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Executive Summary 
Cisco Systems has asked us to design a solution to a problem that the company has had for some 

time: consolidate all the mounting patterns for their 1RU rackmount products as much as 

possible. This lack of consolidation has led to logistical issues and end-user misuse. The original 

plans included a single bracket for legacy products and a single bracket with a single hole 

pattern, for use with future products. Later discussions have caused the legacy product bracket to 

be shelved, with the focus of this report mainly on the future products bracket. FEA analysis, 

real-world bend testing, and pull testing were used to determine the main features of the bracket, 

while DFM analysis at the prototyper was utilized to determine the hole pattern for the final 

bracket. After much deliberation, two mounting patterns, a four-hole pattern and a hybrid hole-

slot pattern, have been designed as our recommended designs. Additionally, the testing 

procedures mentioned in this report are to be utilized in a way that a whitepaper should be read.  

  



Introduction 

Background and Needs 

Cisco Systems, Incorporated is a multinational Fortune 500 corporation focused on 

communications and computer networking. Headquartered in San Jose, California, the company 

produces routing systems, teleconference solutions, servers, network authentication systems, and 

other networking and communications solutions. Many of their products are mounted on racks in 

datacenters. Racks have a standard spacing of 1.75 inches between holes, and each set of holes 

represents one rackmount unit, known as 1RU. Due to many historical events, Cisco has over 80 

1RU chassis, each with various mounting patterns. As a result, there are nearly one-thousand 

brackets for the 1RU families. Our team has been tasked to consolidate the various brackets into 

the smallest amount possible for legacy products, as well as for a next-generation 1RU chassis. 

The most optimal design would be able to accommodate every chassis with a single bracket. 

Problem Statement 
As mentioned above, due to various historical reasons, Cisco has over 1000 brackets for 1RU 

chassis. This causes problems for Cisco and end-users, such as installing screws in ventilation 

holes. To make matters worse, most divisions inside Cisco choose to make a new mounting 

pattern instead of working with an existing mounting pattern. Because of this, our goal is to 

develop a new universal mounting pattern for a next-generation chassis, with the promise that the 

new mounting pattern will propagate across the various divisions at Cisco that use 1RU chassis. 

 

Requirements 
Table 1: Relevant Engineering Requirements 

Parameter Description Requirement or Target Tolerance Risk 

Material CR Steel   

Height 44.45 mm max L 

Nominal Load 30 lbs max M 

Peak Load (SF = 1.3?) 40 lbs? max H 

Manufacturing Method Stamping  L 

Rack Hole Spacing (see figure1.) .625”-.625”-.5”  M 

Earthquake Loading   5 g-Zone 4 (GR-63)  M 

Deflection TBD  L 

Fastener Shear Load TBD  M 



Objectives and Constraints 

 
Figure 1: Standard Rackmount Hole Spacing as defined by EIA–310–E (Courtesy: www.server-racks.com/eia-310.html) 

After reading through the standards documents such as GR-63, and from previous information 

gathered from Cisco team members, we were able to get a general target for our engineering 

requirements. For example, initial information from Cisco specified that chassis can weigh up to 

30+ lbs. Also, the GR-63 document specifies the worst case scenario vibration test for 

earthquake safety at 2 Hz for 5 g’s and 50 Hz for 1.6g’s. Safety is always a high priority, and all 

targets directly related to safety will get more conservative targets. In addition, the brackets will 

undergo mechanical design verification testing as well as earthquake simulation. More objectives 

and engineering targets will be added as development continues. 

Management Plan 
In order to successfully complete this project in a timely matter, various tasks have been divided 

amongst the team members. All team members are required to gather information pertinent to the 

project and their assigned tasks as well as document their progress. Michael will be handling 

communication with Cisco. He will also be managing the testing portion of this project because 

he has internship experience working in a test lab with rackmount units. Edwin has experience 

with Microsoft Project and will be tracking the overall progress of the project. Garrett will be 

responsible for handling the budget as well as ordering prototyping materials because he has 

experience managing/ordering club supplies. In addition to managing the budget, Garrett will be 

in charge of the FEA simulations because he has taken the M.E. Finite Element Analysis course. 

Garrett is a team technician at the machine shop and Edwin is an SAE assistant lead, they will be 

splitting the prototype fabrication responsibilities. 

Background 

Existing Products 
As a starting point, we went to Cisco’s website to investigate their product families that would be 

within the scope of the optimization project. We searched through product overview pages and 

technical specifications sheets. To supplement the online information, we also obtained a box of 



some sample materials from Cisco to look at the common brackets and chassis. With the 

hardware, we sorted out the chassis and their matching brackets. The sample of hardware began 

to provide us insight on the types of material we would be working with, and some of the bracket 

designs that need to be unified. In addition to the material supplied by Cisco, members of the Cal 

Poly IT staff and Computer Engineering faculty allowed us to tour the labs and data centers on 

Cal Poly’s campus. From the tours, we learned how the units are mounted to the rack both 

properly and improperly. For example, some of the chassis were mounted with an arbitrary 

bracket that did not match the hole-pattern, and the screws were fastened into ventilation holes. It 

is evident that there is a need for a unified bracket in order to prevent logistical nightmares for 

the manufacturers as well as misuse by the end user. 

 

In our initial research, we found that the common standard for a rack is the four-post rack with 

19 inch wide nominal spacing between the hole-centers. Vertically, the holes repeat a spacing 

pattern every 1.75 inches; the repeating spacing between holes is 5/8
th

 inches, 5/8
th

 inches, and ½ 

inches. In addition to the four-post racks, it is common to have a two-post rack which is called a 

Telco rack. The Telco rack follows the same hole-spacing pattern vertically and horizontally. For 

the specific brackets, we expect specifications for static, dynamic, and fatigue loading. From our 

group’s previous experience in the area, we know that there will be shock and vibration 

specifications to be met for the brackets. 

