, and lastly a
free stick structure, where the stick would have no permanent connection to Sean or the
walker, but have its own source of mobility. Sean’s mobility and safety were once again our top
concerns, but since we were focusing on the stick assembly there was also an emphasis on
how easy it would be to maneuver the puck as well as Sean’s comfort level while playing.

The results from Table 4 on the following page conclusively show that attaching the stick to the
walker was in fact the best design choice. We felt confident in these results since attaching the
stick to Sean scored just 12 points over the bungee and PVC datum as compared to attaching
the stick to the walker which scored a staggering 36 points over the datum. The other two
options fall right where the team expected; attaching Sean to the walker would greatly limit his
mobility, and employing the use of a free floating stick structure was simply infeasible given the
playing conditions.
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Table 4. Decision matrix to verify the method of stick attachment.

e e e Relg’rive Aflach Stick  Aftach Stick  Altach Sean  Free Stick Datum
Weights to Walker to Sean to Walker Stucture {Bungee)
Lightweight 4 0 0 0
LRE i + + 0
Durable 3 + + + + 0
Lowr cost 2 0
Fewr pinch points 5 + + + + 0
Easily repairablefreplaceabls 8 0
Easy to adjust height 2 + + + + 0
Difficult to tipfstable 4 0 0]
Easy to manufacture 1 0
Acquire puck guickly 5 + + 0 0
Easy to mansuwer 5 ++ 0
Fast puck speed 4 + 0 0 + 0
Aesthetically plecsing 2 + + 0
Comfortalle 5 ++ + 0
TOTALS : +12 -17 -32 0

Walker Attachment Method

Up to this point in the idea selection and design process we had used our creativity,
engineering intuition, qualitative methods of comparison, and quantitative tools like decision
matrices to conclusively determine that the curved rail system most efficiently satisfied our
customer’s requirements regarding mobility, general ease of use, comfort and most importantly
safety. We then verified that rigidly attaching the rail (and subsequently Sean’s hockey stick) to
the walker was also the safest, most comfortable option.

The next design problem we faced was how to attach the ends of the rail to Sean’s walker. As
can be seen in the Conceptual Design section of this report, we used bungee cords and duct
tape to rigidly attach the rail to the walker during early testing with Sean, but this was far from
an acceptable attachment method for the final product. So we brainstormed and sketched the
different ways we could attach two cylindrical metal members together (Figure 8), since we
knew this would mostly likely be the geometries we’d working with.
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Figure 8. Options for attaching the rail and stick assembly to the walker.

Table 5. Determining which rail-to-walker attachment method best suited our customer’s requirements.

Fequremert Weohe  Seewe ol Comp InddeTubes weld  Ducttope (T
Ecsy to manufacture 1 - - - - - 0 0
Few pinch points 5 + + 0 + + 0 0
Lowr cost 3 - - - - - 0 0
Durable 3 ++ ++ ++ ++ ++ - 0
Structural rigidity 4 ++ + + ++ ++ 0 0
Easy to repaitfteplace 3 - - 0 - - 0 0
Lightwreight 4 - 0 - + 0 0 0
Aesthetically pleasing 2 + + + ++ ++ -- 0
Easy to adjust height 2 + + + 0 0 0 0
Effect onwalker CG 4 - 0 - + 0 0 0
Easy to attach/detach 2 - - - + - 0 0
TOTALS : té +10 0 +24 +14 =10 0
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Similar to the wire concept or free floating stick structure designs discussed earlier in this
report, the duct tape was added to the list of potentials to ensure the attachment method
decision matrix (Table 5) was successfully differentiating between terrible ideas and
plausible/sound ones. Since the duct tape was by far the worst performing concept, and the
only one worse than the bungee cord datum, we were confident in our decision process and
decided to move forward with inserting the welded rail tubing into the handle tubes of Sean’s
walker. By inserting the curved rail directly into the walker and using the same bolts from the
walker to hold the curved rail in place, we ensured the rail was both easily removable and
extremely rigid when attached.

Design Process Summary

From September through January our team was deeply immersed in the design process. It
began by defining customer needs and requirements, then translating those requirements into
engineering specifications, and subsequently designing a product that would meet those
specifications (Table 6). This design process, coupled with prototype construction and testing
(discussed in later sections of this report) concludes the core of the design process.

Table 6. Summary of our major design decisions from the first quarter of the project.

Sub System

Option A Option B Option C Option D Option E Option E

Bracket Bolted Sleeve Through bolt Clamp INSIDE TUBES Duct Tape

Horizontal [floor] movement Ball Joint Universal joint Fir Hinge

BEARING(S)

Yertical Movement Ball joint Universal joint Fir Hinge BEARING(S)

Urattached

Horizontal mobilitiy Track in Plate BAR/RAIL TRACK Wire Static

Dowrmard Force Spring at bracket Spring in stick Spring instick holder|  Structural Block STICK WEIGHT

sShootfpass actuator SEAN'S POWER Electric Motor Solenoid Fiston

Stick End/Tip STANDARD Scoop Combination
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Conceptual Model Construction

Over the span of the first quarter of this three-quarter long project, we met with Sean and his
mother on three separate occasions to test three different prototype ideas. The development
of our conceptual model was greatly influenced by the needs and physical capabilities of Sean.
We had designed our prototypes with the goal of allowing Sean to be able to do as much as he
could under his own power. It was an iterative process of designing, testing, and redesigning
after each testing session.

Introductory Meeting — October 5th 2012

The first time we met Sean was at the Friday Club meeting at
California Polytechnic State University San Luis Obispo where
Special Olympics athletes play and exercise with personal
assistance and equipment from the university’s Kinesiology
Department. This meeting was crucial for the design process
since this was the first time we got to assess Sean’s physical
abilities. Our first test consisted of attaching a PVC stick to his
walker with bungee cords. The stick was attached to his left
side because his mother had informed us that he was left hand
dominant. As mentioned earlier in the Idea Selection section,
this apparatus served as the datum in our decision matrices
because this is what Sean’s mother would most likely use if he
were to play at that time. It was an inexpensive solution that
was also easy to set up and very lightweight. While the
bungee-PVC device served its testing purpose, we
immediately noticed problems with this apparatus.

The PVC stick simply attached to one side of his walker with
bungees did not satisfy the main design concerns that we
aimed to solve. After watching him play with this set-up, we
realized that it was unsafe for him and for other players
because the stick could swing up to eye level very easily. The
way in which the stick was located also made it very awkward for him to move the stick around
(Figure 9). It was also uncomfortable for his wrist because the continual maneuvering of the
stick was straining his arm over time. The configuration of this design also limited his range of
motion to his left side, so this solution was deemed unacceptable.

Figure 9. Sean swinging
the PVC stick upwards in
an uncomfortable
movement.

