
 

 

 

 

 

 

PHYSICAL REVIEW B 70, 024205 (2004) 

Mean-field theory of collective transport with phase slips 

Karl Saunders,* J. M. Schwarz,† M. Cristina Marchetti, and A. Alan Middleton 
Department of Physics, Syracuse University, Syracuse, New York 13244, USA 

(Received 30 November 2003; published 14 July 2004) 

The driven transport of plastic systems in various disordered backgrounds is studied within mean field 
theory. Plasticity is modeled using nonconvex interparticle potentials that allow for phase slips. This theory 
most naturally describes sliding charge density waves; other applications include flow of colloidal particles or 
driven magnetic flux vortices in disordered backgrounds. The phase diagrams exhibit generic phases and phase 
boundaries, though the shapes of the phase boundaries depend on the shape of the disorder potential. The 
phases are distinguished by their velocity and coherence: the moving phase generically has finite coherence, 
while pinned states can be coherent or incoherent. The coherent and incoherent static phases can coexist in 
parameter space, in contrast with previous results for exactly sinusoidal pinning potentials. Transitions between 
the moving and static states can also be hysteretic. The depinning transition from the static to sliding states can 
be determined analytically, while the repinning transition from the moving to the pinned phases is computed by 
direct simulation. 
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I. INTRODUCTION 

The collective dynamics of extended systems driven 
through quenched disorder is a rich and challenging problem, 
with many experimental realizations. Such systems include 
vortices in type II superconductors, charge density waves in 
anisotropic conductors, domain walls in random ferromag­
nets, and planar cracks in heterogeneous materials.1 Much of 
the theoretical work to date has focused on modeling these 
systems as extended elastic media. In these models the re­
storing forces are monotonically increasing functions of the 
relative displacements, and the system is not allowed to tear. 
At zero temperature, overdamped elastic media subject to an 
applied force F and quenched disorder exhibit a nonequilib­
rium phase transition from a pinned state to a sliding state at 
a critical value, FT, of the driving force.2 The depinning tran­
sition, first fully studied for collective models with disorder 
in the context of charge density waves, displays the universal 
critical behavior of continuous equilibrium phase transitions, 
with the mean velocity v of the medium playing the role of 
the order parameter.1,3 For monotonic interactions, it has 
been shown that the system’s velocity is a unique function of 
the driving force.4 The sliding state is therefore unique and 
there is no hysteresis or history dependence. The depinning 
transition of driven elastic media has been studied exten­
sively, both by functional renormalization group methods3,5–7 

and large scale numerical simulations.8–13 Universality 
classes have been identified, which are distinguished, for ex­
ample, by the range of the interactions or by the periodicity 
(or nonperiodicity) of the pinning force. More recent work, 
while still focusing on elastic media, has shown that the dy­
namics is quite rich well into the uniformly sliding 
state.14–18,20 

The elastic medium model is often inadequate to describe 
many real systems which exhibit plasticity (due, for instance, 
to topological defects in the medium) or inertial effects that 
violate the assumption of overdamped equations of motion. 
The dynamics of plastic systems can be both spatially and 
temporally inhomogeneous, with coexisting pinned and mov-

PACS number(s): 83.60.Bc, 62.20.Fe 

ing regions.19 The depinning transition may become discon­
tinuous (first order), possibly with macroscopic hysteresis 
and “switching” between pinned and sliding states.21–24 The 
theoretical understanding of the dynamics of such “plastic” 
systems is much less developed than that of driven elastic 
media. A number of mean-field models of driven extended 
systems with locally underdamped relaxation or phase slips 
have been proposed in the literature,1,25–33 but many open 
questions remain. 

Much of the original theoretical work on driven disor­
dered systems was motived by charge density wave (CDW) 
transport in anisotropic conductors, which display a nonlin­
ear current-voltage characteristic with a threshold voltage for 
collective charge transport.34,35 It has been known for some 
time that the elastic depinning transition may not be physi­
cally relevant to real CDW materials.35–37 Coppersmith ar­
gued that in elastic models with weak disorder, unbounded 
strains can build up at the boundaries of an atypically low 
pinning region, resulting in large gradients of displacement 
that lead to the breakdown of the elastic model.36 Topologi­
cal defects or phase slips will occur at the boundaries of such 
a region, yielding a spatially nonuniform time-averaged ve­
locity. Theoretical and numerical studies of models that in­
corporate both phase and amplitude fluctuations of the CDW 
order parameter have indicated that phase slips from large 
amplitude fluctuations can destroy the critical 
behavior.20,38,39 The depinning may become discontinuous 
and hysteretic, or rounded, in the infinite system limit. Ex­
periments show that varying the temperature of the CDW 
material can lead to a transition from continuous depinning 
to hysteretic depinning with sharp “switching” between 
pinned and sliding states.22,40,41 Furthermore, the observed 
correlation between the amplitude of broadband noise and 
macroscopic velocity inhomogeneities also suggest the pres­
ence of phase slips.42 It should be mentioned, however, that 
in many samples a substantial amount of phase slips occurs 
at the contacts,43 while less clear evidence exists for substan­
tial phase slip effects in the bulk. In general, CDW experi­
ments display considerable sample-to-sample variability,23 
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making the comparison between theoretical models and ex­
periments quite challenging. 

Related slip effects or plastic behavior have been pro­
posed to explain the complex dynamics of many other dissi­
pative systems, including vortex arrays in type-II supercon­

17,44–49 ductors. Simulations (mainly in two dimensions), 
imaging,18,50–53 and transport and noise experiments54–56 

have shown that driven flux lattices often do not respond as 
elastic media. Instead, the driven lattice tears as small-scale 
topological defect structures are generated and healed by the 
interplay of drive, disorder and interactions. The tearing re­
sults in a “plastic” response, with highly defective liquidlike 
regions flowing around the boundaries of pinned solidlike 
regions.49 This kind of response is most prominent in the 
region near vortex lattice melting, where the so-called peak 
effect occurs, i.e., the critical current shows a sudden in­
crease with temperature or applied field. Reproducible noise 
or “fingerprint phenomena” have been observed in the 
current-dependent differential resistance and attributed to the 
sequential depinning of various chunks of the vortex 
lattice.54 Images of driven vortex arrays in irradiated thin 
films of Niobium obtained by Lorentz microscopy have 
shown clearly that vortex rivers flowing past each other at 
the boundaries of pinned regions of the lattice.51 Scanning 
tunneling microscopy, which can resolve individual vortices 
at high density, has also revealed a clear evolution of the 
vortex dynamics with disorder strength.52 In samples with 
weak disorder the vortex array was observed to creep coher­
ently along one of the principal crystal axes near the onset of 
motion. In samples with strong disorder, the depinning is 
plastic and the path of individual vortices can be followed as 
they meander through the pinned crystal. Finally, as in the 
case of CDWs, a correlation between plasticity and broad­
band noise has been observed in several samples.56 Recently 
it has been argued that some of the observed behavior may 
be due to edge contamination effects that are responsible for 
the coexistence of a metastable disordered phase and a stable 
ordered phase.57–59 It is clear that more work is needed to 
understand the rich dynamics of these driven systems. 

In this paper we study the driven dynamics of a disor­
dered medium with phase slips, in order to better address 
questions about these and related physical systems. We re­
strict ourselves to systems which are periodic along the di­
rection of motion, such as CDWs, vortex lattices or 2D col­
loids, and consider only the dynamics of a scalar 
displacement field. For concreteness, the model is described 
in the context of driven CDWs, but it also applies to other 
driven systems with pinning periodic in the displacement 
coordinate. Assuming overdamped dynamics and discretiz­
ing spatial coordinates, the dynamics of the phase �i of each 
CDW domain is controlled by the competing effects of the 
external driving force, the periodic pinning from quenched 
disorder, and the interaction among neighboring domains. 
Following the literature,25,60–62 phase slips are introduced by 
modeling the interactions as a nonlinear sine coupling in the 
phase difference of neighboring domains. The mean field 
limit for this type of model has been studied by Strogatz, 
Westervelt, Marcus, and Mirollo25 for the case of the smooth 
sinusoidal pinning force and was shown to exhibit a first 
order depinning transition, with hysteresis and switching. In 
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FIG. 1. Sketches of the pinning potentials and forces studied in 
this paper. The pinning forces are periodic with period 2� and the 
pinning potential for a degree of freedom �i has minima at �i 

+2n�, for integer n. The cases are organized primarily by the sign 
of c, with the pinning force Y�x�=−ax−cx3+O�x5� for small x=�i 

−�i. The coefficient of the harmonic part of the force satisfies a�0. 
The cases (a), (b) and (c) are for “soft” pinning forces �c�0�; they 
differ near the potential maxima, corresponding to monotonic, non-
monotonic, and continuous forces, respectively. Case (d) is a “hard” 
potential �c�0�. The “scalloped” potential, case (e), is precisely 
quadratic �c=0� in the interval −��x��. The form of the poten­
tial especially affects the stability of the coherently pinned phase 
and whether “re-entrant” pinning is possible upon increasing or 
decreasing the force. 

this paper we use a combination of analytical methods and 
numerical simulations to obtain the nonequilibrium mean 
field phase diagram of the phase slip model for a variety of 
pinning forces (see Fig. 1). Note that most of the pinning 
forces we consider are discontinuous. This form of the force 
mimics the cusped potentials that are the starting points for 
mean field theories that best reproduce the finite-dimensional 
results. The discontinuous pinning forces also reflect the 
abrupt changes in the effective force (sum of elastic and 
pinning forces) that occur when a neighboring region of the 
medium suddenly moves forward. We find that discontinuous 
forces, and even continuous nonsinusoidal pinning forces, 
yield a rich nonequilibrium phase diagram, with novel stable 
static phases that are not present for exactly sinusoidal pin­
ning forces. 

