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Abstract—Stress drop is a key factor in earthquake mechanics

and engineering seismology. However, stress drop calculations

based on fault slip can be significantly biased, particularly due to

subjectively determined smoothing conditions in the traditional

least-square slip inversion. In this study, we introduce a mechani-

cally constrained Bayesian approach to simultaneously invert for

fault slip and stress drop based on geodetic measurements.

A Gaussian distribution for stress drop is implemented in the

inversion as a prior. We have done several synthetic tests to

evaluate the stability and reliability of the inversion approach,

considering different fault discretization, fault geometries, utilized

datasets, and variability of the slip direction, respectively. We

finally apply the approach to the 2010 M8.8 Maule earthquake and

invert for the coseismic slip and stress drop simultaneously. Two

fault geometries from the literature are tested. Our results indicate

that the derived slip models based on both fault geometries are

similar, showing major slip north of the hypocenter and relatively

weak slip in the south, as indicated in the slip models of other

studies. The derived mean stress drop is 5–6 MPa, which is close to

the stress drop of *7 MPa that was independently determined

according to force balance in this region LUTTRELL et al. (J Geophys

Res, 2011). These findings indicate that stress drop values can be

consistently extracted from geodetic data.

Key words: Stress drop, Fault slip, Bayesian, Geodetic

measurements.

1. Introduction

Stress drop is a fundamental quantity for under-

standing fault mechanics of earthquakes, and is

important in engineering seismology and seismic

hazard. The rapid drop of shear stress during an

earthquake controls the seismic radiation from the

source and thus the ground motion (e.g., HANKS and

MCGUIRE, 1981). Therefore, reliable estimates of

earthquake stress drop are important for calculating

seismic shaking and analyzing long-term seismic

hazards, such as those related to the recurrence

interval of large earthquakes (e.g., FUKAO and FU-

RUMOTO, 1978; PARSONS, 2006).

There are several ways to estimate the stress drop,

including (1) estimations based on geologically

observed average fault slip, characteristic source

dimension, and the shear modulus of the host rock

(KANAMORI and ANDERSON, 1975), (2) estimation

based on the corner frequency or source duration

from seismic signals with the condition that the finite

rupture can be represented by an equivalent point

source (BRUNE, 1970; MADARIAGA, 1976), and (3)

estimation based on slip distribution on the fault

plane (e.g., HARTZELL and HELMBERGER, 1982; RIP-

PERGER and MAI, 2004; BOUCHON et al., 1998;

ANDREWS, 1974). The first approach based on geo-

logical data usually involves large uncertainties,

because it only utilizes average slip and simple stress

change models of a circular/rectangular dislocation.

The second approach based on the source spectrum

also leads to significant errors, because the large

earthquakes (especially with complex rupture) cannot

be approximated by a point-source, and thus the

relationship between high-frequency ground motion

and static source characteristics is ambiguous

(ATKINSON and BERESNEV, 1997). Even if the point

source is an appropriate approximation, the small

uncertainty in the corner frequency derived from the

source spectrum may lead to a large uncertainty in the

stress drop due to their cubic relation (BRUNE, 1970).

As a consequence, most published stress drop values,
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even for the same earthquakes, exhibit large episte-

mic errors (COTTON et al., 2013).

For large earthquakes (ruptures), it is convenient

to estimate the stress drop based on the inverted slip

distribution by calculating the shear stress change on

the fault plane (MAI and BEROZA, 2000), given that

geodetic and seismological measurements are avail-

able. However, non-uniqueness of fault slip inversion

is well-known (e.g., SNIEDER and TRAMPERT, 1999),

due to usually limited observations, different fault

parameterizations (e.g., PAGE et al., 2009), different

algorithms (e.g., DU et al., 1992), and different con-

siderations of the measurement uncertainties (e.g.,

LOHMAN and SIMONS, 2005), etc. In particular, the

subjectively applied smoothing condition can greatly

bias the inverted fault slip (TARANTOLA, 2005) and

thus, the estimation of stress drop (see Sect. 5.1).

Nevertheless, the multiplicity of solutions in slip

inversion can be conveniently expressed using a

Bayesian approach, which has been applied in several

studies (e.g., YABUKI and MATSU’URA, 1992; FUKUDA

and JOHNSON, 2008; MONELLI and MAI, 2008; MONELLI

et al., 2009; SIMONS et al., 2011), where the inversion

problem is formulated only from the kinematic point

of view. Recently, some mechanical constraints have

been incorporated into fault slip inversion. For

example, WANG et al. (2012) considered stress cou-

pling between the mainshock and postseismic

relaxation process and applied postseismic displace-

ments as additional constraints to invert for the

coseismic rupture. SUN et al. (2011) simply utilized a

uniform stress drop in the rupture area as a constraint

to relax the traditionally applied smoothing condition.