A few good possibilities for our next design arose from our first meeting with Sean. It was
interesting to see that Sean began to use his stick as a support for balance instead of his
walker's handle. This was important because we realized that we had to now design our
system to be able to support some of Sean’s weight. We also installed a horizontal bar at
waist level in front of Sean and he was able to have the same mobility as before. This proved
to be a crucial piece of information in the next design phase.
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Second Meeting - November 7th 2012

The second time we met with Sean was to test our preliminary rail system. The rail was made
by connecting two steel braided flexible hoses together with a collar sliding over it. The ralil
was then attached to his walker at handle height with bungees. The PVC hockey stick was
inserted through a second collar as seen in Figure 10.

We quickly noticed improvements from
our first meeting with Sean. He had a
wider range of motion with his hockey
stick and it was easier to run with. It
was more comfortable on his wrist which
meant less effort to move the puck than
with just a stick attached to his left
handle. He was also able to acquire the
puck faster and his motion was safer
since the stick did not swing upwards.
We also noticed that he was able to
switch the stick to his right hand when
he wanted to move the puck on his right
side.

The few problems we ran into were
mainly due to the materials we selected.
First of all, the flexible hose was not
sturdy enough for him to lean on. Then
the connection between the two hoses made it difficult for Sean to slide the collar across the
center of the rail. Another issue with this testing apparatus was that Sean still had trouble
gripping the stick due to the stick’s steep angle, compared to the horizontal plane of his
handles. When he would lose grip of the stick, the stick would fall through the collar and onto
the floor, which is something we wanted to prevent in our next prototype test.

Figure 10. Mock-up for our first rail system.

Third Meeting - November 16t 2012

We refined our rail system design for our third meeting with Sean. We made our rail by
bending a solid steel rod into an 18 inch diameter half circle with 8 inch long straight ends to
attach to the walker using bungee cords. The rod was more rigid than the flex hose and it
allowed him to apply a greater downward force on the system. Also, since the rod was a solid
piece it was easier to slide the stick across the rail. We also designed a new stick with a
different geometry along with a collar system to improve our previous design, as mentioned in
the Idea Selection section. The stick handle was made so that it resembled his walker’s handle
and it made it easier for him to grab and control the stick. The new collar system with a rod
support was useful in preventing the stick from falling onto the floor when he would release the
stick. By creating a rod and collar assembly we allowed for complete range of motion: stick
rotation, sliding along the rail, swinging from the rail in both planes, and stick extension.

Page 25



One of the new problems we encountered was that our new design
actually allowed for too many degrees of motion. His arm was
unable to effectively maneuver the stick from side to side and quickly
acquire the puck. We solved this problem by taping one of the pivot
points at the rail collar reducing the apparatus’ freedom of motion
(Figure 11). Another problem with this prototype was that Sean had
trouble sliding the stick once the PVC collar was close to the end of
the arc of the rail. In order to fix this we used two knots of tape, one
on each side of the rail, to shorten the arc length of the rail. We
realized that shortening the arc did not affect his range of play.

Following this meeting we discussed possible solutions,
manufactured test pieces, and decided on a final design for each
component of the project. In addition to the curved rail, sliding collar,
and stick components we decided to include the walker wheels into
the scope of our project as well. The team decided that the original
wheels that came with Sean’s walker were far too clumsy and slow,
and that for our design to truly succeed, all four wheels would need to
be replaced. The following section discusses how we designed each
subassembly from early January to late March of 2013.

Final Prototype Design

Figure 11. Second
prototype for the rail
system, taped to
reduce motion.

Figure 12. SolidWorks rendering of Sean’s Figure 13. SolidWorks rendering of our final
original aluminum walker. prototype design with new wheels, rail, collars, stick

holder and stick.
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Figure 12 on the previous page depicts the walker we received at the beginning of the project,
while Figure 13 shows our final prototype design. The process we took to reach this point has
been documented in the previous sections, and the next three sections will enumerate why
each specific component was designed, what we learned from testing this final prototype with
Sean, and the small changes we made to the device before manufacturing the final product
and delivering it to our client. In this section each of the five sub-assemblies are discussed in
detail, consisting of: the new aluminum plate and bracket for the front wheels, the new five inch
diameter wheels replacing both the front and rear wheels, the curved rail, the rail and stick
collar subassembly that connects the stick to the rail, and lastly the design for Sean’s
specialized floor hockey stick and stick holder.

Front Wheel Subassembly

For our final prototype we decided to replace the front
wheels of the walker with higher quality wheels based
on research from both internet sources and medical
suppliers’ suggestions. The old wheels were not
smooth enough and they simply did not satisfy the
needs of an active seven year old. The old caster
wheels rattled as they rolled along concrete, similar to
how common shopping cart wheels rattle, and they
swiveled poorly also. The new, upgraded wheels that
we purchased were 6267 Invacare wheels from
Wallace Home Medical Supplies. The products they
carry, including the Invacare wheels, are called
durable medical equipment or DME. These five inch
diameter wheels were suggested by the staff at
Wallace Home Medical Supplies, who are trained to
handle all aspects of patient care. They possess
adequate knowledge to educate and train customers
on equipment prior to any purchase. The wheels were
made with a hard, gel type rubber which produces
less vibration at the legs of the walker.

We also removed the bulky metal plates used on the
old wheels which limited the wheel's rotation. The
front overhanging plate limited the rotation of wheels
to approximately sixty degrees to the left and right
which we decided was unacceptable. Our final
prototype design allowed the front wheels to freely
rotate 360 degrees and the addition of a five inch long

aluminum plate widened the wheel base. This Figure 14. 6267 Invacare
addition helped prevent Sean from accidentally wheels in the new front wheel
kicking either of the front wheels and by widening the subassembly.

wheel base the walker became more stable, as can
be seen in Figure 14.

Page 27



Rear Wheels

The three inch rear wheels that originally came with the
walker were replaced by five inch diameter 6271
Invacare wheels, shown in Figure 15. The three inch
wheels were made of plastic and they also had a
sprocket system to prevent the walker from rolling
backwards, but these two features combined make a
lot of unwanted noise. After speaking with Sean’s
mother we learned that Sean no longer requires brakes
on the rear wheels because he had developed enough
strength to maintain himself in a balanced position.
Removing the rear brakes will prove especially useful
when he starts playing because he would be able to
step back and reach a puck that is slightly behind him.
The Invacare wheels were the same material and style
as the new front wheels, but without the fork and
bearings for swiveling. They offered the same benefits
of a smoother rolling action and quiet ride. The reason
the team chose these five inch wheels as opposed to
the three inch wheels was because the staff at Wallace
Home Medical Supplies recommended that size based
on their experience. They said that they have noticed
that other customers feel that the walkers roll better
and smoother with bigger wheels.

Curved Ralil

Figure 15. 6271 Invacare unidirectional
wheels.

Choosing the curved rail was one of the first design decisions we made since it acts as the
structural connection between Sean’s stick and his walker. The rail allowed the stick and
swivel collar to slide from Sean’s left side all the way to his right giving Sean’s stick the best
“zone of action” or access to the most floor area possible. This allowed him to acquire the puck
quickly, and the curved nature of the rail assisted with the swinging motion required to pass
and shoot the puck accurately. See Figure 16 below for the SolidWorks rendering of our final

prototype curved rail design.