In mean field theory, the nonequilibrium state of the sys­
tem can be described in terms of two order parameters. As 
the pinning potential for each domain i is periodic in �i, 
having minima at �i +2�n, for integer n, and taking the in­
teractions to be periodic in the difference �i −� j between 
neighboring phases with the same period, a natural order 
parameter is the coherence of the phases. This coherence is 
measured by the amplitude r of a complex order parameter 
defined via 

N 

i�re =
1 � ei�j , �1� 
N j=1 

with � a mean phase. In the absence of interactions among 
the phases or external drive, the �i’s are locked to the random 
phases, �i =�i, and the state is incoherent, with r=0. In the  
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FIG. 2. Phase diagram in the coupling-drive �� –F� plane for a 
discontinuous soft cubic pinning force of the type shown in Fig. 
1(b). The equation of motion is Eq. (4). The corresponding Y�x� is 
given by Eq. (42) with a=15/ �8�� and c=−4a3 /27. The strength of 
the pinning is h=1 for all degrees of freedom. The diagonally lined 
region indicates the IS phase, while the cross-hatched region indi­
cates the CS phase. The light gray shaded region denotes the region 
of coexistence of the CM and IS phases, while the medium gray 
shaded region denotes the region of coexistence of the IS and CS 

i cphases. The lines F� and F� are the forces at which the system 
depins upon increasing the drive from the incoherent and coherent 
static states respectively. The line F→ is the force at which a coher­
ently moving system stops upon lowering the drive. The point 
��e ,Fe� indicates where the static-moving transition goes from hys­
teretic to nonhysteretic. The curves �u�F� and �d�F� are the values 
of the coupling at which the static system makes the transition to 
and from finite coherence states, respectively. The inset displays the 
hysteresis in the coherence r as the coupling strength � is varied at 
F=0. The transitions between the IS and CS phases are first order in 
r. 

opposite limit of very strong interactions we expect perfect 
coherence of the static state, with all phases becoming equal 
and r�1 as the interactions become strong (or the pinning 
becomes weak). Another order parameter is the average ve­
locity of the system, given by 

N
1 ˙v = � � j�t� . �2� 
N j=1 

The mean velocity is the order parameter for the transition 
between static and moving phases. 

The central results of this paper are the nonequilibrium 
phase diagrams describing the static and moving phases, for 
the various pinning forces shown in Fig. 1. The parameters 
for the phase diagrams are the driving force F and the 
strength � of the interaction between the domains. (For a 
phase diagram in the drive force vs pinning strength plane, 
see Sec. VII.) Although the precise shape of the phase 
boundaries depends on the detailed form of the pinning po­
tential, the types of phases and the schematic topology of the 
phase diagram are general. This topology and set of phases is 
exemplified in the phase diagram for the discontinuous soft 
cubic pinning force [see Fig. 1(b)] shown in Fig. 2. We find 

three distinct zero-temperature nonequilibrium phases: 
(i) an incoherent static phase (IS) at low drives and small 

coupling strengths, with v =0 and r=0;  
(ii) a coherent static phase (CS) at low drives and large 

coupling strengths, with v =0 and r� 0; 
(iii) a coherent moving phase (CM) at large drives, with 

v �0 and r�0. 
We have investigated the possibility of an incoherent 

moving (IM) phase. For continuous pinning forces, there is 
no IM phase. For discontinuous pinning forces, we speculate 
that the IM phase is unstable generically. (See Sec. V where 
the stability of a possible IM phase is discussed.) 

An important new feature of the phase diagram is the 
occurrence of a coherent static phase at finite F. In contrast, 
for the sinusoidal pinning force studied previously by Stro­
gatz and collaborators25 the static state is always incoherent 
(IS) for all finite values of the driving force and the CS phase 
is only present at F=0.  

The location of the transitions between these phases de­
pends on the system’s history. Changing the coupling � at 
fixed drive F can give a hysteretic transition between inco­
herent and coherent static phases, as shown in the inset of 
Fig. 2 for F=0. Figure 3 shows the behavior of both the 
mean velocity and the coherence as F is first increased and 
then decreased across the boundaries between static and 
moving phases of Fig. 2, while keeping � fixed. The most 
important features of the phase diagrams are 

(i) The transition between the IS and CS phases is gener­
ally discontinuous. The region of coexistence of coherent 
and incoherent static states is bounded by curves �d�F� and 
�u�F� [or equivalently Fd��� and Fu���]. When the coupling 
strength � is increased at fixed F within the static region, the 
system jumps from an incoherent to a coherent state at the 
critical value �u�F�, with a discontinuous change in r (see 
inset of Fig. 2). When � is ramped back down, the coherent 
static state remains stable down to the lower value �d�F�. 
The boundaries �d�F� and �u�F� coincide for the piecewise 
linear pinning force. In this case the transition is still discon­
tinuous, but not hysteretic. An exception to this general be­
havior is found for the hard pinning potential at very small 
values of F, where the transition between coherent and inco­
herent static states is continuous. 

(ii) The depinning to the moving phase is discontinuous 
and hysteretic when the system depins from the IS phase 
(except when �=0). When F is increased adiabatically from 
zero at fixed � for a system prepared in the IS phase, both 
the velocity and the coherence jump discontinuously from 
zero to a finite value at F� 

i ���. For an example, see the top 
frames of Fig. 3. When the force is ramped back down from 
the sliding state the system gets stuck again at the lower 
value F→���. 

(iii) The depinning to the moving phase is generally con­
tinuous when the system depins from the CS phase. In this 
case both the velocity and the coherence change continu­
ously at the transition, although they may be nonanalytic 
functions of the control parameters. An example of this be­
havior is displayed in the bottom frames of Fig. 3. An excep­
tion is found for piecewise linear pinning forces [case (e) of 
Fig. 1] for ���u. 
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FIG. 3. Typical numerical results, found by integrating numeri­
cally the equations of motion [Eq. (4)], for the behavior of the mean 
velocity v and the coherence r as the driving force is slowly varied. 
For each pair of plots, the coupling � is held constant, while the 
drive force F is raised from F=0 to  F =1.2 and then decreased. The 
pinning potential is the same as for Fig. 2. The top frames �� 
=0.5� show the hysteretic behavior between the IS and the CM 
phases, where the coherence and velocity jump between zero and 
nonzero values at the same locations. The next two sets of frames 
��=1.14� are obtained by preparing the system in the IS–CS coex­
istence region, starting from either an initial incoherent �I� or co­
herent �C� state. When the system is prepared in an incoherent state, 
the velocity and coherence jump at the same value of 
F ��0.42� as F is raised, but change continuously as F is de­
creased, albeit with a change in the slope dr /dF at the repinning 
force F�0.32, where v goes to zero. When the system is prepared 
in a coherent state, there is no hysteresis and v and r are continuous, 
though r again shows a singularity at depinning. The bottom frames 
��=1.5� display the behavior at the continuous depinning transition 
from the CS phase. The results are similar to those for �=1.14, 
when starting from the coherent state �C�. In general, depinning 
from the coherent state is continuous and nonhysteretic, while de-
pinning from the incoherent state is discontinuous and hysteretic. 
Numerical evidence for the hysteresis does not change over the size 
ranges studied, strongly suggesting that these simulations accurately 
represent the infinite-volume limit. 

(iv) For continuous pinning forces, the depinning thresh­
old F� 

c��� vanishes for � above a critical �T. In contrast, 
discontinuous pinning forces exhibit a finite depinning 
threshold for all finite values of � with F� 

c��� decreasing 
with increasing �. 

Analytical expressions have been obtained for the critical 
lines F� 

c��� and F� 
i ���, which give the depinning force values 

for the coherent and the incoherent static phases, respec­
tively, as well as for the phase boundaries �d�F� and �u�F�, 

which separate the coherent and incoherent static phases. 
Numerical simulations of finite mean-field systems have also 
been used to obtain these boundaries, confirming the analytic 
stability criteria. The repinning curves �F→����, where mov­
ing solutions stop upon lowering the drive F, have been de­
termined numerically. 

Part of the motivation for our work comes from the well-
known result that the mean field critical exponents for the 
depinning transition in purely elastic models depend on the 
details of the pinning force. For instance, the exponent � 
controlling the vanishing of the mean velocity v with driving 
force at threshold, v ��F−FT��, has a mean field value � 
=3/2  for  generic smooth continuous pinning forces and � 
=1 for a discontinuous piecewise linear pinning force [Fig. 
1(e)].63 Using a functional RG (FRG) expansion in 4−� di­
mensions, Narayan and Fisher showed3 that the discontinu­
ous force captures a crucial intrinsic discontinuity of the 
large scale, low-frequency dynamics. The FRG calculations 
give � =1−� /6+O��2�, in good agreement with numerical 
studies in two and three dimensions. The mean field elastic 
medium also has zero depinning field, FT =0, for small pin­
ning strengths h, in contrast with finite-dimensional simula­
tions and predictions for a finite depinning field in any di­
mension based on Imry–Ma/Larkin–Ovchinnikov and rare 
region arguments.2 The RG calculation and the numerics 
show that a discontinuous pinning force must be used in the 
mean field theory to incorporate the inherent jerkiness of the 
motion of finite-dimensional systems at slow velocities. Al­
though there is no reason to believe a priori that the same 
will hold for models with phase slips, it is clearly important 
to understand how the properties of the pinning potential 
affect the nonequilibrium phase diagram of the model. Fur­
thermore, for large coupling strength � and bounded pinning 
force the phase slip model reduces to the elastic model, 
where the nature of the pinning force strongly affects the 
mean field theory. 