In this study, we consider the heterogeneity of slip

due to roughness on the fault plane, and consider the

stress drop on the fault plane as a spatially random

field. Random heterogeneity and related effects have

been widely applied in dynamic modeling (e.g.,

ANDREWS, 1980; MAI and BEROZA, 2002; GUATTERI

et al., 2004). The stress drop of an earthquake, the

difference between the stress across a fault before and

after the occurrence of the earthquake, is considered

here to be Gaussian distributed, by assuming that the

stress drops in the discretized rupture zone are ran-

dom numbers around a central value, which

characterizes the stress drop of the earthquake. The

Gaussian distribution is frequently utilized for many

situations as a first-order description because it rep-

resents the complete randomness when the mean and

variance are given; further details about our selection

of the Gaussian distribution are discussed in Sect. 5.1.

As a case study, we apply the approach to the

2010 M8.8 Maule earthquake. This earthquake was

not an unexpected event. It occurred in a ‘seismic

gap’ of the subduction zone between the Nazca and

South America plates (RUEGG et al., 2002, 2009;

MORENO et al., 2008). Therefore, this region has long

been monitored. For the M8.8 Maule earthquake,

several coseismic slip models (LAY et al., 2010; LO-

RITO et al., 2011; VIGNY et al., 2011; POLLITZ et al.,

2011; TONG et al., 2010; MORENO et al., 2012) have

been published, which were all derived from the

least-square (LS) method. In this study, we revisit this

earthquake and utilize a Bayesian approach that

incorporates physical constraints to simultaneously

obtain the full solutions for both fault slip and stress

drop.

We use the coseismic displacement data pub-

lished in several geodetic studies. The GPS data are

compiled from VIGNY et al. (2011) and MORENO et al.

(2012), all of which are processed in a fixed South

American reference frame. Meanwhile, TONG et al.

(2010) have made the assembled InSAR data avail-

able. The dense coseismic displacement

measurements provide a good opportunity to test our

inversion approach.

2. Inversion for Stress Drop and Fault Slip

in Bayesian Approach

The Bayesian approach provides a mathematical

framework that allows for a rigorous treatment of the

model uncertainties and provides a full solution space

of the unknown parameters. For a given fault geom-

etry, we assume a Gaussian distribution of the error e

(BECK and KATAFYGIOTIS, 1998; BECK, 2010; TARANT-

OLA, 2005) stemming only from the measurement

uncertainty in the geodetic data as a simplification,

while ignoring the usually unknown uncertainties in

the forward model related to fault geometry and

crustal properties. Then, the likelihood function that

is the conditional density of observations (yn 9 1)

given slip bM 9 1 is

376 L. Wang et al. Pure Appl. Geophys.



pðyjbÞ ¼ ð2pÞ�n=2 Rj j�1=2

exp � 1

2
y�Gbð ÞTR�1ðy�GbÞ

� �
; ð1Þ

where G (with dimension of n 9 M) is the matrix of

Green’s functions with n being the number of

observations and M being the number of fault slip. If

we fix the slip is along the rake direction, M has the

same number as the fault patches. In the case of slip

direction being not fixed, M is two times the number

of fault patches. Rn 9 n is a diagonal matrix of the

variances of the measurements. Thus, the observation

data with relatively large uncertainties have less

constraint in the inversion than those with smaller

uncertainties.

In this study, instead of using Laplacian smooth-

ing (e.g., WANG et al., 2012) of the slip on the fault

plane, we incorporate a mechanical constraint into the

model. Since static stress drop is the measure of the

overall reduction in shear stress due to slip on the

fault zone (RUFF, 1999), we simply consider the stress

drop as the decrease of shear stress produced by the

earthquake. Given that the rupture area is usually

large for a big earthquake and involves a large

number of fault patches, we assume that the stress

drops (on the fault patches) in the discretized rupture

area are the uncorrelated random numbers around a

central value, the stress drop of the earthquake. In

particular, we assume a Gaussian distribution with

mean s0 and variance a2, i.e., Sb * N(s0, a2I) for

fault patches i (i e 1…M) with negative shear stress

change, i.e. [Sb]i \ 0. Here, SM 9 M is the matrix that

projects the slip to shear stress using Okada’s solution

(OKADA, 1992). Additionally, considering only the

non-negative slip to preserve consistent rupture

direction during the earthquake, the prior probability

density (PDF) of b given a2 and s0 is,

pðbjs0; a
2Þ� ð2pa2Þ�M=2

e
�
PM

i¼1
Hð�½Sb�iÞð½Sb�i�s0Þ2

2a2 bmax�b� 0

0 otherwise

8><
>: ;