The

larger diameter tubing that

Figure 16. SolidWorks rendering of our final prototype

curved rail design.
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supports the curved rail is % inch outer
diameter aluminum tubing, while the
curved rail itself is % inch outer
diameter aluminum tubing. We chose
the larger % inch tubing as the support
structure for a couple of reasons.
Mainly, the larger the diameter of the
tubing is, the stronger the overall part
will be. The details regarding the
engineering analysis can be seen in the




Engineering Analysis section later in this report, in addition to hand calculations in Appendix B.
Another reason % inch tubing was an ideal size was due to the fact that the tubing that acted
as Sean’s walker handles had an inner diameter of % inches. This means that the welded rail
fit snugly inside the handles, with just enough clearance to be inserted all the way to the rear
bolts, but tight enough so that the rail did not vibrate or shake when in use. Figure 16 also
shows three symmetric through-holes in the side of each of the horizontal members of the rail
support structure. When the rail subassembly was inserted into Sean’s walker handles, the
bolts that held the front supports of his walker together also rigidly held the rail to the walker as
well. This attachment method serves two purposes: the geometry of the attachment prevents
motion in every direction so the rail can't twist, slide, or rotate in any way, and secondly the
three holes allow for user adjustment. As Sean grows older and his arms become longer it is
important to have as much size adjustment as possible, so in the future the holes farther back
down the rail can be used (as opposed to the front most pair of through-holes) to extend the
rail outwards by one inch increments at a time.

In addition to the % inch support structure tubing we chose ¥ tubing for the curved rail due to
the compromise between strength and weight, as well as the relationship between the rail
diameter and the collar subassembly that holds the stick. It was found that significant forces
are required to dent or kink the smaller tubing, it is lightweight in comparison to solid aluminum
rod and steel tubing, and it is an ideal diameter for the swivel collar geometry.

Collar Subassembly

The collar subassembly was the component
of our design that attached the hockey stick
to the welded rail so the stick could slide
along the rail. At the core of the design
development for the collar subassembly was
this problem: the two collars needed to allow
the many degrees of freedom that we
wanted the stick to have, and at the same
time prevent the degrees of freedom that we
wished to eliminate. To solve this problem
we created the design of two collars that
swivel against each other, as shown in
Figure 17.

One collar was designed to slide along the
rail that was connected to the walker, and
this created two degrees of freedom. One
was the motion of the collar back and forth
along the rail, which allowed Sean to access
both sides of the walker with his stick. The
other degree of freedom was the rotation of
the collar about the rail. This allows Sean to
lift his stick off of the floor by pushing down
on the handle, using the collar around the
rail as a pivot point. This motion allows
Sean to put his stick through the hole on the
inside of the puck, and to knock away the

Figure 17. SolidWorks render of the collar
Subassembly on the rail, with the stick holder
through it.
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stick of an opponent who has possession of the puck. This collar was intended to be
constructed out of two pieces so that it can be attached around the rail. The two pieces have
stepped slots cut into them that mate together, and the pieces were then fastened to each

other using four #8-32 socket head cap screws.

ke
0

Figure 18. Exploded view of the Collar Subassembly.

A second collar swivels about a Y-
20 bolt that connects it to the first
collar, creating another degree of
freedom. This swivel motion allows
Sean to perform the motion used by
other players to pass and shoot the
puck. The bolt connecting the two
collars was not tightened all the way
down to allow the collar to rotate
around it. To prevent loosening of
the nut that holds the bolt in place, a
locknut with a nylon insert was
selected, and Loctite was used in
between the nut and the bolt. The
second collar holds the angled
aluminum hockey stick holder. This

created an additional degree of freedom by allowing the stick to slide up and down vertically
through the collar. This motion enables Sean to reach further out in front of him to acquire the
puck. Without this motion, Sean would only be able to put his stick inside the puck at a fixed

distance from his walker. There is also a tab piece that
mates with a cutout in the back of the collar and
attaches with two #8-32 flat head machine screws.
This tab sticks out inside of the collar and travels
through a slot machined into the aluminum stick
holder (Figure 19). This prevents the stick holder and
stick from twisting inside of the collar, since we had
determined this to be an unwanted degree of freedom
at the time. We found from our meetings with Sean
that he was not strong enough to control this particular
type of motion of the stick.

Both of the collars were designed to be machined out
of Delrin Acetal Resin. This plastic was selected
because it is self-lubricating, which reduces friction in
the collar, and is an easily machinable material. For
this prototype we decided that the tab should be
machined out of rapid-prototyped ABS plastic. In the
next two sections of this report we detail why we
changed the material of the tab to aluminum.
Additionally, the extensive use of replaceable
fasteners in this design makes the collar subassembly
easy to repair if necessary.

Figure 19. Section view of the Collar
Subassembly. Notice the curvature of
the hole through the rail collar and the

tab protruding into the stick collar.
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Stick and Stick Holder Assembly

The complete stick assembly consists of a wooden stick and an aluminum stick holder that
also acts as the handle of the stick. The stick holder was designed to be made of two pieces of
1.125 inch outer diameter and % inch inner diameter aluminum tubing welded together to form
a 110° angle. One piece of aluminum tubing acts as Sean'’s stick handle. The end of this piece
was designed to be reduced down to 0.875 inch outer diameter to accommodate a standard
rubber bike handle grip (as can be seen in Figure 17) so that the device would be comfortable
for Sean to hold for an extended period of time. The other piece of aluminum tubing is meant
to attach the stick. This piece has a slot machined in the top that will mate with the tab
mentioned in the collar subassembly to prevent the stick holder from rotating inside the collar.
Set screws were installed into the four threaded holes at the bottom of the stick holder to
fasten the wooden stick in place. A wooden stick was chosen to create the least restrictive
environment for Sean. A typical Special Olympics Floor Hockey Stick is approximately 1.125
inches in diameter, but we chose a % inch diameter stick for Sean to reduce the weight for our
final prototype. After testing with Sean we found this stick was in fact too thin, and changed
this dimension for the final product. We designed the stick to have a semispherical, sanded
down tip and then covered it in felt to reduce the friction between the stick and the playing
surface, and increase the friction between the stick and the puck.

Final Prototype Testing

When we completed our final prototype we were
fairly certain there would be a couple of design
changes required to ensure we gave Sean the
best product possible, so after completing
construction of the final prototype we met with
Sean and his mother for our last testing session
in early March. After observing Sean use our
device to play floor hockey for an extended
period of time we were pleased with the
performance of our design, but as we expected
there were a couple issues that one last design
iteration would solve.

First off, the front wheel subassembly performed
extremely well. Sean was able to run at full
speed, and the speed at which he could turn the
walker exceeded our expectations. Also the ralil
and collar subassembly performed well and
allowed him to slide the stick from left to right
along the rail as fast as his arm could move, and
the collars allowed for very fluid stick movement.