For further applications and connections, we note that 
models of driven disordered systems with nonmonotonic in­
teractions are also relevant for arrays of nonlinearly coupled 
oscillators. An example is the Kuramoto model used to de­
scribe the onset of synchronization in many biological and 
chemical systems.64 The model consists of a large number of 
oscillators with random natural frequencies and a sinusoidal 
coupling in their local phase differences. Although there is 
no external drive, this model can exhibit a transition to a 
synchronized phase as the strength of the coupling is in­
creased. In this phase, all the degrees of freedom oscillate at 
a common frequency. In the Kuramoto model the natural 
frequency acts as a random driving force that varies for each 
oscillator, but there is no random pinning. The model con­
sidered here, in contrast, consists of coupled phases, or os­
cillators, in a random pinning environment at fixed (constant) 
drive. The onset of coherence (either in a moving or in a 
static state) corresponds to the onset of the synchronization 
in the Kuramoto model. 

We conclude this introduction by briefly summarizing the 
remainder of the paper. In Sec. II we describe the model of 
driven CDWs with phase slips and introduce the mean field 
limit. In Sec. III we obtain the static solutions of the mean 
field model at F=0 for the selection of pinning forces shown 
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in Fig. 1. We show that the existence of a transition between 
incoherent and coherent static states can be inferred pertur­
batively. A full nonperturbative treatment is then applied to 
understand the nature of the transition. In Sec. IV we con­
sider static states at finite drive. Again, the region of stability 
of the incoherent static phase can be established by pertur­
bation theory, but the nonperturbative treatment described in 
Sec. V is needed to map out all the static states and their 
boundaries of stability to the moving state. The resulting 
phase diagrams for the various classes of pinning forces are 
discussed in Sec. V; the analytic calculations supporting 
these phase diagrams are presented in Appendixes A and B. 
As the analytic treatment we present here is restricted to 
finding boundaries starting from the static phases, the lower 
boundary F→��� of the hysteretic region where static and 
moving state coexist has been obtained numerically. Section 
VI addresses the effect of a broad distribution of pinning 
strengths. We conclude in Sec. VII with a discussion of the 
results and avenues for further studies. 

II. THE MODEL 

Though the results of our analysis are more general, we 
motivate the model with a detailed discussion of the physics 
of CDWs. The general ideas of phase slip also apply to other 
systems, most directly to coupled layers of vortices, where 
the vortices are confined to the planar layers, or to colloidal 
particles in a disordered background. 

A CDW is a coupled periodic modulation of the electronic 
density and lattice ion positions that exists in certain quasi­
one-dimensional conductors, due to an instability of the 
Fermi surface. The undistorted CDW state is a periodic con­
densate of electrons, characterized by a complex order pa­
rameter, with an amplitude �1 and a phase �. The electron 
density can be expanded as �e�x�=�0+�1 cos�Qcx+��x��, 
with Qc =2kF, kF being the Fermi wave vector. The phase 
��x� describes the position of the CDW with respect to the 
lattice ions and is a constant for an undistorted CDW. When 
Qc is incommensurate with the lattice, the CDW can “slide” 
and CDW transport can be modeled using uniform transla­
tions and small gradients of ��x�, to a first approximation. An 
applied electric field exceeding a threshold field causes the 
CDW to slide relative to the lattice at a rate �t�, giving rise to 
a CDW current. Amplitude fluctuations (changes in �1) are 
often neglected because they cost a finite energy, while a 
vanishingly small energy is required to generate long-
wavelength phase excitations, in an ideal crystal. This has 
led to the well-known phase-only model of CDW dynamics 
introduced by Fukuyama, Lee, and Rice (FLR) that incorpo­
rates long wavelength elastic distortions of the phase.65 

Strong disorder or regions of unusually low pinning can lead 
to large strains, however, so that the amplitude can no longer 
be regarded as constant. Large local strains can be relieved 
by a transient collapse of the CDW amplitude. One approach 
to describe such a strongly strained system is a “soft spin” 
model that considers the coupled dynamics of both phase and 
amplitude fluctuations. This has been attempted by some 
authors,20,38,39 but generally leads to models that have to be 
treated numerically. An alternative, more tractable approach, 

is to continue to treat the amplitude as constant, while modi­
fying the interaction between phases. This modification 
should incorporate the crucial feature that the phase becomes 
undefined at the location where the amplitude collapses. At a 
strong pinning center, phase distortions can be large and lead 
to the accumulation of a large polarization that suppresses 
the CDW amplitude, driving it toward collapse. When the 
distortion is released through an amplitude collapse, the 
phase abruptly advances of order �2�, while the amplitude 
quickly regenerates.62 This process is known as phase slip­
page in superconductors and superfluids, although it is modi­
fied in CDWs because of the physical coupling to the phase. 
On time scales large compared to those of the microscopic 
dynamics, it can be described approximately as a “phase 
slip:” an instantaneous 2� (modulo 2�) hop of the CDW 
phase. Following the literature, phase slips will be modeled 
here as phase couplings periodic in the phase difference be­
tween neighboring domains. This leads to a simple model 
that can be analyzed in some detail. 

When modeling CDWs, especially numerically, displace­
ments and amplitudes are coarse grained to a length scale of 
order of the Imry–Ma–Larkin–Ovchinikov length. At and be­
low this scale, the CDW behaves roughly as a rigid object, 
referred to as a correlated domain. This domain is taken to 
move uniformly and is acted upon by driving forces and 
interactions with neighboring domains and the pinning po­
tential. The continuum space description is replaced with a 
discrete set of degrees of freedom. The coarse-grained equa­
tion of motion for the phase �i of a CDW domain i is given 
by 

�̇i = F + �� sin�� j − �i� + hiY��i − �i� , �3� 
�j� 

where the overdot denotes the time derivative (we have cho­
sen to scale time so that the damping constant is unity) and F 
is the driving force. The second term on the right-hand side 
of Eq. (3) represents the force due to the coupling to other 
domains, where �j� ranges over sites j that are nearest neigh­
bor to i and � is the coupling strength. The third term is the 
pinning force which tends to pin the phase of each domain to 
a random value �i uniformly distributed in �−� ,��. The 
function Y�x� is periodic with period 2� and represents the 
pinning forces. We choose Y�0�=0 to fix the location of the 
minimum of the pinning potential and set Y��0�=0 to main­
tain reflection symmetry in the absence of an external drive. 
As the potential is minimized at �i = �i, Y��0��0. The ran­
dom pinning strengths hi are independently chosen from a 
probability distribution ��h�. 

The key difference between our model equation of motion 
and the well-known FLR elastic model of driven CDWs is in 
the form of the coupling between domains. Instead of assum­
ing a linear elastic force ���j��� j − �i� between neighboring 
domains, we have assumed a nonlinear, sinusoidal coupling 
that allows for phase slip processes. For large phase distor­
tions (exceeding �) the restoring force in Eq. (3) becomes 
negative and the phases slip by an amount 2� relative to one 
another in order to relax the strain. 
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The starting point for many finite-dimensional theories is 
the mean field picture where every local phase (or domain) is 
equally coupled to every other. In this limit, the equation of 
motion (3) becomes 

�̇��,h� = F − u sin�� − �� + hY�� − �� , �4� 

where 

u � �r �5� 

measures the effective strength of coupling between the do­
mains and the mean field, with r and � defined in Eq. (1). 
This coupling will only be nonzero if there is some coher­
ence between the phases of different domains, i.e., if r�0. 
For simplicity, we have dropped the subscripts, labeling each 
phase by the values of � and h, which are now both continu­
ous variables. The � are distributed uniformly in �−� ,�� and 
the h have the distribution ��h�. 

The self-consistency condition for the mean field theory is 
given by 

1 � 
i� i���,h�re = d� � dh ��h�e . �6� 

2� 
� 

−� 

In this paper we will for the most part consider a narrow 
distribution of pinning strengths, i.e., ��h�=��h−1�. The ef­
fects of a broad distribution ��h� will be addressed in Sec. 
VI. 

When the phases are not coupled ��=0�, the equation of 
motion reduces to that of a single particle, which depins at 
the single particle threshold force, Fsp, given by the maxi­
mum pinning force. Note that when the coherence r is zero, 
then u=0, and the system may also depin at Fsp for a finite 
value of �, as long as r remains zero. 

III. STATIC STATES FOR ZERO DRIVE 

We first consider static solutions ��̇ =0� to Eq. (4) for the 
case of zero drive �F=0�. These solutions are the first step in 
determining the phase diagram and their derivation intro­
duces most of the techniques and concepts used for nonzero 
drive. When F=0, the coherence r is determined by compe­
tition between two effects: the disordering effect of the ran­
dom impurities and the ordering tendency arising from the 
coupling of each degree of freedom to the mean field. The 
outcome of this competition gives the � dependence of r. At  
zero drive, the system can exist in one of two possible 
phases: the disordered �r=0� IS phase and the ordered �r�0� 
CS phase. These phases can coexist. In this section we ex­
amine the nature of the transition between these two phases 
obtained by varying � at F=0. We find that the nature of the 
transition depends on the shape of the pinning force, Y�x�. 

For static solutions at zero drive, the equation of motion 
(4) reduces to the condition that the pinning force on each 
degree of freedom be balanced by the force due to deforma­
tions from coupling to the mean field, 

=�r. For any value of � this equation has the trivial solution 
�=�, r=u=0, where all phases rest at the minima of their 
pinning potentials and the coherence and effective coupling 
are both zero. It turns out, however, that such a static inco­
herent solution becomes unstable above a characteristic 
value of the coupling strength �. 