ð2Þ

where bmax C b C 0 means bmax C [b]i C 0 for

i = 1…M, with bmax being the upper limit of slip

value (we set bmax = 30 m for the Maule earth-

quake). H(x) is the Heaviside function (H(x) = 1 for

x [ 0; else H(x) = 0). Since we are mainly interested

in the description of the rupture area, we only con-

sidered here negative stress (i.e., stress drop) values.

Nevertheless, this prior information (Eq. 2) also

serves as a weak constraint to the area where shear

stress is positive, because any increase in the slip of

such area could change the local stress from a posi-

tive to a negative value so that it contributes to the

prior distribution.

In our application to the Maule earthquake, we fix

the rake angle to 110� according to the focal mech-

anism of the Maule earthquake (LORITO et al., 2011;

VIGNY et al., 2011) and the orientation of the con-

vergence between the Nazca and South America

plates. The dislocation along a rake angle of 110�
dominates the coseismic rupture of the Maule

earthquake.

In this slip inversion with the mechanical con-

straint, s0 provides the stress drop of the earthquake

reflected from geodetic measurements. Since we

have no specific knowledge about s0, we specify a

uniform PDF between 0.1 and 20 MPa (with s0

being negative values in the inversion), which cov-

ers the usually measured average stress drop of

0.1–10 MPa (KANAMORI and ANDERSON, 1975;

KANAMORI, 1994) or 0.2–20 MPa (SHEARER et al.,

2006) for individual events. The variance a2 value is

related to the heterogeneity of stress on the fault

plane; in particular, larger a2 values correspond to

higher levels of heterogeneity. We apply a uniform

PDF between 0.1 and 20 MPa2 PDF for a2, the same

range as for s0.

According to Bayes’ theorem (BAYES and PRICE,

1763; DASTON, 1988; KOCH, 2007), the posterior is the

product of the likelihood function and the prior PDFs,

and thus

pðb; s0; a
2jyÞ�

pðbjs0; a
2ÞpðyjbÞ 20� s0; a

2� 0:1 ; b� 0

0 otherwise

(

ð3Þ

According to the (unnormalized) posterior PDF of

Eq. 3, we draw the samples of X = {bT, s0, a
2}1 9 (M?2)

using the Markov Chain Monte Carlo (MCMC) method

(GELFAND and SMITH, 1990; METROPOLIS et al., 1953;

HASTINGS, 1970). Briefly, the MCMC method operates in

the following way: firstly, the procedure starts from the

initial state X0 with its unnormalized posterior
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distribution pðX0jyÞ. Secondly, the new trial value X0 is

randomly generated (based on a uniform distribution)

in space ðX0 � DX; X0 þ DXÞ , with DX being the step

size of the Markov Chain, and selected as the next state

that X1 ¼ X0 if minð1; pðX0 jyÞ
pðX0jyÞÞ � u, where u is a random

number generated from a uniform distribution over the

interval ½0; 1�. In the same way, the states X2; X3. . . are

subsequently generated and selected. After a large

number of steps, the procedure converges to the

probability density pðXjyÞ for any initial state, and the

samples drawn can approximate the posterior PDF. In

the simulation procedure, *5 9 108 iterations in total

are performed. We neglect the first 2 9 107 samples

drawn, and then take one out of each 1,000 samples

drawn to construct the posterior PDF. The selected

optimal value of each parameter has the maximum

value of the marginal posterior PDF, and the uncer-

tainty is evaluated by the maximum/minimum value

after dropping 2.5 % of the samples at each side of the

distribution according to WANG et al. (2012, 2014). A

similar approach has also been applied by MINSON et al.

(2013).

3. Synthetic Test to the Inversion Approach

We first calibrate the inversion approach by a series

of synthetic tests. Utilizing the fault geometry of the

Maule earthquake provided by USGS (http://earthquake.

usgs.gov/), we simulate a synthetic slip along 110� and

centered at the hypocenter of the Maule earthquake,

where the slip has an assumed peak value of 10 m. The

amount of the synthetic slip decays with the distance to

the hypocenter following a parabolic function (JOHNSON,

1979). The fault plane is discretized into 18 9 10 rect-

angular patches, each with dimension of 30 9 20 km.