) . Figure 20. Sean testing our final prototype after
Where the design fell short however was in the  the tab had sheared off, allowing for free stick

rear wheels, the tab in the collar, two critical rotation.

dimensions of the rail, and the stick diameter.

The rear wheels were simply bolted into the side of the walker supports with a bearing, and
their rotation was not as fluid as desired. The ABS plastic tab in the stick collar (which
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prevented the stick and stick handle from rotating inside the collar) sheared off quickly into our
testing session, but this turned out to be beneficial for our design purposes. After shearing we
realized we should give the stick 180 degrees of rotation inside the collar to allow Sean to hold
the handle in line with his walker handles as seen in Figure 20. We also noticed that the rail
dropped too far vertically downward, and extended too far outward in front of Sean. Lastly the
stick was only % of an inch in diameter, and aesthetically it looked too thin in relation to the
rest of the stick handle. Therefore we decided to make adjustments to these components as
discussed in the next section.

The Final Product

Rear Wheel Subassembly

The rear wheel sub-assembly underwent some changes
after testing the final prototype because our client wanted
the option of having the rear wheels swivel. The rear wheels
used for our final product were the same as the front wheels,
five inch diameter 6267 Invacare wheels. We decided to
replace the unidirectional assembly which consisted of
bolting the wheels with washers to the already existing rear
legs. In our final product, the rear wheels were attached to
the aluminum casters that were originally used as the front
wheel subassemblies on the original walker. The caster
system was perfect for our new requirements. The
overhanging semi-circular plate allows the wheels to rotate
about 60 degrees left and right. A metal bar on the inner part
of the wheel acts as a locking mechanism to make the wheel
unidirectional if desired. Sean will use the rear wheels in the
unidirectional mode until he can build up enough strength to
balance himself with all four wheels able to swivel.

Figure 21. Rear Wheel Subassembly
_ with reused caster system and new
Curved Rall Invacare wheels.

As mentioned earlier, two critical
dimensions were changed on the curved
rail and the support structure that holds it
in the walker. As can be seen by Figure 16
in the previous section, the rail support
bars drop four inches before extending out
laterally to form the curved rail. We noticed
that this vertical drop was too large and
that Sean was required to bend over
slightly to operate the stick. Also, we
noticed Sean was forced to lean too far
outward when sliding the stick across the
center point of the rail. Thus we reduced
the vertical drop from 4.5 to 3.5 inches,
and brought the rail closer to Sean by two
inches.

Figure 22. Curved Rail for the Final Product.
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Collar Subassembly, Stick Holder, and Stick

Because the ABS rapid-prototyped tab sheared off so quickly, we had it machined on a CNC
mill out of aluminum for the final product. However, when the tab sheared off during our
testing, we discovered that Sean was capable of handling the rotation of the stick in the stick
collar, but was unable to recover if the handle rotated a full 180 degrees around. To
accommodate this, the 0.125 inch slot in the aluminum stick holder was changed into a much
larger 180° slot. The new slot allows Sean to rotate the stick only 90° in each direction. This
also allows the stick handle to be parallel with Sean’s walker grips when the stick is all the way
at one end of the rail, which was very comfortable for Sean.

The stick diameter was increased from % of an inch to one inch to be more robust and
withstand the cyclic loading it will endure from playing multiple games of floor hockey. To
accommodate this, the size of the stick holder was increased to a one inch inner diameter and
a 1.25 inch outer diameter, and the inner diameter of the stick collar was increased to 1.25
inches to accommodate the new stick holder.

Figure 24. Side view of the stick handle in the stick collar,
highlighting the 180 degree, four inch long cutout in the
stick holder.

Figure 23. Stick handle is now able to rotate
180 degrees inside the stick collar.

Final Product Manufacturing

Front Wheel Subassembly

The first step in replacing the front wheels of the walker was to unfasten all of the old
components, including the wheels and aluminum plates attached to the front legs of the
walker. Since we were not using any of the old aluminum plates for the front wheel
subassembly, we machined our own aluminum extension plate which extends five inches
outward on each side of the walker. The half inch thick rectangular stock of aluminum was cut
to length on a horizontal band saw, and the edges of the two extension plates were ground
down and polished ensuring no sharp edges were present. We then used a drill press to drill
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0.31 inch and 0.44 inch diameter holes in each plate. The 0.31 inch hole was used for a % inch
diameter bolt to attach each plate to its respective walker leg, and the 0.44 inch hole was used
to attach a 3/8 inch diameter bolt to each wheel. See Figure 14 for clarification. The final step
was to assemble the plate with the new free-rotating Invacare wheels inside their brackets.

Rear Wheel Subassembly

The new, rear wheel installation started with removing the new wheels from the 0.875 inch
diameter rear legs of the walker that we had installed during our final prototype testing. Then
the old front wheel caster subassembly was unbolted from the fork and metal plate assembly.
The old wheels were removed from the caster assemblies, and the new Invacare wheels were
then bolted onto the original front fork and metal plate assembly. Once the new five inch
wheels were bolted on, we raised the legs with the built in notches on the walker frame to
account for the extra height added from the caster assembly and the larger diameter wheels.
Note the rear wheel subassembly involved no machining of components; just a simple wheel
replacement was required.

Curved Rall

As mentioned in the Final Prototype Design section, the curved rail is comprised of two
different aluminum tubing sizes. The larger tubing has an outer diameter of % of an inch with a
wall thickness of 0.125 inches, and %z inch inner diameter. The smaller diameter tubing has an
outer diameter of just %2 of an inch, with a wall thickness of 0.12 inches and an inner diameter
of 0.26 inches. We selected 6061-T6 aluminum for both tubing sizes due to the ease of
access, low cost, machinability and weldability of this type of aluminum.

The first step we took in the rail manufacturing process was to
bend the curved rail to our desired 15.75 inch diameter. Instead
of simply bending the tube in a tube roller, we first heated the
entire tube section with a propane torch to prevent the tube from
kinking or fracturing during the bending process, as shown in
Figure 25. Once the rail was sufficiently hot, we proceeded to
bend the tube in the three cylinder tube roller. We had experience
using this piece of equipment from our prototyping phase, so we
knew to cyclically heat and roll, then heat and roll until we had the
desired bend radius.

Next we
> manufactured the
larger diameter

Figure 25. Matt Spaulding
heating the curved rail before
rolling.

tubing pieces that
act as the support
structure for the rail.
The long, horizontal sections of % inch tubing
were placed in a lathe and the wall thickness was
reduced until the straight ends of the curved rail
support tubes snugly inserted into the larger

walker handle tubing on the walker frame. Even Figure 26. Cutting one of the pieces of the
though the inner diameter of the |arger walker curved rail support tubing at a 45 degree
handle tubing is close to the outer diameter of the angle.
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smaller curved rail support tubing, we needed to reduce the outer diameter of the rail support
tubing to allow for a clearance fit. Then all the sections of the % inch outer diameter support
tubing were cut at 45 degree angles on a horizontal band saw as shown in Figure 26. Once we
finished with the 45 degree cuts we ground down the edges of each piece to ensure each
piece fit together to form a perfect 90 degree angle.