In order to study the competition between the impurity 
disordering and mean-field ordering effects, it is useful to 
rewrite the equation in terms of the deviation � of each phase 
from its value in the disorder dominated incoherent state, � 
��−�. A direct and important symmetry of the solution of 
Eq. (7) is global phase invariance, which holds due to the 
uniform choice of �. In the static state, this statistical rota­
tional invariance means that we can simply fix � to be zero. 
Given a solution with �=0, all related solutions with ��0 
can then be obtained by letting ���+� and ���−�. With 
this transformation, and specializing to the case of fixed pin­
ning strength, h=1, the force balance equation becomes 

0 = −  u sin�� + �� + Y��� . �8� 

To solve this force balance equation, we need to determine u 
self-consistently. The self-consistency condition Eq. (6) can 
be rewritten, by separating out its real and imaginary parts, 
as 

1 
r = d� cos�� + �� � f�u� , �9� 

2� 
� 

2� 

where we have implicitly used Eq. (8) to solve for � as a 
(possibly multivalued) function of � and u to define a func­
tion f�u� as the above average over �, and 

0 =  � d� sin�� + �� . �10� 
2� 

Next, we will use a straightforward linear stability analysis 
to show that the IS �r=0� phase becomes unstable to the CS 
�r�0� phase above a critical value �u of the coupling 
strength. A perturbative calculation of r��� allows us to es­
tablish that this transition from the IS to the CS phase is 
continuous or hysteretic, depending on the shape of the pin­
ning potential near its minimum. We will then obtain the full 
solution r�� , F=0� for a variety of pinning forces. 

A. Stability of the incoherent static phase 

To investigate the linear stability of the IS phase, we cal­
culate the time evolution of a configuration near the static 
solution ����=0. A convenient perturbed configuration is 
��� , t=0�=−��0�sin � with ��0��1. This perturbation gives 
nonzero coherence while maintaining �=0 and reflects the 
most rapidly growing eigenvector in the stability analysis, 
with ��� , t�=−��t�sin � to lowest order in �. By Eq.  (9), the 
coherence of the perturbed state is 

1 � 

r = d� cos�� − � sin �� ,
2� 
� 

−� 

0 = −  u sin�� − �� + hY�� − �� , �7� 

where the reader is reminded that the effective coupling u 
=�/2 + O��2� . �11� 

results from the coupling strength � and coherence r, u The equations of motion Eq. (4) then give 
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MEAN-FIELD THEORY OF COLLECTIVE TRANSPORT… 

�̇ = −  �r sin�� + �� + hY��� = −  ���/2�sin � + hY��0�� 

+ O��2� = + hY��0� � + O��2� . �12��
2 

� 
As r and � are both proportional to � (to lowest order), it  
immediately follows that ṙ���� /2�+hY��0��r. The critical 
value of � for linear stability is therefore 

�u = − 2hY��0� . �13� 

For coupling strength ���u, the perturbed coherence grows 
and the IS phase is linearly unstable to a CS phase. At larger 
�, the interactions that drive the � towards a coherent state 
are larger in magnitude than the restoring force for the indi­
vidual �. Note that �u depends only on the strength of the 
pinning force at the minimum of the pinning potential. 

B. Perturbation theory 

The onset of coherence for � just above �u can be studied 
perturbatively by assuming that both the phase � and the 
coherence r are small in this region. Near � =0 the pinning 
force can quite generally be written as a power series in �, 

Y��� = −  a� − b�2 − c�3 + ¯ , �14� 

with a=−Y��0��0. For small r, and hence u, one can ex­
pand ��� ,u� in powers of u, 

���,u� = u�1��� + u2�2��� + u3�3��� + ¯ . �15� 

Substituting these terms into the force balance equation (8), 
and equating terms of the same order in u, we obtain 

sin � 
�1��� = −  , �16a� 

a 

sin � cos��� b sin2 � 
�2��� = − , �16b�2 3a a 

2b2 2 �c 1 sin � cos
�3��� = � − �sin3 � −4 + 5 3 3a a 2a a 

3b sin2 � cos � 
+ 4 . �16c� 

a 

Substituting the expanded ��� , u� into Eq. (9) and evaluating 
the integrals to each order in u we find 

2 3f�u� = ur1 + u r2 + u r3 + ¯ , �17� 

with 

1 
r1 = , �18a� 

2a 

r2 = 0,  �18b� 

3 ac − 2b2 

r3 = −  � � . �18c�58 a 

PHYSICAL REVIEW B 70, 024205 (2004) 

FIG. 4. The behavior of the coherence r for couplings � ��u, 
i.e., near the instability point of the incoherent static phase (IS) at 
F=0. The three curves show r with pinning force Y���1�=−a� 
−c�3 for c positive (hard pinning potential), negative (soft pinning 
potential) and zero (piecewise linear pinning force.) 

r = f�r�� = �r��r1 + �r��3r3 + ¯ . �19� 

For simplicity of discussion we specialize to pinning poten­
tials with reflection symmetry and choose b=0 (although the 
nonzero b result will prove useful in the analogous finite F 
perturbation theory). Then r3=−3c / �8a4� and the nonvanish­
ing solution for the coherence can be written as 

4 1/2 1/2�u �u − �� � � � , c � 0,
3�c��3 

r��� = �20�4 1/2 1/2�u � − �u , c � 0,� � � � 
�u 

�
3c�3 �u 

where �u =2a. 
The behavior of r��� for ���u and the nature of the 

transition between the IS and CS phases are controlled by the 
sign of the coefficient c of the cubic term of Y���. The three 
types of behavior that can occur are shown in Fig. 4. For 
c�0, corresponding to a “hard” pinning potential that grows 
more steeply than a parabola near its minimum, the coher­
ence r grows monotonically with increasing �, with r��� 
−�u�1/2. This indicates a continuous transition at � = �u be­
tween the IS and CS phases. On the other hand, when c�0, 
corresponding to a “soft” pinning potential, the coherence 
starts out with a negative slope at �u and grows with de­
creasing �. We expect this solution to be unstable, indicating 
that the transition from the IS phase to the CS phase occurs 
with a discontinuous jump in r from r=0 for ���u to a 
nonzero value of r for ���u on a stable upper branch not 
accessible in perturbation theory. In fact we show below that 
when � is decreased back down through �u from the CS 
phase r will remain nonzero down to a lower value �d ��u, 
indicating a hysteretic transition between the IS and CS 
phases. In the marginal case of piecewise linear pinning 

Finally, the coherence r is given by the solution of forces with c=0, i.e., Y���=−a� near �=0, there is a discon­
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tinuous jump r��� at �=�u. In this case the perturbation 
theory breaks down and the solution must be obtained by the 
method described in Sec. III C. This calculation will show 
that no hysteresis occurs in the case of strictly linear pinning 
force. We stress that the transition from the IS to the CS state 
at F=0 is controlled entirely by the shape of the pinning 
potential near its minimum. Specifically, the behavior is un­
affected by the existence of discontinuities in the pinning 
force at the edges of each pinning well. 

C. Beyond perturbation theory: The general static r„� ,F =0… 
solution 

In this section we outline a nonperturbative method for 
calculating the integral f�u� used in the self-consistency 
equation, Eq. (9). This allows for the determination of the 
coherence r for all values of �. In addition to confirming the 
perturbative results obtained above, this method allows the 
precise study of the discontinuous and hysteretic transitions 
between the IS and CS phase, which cannot be done within 
perturbation theory. 

To obtain f�u� by direct integration over � in Eq. (9) one 
would need to solve the transcendental equation, Eq. (8), for 
��� ,u�. Such a solution cannot in general be obtained ana­
lytically. Hence we take an alternative approach in which we 
solve Eq. (8) for ��� ,u� and integrate over �, rather than �, 
i.e., 

1 �� 
r = cos�� + ���,u�� . �21�� d�� �

2� �� 

The change of variable in Eq. (21) provides an important 
simplification that allows us to calculate analytically the co­
herence of the undriven static state for a general pinning 
potential. This simplification does rely on understanding the 
subtleties of how � depends on �, as  � can be multivalued 
function of �.66 The history of the sample can determine 
which branch(es) are included in the configuration. 