 

A number of additional bracket designs by other companies have tried to tackle similar 

problems. We located a variety of patents that investigated different methods of accommodating 

for multiple configurations. For example, Dell designed a rotatable bracket and rail kit with 

sliding brackets that can adjust for different dimensions depending on the chassis. From these 

types of attempts, we will brainstorm our own design ideas to find the optimal solution to 

unifying the brackets. 

 

To complement our own findings, Cisco has provided us with several specification documents. 

These documents define the constraints our designs have to fall under. These documents are 

Verizon’s procedures for testing, ETS-300-119, and EIA-310-E. The Verizon testing procedures 

document mentions several NEBS requirements, NEBS standing for “Network Equipment 

Building Systems.” These requirements include GR-63, which define thermal, noise, earthquake 

prevention, size, and fire prevention requirements; GR-1089, defining electrical safety 

requirements, and GR-78, of which we currently have no information on. The document also 

defines the specific method needed to test the equipment. ETS-300-119 defines chassis size, rack 

spacing, temperature limits, and maximum loads. EIA-310-E discusses rack sizing. These 

documents assisted us during the preliminary design process. 

 



Design Development Process 

Ideation/Preliminary Design Concepts 

 
Figure 2: Early analysis of existing bracket hole-patterns 

Our ideation process started by placing the hole-patterns of the brackets we currently had in 

possession, into a single sketch on CAD. This resulted in Figure 2, and showed us the scope of 

the problem. Holes do not line up as easily, even if the patterns appeared to be the same. In 

addition, the dimples used for alignment and some load bearing were not incorporated into this 

drawing. From the analysis of current hole-patterns, we decided that it was best to split the 

design project into two parallel paths: the consolidation of existing brackets and the creation of a 

new, universal bracket.  

 

One path will focus on the legacy brackets, and developing a minimum amount of brackets to 

accommodate for the various hole-patterns and the structural loads expected with those products. 

At this time, Cisco team members have informed us that there are around one thousand 1RU 

brackets that Cisco is responsible for. Due to the constraints of being a student project, the scope 

for handling these legacy brackets is being significantly narrowed to a much more manageable 

amount. Cisco is considering the option of limiting the consolidation design to the top 20 

brackets ranked by volume of production. Until a final list of brackets is decided on, our project 

will focus on the design of the next generation bracket. 

 

The other path, designing a universal bracket for the next generation chassis, is primarily 

concerned with creating a bracket that will be versatile in mounting options as well as the 



loading conditions it can support. Looking at the material we already had, we decided that the 

best starting point would be with the largest bracket that Cisco provided us with; this bracket will 

already be closest to meeting the engineering specifications for strength. Furthermore, a simple 

and symmetric hole-pattern was decided on in order to prevent possible issues with the other 

mounting options such as mid-mounting and rear-mounting. Before setting the dimensions for 

the holes’ positions, we investigated the internal components of different chassis to see if the 

screws would be interfering with any of the internal circuitry or other electrical components. 

Looking inside some of the chassis, we found that there is a spacing that lifts the main circuit 

board off of the base of the chassis. (Figure 3) As a result, we found that, in general, moving the 

holes towards the midline (lengthwise) of the bracket would prevent possible conflicts.  

 
Figure 3: Internal look at spacers below main circuit board 

Also, despite best efforts to avoid interference between the hardware, we discovered cases where 

components other than the bracket and fasteners were modified. For example, Figure 4 

demonstrates a notch in one of the boards to allow for the screw to protrude into its plane. 

 
Figure 4: Notches found in circuit boards to allow for screw protrusion 

Although the notch solution has been done, we intend to avoid having interferences between the 

mechanical and electrical components to truly allow for a universal chassis and bracket that give 

more design freedom to the components going inside the box. We will continue to investigate the 



specific placement of the holes for the bracket both vertically and horizontally to optimize our 

solution. 

In addition to the placement of the holes, we are concerned with the ventilation allowed through 

the sides of the chassis that could be blocked by the bracket. Starting with the most ventilation 

area with open “windows”, we continued to brainstorm a variety of different ventilation patterns. 

   
Circular Vents     Hex Vents 

 
Horizontal Slots    Vertical Slots 

 
 Open Window     Cross-brace Vents 

Figure 5: Ventilation Design Concepts 

 

In order to get a simple evaluation on the various designs, we performed rudimentary FEA 

through a simulation in SolidWorks. This study assumed a worst-case scenario of only two 

screws securing the brackets at the bottom left and upper right corners. The brackets were fixed 

Figure 5: Ventilation Design Concepts 



at the flange and constrained from twisting out of the plane. From simple statics, and the 

predefined maximum loading of four times the weight (approximately 30 lbs) applied at the end 

of the chassis (measured 21 inches), we calculated resultant forces of 170lbs and 230lbs 

respectively for the lower left and upper right holes. We tabulated the ventilation (open) area and 

corresponding deflection from each case in Table 1 and plotted the trend in Figure 7. 