After the bending, lathing and cuts had been
made we were ready to weld the seven
components together, as shown in Figure 27.
Simon Rowe, a certified welder and welding
instructor at Cuesta College in San Luis Obispo
was contracted to perform the aluminum TIG
welding. We knew how important these welds
were to the structural integrity of the curved rail
and the aesthetic finish we desired, so we felt the
need to have this work performed by a certified
welder. See Figures 28 and 29 below for how the
components were welded to form one solid part.

Figure 27. Exploded view of the curved
rail showing the location of each weld.

Figure 28. Simon Rowe welding one side of  Figure 29. Simon Rowe welding the curved rail to one side
the curved rail support structure together. of the support structure.

After welding the curved rail and each side of the support structures into one solid aluminum
piece, we then inserted the subassembly into the walker and drilled each one of the three
holes in the curved rail support tubes that were inserted into the walker tubes. These are the
holes that allow the bolts that hold the walker frame together to go through the curved ralil
subassembly, rigidly attaching the curved rail to the walker frame.
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Collar Subassembly

The majority of the time spent manufacturing the collar subassembly was spent machining the
Delrin components. Below is the order of operations we employed to produce these
components, with descriptions of what machines were used, how the parts were fixtured, and
what cutting tools were used.

Stick Collar

Use chop saw to cut 2 in outer diameter Delrin stock to three
inch length.

y \
4 \"-] , Use lathe to center drill one inch diameter hole.
,///
R
t - \ ] Use mill and ¥ inch flat end-mill to machine one of the flat
\ / surfaces. Flip part and machine the other flat surface.

Use drill press with % inch counter bore bit to add counter bore
feature from opposite side of collar, then switch to 17/64 inch
drill bit to drill through-hole.

Fixture collar in mill. Use % inch end-mill to cut shallowest slot,
. then the smaller slot. Switch to 0.125 inch bit and mill the

)) m—r{e through-slot. Switch to #29 drill bit and put in the through-holes
: for the #8-32 tapped holes. Switch to #8-32 tap and tap the

holes.
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Rail Collar - Back

Use chop saw to cut 1.75 inch outer diameter Delrin stock to 2.5 inch
length.

Use lathe to center drill 0.625 inch diameter hole.

Use mill and ¥4 inch flat end-mill to machine off top portion of the
cylinder. Use same bit to machine the inner slots.

Fixture collar on its side on mill. Use 5/16 inch counter bore to add
counter bore features, then switch to #16 drill bit to drill through-
holes.

Flip collar and perform the same operations described above.

«
O
=
(<
(<
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Rail Collar — Front

Use chop saw to cut 1.75 inch outer diameter Delrin stock to 2.5
inch length.

Use lathe to center drill 0.625 inch diameter hole.

Use mill and ¥ inch flat end-mill to machine flat surface onto the
cylinder.

Use mill and % inch flat end-mill to machine off top portion of the
cylinder. Use same end-mill to machine the outer slots.

Use drill press with %2 inch counter bore bit to add counter bore
feature, then switch to 17/64 inch drill bit to drill through-hole.

Fixture collar on its side on mill. Use #29 drill bit and drill the
through holes for the #8-32 tapped holes. Switch to #8-32 tap
and tap the holes.
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Flip collar and perform the same operations described above.

Figure 30. Chris Gaul milling the end of the stick collar downtoa  Figure 31. Milling the flat spot on the

of the rail collar.

Tab

The aluminum tab in the Delrin stick collar that prevents the stick handle from rotating more
than 180 degrees was produced by a lab technician on a CNC mill. The tab was made from a
¥ inch square piece of 6061-T6 aluminum stock, and we also purchased a specialized three
flute, 3/8 inch diameter end mill for the CNC mill. The three flute end mill increased the quality
of the surface finish, which was important for the tab to tightly fit inside the Delrin stick collar.

Stick Holder and Stick

The stick holder was machined from 1.25 inch outer diameter by % inch inner diameter
aluminum tubing. A 55° cut was made using a horizontal band saw to create two pieces with
55° ends. For the piece that holds the stick, a one inch drill bit was placed in the tail stock on a
lathe to create the one inch deep depression that allows the one inch outer diameter wooden
stick to fit snugly inside the depression. A mill was used to drill the pilot holes for the set
screws, and the threads were hand tapped. For the handle, the end was turned down to 0.875
inches on a lathe (Figure 32), and a lubricant was used to slide on the rubber bike grip. Simon
Rowe welded these two pieces together to complete the aluminum stick holder during the
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same welding session that the curved rail was welded (Figure 33). The actual wooden stick
was cut to a 24 inch length from one inch diameter pine dowel rod using a vertical band saw.
We used a belt sander to make the end semispherical, and then glued felt around the
semispherical end to simulate the traditional Special Olympics Floor Hockey sticks.
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Figure 32. Using a lathe to turn down the
outside diameter of the handle portion of
the aluminum stick holder. The bike grip
can now slide over the handle.

Figure 33. Simon Rowe
welding the two pieces of
the aluminum stick holder
together.




Figure 34. The final product, as delivered to the client. Both the rail and stick collars were
painted black (as requested by Sean) in addition to the wooden stick.
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Engineering Analysis

Tipping

We performed a tipping analysis to see how much force would need to be applied at the end of
the rail on the walker to tip the walker over. We determined that the worst case scenario for
tipping would be if Sean’s walker ran into something that stopped the front the wheels turning
and kept the walker from moving forward. Below is a free body diagram of the system in this
scenario:

Fy 9.25in Fsean

<4

;

- .
O e—
S =

Figure 35. Free Body Diagram used to perform tipping analysis.

F is the force that Sean is applying downwards on the railing. F is the force that Sean is
applying downward on his handles. W is the weight of the entire walker, including all
components that we have added to it. The weight (11.68 Ibf) and the location of the center of
gravity were found using mass properties in SolidWorks.

If the sum of the moments about the origin is equal to zero, then the walker is on the verge of
tipping:

SMy, =0 (Eq. 1)
Fyip(4.70 in) — Fyoqn(9.25 in) — W(9.35 in) = 0 (Eq. 2)
W(9.35 in)+Fseqn(9.25 i
Fp = o sean 025 1) (Eq. 3)
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From this result, we determined the force required to tip the walker based on how much weight
Sean is applying at the handles. If Sean applies no force down on the handles, then it will
require 23.2 Ibf to tip the walker. This is a good result, considering that Sean needs his walker
for balance, and applying no weight to it would be unlikely. Sean weighs about 75 Ibf, so a
good approximation of an actual scenario would be if he were supporting 1/3 of his weight on
his walker handles, or 25 Ibf. In this case, it will require 72.4 Ibf to tip the walker. This is a large
enough force that we feel confident in the stability of this walker.