For a given u, there is an infinite set of solutions to Eq. 
(8). We index each with an integer n, 

�n��,u� = −  � + n� + �− 1�n sin−1�Y���/u� , �22� 

where we choose the �−� /2 ,� /2� branch for sin−1�x�. The 
range for � is constrained to −�max�u�����max�u�, with 

�u��Y−1�u�.�max 

The calculation of the average in Eq. (21) is easily carried 
out when u�a, where the phase is single valued. For values 
of u�a the function ���� is multivalued, allowing for the 
existence of many metastable static configurations at fixed u. 
Figure 5 shows one such multivalued ����. Because of the 
metastability, the coherence can vary over some range. For a 
fixed u, the range in coherence results in a range of couplings 
�. When u�a and ���� is multivalued, one chooses the 
(stable) branch of the ���� curve that is consistent with the 
particular metastable state one wishes to describe and also 
ensures that �=0, or equivalently that Eq. (10) is satisfied. 
For simplicity and correspondence with “typical” sample 
preparation, we focus on those metastable states accessed by 
adiabatically increasing u from zero.67 These correspond, for 

PHYSICAL REVIEW B 70, 024205 (2004) 

FIG. 5. A sample plot of �, the displacement of a degree of 
freedom from the minimum of the pinning potential, versus the 
pinning phase �n��� for branch numbers −2� n�2. The solid por­
tions correspond to even n, while the dashed portions correspond to 
odd n. The global phase � is chosen to be zero. Here, the effective 
interaction is large enough, u�a, that ���� is multivalued. The 
maximum magnitude of � is denoted by �max. 

a given u, to the solid portions of the curve shown in Fig. 5. 
The details of the calculation for the scenario of adiabatically 
increasing u, which selects one branch, are given in Appen­
dix A. It is relatively straightforward to show that for a given 
u these are the states which have the largest coherence. This 
selection of largest-u states is consistent with our numerical 
calculations. Note that the form of the ���� curve and the 
discussion of multiple solutions is formally quite similar to 
parts of the calculation for the purely elastic case, though the 
physical motivation is rather different.2 

The behavior of the coherence as a function of � is shown 
in Fig. 6 for four pinning potentials (for histories where the 
effective coupling u is adiabatically increased.) As antici-

FIG. 6. The coherence of the static state at F=0 as a function of 
the coupling strength � for four pinning forces: (a) hard �c �0� 
cubic pinning force, with a =c=1/ ��+�3�; (b) piecewise linear pin­
ning force, with a=1/  �; (c) soft �c�0� cubic pinning force, with 
a=1/� and c=−1/�3; (d) sine pinning force whose maximum 
strength is 1 /�. Also shown is the value �d where the coherence 
jumps from a finite value to zero upon decreasing �. 
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FIG. 7. Upper and lower bounds for r�u�, plotted as the coher­
ence r��=u /r�, corresponding to the maximal and minimal coher­
ence static metastable states. The pinning force is taken to be piece­
wise linear with a=1/�. A single static coherent solution is 
obtained only in the limit ���. 

pated on the basis of the perturbation theory, for a hard pin­
ning force [curve (a) of Fig. 6] the coherence is a single-
valued function of �. The system exists in the zero-r IS 
phase for ���u. At  �u there is a continuous transition to the 
CS phase, with r growing continuously from zero. For soft 
pinning forces [curves (c), cubic pinning force, and (d), sine 
pinning force, of Fig. 6] with c�0 the coherence is a mul­
tivalued function of �. In this case the IS phase is stable up 
to �u when � is ramped up from below. At �u the coherence 
jumps discontinuously to the stable upper branch of the 
curve corresponding to the CS phase. When � is ramped 
down from above �u, the system remains in the CS phase 
down to the lower value �d. For this class of pinning forces, 
the IS–CS transition is always hysteretic at F=0. In the mar­
ginal case of a piecewise linear pinning force [curve (b)], r 
jumps discontinuously at the transition, but there is no hys­
teresis. 

The coherence curves shown in Fig. 6 correspond to the 
metastable states that would result through adiabatically in­
creasing u. As mentioned earlier, for a given u, this is the 
state whose phases are as close as possible to the global 
phase �=0, and hence is the state with the largest coherence. 
Thus, the curves shown in Fig. 6 are upper bounds on the 
coherence for each type of pinning force. In order to calcu­
late the lowest possible coherence at each u, one must con­
sider the metastable state whose phases are as far as possible 
from the global phase. To obtain this lower r��� bound ana­
lytically is tedious, and we have done so only for the saw­
tooth linear case. This result for the lower bound is displayed 
in Fig. 7, along with the upper bound, which, again, is the 
relevant state for the histories we consider here. 

In addition to determining the transitions between the IS 
and CS phases, the nonperturbative treatment at zero drive 
can also be used to determine if there is a critical value of �, 
�T, above which the depinning threshold vanishes and the 
system is always sliding for all F�0. We present an outline 
of the argument here and relegate the details of the calcula­
tion of �T to Appendix A. The threshold force can be thought 
of as the largest value of the driving force at which there still 

PHYSICAL REVIEW B 70, 024205 (2004) 

exists a stable static solution to the equation of motion. All 
such solutions satisfy the static self-consistency condition. 
For incoherent static solutions, in which the domains are 
completely decoupled, this threshold force is simply the 
single particle depinning force. For coherent static states the 
solution ���� is multivalued, but only those metastable states 
which satisfy the imaginary part of the self-consistency con­
dition are acceptable solutions. Consider a system in which 
there are multiple metastable static solutions at zero drive. 
When an infinitesimal driving force is applied a correspond­
ingly infinitesimal number of these states becomes unstable 
as they no longer satisfy the self-consistency condition. The 
system remains, however, pinned provided there still exist 
other accessible static metastable states. As the force is fur­
ther increased, more static states become unstable, but the 
system does not depin until the “last” of the available static 
solutions, that is the one corresponding to the largest value of 
F for which a metastable static state exist, becomes unstable. 
This value of F defines the depinning threshold. On the other 
hand, if there is a unique metastable static solution at zero 
drive, the system will depin immediately upon an infinitesi­
mal increase of the driving force. Whenever there is a unique 
solution at F =0, the depinning force is therefore zero. As 
shown in Appendix B, for discontinuous forces there are al­
ways a variety of metastable static states at zero drive for any 
finite value of � (see also Fig. 7), so that �T =�. For con­
tinuous pinning forces, there is a finite coupling �T above 
which there is a single static state at zero drive and where the 
threshold force vanishes. This is for instance the case for the 
sinusoidal pinning force, where the upper and lower bounds 
of r��� (shown in Fig. 6) coincide and �T =�u. For a general 
continuous pinning force �T is given by 

��Y����� 
. �23��T = �� d��1 −  �Y���/Y�����2 

0 

IV. STABILITY OF THE STATIC INCOHERENT
 

PHASE
 


AT NONZERO DRIVE
 


We next consider static states in the presence of a finite 
driving force, F�0, starting with incoherent static solutions. 
We will use a perturbative treatment analogous to that of 
Sec. III to analyze the limit of stability of the IS phase 
against varying � and F. For finite F, the IS phase can be­
come unstable to either the coherent static phase or the mov­
ing phase. The perturbative analysis described in this section 
allows us to establish whether the transition from the IS to 
CS phase at finite F is continuous or hysteretic, in much the 
same way as done in Sec. III B for F=0. Again we find that 
the nature of the transition depends on the type of pinning 
potential, but the addition of a driving force changes the 
shape of the effective pinning force. This change can, in 
some cases, change a continuous IS←CS transition at F =0 
to a hysteretic transition at finite F. The value of F above 
which the CS phase becomes unstable to a moving state 
cannot be determined perturbatively and we defer its calcu­
lation to the next section. 

024205-9 



 

 

 

 

  

  

 

 
 

  

  

  

 

 
  

  

    
  

   
 

 

  

 

 

   

  

  
 

  

 
  

  

  
  

 

 

  

   

 

  

 

� � 

SAUNDERS et al. 

The perturbation theory described below is of course only 
valid for forces less than the single particle depinning force, 
Fsp. This force is the maximum value of �Y�x�� and is the 
driving force required to set in motion a single independent 
domain. It is hence the threshold force for an incoherent 
group of domains. 

We will study the stability of the incoherent phase to 
small changes in the coherence r. Taking the initial static 
phase to be incoherent, the effective coupling u=�r=0 and 
the static solution is obtained by simply balancing the pin­

˙ =ning and driving forces. From Eq. (4) (with � 0 and h=1) 
the noninteracting static solution is �=�−Y−1�F�. It is con­
venient to choose the global phase to be nonzero, �= 

˜ �−�+Y−1�F�−Y−1�F�, and to work with the deviation �= 
from the incoherent static solution at a given F. The static 
solutions are then given by 

0 =  F − u sin��̃ + �� + Y��̃ + �0� , �24� 

where �0=�=−Y−1�F�. For small u we can expand the pin­

ning force in powers of �̃, 

Yeff��̃� �  Y��̃ + �0� + F = ̃a�F��̃ + ̃b�F��̃2 + ̃c�F��̃3 + . . .  .  

�25� 

The effective pinning force Yeff��̃� has precisely the same 
form as Y��� for zero F, but the coefficients now depend on 
F through �0=Y−1�F�. These modified coefficients are given 
by 

ã�F� = Y���0� , �26a� 

b̃�F� = Y���0�/2, �26b� 

c̃�F� = Y���0�/6. �26c� 

At nonzero drive the coefficient b̃�F� is always finite, reflect­
ing the fact that the external drive makes the pinning force 

asymmetric about �0. The equation for �̃��� is then formally 
identical to that for ���� in the F=0 case, with Y��� 

˜�,�Yeff�� 

0 = −  u sin��̃ + �� + Yeff��̃� . �27� 

Similarly, the self-consistency conditions can be expressed in 

terms of �̃ as 

1 
r = � d� cos��̃ + �� �  f�u,F� , �28� 

2� 2� 

where r is now a function of both u and F, and 

0 =  � d� sin��̃ + �� . �29� 
2� 

We can now use the results obtained in the zero drive per­
turbation theory. The value of � at which the IS phase be­
comes unstable is given by 
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�u�F� = 2ã�F� , �30� 

and will now in general depend on F. Conversely, we can 
define a critical line Fu��� as the solution of �=2ã�Fu�. 