 

 

Figure 6: FEA displacement study for open and cross member ventilation designs 

 

 

 

 



 

Table 2: Ventilation Area and Displacement for Concept Brackets 

Bracket Vent Pattern Ventilation Area (in
2
) Displacement (mm) 

Open 5.762 5.319 

Cross Members 4.251 0.926 

Vertical Slots 4.015 1.900 

Horizontal Slots 4.655 4.253 

Hex 4Hole 4.033 1.005 

Hex Vents 3.658 0.980 

Dual Vertical Slots 3.366 1.022 

Circular Vents 2.754 0.671 

 

 
Figure 7: Ventilation Area vs. Displacement for Concept Brackets 

The general trend from our study showed that increasing the ventilation area generally increases 

the deflection as well. However, through the use of staggered patterns such as the hex vent 

pattern, or structural reinforcements like the cross braces, we can obtain a large ventilation area 

while still limiting the displacement. It is our goal to further improve our concepts by moving 

farther into the lower right corner of the Ventilation Area vs. Displacement plot. Also, it is 

important to note that we were not as concerned with the exact values of displacement in this 

study. Due to simplicity of the simulation ran as well as the specific loading condition 

mentioned, the specific values of deflection are not completely accurate. From our knowledge in 

mechanics of materials, however, we know that the trends will remain roughly the same and this 

study is valuable in allowing us to sort through the early iterations of design concepts. We will 

conduct more in-depth and detailed analysis on the brackets that performed the best in order to 

optimize the final solution. More sophisticated analysis will be performed that takes into account 
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multiple loading conditions on the bracket, chassis, fasteners and rack. This analysis will be 

performed using the Abaqus FEA software program. 

Final Design Process  

Redefined Project Focus 
Upon further discussions with Cisco, the original intent of the project has changed. The universal 

bracket design for current products has been shelved. The discontinuation of development of the 

universal bracket is due to the number of hole patterns needed to be supported, as the number 

ranged up to about 1000 1RU bracket designs. Instead, the focus of the project is now on the 

design of the next-generation universal 1RU bracket. 

Early Design Approach 
Feedback from Cisco allowed the development of early brackets. First, the alignment dimples 

seen in example brackets provided are not common, so the final design can be flat. Next, to help 

the development of derivative chassis models, it is recommended that hardware be standardized. 

It is also mentioned that four screw holes are the ideal solution, and that slotted mounting holes 

be considered. It is also important that the bracket does not slip. From these discussions, early 

designs were created in CAD. 

 

Among the early approaches, it was agreed that the standard 4-hole design would have a bracket. 

When it came to the slotted holes, however, the team had concerns about the area of grip the 

screw would have. As a result, it was agreed that a scalloped hole also be designed in addition to 

the slotted hole, as the scallops would have more material for additional gripping.  The design of 

the scalloped hole, however, was deadlocked on determining which part of the hole should be 

scalloped. Consequently, three options were designed: scalloped inner holes, scalloped outer 

holes, and fully scalloped holes. The results of these discussions are shown in the figure below. 



 

 

 

Design Analysis 

Standard Analysis 

Hand Calculations 

Before performing any FEA or experimental analysis, we began with hand calculations in order 

to get a general idea of the order of magnitude that we should be expecting for forces and 

deflection. With this information, would be able to develop a system of equations that solve for 

Figure 8: Early conceptual mounting hole designs (From top left clockwise) – slotted, outer scalloped, inner 
scalloped, fully scalloped 



the forces at each screw location in the bracket as a function of the chassis weight and depth. To 

begin, we assumed the system comprised of a chassis mounted at its front with two symmetrical 

brackets to a two-post rack. (Figure 9) 

 

 

Figure 9: Overall System for Hand Calculations 

Analyzing the chassis, we resolved the weight to a force-couple system at the front edge and 

included point reaction forces at each of the four main screw locations (Figure 10). From 

Newton’s Second law and basic statics analysis, we formulated a system of three equations, but 

found that we had eight unknowns — a statically indeterminate problem. In order to make this 

problem solvable by hand, it was necessary to make some extra assumptions. Due to the 

symmetry of the bracket geometry and external loading, it was reasonable to assume that the 

magnitude of the force at locations A and C were equal. Similarly, the magnitudes of the force at 

locations B and D were equal. Also, due to the symmetry of the bracket, we were able to assume 

that the reaction forces in the x-direction for A and B could be combined into a single force 

acting along the axis between A and B. This force would be shared equally between screws at A 

and B. In our model, there are two brackets mounted symmetrically on the left and right side of 

the chassis; as a result, the forces would be shared equally between the two brackets. Finally, 

because the FBD was drawn for the chassis, the reaction forces on the bracket will be equal in 

magnitude, but opposite in direction. The final simplified FBD is shown in Figure 11. 



 

Figure 10: Original FBD 

 

Figure 11: Simplified FBD 

 

Using basic statics and from Newton’s Second Law we were able to solve for the simplified 

forces: 

      

                

      

              

      

                            

                 (1) 

                  (2) 



                             (3) 

Now with the geometry of the bracket and equations (1), (2), and (3), we could solve for the 

reaction forces at each screw depending on the chassis weight and depth. Using a sample of 14 

chassis from Cisco, we solved a parametric table using Engineering Equation Solver (EES) 

(Table 2) 
 

Table 3: Resulting reaction forces for given weight and depth 

Ay (lbf) By (lbf) Cy (lbf) Dy (lbf) Abx (lbf) CDx (lbf) 

-41.59 59.59 41.59 59.59 0 0 

-37.24 57.24 37.24 57.24 0 0 

-24.21 37.21 24.21 37.21 0 0 

-12.73 23.73 12.73 23.73 0 0 

-17.27 28.27 17.27 28.27 0 0 

-7.833 15.83 7.833 15.83 0 0 

-25.87 39.87 25.87 39.87 0 0 

-53.37 72.37 53.37 72.37 0 0 

-46.23 62.73 46.23 62.73 0 0 

-33.62 45.62 33.62 45.62 0 0 

-54.88 76.38 54.88 76.38 0 0 

-23.39 37.89 23.39 37.89 0 0 

-28.78 43.78 28.78 43.78 0 0 

-24.67 40.67 24.67 40.67 0 0 

 

From these results, we noted that the reaction forces in the x-axis completely cancelled out. 