Figure 1 displays the input slip model, its shear

stress change along the rake direction (110�), and the

produced surface displacements on the sites where

the GPS/InSAR measurements are available for the

Maule earthquake. The synthetic displacements

include random noise simulated by Gaussian distri-

butions with zero mean and standard deviation of

3 mm for horizontal GPS measurements, 10 mm for

vertical GPS data and InSAR, respectively.

Utilizing the synthetic displacements and the fault

parameterization, we draw samples according to the

(unnormalized) posterior PDF of Eq. 3 based on

Markov Chain Monte Carlo sampling, and select the

optimal solution according to the maximum value of

the marginal PDF that is constructed from the drawn

samples. The sampling process (including *5 9 108

samples) based on the MCMC method is shown in

Fig. 2a, where the logarithmic values of the sampled

(unnormalized) posterior PDF of Eq. 3 (labeled as

‘logP’) are plotted against the iteration number.

Figure 1
Color-coded synthetic input slip model (a), the corresponding shear stress changes along the rake angle of 110� (b) and the surface

displacements (plots c–e). The star marks the hypocenter of the Maule earthquake. The dotted rectangle in panel (c) and (d) indicates the

location of the fault plane
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Figure 2a shows that the procedure approaches the

maximum probability density during the MCMC

sampling. We construct the marginal PDF for each

unknown parameter based on the samples drawn. The

resulting marginal PDFs for slip at one fault location

and for stress drop (mean and variance) are displayed

in Fig. 2b–d. All of them show single peaked distri-

butions. Thus, we may reliably select the optimal

parameters that have the highest probability densities

as representative values. We show the optimal solu-

tions for the slip and stress drop in Fig. 3, where the

errors of the slip residuals (the differences from the

synthetic slip of Fig. 1a) are shown in Fig. 3a and the

uncertainties of the slip estimates are provided in

Fig. 3b. The uncertainties are evaluated according to

the 95 % credibility interval and are calculated by the

difference between the optimal value and the maxi-

mum value of the samples drawn after neglecting

5 % of the samples with the lowest probability den-

sity (WANG et al., 2012). The results display that the

optimal solution of slip is close to the input model

with variance reductions (BECKER et al., 2005) in both

slip (VRslp) and surface displacements (VRdis) higher

than 99 %, where VRslp is evaluated based on the

difference of the derived optimal solutions from the

synthetic slip model shown in Fig. 1a; while VRdis is

based on the difference between the estimated and

synthetic displacements. Moreover, the slip error is

indicated to be in the range of estimation uncertainty.

The surface displacements produced by the optimal

slip model are provided in the supplementary mate-

rial (Fig. S1).

The probability density of the inverted stress drop

with mean value of -0.87 MPa and standard devia-

tion of 0.72 MPa (variance of 0.52 MPa2) is shown in

Fig. 3c, where the histogram of true stress drops (for

the different fault patches of the input slip model of

Fig. 1a) is displayed by gray bars, with a mean of -

0.93 MPa and standard deviation of 0.53 MPa.

Although the estimated probability density somewhat

differs from the real stress drop distributions likely

due to the relatively small number of fault patches,

Figure 2
Sampling results for Test-0. a The logarithmic values of the sampled posterior PDF of Eq. 3 are plotted against the iteration number during the

MCMC sampling process; marginal posterior probability density (abbreviated as ‘Marginal PDF’) constructed from the MCMC generated

samples for slip at a location marked with ‘?’ in Fig. 3a, with input slip value of 9.36 m (b), for mean stress drop of the event (c) and the

variance of stress drop (d). In panels b–d, the black line marks the optimal value determined according to the maximum based on the marginal

PDF
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the estimation broadly outlines the true values. The

dominant stress drop values are located in the peak

area of the estimated probability density, indicating

that the inversion approach is able to reconstruct the

general statistical features of the stress drop field.

This inversion test is labeled as ‘Test 0’.

In order to investigate the stability (especially

with respect to the stress drop estimation) of the

inversion approach depending on fault discretization,

fault geometry, size of datasets and possible bias in

the rake angle, we perform additional tests. First, we

test two different discretizations for the USGS fault

plane, 15 9 6 patches with size of 35 9 32 km

(labeled as Test I) and 26 9 11 patches with size of

21 9 17 km (Test II). Second, we use Lorito’s fault

plane (LORITO et al., 2011), which is discretized as

25 9 8 patches with size of 25 9 25 km (Test III).