For drives sufficiently small that the system remains 
pinned at the instability line, the form of the onset of coher­
ence near �u�F� can be determined by looking for a solution 
to Eq. (28) in the form of a power series, 

f�u,F� = r1�F�u + r2�F�u2 + r3�F�u3 + ¯ . �31� 

As usual in such calculations, we expect the nature of the 
instability to depend on the signs of the coefficients. The 
coefficients r1�F�, r2�F�, and r3�F� are given by Eq. (18c) 

˜with a, b, c replaced by ã�F�, b�F�, c̃�F�, giving 

1 
r1�F� = , �32a� 

2ã�F� 

r2�F� = 0  �32b� 

b�F�23 ã�F�̃c�F� − 2˜
r3�F� = . �32c� 

a�F�58 ˜

Thus, the form of r�� ,F� near �u�F� is 

1 � − �u�F� 1/2 

r��,F� = � � . �33� 
�3 r3�F��u�F� 

As for the case of F =0, the behavior is controlled by the sign 
of the coefficient r3�F� of the cubic term in Eq. (31). If  
r3�F��0 the coherence grows as ���−�u�F��1/2 with in­
creasing �, indicating that the r versus � curve is continu­
ous. Conversely, if r3�F��0 the coherence grows with de­
creasing � as ���u�F�−��1/2, and the r versus � curve is 
hysteretic. One important complication is that for finite F the 
coefficient r3 can change sign as a function of F for a given 
pinning force. As a result the transition between coherent and 
incoherent static states can change from continuous to hys­
teretic above a characteristic force Fh defined by the solution 
of r3�Fh�=0.  

We now specifically apply these general results to the 
three classes of pinning forces (linear, hard, and soft.) Again, 
these are of the general form 

Y�x� = −  ax − cx3, −  � � x � � , �34� 

with a�0. The three classes have c zero, positive and nega­
tive, respectively. 

A. Piecewise linear pinning force „c =0… 

For the piecewise linear pinning force of Fig. 1(e), where 
Y��� is given by Eq. (34) with c=0, we simply have ã�F� 
=a and b̃�F�= c̃�F�=0. In this case �u�F�=�u�0�, indepen­
dent of F. In fact we will show in Sec. V A that the coher­
ence r��� of the entire static state is independent of F for all 
values of �, whenever the system is pinned. The IS phase is 
stable for ���u =2a and F�Fsp=a�. This region is shown 
in Fig. 8. 
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FIG. 8. The region of stability of the IS phase for a piecewise 
linear pinning force. The single particle depinning force Fsp and the 
coupling strength �u for instability to the coherent or moving states 
are also indicated. 

B. Hard cubic pinning force „c �0… 

In Fig. 9 we show the region of stability of the IS phase 
for the hard pinning force of Fig. 1(d). In this example, the 
maximum pinning force from Eq. (34) gives the single par­
ticle depinning threshold as Fsp=a�+c�3. When the cou­
pling � is ramped up adiabatically with constant F� Fsp, the 
IS state becomes unstable at a value �u given by [see Eq. 
(30)], 

�u�F� = 2�a − 3c�0
2�F�� . �35� 

For the hard cubic potential this result can be inverted ana­
lytically to obtain the boundary Fu��� of the IS state shown 
in Fig. 9, with the result 

+ ��� − �u2�uFu��� = . �36� 
6 6�c� 

The maximum value of � for which the IS state is stable is 
�*, where �* is found by the intersection of the IS depin­
ning curve and the Fu��* � curve. Its value is 

� * =  �u + 6c�2. �37� 

Note that if the system is prepared in the IS state at ���u, 
then a transition to a coherent state can be achieved by de-

FIG. 9. A plot of the region of stability of the incoherent static 
phase for a hard cubic pinning force. The nature of the instability 
along the Fu��� curve is indicated by the thickness of the bounding 
curve on the right. For ���h �F� Fh�, the transition is hysteretic, 
while for smaller couplings (or small, fixed driving force for vary­
ing couplings) the transition is continuous. 

FIG. 10. Sketches of the region of stability of the incoherent 
static phase for a soft cubic pinning force. (a) corresponds to a 
pinning force of type (a) that does not turn over (is monotonic) in 
each repeated interval. (b) corresponds to a pinning force of type (b) 
that are nonmonotonic in each period. 

creasing F. This is because decreasing F allows the domains 
to relax back toward the minima of their pinning potentials, 
where the pinning force (determined by the curvature of the 
potential) is smaller and hence the coherence can increase. 

In the case of the hard cubic pinning force the coefficient 
r3�F� can change sign as a function of F. For small F, 
r3�F��0 and the transition from the IS to a coherent static 
phase is continuous. Above a critical value Fh defined by 
r3�Fh�=0 the transition becomes hysteretic. The force Fh is 
given by 

�a316 
Fh = , �38� 

153/2 c 

and is small compared with Fsp for the potential shapes and 
parameters we have considered. For a= c =1/ ��+�3�, we  
find Fsp=1,  Fh �0.008, and �h �1.2�u. 

C. Soft cubic pinning Force „c�0… 

Soft cubic pinning forces given by Eq. (34) with c nega­
tive, can be divided into two classes: (i) forces that are 
monotonic functions of the phase within each period, as plot­
ted in Fig. 1(a), and (ii) those that reach their maximum 
(minimum) within a given period and turn over, as plotted in 
Figs. 1(b) and 1(c). Holding � constant, the incoherent static 
state becomes unstable upon increasing F to Fu���, with 

2�u + � − ���uFu��� �  , �39� 
6 6�c� 

unless the single particle depinning force is first reached. For 
pinning forces in class (i) the value �* where Fu��* �=Fsp is 
positive and the region of stability of the incoherent static 
state is of the type shown schematically in Fig. 10(a). For 
pinning forces in class (ii) [for pinning forces with only cu­
bic terms, this class is given by �c�� 1 / �3�2�], it can be 
shown that �*=0. The single particle depinning transition is 
always preempted. Here, the region of stability of the inco­
herent state is determined by Fu��� for all values of �, as  
shown in Fig. 10(b). 
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For a soft cubic pinning force r3�F� is negative for all F 
and the transition from the incoherent to a coherent state is 
always hysteretic. 

V. NONEQUILIBRIUM PHASE DIAGRAMS
 

IN THE �–F PLANE
 


In this section we present the nonequilibrium phase dia­
grams in the �–F plane for the various pinning forces intro­
duced in Fig. 1. The phase diagrams are based upon both 
analytical results and numerical computations. The analytical 
bounds on the stability of the static phases are based on the 
preceding sections’ results for the incoherent static phase and 
calculations for the coherent static phase whose details are 
presented in the appendixes. Numerical integration of the 
equations of motion is used to determine the boundaries of 
the moving phases: by starting from the moving phase and 
decreasing F or �, the repinning curves can be found. Of 
special interest is the nature of the depinning transition ob­
tained when the applied force F is varied at constant �. The 
curves of mean velocity as a function of driving force corre­
spond to the IV characteristics of physical systems, such as 
CDWs and vortex lattices. Our focus is on classifying mod­
els or parameter ranges for which the depinning transition is 
continuous or hysteretic. In general, for each of the pinning 
forces we consider, the depinning transition appears to be 
continuous with a unique depinning threshold at large �, 
where the system is more rigid. In contrast, the velocity-
force curves generally exhibit macroscopic hysteresis at 
small values of �, where the system is more likely to display 
plastic effects. 

A. Piecewise linear pinning force 

In Sec. IV A, perturbation theory was employed to study 
the transition between incoherent and coherent static phases 
for the piecewise linear pinning force. It was found that 
when the coupling strength � is changed at fixed F within 
the pinned region of the phase diagram this transition is al­
ways discontinuous, although not hysteretic. Furthermore, 
the critical value of � where the transition takes places ap­
pears to be independent of the driving force. Here we show 
that this remains true in a complete calculation. We also cal­
culate the depinning threshold exactly by determining the 
limit of stability of the static phases. For the piecewise linear 
pinning force [i.e., Eq. (34) with c =0], the force balance 
equation in the static state is 

0 =  F − u sin�� + �� − a� , �40� 

˜where −����� and we have chosen �=0. Letting �=� 
+ F /a and �=�−F /a, Eq. (40) can be written as 

0 = −  u sin��̃ + �� − a�̃ , �41� 

with −�−F /a��̃��−F /a. It is apparent from Eq. (41) that 

�̃ is a function only of � and u and does not depend on F 
explicitly. The real part of the self-consistency condition that 
determines the coherence r becomes 

PHYSICAL REVIEW B 70, 024205 (2004) 

FIG. 11. Phase diagram for the piecewise linear pinning force, 
Y�x�=−x /� [see Fig. 1(b)]. The lightly shaded portion is the coex­
istence region of the IS and CM phase ����u� and the smaller, 
darkly shaded region, is where the CS and CM phases coexist 

i c��u ����e�. The depinning lines F� =Fsp and F� have been ob­
tained analytically and confirmed by numerics. The boundary F→ 

where the system repins was obtained numerically. The point 
��e ,Fe� marks where the static-moving transition changes from 
hysteretic to continuous. The boundary between the IS and CS 
phases is F independent and lies at �=�u. 