Furthermore, as we expected, the majority of the forces will point downward and contribute to 

some deflection. This analysis is an oversimplification for real world simulations, but is a good 

start to get loading conditions for preliminary FEA using SolidWorks.  

In addition to the reaction force hand calculations, we performed simplified beam bending 

calculations to get an idea of what magnitude of deflections that the bracket may experience. We 

resolving worst-case load (4xW @ end of chassis) to the end of the bracket, and modeled the 

bracket as a cantilever beam with a moment and point load applied at the end. Using super 

position and beam deflection equations from Shigley’s mechanical design text, we obtained: 



      
   

   
  

   

   
        (4) 

From our SolidWorks model, using a typical cross section in the middle of the bracket (to 

include vent holes), we found the area moment of inertia, I = 0.09 in4. 

For steel, E = 30x10
6
 psi 

Length of bracket, l = 6 in 

W = 43 lbs (4xW of heaviest chassis split evenly between 2 brackets) 

M = 645 in-lbf (resolving weight from back of chassis to end of bracket) 

Plugging in values to equation (4), we get the maximum deflection,                  . 

Similar to the reaction force hand calculations, this estimate is conservative because beam 

equation doesn’t take into account full effect of the staggered ventilation holes. From this value, 

we expect a relatively small deflection in Abaqus — on the order of 0.001 to 0.100 inches. 

Preliminary Stress Analysis – SolidWorks 

With some basic loading conditions and general expectations for deflection results, we began the 

computer analysis with less complex FEA software that is built into SolidWorks. With the 

studies in SolidWorks, it was our goal to discover general trends in parameter variations and 

justify choices for design features on the bracket. We began the simulations working with a 

bracket that contained all of the base dimensions for each feature that we planned to vary (Figure 

12) 

 

Figure 12: Base bracket for simulations 



From this bracket, sets of revised models were created that modified one feature at a time. The 

features chosen for modification included the vent-hole size, vent spacing, and material 

thickness—it also should be noted here that after reviewing the design, an important parameter 

that required further investigation is the bend radius at the flange of the bracket.  

 

Figure 13: Bracket Boundary Conditions 

Within SolidWorks, we needed to set up boundary conditions that would be consistent for every 

simulation (Figure 13). First, the mesh was generated with average size elements to provide 

acceptable results, but also increase the speed of running the simulation. The inside flange face 

was fixed in space to simulate being screwed into the “rigid” rack. Also, the back face of the 

bracket was assigned a “roller” boundary so that translation was only allowed within the vertical 

plane as if it was attached to the chassis. Finally, point loads generated from the hand 

calculations were applied at each screw location. Our overall results are summarized in Table 3 

below: 

 



 

 

 
Table 4: Parametric Study Results 

Model Characteristic Dimension Max Displacement (mm) Max Stress (N/m2) 

Base 0.2 0.849 5.35E+08 

 
0.08 0.849 5.35E+08 

 
13 0.849 5.35E+08 

    vents1 0.225 0.77 3.60E+08 

vents2 0.25 1.11 7.30E+08 

vents3 0.275 1.02E+00 5.54E+08 

    smallvents1 0.175 0.826 3.94E+08 

smallvents2 0.15 0.773 4.46E+08 

smallvents3 0.125 0.731 4.06E+08 

    thickness1 15 0.574 3.97E+08 

thickness2 14 0.511 3.38E+08 

thickness3 12 0.73 4.44E+08 

thickness4 11 0.639 4.08E+08 

    spacing1 0.04 1.25 6.24E+08 

spacing2 0.06 1.03 5.03E+08 

spacing3 0.1 0.801 4.04E+08 

spacing4 0.12 0.696 3.58E+08 

spacing5 0.14 0.714 3.93E+08 

spacing6 0.16 0.669 3.80E+08 

 



Overall, the simulations showed the highest stress concentrations to be along the edges near the 

vent-hole patterns, and the max deflection out at the end of the bracket. Taking a closer look at 

each parameter, we were able to discover some general trends. First, looking at the vent sizes 

(Figure 14), we found that there was a decrease in maximum deflection with smaller vents. 

However, due to the slight changes in vent pattern for each vent size, the stress did not correlate 

strongly with vent size. If the resulting vent pattern had more vents closer to the brackets edge, 

the stresses were generally higher. Similarly, by increasing the spacing between vents, the 

displacement also decreased. Vent spacing showed a stronger correlation to the stress 

concentrations (Figure 15); larger vent spacing resulted in less stress in the bracket. Furthermore, 

looking at the graph, we noted that the changes in displacement and stress began to level off at 

vent spacing of 0.1 inches. While smaller vents and larger spacing between vents decreased the 

deflection and stress values, ventilation area would also be sacrificed. Finally, the thickness of 

the bracket had interesting results. As we expected, the thicker brackets decreased the maximum 

deflection and stress values (Figure 16). However, the 14 and 15 gauge sheet metal (thinner) 

resulted in interesting geometry with the countersink. From the different geometry, the loads 

could not be applied in the same way and could be considered outliers. Finally, given the 

allowable clearance between the chassis and rack, 13-gauge is the practical maximum for this 

application. 