Third, instead of using the whole synthetic data in

Test-0, we do the inversion based on either GPS data

(Test IV) or InSAR data (Test V). Fourth, we test the

stability of the inversion considering the effect of

possible error in the rake angle. Assuming a sys-

tematic error of 3�, we invert for fault slip and stress

drop along the rake angle of 113� (Test-VI). Fur-

thermore, considering the heterogeneity in the rake

angle, we use the fault slip along the rake angle with

mean of 110� and standard deviation of 3� to simulate

the surface displacements, based on which we invert

for the slip along the fixed rake angle of 110� (Test-

VII). In this case, the true stress drop distribution

(negative shear stress along the rake angle of 110�) is

slightly different, with a mean of -0.90 MPa and

variance of 0.56 MPa2. In the Tests IV–VII, the fault

parameterizations are the same as that in the Test-0.

With VRdis values higher than 99 %, our results

indicate that the slip models obtained can explain the

surface displacements well in all of the seven syn-

thetic tests. Because of the differences in the fault

parameterizations, it is not easy to fairly compare

variance reduction in slip (VRslp) for Tests I–III

(different patch size) and VI–VII (different slip

direction). However, the optimal slip models

obtained, shown in the supplementary material (Figs.

S2–8), indicate that the fault slip is well-retrieved.

We display the stress drop estimates in Fig. 4.

Depending on the model setups or the utilized data-

sets, the resulting stress drop values differ. For

example, stress drop derived based on Lorito’s fault

plane is largely biased from the real values (gray

color bars in Fig. 4) or the estimates of Test-0 (the

Figure 3
Inversion results based on the synthetic displacements shown in Fig. 1. a color-coded residual slip (the difference between the synthetic and

estimated slip); b uncertainty of the slip estimation in terms of the 95 % credibility interval; c probability density distribution of the estimated

stress drop (dashed curve) and the histogram plot (gray bars) of the synthetic stress drop on the fault patches that is normalized by the total

number of the patches. In panel (a), ‘?’ marks the patch on which the sampled slip values are presented in Fig. 2b
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red curve in Fig. 4). This is related to the obvious

difference between USGS’ and Lorito’s fault geom-

etry. Furthermore, if the rake angle is erroneously set,

the estimated mean stress drop also deviates from the

true value (Test-VI and Test-VII). Nevertheless, the

differences are small (\1.5 MPa) and thus the main

statistical features are preserved. Stress drop derived

in the other four tests (I, II, IV and V) displays mean

values of *-1 MPa, close to the dominant values of

true stress drops. On the other hand, the standard

deviation of stress drop is sensitive to patch size in

the fault discretization. Generally speaking, the

model with larger patch size provides a narrower

statistical distribution for stress drop and smaller

standard deviation, which is reasonable because small

heterogeneity cannot be resolved when large fault

patches are used in the inversion. While the fault

discretization in the model only has an impact on the

estimation of the heterogeneity (characterized by a2),

the biased fault geometry and rake angle may lead to

a relatively large deviation in both mean and standard

deviation of stress drop (e.g., Tests III, VI and VII).

These synthetic tests again reflect the non-uniqueness

of the inversion results depending on the data uti-

lized, fault geometry, and fault parameterization, etc.

Further, we perform a test based on the synthetic

displacements produced by a slip cluster with random

noise in order to simulate heterogeneity in slip

(marked as Test VIII). Such heterogeneity is likely

reflected in the variance of the stress drop. The fault

parameterization is the same as Test-0. Our slip

model and its shear stress are shown in Fig. 5a and b,

respectively. The inversion results, including the slip

residuals (difference between the inverted optimal

slip and the synthetic slip of Fig. 5a) and the uncer-

tainties of slip estimation are shown in Fig. 5c and d,

respectively. They indicate that the inverted slip with

VRslp of 97.8 % (VRdis of 99.91 %) can retrieve the

general feature of the input model, but the strong

heterogeneity cannot be recovered. Meanwhile, the

slip bias in the strongly heterogeneous zone is also

shown to be inconsistent with the estimation

Figure 4
Estimated probability density functions of stress drop for Tests 0–

VIII. The true stress drop values at the slip patches of the synthetic

model are shown by gray bars

Figure 5
Color-coded slip model (a) used in Test VIII with its shear stress

changes (b), the residual of the inverted optimal slip (c), and the

slip uncertainty as the 95 % credibility interval (d)
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uncertainty. Such a bias is mainly related to the