1 � 

r = d� cos��̃ + �� , �42� 
2� 
� 

−� 

and clearly r�u ,F�=r�u ,F=0�. Thus, the coherence of the 
static state is independent of F. The line separating the inco­
herent and coherent static phases is a vertical line at �=�u 
=2a in the �– F plane, as shown in Fig. 11. The IS–CS 
transition is discontinuous and nonhysteretic at all values F 
where the static phases are stable. When the force is ramped 
up adiabatically at fixed ���u from the IS phase where r 
=0, the system depins at the single particle depinning force 
Fsp=a�. For ���u the system is in the CS phase, where the 

coherence is nonzero and �̃ is a multivalued function of �. 
As discussed in Sec. III C, there are many static metastable 
states available to the system for a fixed value of u. We  
relabel the metastable states and denote each state by a 

�̂i�� ,u� which is a single valued, but generally discontinu­
ˆous, function of �. Each �i must satisfy the imaginary part of 

the self-consistency condition which using Eq. (41) can be 
rewritten as 

ˆ0 =  � d� �i�u,�� . �43� 
−� 

This implies that the acceptable �̂i’s are odd functions of �. 
In addition, each static metastable solution must lie within 

˜ ˜the upper and lower bounds, � �F���−F / a and �l�F��u 

−�−F /a. As  F is increased, the value of the upper bound 

decreases, reducing the number of allowed �̂i’s, until at F 
=Fc��� only one solution remains. This special state, 

�̂�� ,u�, is equivalent to the one that would be obtained 
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FIG. 12. Mean velocity v and coherence r as functions of the 
driving force F for the piecewise linear pinning force. The curves 
are obtained numerically by first ramping F from zero to a value 
well within the sliding state �F=1.2�, and then decreasing F back 
down to zero, while holding � constant. The top frames show the 
behavior for � =0.25, where the initial static state is incoherent: this 
state starts sliding at the single particle depinning force Fsp=1 and 
repins at a lower force F�0.88. The middle frames display the 
results for an initially coherent static state ��=0.64��u�, which 
still displays hysteresis, both in v and r. The bottom frames are for 
� =1.0, which has an initial coherent state and undergoes continu­
ous depinning. 

through adiabatically increasing u. The associated r��� curve 
is shown in Fig. 6 for a=1/�. The value of F� 

c�u�68 is given 
ˆ c /a.by �max�u�=�−F� For u�a� /2 we find from Eq. (41) 

�̃ �u�=u /a which gives max 

F� 
c�u� = � − u/a , u � a�/2. �44� 

ˆ ˆFor u �a� /2� is defined implicitly by a�max max 
ˆ c= u sin�� � and F� is given by max 

a� − F� 
c��� = u sin��Fc

���� − u/a� , u � a�/2. �45� 

It is then possible to calculate F� 
c��� using the expression for 

r�u� given in Eq. (A12). The resulting phase diagram is 
shown in Fig. 11. 

For ���u the static phase is incoherent and the depin­
ning transition is hysteretic in both v and r, as shown in the 
top two frames of Fig. 12. The system depins at Fsp when the 
drive is ramped up adiabatically from the static phase, but 
repins at the lower force F→ when the force is ramped back 
down from the sliding state. The line F→ has been obtained 
by numerical simulation of the mean field model. The nu­
merics have also revealed that a small region of hysteresis 
persists for ���u, although the static phase is coherent 
here. The behavior of v and r in this region is shown in the 

two middle frames of Fig. 12. Finally, for ���e (where �e 
is the value of the coupling above which the static-moving 
transition is elastic in nature) the depinning is continuous, as 
shown in the bottom frames of Fig. 12. The values of �e and 
Fe are defined via Fc��e�= F→��e�= Fe. Finally, the depinning 

cthreshold F� is nonzero and finite for all �, i.e., �T = �. This 
is a general property of discontinuous pinning forces, to be 
contrasted with the behavior observed for continuous pinning 
forces, such as the sinusoidal one studied by Strogatz and 
collaborators.25 

Before closing this section, we must address the possibil­
ity of an incoherent moving (IM) phase. Strogatz and col­
laborators 25 found that an IM phase is always unstable for a 
sinusoidal pinning potential. It can be shown that this re­
mains true for other continuous pinning forces. The situation 
is less clear for discontinuous pinning forces. In Appendix D 
we present the details of a short time �t=0� stability analysis 
for the IM phase for any Y�x�. This analysis will tell us 
something about the long time, steady state limit, provided 
r�t� is a monotonic function of time. This analysis predicts a 
range of stability for the IM phase for discontinuous pinning 
forces, provided the jump discontinuity at x=� is taken into 
account when preparing the system. However, simulations 
show that r�t� is in general not monotonic and that the 
strength of the perturbation needs to be decreased with sys­
tem size in order to observe the IM phase, suggesting that the 
perturbative short-time analysis is simply not valid in this 
case. Finally, if a narrow distribution of pinning strengths h 
is introduced, we find numerically the IM phase to be un­
stable. Given these numerical findings, we believe that the 
IM phase is generally unstable in mean field theory. 

B. Hard cubic pinning force 

The phase diagram for a hard cubic pinning force, given 
by Eq. (34) with c�0 [see Fig. 1(d)] is shown in Fig. 13 for 
a=c=1/ ��+�3�. 

Though the general topology is similar to that of the phase 
diagram for the piecewise linear force, the history depen­
dence is significantly more complicated. A first difference is 
that the transition between the IS and CS phases is now 
continuous for F �Fh, with Fh given by Eq. (38), and hys­
teretic for F�Fh. For the parameter values displayed in Fig. 
13 the value of Fh is very small, but still finite. A second new 
feature of the phase diagram is the presence of a small region 
(darkest gray in Fig. 13) where all three phases coexist. 

The strong history dependence is manifested in the mac­
roscopic response and includes reentrant behavior for fixed � 
or F histories. The mean velocity and coherence are plotted 
as a function of (increasing, then decreasing) driving force 
for a few typical values of � in Fig. 14. The pinning force is 
given by Y�x�=−�x+x3� / ��+�3�. The top frames show a 
simple hysteretic depinning transition for a system prepared 
in the incoherent static state at F=0, similar to that seen for 
a linear pinning force. The middle row of frames display the 
more complicated history that results when the system is 
prepared in a coherent static state at F=0, with �=0.5. The 
velocity shows a single hysteresis loop, but the plot of co­
herence r shows first a decrease and then a jump to the 
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FIG. 13. Phase diagram in the coupling-drive ��– F� plane for a 
hard cubic pinning force of the type shown in Fig. 1(a). The form of 
the pinning force Y�x� is given by Eq. (34), with a=c =1/ ��+ �3�. 
The regions of IS–CM, CS–CM, and IS–CS–CM coexistence are 
shown in light, medium, and dark gray, respectively. The incoherent 

i cand coherent depinning lines are denoted by F� and F�, respec­
tively. The repinning line is denoted by F→. The coherent depinning 
line and the repinning line join at ��e , Fe�. Beyond this point the 
static-moving transition is continuous. The curves �u�F� and �d�F� 
are the values of the coupling at which the static system makes the 
transition to and from finite coherence states, respectively. There 
curves join at ��h ,Fh� where the IS–CS transition becomes 
continuous. 

incoherent state as the force is increased, followed by a jump 
back to a finite value when bulk depinning takes place. In 
this case both the regions of IS–CS and IS–CM coexistence 
are crossed when F is ramped up. The IS–CS transition oc­
curs as the phases are pushed away from their zero-force 
minima to regions of the pinning potential with higher cur­
vature, which makes the coherent state unstable. Upon de­
creasing the force, both the coherence and the velocity jump 
back to zero, then the coherence increases again as the force 
is decreased. The jumps in coherence when F is ramped 
down occur at values of F different from those where the 
coherence jumps during the ramp up. For rather specific val­
ues of �, even more baroque histories can be found by cross­
ing the three-phase coexistence regions. An example is 
shown in the last row of frames in Fig. 14, where �=0.76. 
Here, the sequence is CS� IS� CM�CS, which skips the 
IS phase on decreasing F. Note that the velocity vs drive 
force curve is relatively unremarkable, showing simple hys­
teresis in this case. The coherence history is more compli­
cated. 

Another interesting feature of the phase diagram for the 
hard cubic pinning force is that at constant �, a portion of the 
moving phase lies between the incoherent and coherent static 
phases. This suggests the possibility of re-entrance in the 
depinning transition for ���e. It is not, however, straight­
forward to prepare the system in the lightly shaded portion of 
the phase diagram where IS and CM phases coexist and 
���e. The static solution must either be created “by hand” 
at that location �� ,F� in phase space or the system can be 
prepared in the IS phase at a lower value of � and the cou­
pling can then be ramped up to the relevant value ���e. 

FIG. 14. Mean velocity and coherence versus force for the hard 
potential and various values of �. Solid lines are used to display the 
response obtained when F is ramped up from zero, while dashed 
lines show the jumps in v and r when ramping F back down. The 
top frames show the hysteretic depinning of a system prepared in 
the IS phase. For �=0.5 (middle frames) the system is initially in a 
coherent �r �0� static state at F=0. As the force is ramped up, the 
system first crosses the boundary from the CS to the IS phase, 
where r jumps discontinuously from its initial finite value to zero, 
while the system remains pinned �v=0�. At a higher force the sys­
tem depins by crossing the boundary from the IS to the CM phase 
and r jumps from zero to a large finite value. The subsequent ramp­
ing down of the field goes through this sequence of phases in re­
verse order, but the jumps occur at distinct values of F. The bottom 
frames describes the complex response that takes place along a path 
that crosses the dark region of three-phase coexistence. See the text 
for further description. 

Both the difficulty of preparing the system in the re-entrant 
state and the re-entrance for a specially prepared state are 
displayed in Fig. 15. Here both sets of curves correspond to 
the same value of the coupling strength, �=1.25. In the top 
pair of curves the system is prepared in the coherent state at 
F=0. As the force is ramped up adiabatically, the system 
depins continuously at F� 

c, where both velocity and coher­
ence change smoothly, with r rapidly approaching its limit­
ing value, r =1. The coexistence region is never accessed in 
this case. In the bottom set of figures, the system is prepared 
in an incoherent static state at finite F, deep inside the coex­
istence region. The system is then observed to depin as the 
force is ramped down at constant � across the boundary 
between the coexistence region and the CM phase. Simulta­
neously, the coherence jumps from zero to a large finite 
value. Upon further ramping down F, the system repins 

cagain continuously at F�. 