 

Figure 14: FEA Results for Vent Size Variations 



 

Figure 15: FEA Results for Vent Spacing Variations 

 

Figure 16: FEA Results for Thickness Variations 



Finite Element Analysis 

A detailed finite element analysis was performed on the standard 4-hole bracket with the 

staggered hex vent pattern under the worst case static loading conditions. Simplified models of 

the bracket, chassis, rack, and fasteners were created and assembled in Solidworks, and then 

imported into Abaqus as a stp file. All pieces were appropriately attached together using a 

combination of tie constraints and surface to surface contact. A convergence study was 

performed and determined and appropriate element seed size of 0.1 in. Bolt forces were applied 

at each fastener and a traction load was applied to the end of the chassis to simulate the loading 

conditions. With this initial model it was determined that the bracket vent pattern plays a very 

minimal role in supporting the chassis. It was found that the bracket bend was the critical point 

for the design. Under the worst case loading condition of four times the chassis weight applied at 

the end of the chassis it was determined that the bracket would yield at the bend.  With this 

finding, further analysis is being performed that will more closely examine the effects that bend 

radius and the vent pattern have on the overall stress in the bracket.  

Model Development  

The Rackmount system has five crucial parts that were modeled in ABAQUS. A model of these 

parts can be seen in figure 17 to the right. 

 Bracket (Grey) 

 Chassis & 6-32 Machine Screws (Green) 

 Rack & 10-32 Pan Head Machine Screws 

(Blue) 

Only the structural components were considered for 

this model. Any unnecessary features were excluded 

from the solid models to speed up simulation time. 

Non-structural fillets and the cable management 

mount hole were excluded on the bracket. The model 

of the bracket can be seen in figure 18.  

To simplify the analysis the 6-32 and 10-32 fasteners 

were modeled as part of the chassis and rack, 

respectively. The chassis was modeled as a simple 

beam with dimensions of 21x1.75x0.15 in. The flat 

head machine screw dimensions were obtained from 

McMaster-Carr parts drawing files. Detail of the flat 

head machine screw and chassis part can be found in 

figure 19. The same method was used to model the 

rack and pan head screws. The rack/pan head machine 

screw part can be found in figure 20.  

Figure 17: SolidWorks assembly 

model  

Figure 18: Simplified Bracket  

Figure 17: SolidWorks assembly 

Figure 18: Simplified Bracket 



Material Properties: 

Each part was given an elastic definition and a density of 1018 cold rolled steel. Material 

properties used for this model can be found in Table 4. Material property units had to match the 

model base length units of inches. The tensile strength of the material was not used in the FE 

model, but used to judge the results of the simulation.  

Table 5: FEA Simulation Material Properties for 1018 cold rolled Steel 

 

 

 

 

Boundary Conditions:  

A total of two boundary conditions were applied to this model. The rack was fixed using the 

encastre (U1, U2, U3, UR1, UR2, UR3 = 0) boundary condition on its top, right, and bottom 

faces in order to simulate the rest of the rack. Symmetry (U3, UR1, UR2 = 0) was applied to the 

inner face of the chassis in order to simplify the analysis process. It was assumed that the bracket 

loading would be symmetric and therefor it was only necessary to model half of the assembly. 

The end load was divided by 2 to account for the symmetry. Figure 21 shows the applied 

boundary conditions. 

Property Value Unit 

Density 0.26 lb/in
3
 

Young’s Modulus 30 x 10
6
 psi 

Poisson’s Ratio 0.5 - 

Tensile Strength 85 x 10
6
 psi 

Figure 20: Rack and fastener 

model. 

Figure 19: Chassis and fastener model 

detail. 

Figure 20: Chassis and fastener model Figure 19: Rack and fastener 



 

Figure 21: Symmetry and encastre boundary conditions applied to the assembly. 

Interactions: 

All individual interactions were modeled with a standard surface to surface contact formulation. 

Each interaction was assigned individually. Contact was defined between the chassis, bracket, 

rack, flat head machine screws and the pan head machine screws. A friction coefficient of 0.5 

was used for friction between steel and zinc-plated steel. The bracket was defined as the slave 

surface for all surface to surface contact interactions. Figure 22 below illustrate two surface to 

surface contacts used in the model.  

 

  

 

 

 

 

 

 

 

 

 

Figure 22: Detail of contact definition between flat head machine screw and bracket (Left). Contact 
between rack mounting face and bracket (Right). 



Loading Conditions: 

Three different loads were applied to the assembly; the loads consisted of bolt preloads applied 

to both the flat head machine screws and the pan head machine screws (Figure 23L), as well as a 

tractive load applied at the end of the chassis (Figure 23R) that simulates the worst case loading 

condition. Bolt loads of 320 lbf and 820 lbf were applied to the 6-32 and 10-32 fasteners 

respectively. Bolt loads are based on a Spaenaur industrial fasteners data sheet for grade 2 steel 

bolts. The tractive load required to simulate the load was 164 psi.  

 

Mesh Development:  

Each part was meshed with standard quadratic hexahedral elements (C3D20). A hex dominated 

mesh was specified, and a combination of structured and swept meshing techniques was used. A 

convergence study was performed on mesh seed sizes ranging from 0.6 to 0.05 inches. The 

displacement was measured at the end of the bracket and the Von Mises shear stress was 

measured near the bracket bend. These values were plotted in Excel (Figure 24). and it was 

determined that a seed size of 0.15 inches was acceptable for the simulation. In addition to the 

global seed size of 0.15, edge seeds of 0.05 were used around the countersink locations as well as 

on the flat head machine screws. Detail of the bracket mesh can be seen in figure 25. 