Front Wheels

A key area of interest for failure of the wheels is the bolt connection at each of the front wheels
where the fork connects to the extension plate. The bolt we selected was a 3/8-16x1.5 grade 5
bolt. Points of stress concentration are at the fillet under the head of the bolt, at the start of the
threads, and at the thread root fillet in the plane of the nut. Washers were added to prevent an
increase in stress concentration at the fillet due to burrs or sharp edges at the bolt holes. We
also chose a nut of equal grade as that of the bolt. The purpose of the nut is to have its
threads deflect to distribute the load of the bolt more evenly to the nut.

It was calculated that the bolt would elongate by only 0.000065 inches under a 100 pound
load, which is an insignificant elongation for an estimated max force that the walker might be
loaded to during floor hockey. This total elongation was found using Equation 4.

dl = = (Eq. 4)

EA

The effective stiffness of the bolt and stiffness of the members in the clamped zone were
calculated to be 334.5 ksi and 3.78x10° psi, respectively. The fastener stiffness and stiffness
of members were found using Equation 5 and Equation 6 shown below.

AGALE 0.5774mEd
; (Eq. 5) Ky = (Eq. 6)

0.5774l+.5d
21n<5(5774b+25d)>

Kb_

- Agle+Alg

The strength of the bolt under a 100 pound force was then analyzed. The total stress from the
preload stress (initial bolt tension from tightening the nut) and the stress under the 100 pound
load resulted in a value of 4.3 ksi by using Equation 7 shown below.

o, =C (Ait) +a,  (EQ.7)

The SAE minimum proof strength for a grade 5 bolt is Sy=74 ksi, therefore the total stress after
the 100 pound load is only 6% of this value. This means that a 100 pound load is magnitudes
lower than the force required for the bolt to fail.
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Welded Ralll

The following analysis was performed on the welded rail assembly assuming a 100 pound
force was acting downward on the rail at the center of curvature. This is our “worst-case
scenario” so we could develop an idea of the absolute maximum forces, moments and
stresses that could act on the rail assembly. See Appendix B for detailed hand calculations.

First a static analysis was performed on the entire rail assembly to determine reaction forces
and moments at the walker handles, using Equations 8 and 9.

Y F, =0 (Eq. 8) YM=0 (Eq. 9)

Given a 100 pound force acting downward at the forward most point of the rail, and the rail
assembly weight of 1.15 pounds (found using SolidWorks Mass Properties Tool), it was found
that the reactions at the walker handles were 50.575 pounds per handle, with a moment of
557.09 Ib-in at each handle. While a force of this magnitude would tip the walker over, in case
the walker is somehow rigidly fixed to the ground (blocked by another player, for example), it is
necessary to find these reactions. Now that these basic reaction forces were found, the rest of
the rail assembly analysis covers the %2 inch outer diameter curved rail, since the rail will be
experiencing most of the forces during use.

Given the same loading conditions (100 pound force acting downwards), the reactions were
found using Equations 1 and 2. The forces and moment reactions were found at the ¥z inch to
% inch interface to be 50.185 pounds and 394.4 pounds respectively. Using this force (shear
force at the interface) the maximum planar shear stress at the weld was found to be 700.6 psi.
The maximum shear stress due to the torsion on the rail was also found to be 34.747 ksi, at a
twist angle of 8.25° and a maximum theoretical deflection based on this twist angle to be 1.14
inches. Maximum planar shear stress was found using Equation 10, maximum torsional shear
stress was found using Equation 11, and twist angle was found using Equation 12.

Tmax =2 (Eq. 10) T max =2 (EqQ. 11) 0 =% (Eq. 12)

plane torsion J G

The final analysis that was performed on the curved rail was a curved beam in bending
analysis to determine the stresses on the inside and outside tube walls. Instead of a 100
pound force acting vertically downwards on the rail, this analysis was performed where a 100
pound force was acting horizontally on the rail, once again to determine absolute maximum
stresses. The fine details of the calculations can be found in Appendix B with the other
calculations, but the two fundamental equations to determine stress in the walls are shown
below in Equations 13 and 14.
F Mc;

Oinner = n + Aer

(Eq. 13) Oouter == — 2> (EQ. 14)

Aery
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Collar

In our engineering judgment, the first component in the swivel collar to fail would be the ¥4-20 x
5/8,” grade 5 steel bolt that the two collars pivot around. Because we are not fully tightening
this bolt, and therefore not applying a preload, a standard bolt analysis is not appropriate.
Instead, we will treat the bolt as a simple cylinder. We chose a diameter of 0.1887 inches, the
minor diameter of the bolt we used, to make sure that our calculations were conservative. To
simulate a scenario that could potentially cause the bolt to break, we will apply an impact force,
P=100 Ibf, to the bolt in tension.

Figure 36. 100 pound force applied to ¥%-20x5/8” bolt.

We then found the tensile stress on our ideal cylinder by first finding the area (Equation 16):
A= %DZ (Eq. 15)
T
A =7(0.1887 in)?

A =0.02797 in?

And then applying the general equation for tensile stress (Equation 16):

_ P
o=" (Eq. 16)
_1001bf
7= 0.02797 in?
o = 3.58 ksi
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The stress was found to be 3.58 ksi, which is a good result. According to Shigley’s Mechanical
Engineering Design, 9" edition, the minimum yield strength for grade 5 steel bolts is 92 ksi.
Our result is only 3.9% of this value, so we are very far from yield.

Additionally, we found the elongation of the bolt under the load of this impact force (modulus of
elasticity of steel obtained from Shigley’s Mechanical Engineering Design, 9™ edition):

0 = &L

g

§="21 (Eq. 17)

3576 psi 0.625 i
= 28 x 106 psi (0625 )

§=798%x10"%in

This amount of elongation is trivial, and we were confident in these results.

Testing

In order to validate our design, we needed to properly test it. Luckily, our final prototype was
very similar to the final product so we could test our final prototype without fear of structural
failure. Table 7 on the following page is a summary of the tests we performed on the walker.
The Acceptance Criteria was the result required for our product to pass the test. The test stage
for all tests was DV, design verification, which means that the tests were used to verify that our
design is acceptable.

Test number one was conducted to ensure that the walker was safe as far as tipping was
concerned. We placed stops on the front wheels to prevent them from moving and loaded our
welded rail as far out as possible. It took 22 Ibf of weight to tip the walker over, which was
above the 20 Ibf minimum that we considered to be a safe loading condition.

Test number two and test number three were both performed to ensure that Sean will have a
full, smooth range of motion when using our device. These tests verified that our product has
the full range of motion that we intended it to have. These tests were performed on our final
product as well as our final prototype.

Test number four was designed to assess the strength of our welded rail. We fixed the ends of
the rail and hung 100 Ibf of weight from the end of it. To pass, the rail needed to show no sign
of plastic deformation after the weight was removed. Most importantly, the rail could not
fracture or break in any dangerous way. The rail passed this test, so we feel confident that
Sean will be safe using our device, even if the rail is subjected to an abnormally high degree of
loading.
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Test number five ensured that the bolts that hold our collar subassembly together will not fail.
We attached the rail collar to the rail and suspend 100 Ibf of weight from the stick collar. This
tested both the main %-20 bolt that fastens the two collars together and the four #8-32 bolts
that hold the two halves of the rail collar together. The collar subassembly passed this test, so
we are confident that it will not break while Sean is using it.