applied prior PDF in the inversion, which imposes a

weak smoothing condition (see Sect. 5.1). The

inverted stress drop distribution is shown in Fig. 4 by

the solid blue curve. As expected, when the slip is

more heterogeneous, the stress drop has larger vari-

ance (Test-VIII vs. Test-0). Therefore, the variance of

stress drop can reflect slip heterogeneity, but is also

sensitive to fault parameterization, as indicated in

Tests I–III and VI–VII.

In addition, we consider two slip clusters on the

fault plane (Test IX). Shown in Fig. 6a, the input slip

produces stress drop with mean of -0.99 MPa and

standard deviation of 0.42 MPa (see Fig. 6b). Based

on the displacements produced, we invert for the fault

slip and mean stress drop. In this inversion, we utilize

a uniform PDF between [0.1 40] MPa for the mean

stress drop to test the possible impact of the param-

eter range on the inversion results. The resulting slip

residual between the estimated and the input slip

(Fig. 6a) are provided in Fig. 6c and the uncertainty

of slip estimation is given in Fig. 6d. The results

indicate that the fault slip is well-retrieved with high

VRslp of 99.54 % (VRdis of 99.96 %) and the differ-

ences between the inverted and input slip are

generally smaller than the estimation uncertainties.

The reconstructed probability density of stress drop is

shown in Fig. 6b by the dashed curve. The estimated

mean stress drop is -1.02 MPa and standard devia-

tion is 0.32 MPa, which are consistent with the input

model.

4. Application to the 2010 M8.8 Maule Earthquake

Since the 2010 M8.8 Maule earthquake was

expected for decades, plentiful GPS measurements

captured the displacements of the earthquake (VIGNY

et al., 2011; MORENO et al., 2012; LORITO et al., 2011).

Additionally, InSAR measured coseismic displace-

ments, including 820 measuring points, were released

by TONG et al. (2010). These geodetic data provide

dense coseismic observations for the Maule

earthquake.

Adopting the mechanically constrained inversion

in the Bayesian approach, we invert for the stress

drop and coseismic slip of the Maule earthquake,

utilizing the fault geometry of USGS and LORITO

et al. (2011), respectively. As described before, the

rake angle is fixed as 110�. The matrix of Green’s

Figure 6
Color-coded slip model (a) used in Test IX and its corresponding

probability density distribution of stress drops (b), where the

dashed curve shows the inversion result and the gray bars refer to

the true values. The residual slip distribution is displayed in panel

(c) and the uncertainty of the estimated fault slip is shown in panel

(d)
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function is constructed the same as that for the syn-

thetic test in Sect. 3. We present the marginal PDFs

based on the MCMC-generated samples for the mean

and variance of stress drop in Fig. 7. Clearly peaked

distributions are observed, and thus we may reliably

select the value with maximum probability density as

the representative optimal value of each parameter.

The estimated stress drops are similar for both fault

geometries, with mean/standard deviation of 6.0/

4.3 MPa when USGS fault geometry is adopted, and

mean/standard deviation of 5.0/3.4 MPa when Lori-

to’s fault geometry is used. The distribution of the

optimal slip is shown in Fig. 8. As an example, the

marginal PDF for slip on one USGS fault patch near

the hypocenter is displayed in Fig. 7c (Fig. 7f for

Lorito’s fault). The modeling results based either on

the USGS or the Lorito’s fault geometry explain the

geodetic measurements well, with VRdis of 99 % for

horizontal GPS measurements, 95 % for InSAR data

and higher than 80 % for vertical GPS measurements.

The relatively poorer data fit for the InSAR and the

vertical GPS measurements is partly related to their

large measurement uncertainties and thus lower

weighting during the inversion (see Eq. 1). The

results show that the general slip pattern is similar for

both fault geometries, indicating a major slip

Figure 7
Marginal PDFs constructed from MCMC generated samples. Marginal PDFs of mean (a) and variance (b) of the stress drop estimation for the

2010 M8.8 Maule earthquake using the USGS fault plane; c marginal PDF of slip on the fault patch near the hypocenter (‘?’ marked in