Figure 23: Flat head machine screw bolt loading applied to cross section of bolt (Left), and tractive load applied at end of 
chassis (Right). 



 

 

 

Figure 25: Bracket with 0.15 in mesh seed after performing convergence study. 

 

Figure 24: Mesh convergence study performed on displacement and Von Mises shear stress at 2 separate points 
on the bracket for a seed size ranging from 0.6 to 0.075. 



Results: 

Under the worst case static loading conditions of four times the weight applied at the end of the 

chassis, the simulation resulted in a maximum Von Mises shear stress of 239500 psi at the inner 

bend radius. This maximum stress is well above the yield strength of 66000 psi and tensile 

strength of 85,000 psi indicating that the bracket will not only yield, but it will also fail. 

Preliminary results of this simulation are shown in figure 26. The initial assumption that the 

bracket would yield around the vents proved to be incorrect. It was determined that this is 

because the chassis is essentially rigid which drastically increases the stiffness of the assembly 

and therefore all the stress is transferred to the bend. This finding means that the bracket vent 

pattern can be simplified or eliminated. In addition to changing the vent pattern, more analysis 

will be performed to investigate the effects different bend radii have on the maximum stress in 

the bracket. Maximum displacement at the end of the bracket was found to be 0.024 inches, as 

shown in the displacement plot (figure 27). Figure 28 shows the stress plot of on the chassis with 

the maximum stress of 65,000 psi occurring at the screw shank. The simplified screw model does 

not take into account the thread dimensions on the bolt meaning that the shaft of the screw would 

actually be smaller than that in the model. With the yield stress and simulated stress so close in 

the screws, more analysis needs to be performed on the fasteners. 

 

Figure 26: Von Mises shear stress plot for bracket subjected to worst case loading conditions. 



 

Figure 27: Displacement plot of bracket under worst case loading conditions. 

 

Figure 28: Chassis stress plot under worst case loading conditions. Maximum stress occurs on the screw shaft and is near the 
yielding point of 1018 cold rolled steel. 



Early Design Recommendations 
From our testing results, we chose the best options for the final design. It was decided that due to 

the poor results from the pull test in comparison to the other options, the slotted hole was 

disqualified. There are two brackets, both with a 0.20-inch hex hole and 0.10-inch hole-to-hole 

spacing. The brackets would be made of 0.09-inch sheet steel and have a double-bend rack 

connection. The vent-hole pattern is similar to a design Cisco is currently using. Both design 

options are shown in the figures below. 

 

 
Figure 29: Standard 4-hole design recommendation 

 
Figure 30: Scalloped hole design recommendation 

From the discussions with Cisco and observations done during analysis, additional 

considerations can be factored. First, FEA testing showed that most, if not all, of the stress is 

placed on the bracket bend. Consequently, a bend radius has not been defined. Additionally, this 

means that the vent patterns could be of any type, any shape, and any size, as the integrity of the 

bracket will not change significantly.  Additional FEA showed that with an open window design, 

deflection and stress did not change much at all. 



 

Later discussions with Cisco alluded to the fact that scalloped holes have possible issues with 

manufacturing. A hybrid design was suggested, with the front holes being standard holes, and the 

back holes being slots. This would allow a fixed position, but also the ability to place the back 

mounting holes in different positions to accommodate other design constraints. The possible 

issue with this design is the fact that the chassis designer could also change the vertical spacing 

in addition to the horizontal position. This would still need to be investigated. 

 

The original pull test was redone with more precisely machined components for better alignment 

for the holes. Also, the data acquisition system for the Instron pull tester was functioning 

properly so that we could obtain data for each pull test. 

 

In addition, a study was performed in Abaqus to determine the effect of the bend radius on the 

stress and deflection of the bracket. As we expected, the larger bend radius values reduced the 

stress. Unfortunately, the physical dimensions of the clearance between the chassis and rack 

limited us practically to a radius equal to half of the bracket thickness. 

Final Design Details 
Through hand calculations, FEA model simulations, mechanical testing, and manufacturer’s 

recommendations we finalized two main designs: standard four-hole, open window bracket, and 

hybrid slot, open window bracket. 

 

Figure 31: Four-Hole Open Window Bracket 



 

Figure 32: Hybrid Slot Open Window 

Note: The full detail drawings of these parts can be seen in Appendix B. While there were 

originally three designs going into the final stage, the scalloped hole design was rejected by 

manufacturers because of difficult features to make.  

Four-Hole Open Window Bracket 

This design was constantly a front runner in all of the various forms of analysis and testing. 

Despite its simplicity, it out-performed the other brackets in pull-testing, bend-testing, and other 

FEA simulations. Similar to the other designs, it has a bend radius of half the plate thickness, 90 

thousands thickness, and the same overall height and length dimensions. Unique features to this 

bracket include its simple four-hole pattern for maximum strength when clamping to the chassis. 

Furthermore, the ventilation area in this bracket is significantly larger due to the wide spacing 

between holes longitudinally. As a result, there is more versatility in the options of vent patterns 

that a mating chassis could have. 

Hybrid Slot Open Window 

In order to offer a wider variety of hole configurations that work with this bracket, it was 

designed to have a set of two slots for the back screws. The slotted design alone doesn’t provide 

significant support for external forces in the longitudinal direction. Removing two of the slots 

and replacing them with holes in the front allows for the same freedom in hole spacing layouts, 

while also adding a considerable amount of strength. Unfortunately, a limit in the design of both 

brackets is the lack of adjustability in the vertical direction; hole-patterns will need to be 

matched up vertically with the bracket. 