Table 7. A description of the tests performed on the critical components of the project.

o Acceptance Result Pass/Fail
Test Description o o .
Responsibility Criteria
Hang weight from rail
] ) Knuckle Pucks DV > 20 Ibf 22 Ibf Pass
until walker tips forward.
Full range of
Slide collar all the way motion with | Motion is
) Knuckle Pucks DV o . Pass
around the rail. no "sticking" | unimpeded
points
Full range of
Slide stick holder all the motion with Motion is
Knuckle Pucks DV N ) Pass
way through the collar. no "sticking" | unimpeded
points
Clamp ends of the rail )
) Slight
assembly; hang 100 Ibf of No plastic .
) Knuckle Pucks DV ) ldeformation, Pass
weights from the end; deformation ]
. fully elastic
measure deflection.
Assemble swivel collar
around a rail so that stick )
) Slight
collar hangs down; hang No plastic )
o Knuckle Pucks DV . |deformation, Pass
100 Ibf from inside of deformation i
) fully elastic
stick collar; measure
deflection.
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Failure Analysis (FMEA)

FMEA stands for Failure Mode and Effect Analysis. FMEA is an engineering tool used to
evaluate the reliability of components and systems within a given design. The purpose of this
kind of analysis is to determine how components could potentially fail, why these components
would fail, how often and how severe these failures could be, and then determine the best
course of action to prevent such failure from occurring. So in a way FMEA is a “worst case
scenario” exercise to prepare for potential failures during product use. We have performed an
extensive engineering analysis and outlined our testing plan in an effort to mitigate such
failures, but FMEA is a useful tool to determine the parts at the highest risk of failure. Table 8
below is a greatly condensed version of the full FMEA that can be found in Appendix D.
Occurrence, severity and detection rankings are also detailed in Appendix D.

Table 8. Major results from the Failure Modes and Effects Analysis.

Occurrence Severity
Sub Assembly Parts That Will Most likely Fail Ranking Ranking
(1-10) (1-10)

Walker Frame Hardware loosening 6 3
Front Wheels Hardware loosening 6 4
Rear Wheels Hardware loosening 6 4
Welded Rail Hardware loosening that attaches rail to 5 5

walker
Collar

Hardware breaks through collar 5 8
Subassembly
Stick Set screws loosening that hold stick 6 8

After performing a Failure Modes and Effects Analysis for each of the five sub-assemblies in
our system, we were pleased to find that the highest risk of failure was hardware loosening at
the numerous bolted connections present on the walker and in our design. We were pleased
with these results because we expected this to be the case, but more importantly tightening
nuts and bolts is very easy to do given a couple of simple tools.

We have determined that hardware may need to be tightened across the walker every six
months depending on the rate of use, while the rail hardware and collar hardware may need to
be inspected every three months. We came to these conclusions based on the frequency of
the walker use, the regular impact forces the device will be experiencing in use, and the fatigue
loading on the walker and sub-assemblies over time. Our biggest concern are the set screws
holding the stick inside the aluminum stick holder, but we designed the holder to clamp the
stick in place using four set screws, which should more than account for regular impact
loading. Also, we gave Sean and his mother a number of extra hockey sticks when we
delivered the product, just in case anything catastrophic ever happens to the stick.
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The severity ranking for each failure is equally as important as the occurrence ranking. If a
component never fails than failure could be relatively severe, but for parts that have higher
failure rates, severity becomes a serious issue. If a part catastrophically fails, we are morally
obligated to ensure that injury to Sean and other players is prevented to the best of our
abilities. From our analysis we found that the severity of hardware loosening would most likely
not even cause performance loss, so we are not concerned about hardware loosening in the
walker. However if the hardware starts to loosen in the rail-to-walker connection a minor
performance loss is expected since the rail could begin rattling and vibrating as the collar
slides along the welded rail. The swivel collar and stick have relatively high severity rankings
because if either of these components fails the unit would be inoperable. We debated the
severity of stick failure since splinters and sharp edges could injure Sean, but we determined
there is an equally high risk of other players’ sticks splintering.

Bill of Materials

Table 9 below shows a complete Bill of Materials for the entire project, organized by each
prototypef/final design.

Table 9. Materials and manufacturing costs for each design phase.

Date of

Purchase Items Purchased Design Phase Total
11/5/2012 |Steel braided hose and PVC First prototype $33.56
11/9/2012 |PVC Second Prototype $6.94
11/9/2012 |PVC and Various Fasteners Second Prototype $54.76
11/11/2012 |PVC Second Prototype $6.59
11/12/2012 |PVC and Steel Rod Seocnd Prototype $24.50
11/14/2012 |Foam, clamps, PVC Second Prototype $10.00
1/11/2013 |0.5" AL Solid Rod Third Prototype $10.15
1/16/2013 |0.5"'x0.16" Steel Round Tube Third Prototype $16.46
1/16/2013 |0.035" OD AL Tube Third Prototype $17.26
1/18/2013 |0.75" AL Solid Rod Third Prototype $11.67
1/18/2013 |JB Weld Third Prototype $7.55
1/28/2013 |5" swivel wheels, 5" & 3" fxd wheels |Third Prototype $112.77
2/19/2013 |0.75 and 0.5 AL Tube Final Prototype/Product $95.91
2/27/2013 |2.25" Delrin Rod Final Prototype/Product $29.17
3/5/2013 |1.25" AL Tube, Various Fasteners Final Prototype/Product $73.09
4/29/2013 |3/4" Square AL and 3/8" Endmiill Final Prototype/Product $48.58
5/2/2013 |CNC Mill Labor - Aluminum Tab Final Prototype/Product $104.00
5/4/2013 |Welding Labor Final Prototype/Product $80.00

Project Total $742.96
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Recommendations

Although we have been able to redesign various areas for improvement throughout our
iteration process, we feel there is still room for further development in future models of this
adaptive floor hockey device. The following are some recommendations for future engineering
groups:

a. Outsource the manufacturing of the curved rail.
i. Having a professional machinist bend the rail will improve uniformity and
accuracy of measurements.
b. Make more precise cuts of aluminum bars for better welds.
Minimize material used to reduce cost and weight.
Consider using different materials for the stick and rail. Consider carbon fiber for a
lighter device.
e. Make the rail more easily detachable from the walker so other users don’t have to crawl
under it to fit in the walker.
f. Adapt device for attachment to multiple walkers.
g. Adapt device for a wider demographic.

oo

Conclusion

The adaptive floor hockey device we constructed was specially designed for the needs and
requirements of Sean to allow him to participate in Special Olympics Floor Hockey. Ultimately,
Sean will be able to improve his strength, balance, and coordination by continuing to play floor
hockey as he grows. This is why we have designed and manufactured a fully functional device
and not just a prototype. We finished this project content with the final product, and very
appreciative of the lessons we have learned.