Fig. 8a, f) as an illustration. Panels (d–f) show the corresponding results for Lorito’s fault geometry. The optimal values are marked by the

solid black line and 95 % credibility intervals are identified by the dashed black lines
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concentration north of the hypocenter. This is basi-

cally consistent with other published modeling results

(e.g., LORITO et al., 2011; VIGNY et al., 2011; TONG

et al., 2010; MORENO et al., 2012). In more detail, our

derived slip model based on Lorito’s fault geometry

(Fig. 8f) provides shallower slip south of the Maule

hypocenter than that based on the USGS fault plane,

indicating that slip inversion is sensitive to the uti-

lized fault geometry. In comparison with the slip

model of LORITO et al. (2011), our derived shallow

slip can be explained by the fact that we do not

include any constraint such as zero-slip constraint

along the upper border (LORITO et al., 2011).

In addition, we test inversion based only on the

GPS measurements. The results for USGS and Lori-

to’s fault are provided in the supplementary material

(Fig. S9, S10). The inverted fault slip has a similar

pattern as that shown in Fig. 8 and the stress drop has

a mean of 6.6/5.3 MPa and a standard deviation of

4.1/3.1 MPa for the USGS/Lorito’s fault plane,

respectively. In addition, we test a different fault

discretization to the USGS fault plane with 26 9 11

patches. The inverted coseismic slip for the Maule

earthquake is displayed in Fig. S11 of the supple-

mentary material. The inverted stress drop has mean

of 5.9 MPa and standard deviation of 4.8 MPa. The

Figure 8
Color-coded slip model for the 2010 Maule earthquake using USGS fault geometry (a) and its uncertainty (b). Color-coded slip model using

Lorito’s fault geometry (f) and its uncertainty (g). The corresponding displacements are shown in panels c–e and h–j. The observed and

modeled GPS displacements are displayed by black and red arrows, respectively. The star indicates the location of the Maule earthquake. In

panel (a) and (f), ‘?’ marks the patch on which the sampled slip is presented in Fig. 7c, f
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inversion results are basically consistent with those

using entire GPS and InSAR dataset, indicating the

stability of the inversion approach.

5. Discussion

5.1. Dependency of Stress Drop on Smoothing

Conditions in the Traditional LS Slip Inversion

Stress drop is a key parameter in earthquake

mechanics. The relation of the stress drop to other

parameters, e.g., earthquake magnitude, is a matter of

debate. For example, the stress drop of the 2011 M9

Tohoku-Oki event, which caused a disastrous tsu-

nami, was suggested to be four times higher than that

of the 2010 M8.8 Maule, Chile, earthquake (SIMONS

et al., 2011; VIGNY et al., 2011; DELOUIS et al., 2010).

To constrain the dependence of stress drop on other

parameters, it is important to get precise estimates of

stress drop from independent data. However, depend-

ing on the measuring approach, stress drop can be

considerably biased due to uncertainties in geological

measurements, in the source spectrum or in the fault

slip model. In particular, the approaches based on

geological measurements and the source spectrum

assume a circular rupture or a uniform rectangular

dislocation, which is unrealistic for a large earth-

quake with usually complex rupture.

For large earthquake ruptures, it is convenient to

estimate stress drop from geodetically (or seismi-

cally) determined slip distributions. Nevertheless,

fault slip based on the traditional least-square (LS)

approach is usually not unique and depends strongly

on the specified smoothing condition. For example,

when the Laplacian filter (L) is applied in the

inversion, the slip is determined according to bðb2Þ ¼
arg min

b
Gb� yk k2þb2 Lbk k2

� �
, with b2 being the

smoothing parameter. Larger b2 means stronger

smoothing imposed on the slip model at the expense

of poorer data fitting. In Fig. 9, we demonstrate the

tradeoff curve between data fitting (Root-mean-

square value) and the smoothing condition for the

Maule earthquake based on the LS approach. In the

LS inversion, the final smoothing factor is usually

selected at the point of strong curvature of the RMS

curve in order to balance data fitting and smoothing.

However, as observed in Fig. 9, the stress drop that is

calculated as the mean value of negative shear stress

on the fault plane, changes from 2 to 6 MPa with the

applied smoothing factor. In particular, significant

changes occur when data fitting and smoothing is

usually thought to be appropriately balanced (at the

strong curvature). Thus, the final stress drop value

strongly depends on the arbitrarily chosen smoothing

factor.