Product Realization 
The manufacturing of final prototypes was completed by Foxconn though Cisco due to the need 

for precision and other methods not available at the Cal Poly machine shop such as plating. 

When the final designs were chosen, we sent the detail drawings to Cisco and Foxconn designers 

for a Design for Manufacturing (DFM) review. From the manufacturing for the pull test, we 

expected that Foxconn should have no problem with the countersunk holes and slots. However, 

the scalloped holes had been very challenging to manufacture. In our experience, as the holes 

were drilled, the drill bits would bend and try to enter the previously drilled hole. This left a lot 

of burs that needed to be cleaned by hand and slight misalignment of the hole spacing. Not 

surprisingly, Foxconn encountered similar issues and recommended that the scalloped design be 

abandoned. For mass production, the features of the plate would be stamped rather than 

machining. Brackets that are in full production for a company like Cisco can be produced in the 

thousands each day. Requiring a special machining feature would slow the entire productivity 

down and increase costs. Therefore, the scalloped design was dropped from the final designs, 

and we stuck with more easily manufacturable geometries. 

 

Figure 33: Scallop DFM Foxconn 



Design Verification  

Instron Pull Test 

Motivation 

During meetings with the Cisco team, we undertook a sub-project of investigating the feasibility 

of using slots in our bracket design. After spending time researching, and not finding very much 

reliable data, we decided that it would be a good opportunity to perform an experiment to get our 

own data. Our objective was to perform a pull test in order to find the maximum shear load that 

the brackets could withstand along the longitudinal axis. With this data we would be able to 

determine if the bracket would maintain a firm grip on the chassis during normal loading, as well 

as extreme conditions during an earthquake. 

Setup 

In Figure 29, our idea for the test apparatus is shown. We simplified the brackets by using the 

same basic size as our design, but only included the different hole designs (standard, slot, and 

scallop). Furthermore, by using a much thicket plate between the two brackets, we could assume 

it to be rigid which left the hole designs as the only significant factors in the test. 

 

Figure 34: Pull Test Apparatus 

To manufacture the test brackets, we used a CNC machine on campus in order to get precise 

locations and details for the brackets. Manufacturing the standard 4-hole and slotted countersunk 

brackets presented no problems. However, while drilling holes for the scalloped bracket, we 

encountered a considerable amount of tool flex, and had sharp burrs remaining (Figure 30). 



 

Figure 35: Scalloped Test Bracket 

After all of the test brackets were made, we welded the identical pairs together by attaching a 

spacer block. This would evenly distribute the load between the two brackets and provide a place 

for the pull-test machine to grab. Next, we cut out a thick steel plate to simulate the chassis, and 

drilled and tapped a set of holes for each bracket. 

 

Figure 36: Bracket Pairs with Spacer Block 

 



 

Figure 37: Thick "Chassis" Plate 

The test brackets were assembled with the thick plate using #6 machine screws. One of the 

screws on each side was not able to be screwed down all of the way due to a slight alignment 

issue of the tapped holes (Figure 33). 

 

Figure 38: Assembled Pull Test Apparatus 

Finally, everything was ready to be placed into the Instron Pull Tester. The top and bottom of the 

apparatus were tightly clamped by the machine and the tensile load was set to zero. Slowly, the 

machine ramped up the force while we monitored the tensile load and displacement of the 

brackets relative to the thick steel plate.  



Results 

 

Figure 39: Slotted Pull Test Results 

 

Figure 40: Scalloped Pull Test Results 



 

Figure 41: 4-Hole Pull Test Results 

Discussion 

As we expected, the standard 4-hole bracket survived the longest at a max load of 5000 lbs. As 

the force reached its maximum, the screws began to bend slightly before the heads completely 

sheared off, as can be seen in figure 34. Even after the failure, there was little damage that could 

be seen on the brackets. The scalloped design held up to a maximum tensile load of 1000 lbs, and 

then cycled periodically between 1000 lbs and 400 lbs. This periodic cycle was due to the “ribs” 

of each scallop that held the screw in place. As the maximum load was reached, the screw would 

deform the ribs and pass into the next scallop. This deformation can be seen in figure 35. Lastly, 

the slotted design was only capable of holding a maximum load of 350 lbs before the screws 

began to gradually slide along the slot. We previously determined that slipping in any way is not 

acceptable, therefore the slotted hole design is not recommended as a final solution. While the 

scalloped and 4-hole performed much better, the manufacturing issues with the scallops 

demonstrated that the simple 4-hole was the best design for this failure criteria. 

 

Figure 42: Sheared Screws from 4-Hole Test 



 

Figure 43: Destroyed Ribs from Pull Test 

 

Figure 44: Detent from Sliding in Pull Test 

Hanging Chassis Test 

Motivation 

One of the original design constraints expressed by the Cisco team for static loading conditions 

was the ability of the bracket to be able to withstand four times the weight of the chassis applied 

at its end. During FEA, results consistently showed that the brackets were yielding well before 

the design requirement. Additionally, even at very high loads, almost all of the stress was 

concentrated in the corner between the flange and base of the bracket—suggesting that the vent 

pattern geometry was irrelevant to the stress and deflection of the whole bracket. In order to 

verify the model (or discover a problem), we decided to physically test our prototype as well as 

one of the thicker brackets previously obtained from the Cisco Team. 

 

 

 

 



Setup 

In order to test the design condition, we needed to set up a way to attach various increments of 

weight at the far end of the chassis. 