With our device, Sean will be able to compete in a local Special Olympics Floor Hockey
league, but more importantly he will be able to interact and have fun with people of his own
age in a healthy, competitive atmosphere. We would like to thank Dr. Kevin Taylor, Chair of the
Kinesiology Department at California Polytechnic State University, San Luis Obispo, as well as
Dr. Brian Self and Dr. Jim Widmann both of the Mechanical Engineering Department. Their
efforts led to the acquisition of the National Science Foundation grant that made this project
possible, and we are very thankful for their time and energy. We would like to thank Michael
Lara, Regional Sports Advisor of the Southern California division of Special Olympics for his
positive attitude and youthful energy that reminded us what the true purpose of this project
was: to learn, experience, and have fun. We would like to extend a huge thank you to our
faculty advisor, Professor Sarah Harding, for the three quarters she spent helping us refine our
design. Her advice was instrumental in keeping the team working together towards a common
goal, and she was always willing to share her knowledge and experience. We are extremely
grateful for all of the time and energy she devoted to our questions. And last but certainly not
least we would like to sincerely thank Sean and his mother Gabrielle for all the time they
devoted to meeting with the team and testing different prototypes. We had a lot of fun running
around with Sean, and we are excited to see his floor hockey future develop.
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Good communication with Sean and his family, our sponsors, and our advisor as well as the
use of our engineering knowledge have allowed us to produce a successful product. This
project has taught us that there is a great need for engineers to design assistive devices for
the purpose of breaking limitations caused by disabilities. We hope Sean enjoys using our
device for many years to come and that future Cal Poly students continue to work towards
making the lives of people with disabilities more exciting and diverse.

‘)

Figure 37. Top row: Michael Lara, Shannon Brant, Chris Gaul, Matt Spaulding,
Ricardo Gaytan. Bottom row: Dr. Kevin Taylor, Sean.
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Ap pendix A Quality Function Deployment (QFD) — House of Quality

Direction of Improvement: k4 || A LA WA ‘J‘J‘I
Maximize M  Minimize W Hit Target X
Customer Desciption: = =
1 = Sean Freed, Gahrielle Freed =| 5| 5| &
2 = Michael Lara, Dr. Kevin Taylar == F}.‘n_ @ L =
A =HK5F, Special Qlympics ol B g = Bl w =
Olwelol e |g
=lolo El | o a
= E
=2 = 2| & 8| El ul «»
o E ol E| | o D =| %
HEEEEEEEE
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ElaB|CDE[F[GIH]I
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Dioes nat limit mokility f'zpeed 4191319393 a3
Wheels roll zmoothly a2l3]8 g(9
Stakility S1913|9[3|1]3]3]9]3
Corakbility 4131911 [1 113139
Collapsible 211 ]13]3[3 J|1]13[9
Height Adjustable S|1]313([3 3|9]3[9
Eazily repairable 213|933 alalal3
Safety S |31 {1 [1)1]3 9|3
Inexpensive 219|333 3113149
Aesthetics 3 111 111
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User comfort 5* 11 9|9 3 1
Aesthetics 2 111 1
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Appendix B Engineering Analysis - Hand Calculations

Front Wheels

Front Whee| Bolt Analysis
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Bolt E*rtnoi\\'\
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Ad AL E

Fastener Shiffness: ¥ =
aally + ALy
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Welded Rail
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Max Shear Siress en  Curved  Rail
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Ap pen dix C Manufacturing Flowchart
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Rating Description

Severity Ranking {Severity of Effect)

10 Dangerously high Failure could injure the customer or an employes.
? Extremely high Failure would create noncompliance with federal regulations.
a Wery high Failure renders the unit inoperable or unfit for use.
7 High Failure causes a high degree of customer dissatisfaction.
[ Moderate Failure results in a subsystem or partial malfunction of the product.
5 Low Failure creates enough of a performance loss to cause the customer to complain.
4 Very Low Failure can be overcome with modifications to the customer’s process or product, but there is minor
Y performance 1oss,
3 Mi Failure would create a minor nuisance to the customer, but the customer can overcome it without
inor
performance loss.
. Failure may not be readily apparent to the customer, but would howve minor effects on the customer’s
2 Yery Minor
process or product.
1 None Failure would not be noticeable to the customer and would not affect the customer’s process or
product,

Rating

Description

Occurance Ranking (Fotential Failure Rate)

Very High: Failureis

10 ) ) More than one occurrence per day or a probability of more than three occurrences In 10 events [(Cok = 0.32).
almost inevitable.
High: Fail

? 9 Cres oceUr One occurrence every three to four days or a probability of three cccurrences in 10 evenls [(Cpk = 0.33).
almost as often as not.
High: R ted

a8 fclnﬁures SReeE One occurrence perweek or a probability of 5 occurrences in 100 events  [Cpk = 0.47).
High: Fail

7 o:‘?en FITEs GECUT One occurrence every month or one occurrence in 100 events [Cpk = 0.83).
Moderately High:

[ oaeraie Y, = One occurrence every three months or three occurrences in 1,000 events  [Cpk = 1.00].
Frequent failures,
Moderate: O i |

5 fcni‘l,ur:;q & Lecesiond One occurrence every six months to one year or five occurrences in 10,000 events [Cpk = 1.77].
Moderately Low:

4 R Iow Cne oCCUmence per year or sk occurrences in 100,000 events (Cok = 1.33).
Infreguent failures,
Low: Relafively f

3 f:i‘ll’:rese VLT U One occurrence every one to three vears or sl occurrences in fen milion events (Cpk = 1.67).
Low: Fail i

2 ow: TAUTEs Are IS COne occurrence svery three to five years or 2 occurrences in one billion events [Cpk = 2.00).

and far betweean.

Remote: Failure s
unlikety.

One occurrence in greater than five wears or less than hwo occurrences in one billion events [Cpk = 2.00].

Detection Ranking Definitions

10 Absolu.ie The product is not inspected or the defect caused by failure is not detectable.
Uncerdainty
? Wery Remote Product is sampled, inspected. and released based on Acceptable Guality Level [AGL sampling plans.
8 Remote Product is accepted based on no defectives in a sample.
7 Wery Low Product is T00% manually inspected in the process.
& Low Product is 100% manually inspected using go/no-go or other mistake-proofing gauges.
5 Moderate some Statistical Frocess Control (5P s used in process and product is final inspected off-line.
4 Mo?_l?;:iew SPC s used and there is immediate reaction to out-of-control conditions.
3 High An effective SPC program i in place with process capabilities [Cpk] greater than 1.33.
2 Very High Al product is 100% automatically inspected.
. The defect is obwvious or there is 100% gutomatic inspection with regular calibration and preventive

1 Almost Certain . ) . .

maintenance of the inspection equipment.
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Project Timeline
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Technical Drawings

Appendix G
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