As mentioned before, our mechanical constraint

introduced as the prior information in the inversion

also imposes a loose smoothing condition on the fault

slip. For demonstration, we calculate bTLTLb (a

measure of the roughness of the slip distribution),

with slip b being taken from the MCMC-generated

samples in Test-0. In Fig. 10, the values of bTLTLb

are plotted against the sampled variance of the stress

drop. It indicates that the slip roughness is positively

correlated with the variance of stress drop, showing

that smaller variance corresponds to a smoother slip

distribution. Therefore, the mechanical constraint

plays a similar role as the Laplacian smoothing

imposed in the traditional LS inversion. However, the

slip inversion with mechanical constraints provides

additional stress drop information about the earth-

quake without the subjective setting of a smoothing

parameter as in the LS approach. In those cases where

stress drop information is available from other data/

approaches, such information can be incorporated

into the inversion as a constraint on fault slip.

5.2. Statistical Distribution of Stress Drop

Statistical distributions for stress drop generally

involve intra-event and inter-event variability,

respectively. The former considers shear stress var-

iability on the fault for one earthquake rupture, and

its knowledge is important for dynamic simulation

and ground-motion prediction; the latter delineates

the variability of the mean stress drop from different

earthquakes on a global or regional scale. It has been

reported that the stress drop from finite-fault slip

inversions can be described as random fields modeled

by a von Karman auto-correlation function (MAI and

BEROZA, 2002), and its power spectrum in the wave-

number space is characterized by a power law decay.

Fractal distributions have the advantage of
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delineating the short-scale variation and are particu-

larly important in the simulation of high frequency

wave propagation in the near field in dynamic

modeling, while the Gaussian distribution and von

Karman auto-correlation function provide similar fits

for a larger ([1 km) spatial scale (MAI and BEROZA,

2002). Because our approach is based on static

surface displacements, and thus ignores the effects of

high frequencies, the Gaussian distribution can be

seen as an appropriate choice of statistical distribu-

tion of stress drop. On the other hand, the lognormal

distribution has been proposed for describing regio-

nal/global inter-event variability (e.g., ANDREWS,

1986; ALLMANN and SHEARER, 2007). With a simple

assumption that the large rupture is composed of

numerous sub-events with different sizes, we have

also tested to implement the lognormal instead of the

Gaussian distribution as a prior in our inversion

approach. However, since the difference in the

logarithmic stress drop is small for different slip

models, the MCMC sampling process did not suffi-

ciently converge in this case.

Thus, we utilize the Gaussian distribution as an

approximation of the stress drop variability. Stress

drop delineated as uncorrelated random numbers

around its central value has also been applied in

quasi-dynamic modeling (e.g., BEN-ZION, 1996).

6. Conclusion

Slip distributions inferred from seismologic and

geodetic data provide a valuable constraint to esti-

mations of stress drop. However, the impact of the

errors in the slip model on the stress drop estimation

is not at all clear. In our approach, slip and stress drop

are included in the same statistical model and can be

estimated simultaneously, which allows for a

straightforward probabilistic uncertainty handling. By

implementing a mechanical constraint, the explicit

smoothing prior is eliminated and stress drop can be

determined together with slip on the fault. Our syn-

thetic tests indicate that the inversion is stable, and

reliably retrieves the major features of both slip and

stress drop. We apply the inversion approach to the

2010 M8.8 Maule earthquake. The results show that

the slip distributions are rougher but generally similar

to those obtained in the previous studies. Further-

more, the mean stress drop obtained is close to the

value independently calculated from the force bal-

ance approach (LUTTRELL et al., 2011). Thus, our

technique could serve as a tool to study large earth-

quakes in terms of slip and stress drop by replacing

the arbitrary smoothing condition with a physical

constraint. The resulting consistencies in the syn-

thetic tests and the reliable estimations of slip and

stress drop for the Maule event, indicate that the

mechanically constrained inversion can be potentially

applied to the quantitative evaluations of stress drop

during large ruptures and of stress accumulation rate

during the interseismic phase, which further serves

Figure 9
Root-mean-square (RMS) errors of the data fits based on the LS

approach (red solid curve for the USGS fault plane; red dashed

curve for Lorito’s fault plane) and the corresponding mean stress

drop values (mean values of negative shear stress due to slip on the

fault plane) as a function of the smoothing factor

FigureFig. 10
Slip roughness (bTLTLb) is plotted against the variance of stress

drop during the MCMC sampling of the Test-0. The dashed curve

indicates the median values of bTLTLb for different a2

386 L. Wang et al. Pure Appl. Geophys.



for evaluating recurrence intervals of large

earthquakes.
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