 

 

 

 

 

 

 

 

 

Furthermore, it was necessary to have a way of measuring the deflection once it started 

occurring. In order to accomplish this, we obtained an electronic level that reads out the current 

angle relative to absolute horizontal. Also, we attached a ruler to the rack and a paperclip to the 

back of the chassis in order to check the tip deflection linearly. 

 

Figure 46: Physical Setup and Measurement Device 

 

Rack 

Bracket Chassis 

Figure 45: Schematic for Test Setup 



 

 

 

 

Figure 47: Deflection Measurement Method 

For this test, we used the deepest and second heaviest chassis that we had in our possession from 

Cisco. This chassis came with two sets of 1RU brackets for mounting in a standard rack. These 

brackets were the thickest measured (0.090”) and had no ventilation holes which led us to 

believe it is the strongest bracket of the samples we had. For the first set of brackets, we made no 

changes. The second set, however, we milled out a large pocket to simulate the open window 

design of our prototypes.  



 

Figure 48: Open Window of Installed Bracket 

 

Figure 49: Front View of Installed Chassis 

Finally, using a clamp at the end of the chassis and a bag to hold the weight, we proceeded to add 

weights in 2.5 lbf increments. Our capacity went up to 30 lbf which was well under the design 

requirement of four times the weight of the 20 lbf chassis. We quickly discovered that in both 

sets of brackets, deflection and permanent deformation occurred much earlier than we 

anticipated. 

Results 

After going up to 30 lbf for each set of brackets, we tabulated and plotted our data below: 



Weight 
(lbf) 

Deflection (cm) Angle (deg) 

Solid Open Solid  Open 

Nominal Change Nominal Change Nominal Nominal 

0.0 27.3 0.0 9.9 0.0 1.2 1.6 

2.5 27.5 0.2 10.1 0.2 1.3 1.7 

5.0 27.6 0.0 10.3 0.0 1.5 2.0 

7.5 27.8 0.1 10.6 0.2 1.7 2.4 

10.0 28.1 0.3 11.0 0.5 2.0 2.8 

12.5 28.2 0.6 11.2 0.9 2.2 3.0 

15.0 28.4 0.7 11.5 1.1 2.3 3.4 

17.5 28.8 0.9 12.1 1.4 2.7 4.0 

20.0 29.1 1.3 12.6 2.0 3.1 4.5 

22.5 29.7 1.6 13.3 2.5 3.7 5.2 

25.0 30.6 2.2 14.1 3.2 4.6 6.1 

27.5 31.7 3.1 15.6 4.0 5.8 7.5 

30.0 33.3 4.2 17.0 5.5 7.5 9.0 

 

 



 

Figure 50: Deflection Trend for Increasing Weight 

 

Figure 51: Angular Change Trend with Increasing Weight 

Discussion 

Although the solid bracket held up better than the open window, the overall deflection of each 

was not very different from each other. The biggest concern is how early the brackets (and even 

rack) began to yield. Small, but permanent deformation took place in lighter loads. Furthermore, 

the deformation increased exponentially starting at around 15 pounds for both brackets. This test 

confirmed our results in Abaqus studies that the bracket will be yielding much earlier than the 

original rule of thumb at “4 times the weight of the chassis applied at the end.” The brackets used 

in testing were Cisco brackets designed for the Predator chassis—one of the deepest and heaviest 
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in our possession—but still yielded much earlier than the design criterion. In order to achieve 

this criterion, further support would be required at the back of the chassis. 

 

Figure 52: Max Deflection During Testing 

 

 

Figure 53: Flange Deflection 



We also discovered a few things that weren’t being demonstrated by the Abaqus model. First, we 

noted that despite nearly all of the stress and deflection happening at the flange of the bracket, 

we still had some deflection happening at the side-walls. This deflection less significant than that 

of the flange, but was noticeable. In order to minimize the effect, we increased the side-wall 

thickness in our final design. 

 

Figure 54: Side-Wall Deflection 

Furthermore, despite being locked in with four screws, the holes in the bracket and chassis 

became misaligned as the chassis deflected. Our pull test showed that the 4-hole screw pattern 

will work for up to 5000 lbf, but there was still a small amount of movement that might interfere 

with reinstalling the screws later. 

 

Figure 55: Bracket Shifting 



Conclusions and Recommendations 
After several months, many discussions with Cisco, and several issues and observations that set 

us back a few times, we are able to conclude a solution to Cisco’s problem. As mentioned earlier, 

the first of the two original project goals could not be completed due to logistical issues. Instead, 

it is best to move forward and develop on a new bracket that should be mandated for all future 

Cisco 1RU products, which is the focus of the project. After going through several CAD designs, 

hours of FEA analysis, and several tests, we are able to provide Cisco with at least two 

suggestions to build on. Either one will work, but both have their own specific advantages. The 

four-hole pattern is better suited for strength, while the hybrid option is better suited for 

mounting flexibility. Even with this in mind, real-world bend testing shows that deeper/heavier 

chassis would benefit from reinforcement if they are to be mounted onto a four-post rack. 

Additionally, the testing and analysis procedures are more detailed than what Cisco usually does. 

Discussions with Cisco mentioned that this report should also be a whitepaper. It is suggested 

that testing teams read over this report, as it was later discovered that our testing and analysis 

procedures exceeded the level Cisco normally does such work. This occurred twice during the 

project period. 

We recommend that overall, one of the two final suggested brackets be the basis for a new, 

corporate-wide hole pattern that will not be replaced in the short term. 
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Appendix C: List of vendors 
Cisco Systems, San Jose, CA 

Foxconn, San Jose, CA; China 

McMaster-Carr, Los Angeles, CA 
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