C. Soft cubic pinning force 

We distinguish three types of soft cubic pinning forces 
given by Eq. (34) with c�0. These pinning forces and cor­
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FIG. 15. Both sets of figures show the behavior of velocity and 
coherence for �=1.25, but for different initial states. The top 
frames are obtained by preparing the system in a coherent state at 
� =1.25 and F=0, and ramping F up to a value above Fi , and then 
back down to zero. In this case the depinning is continuous. The 
bottom frames are obtained by preparing the system in an incoher­
ent state at � =1.25 and F=0.9, inside the lightly shaded area of 
coexistence of CS and CM phases, and then ramping the force 
down to zero. Note the depinning upon decreasing force in this case 
and the subsequent repinning. 

responding potentials are shown in Fig. 1: (a) forces that are 
monotonic over the entire period and do not turn over in the 
interval �−� , ��; (b) forces that are nonmonotonic over the 
period and do turn over in the interval �−� ,��, but are dis­
continuous; and (c) continuous forces, which are obviously 
nonmonotonic. The phase diagrams for these potentials ex­
hibit qualitative differences as compared to those discussed 
so far. Specifically, the CS region at nonzero F may or may 
not extend to �=� and may not even exist. For most poten­
tials, however, we do find a nontrivial coherent static phase. 
The only exception is the case of a sinusoidal pinning force 
studied previously by Strogatz and collaborators,25 where the 
CS state is unstable. 

iFor monotonic pinning forces (a), the boundaries F� and 
Fsp intersect at a finite positive value �* of �, given by Eq. 
(37) (see Sec. IV C for a full discussion). This results in a 
portion of the depinning boundary being horizontal on the 

i�–F plane, as F� =Fsp for ���*, as shown in Fig. 16. In 
contrast, if the pinning force is nonmonotonic, (b) or (c), and 
reaches its maximum within the period, then �*=0 and the 
phase boundary has no horizontal portion. This behavior is 
shown in Fig. 2 for a nonmonotonic, but discontinuous pin­
ning force. 

The results for pinning forces of type (c), that are continu­
ous (and therefore must be nonmonotonic) have two impor­
tant features: �*=0 and �T is finite. These features imply, 
respectively, that there is no horizontal portion to the CS 
depinning curve and that the system slides at arbitrarily small 
force whenever the coupling is large, i.e., when ���T. The 
typical phase diagram for a pinning force of this type is 
shown in Fig. 17. Figure 18 shows sample v�F� and r�F� 
plots for this case. 

At finite drive the CS phase does not extend beyond � 
=1.84. For values of the coupling between �d and �T the CS 
phase exists at finite drive, albeit only for very small values 

FIG. 16. Phase diagram in the coupling-drive ��–F� plane for a 
soft monotonic cubic pinning force of the type shown in Fig. 1(a). 
The pinning force Y�x� is given by Eq. (34) with a=6/ �5�� and c 
=−1/5�3. The regions of IS–CM, CS–CM, and IS–CS–CM phase 
coexistence are shown in light, medium, and dark gray, respectively. 

iThe lines F� and F� 
c are the forces at which the system depins upon 

increasing the drive from the incoherent and coherent static states, 
respectively. The line F→ is the force at which a moving system 
stops upon lowering the drive. The ��e ,Fe� and the static-moving 
transition becomes continuous. The curves �u�F� and �d�F� are the 
values of the coupling at which the static system makes the transi­
tion to and from finite coherence states, respectively. 

of F�F� 
c����1. This small region of the phase diagram in 

Fig. 17 is magnified and shown in the inset. It is interesting 
to compare these results with those obtained by Strogatz and 
collaborators25 for another continuous pinning force, namely 
Y�x�=−sin�x�. The corresponding phase diagram is shown in 
Fig. 19. In this case �u =�T =2 and, more significantly, 
F� 

c���=0. This means that the CS phase never exists at finite 
F. Thus, it seems that sinusoidal pinning forces are a special 
class of more general continuous pinning forces in that they 
never allow the possibility of a CS phase at finite drive. This 
difference, while important qualitatively, may not be quanti­
tatively significant given that F� 

c��� is always very small. 
Finally, for any continuous pinning force, the IM phase is 

not stable even in the short time analysis. (See Appendix D.) 
This result is consistent with the findings of Strogatz and 
collaborators25 as well as our simulations. 

VI. AVERAGING OVER DISORDER 

In this section we discuss the role of the shape of the 
distribution ��h� of pinning strengths on determining the 
nonequilibrium phase diagram. In the preceding sections we 
restricted ourselves to an infinitely sharp distribution, ��h� 
=��h−1�. This choice is appropriate for systems with strong 
pinning and allows for a direct comparison with the results 
of Strogatz and collaborators.25 It is easy to show that the 
nonequilibrium phase diagram of the driven system retains 
the same qualitative structure for any distribution that is 
sharply peaked around a finite value of the pinning strength 
and vanishes below a finite h0 �0. A broad distribution of 
pinning strength may, however, qualitatively alter the mean 
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FIG. 17. Phase diagram in the coupling-drive ��– F� plane for a 
soft cubic pinning force of the type shown in Fig. 1(c). The pinning 
force Y�x� is given by Eq. (34) with a=3�3/ �2�� and c= 
−3�3/ �2�3�. This choice of parameters gives a nonmonotonic and 
continuous pinning force: the results are to be compared with 
Y�x�=−sin�x�, another nonmonotonic and continuous force. The re­
gion of IS–CM coexistence is shown in light gray, while the IS–CS 

i ccoexistence is shown in medium gray. The lines F� and F� are the 
forces at which the system depins upon increasing the drive from 
the incoherent and coherent static states, respectively. The line F→ is 
the force at which a moving system stops upon lowering the drive. 
The CS region is very small for these values of parameters, corre­
sponding to �T �1.85 and �d�0��1.44, and it has been magnified 
in the inset. The CS phase does not exist at finite F for coupling 
larger than �T. Shown within this inset is the point ��e ,Fe� where 
the F� 

c and F→ lines join and the static-moving transition ceases to be 
hysteretic. The curves �u�F� (only visible within the inset) and 
�d�F� are the values of the coupling at which the static system 
makes the transition to and from finite coherence states, 
respectively. 

field physics. Broad distributions ��h� are of interest to 
model physical systems with weak pinning. Furthermore, a 
broad distributions of pinning strengths yields variations of 
the local stresses in the mean field theory and may give us 

FIG. 18. Mean velocity and coherence, obtained from numerical 
calculations, for a continuous cubic pinning potential and parameter 
values given in Fig. 17. The top frames record the hysteretic re­
sponse of a system prepared in the incoherent state at �=0.8 and 
F=0, while the bottom frames show the continuous F=0 depinning 
of system prepared in the coherent state at �=1.67. 

FIG. 19. Phase diagram for a sinusoidal pinning force Y�x�= 
−sin�x�. The IS–CM coexistence region is shaded gray. The F=0 
region in which the system can only exist in the CS phase is de­
noted by a series of �’s. The region of IS–CS coexistence is de­
noted by medium on-axis gray shading. The IS�CS and IS� 
phase boundaries are the points ��=�u =2,F=0� and ��= �d 

i�1.49,F =0�, respectively. The line F� is the forces at which the 
system depins from the incoherent state. The line F→ is the force at 
which a moving system stops upon lowering the drive. 

some insight into the behavior of the system in finite dimen­
sions. 

We consider a distribution of pinning strengths ��h� that 
vanishes below a minimum pinning strength h0 �0. As will 
become apparent below, it is important to distinguish three 
classes of distributions: 

(1) distributions that vanish below a finite pinning 
strength, i.e., ��h�=0 for h� h0, with h0 �0; 

(2) distributions with no finite lower bound of the pinning 
strength, but zero weight at h=0, i.e., h0=0, and ��0�=0;  

(3) distributions with no finite lower bound of the pinning 
strength, and finite weight at h=0, i.e., h0=0, but ��0��0. 

The nonequilibrium phase diagram depends qualitatively 
on whether or not the lower bound h0 is finite. If the distri­
bution of pinning strengths ��h� vanishes below a minimum 
pinning strength h0 � 0, the single particle depinning thresh­
old Fsp remains finite and the system exists in an IS phase for 
F�Fsp. When h0=0, the single particle depinning threshold 
vanishes and the IS state can only be stable at F=0.  

If the IS phase exists, its stability can be analyzed for an 
arbitrary distribution ��h� by the perturbation theory de­
scribed in Sec. IV. For arbitrary h, the static force balance 
equation has the form 

0 =  F − u sin�� − �� + hY�� − �� , �46� 

with the self-consistency condition given by Eq. (6). Clearly 
this equation is identical to the equation studied in Sec. IV 
for h=1, provided we rescale both the driving force F and 
the coupling strength u by the pinning strength h. We can 
then carry out the perturbation theory described in Sec. IV as 
a perturbation theory in powers of u /h, provided of course 
u�h0. This shows that the perturbation theory breaks down 
when h0 � 0. Furthermore we must require F�Fsp, which is 
a necessary condition for the existence of the IS phase. Pro­
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ceeding precisely as in Sec. IV and using the same notation, 
we obtain an expression for the coherence r as a power series 
in u /h, given by 

2u u 
r = f�u,F� = � dh ��h��r1�F/h� + r2�F/h�� �

h h 
3u 

+ r3�F/h�� � + ¯ � , �47� 
h 

with 

1 
r1�F/h� = , �48a� 

2ã�F/h� 

r2�F/h� = 0,  �48b� 

3 ̃a�F/h�̃c�F� − 2�b̃�F/h��2 

r3�F/h� = , �48c� 
8 ã�F/h�5 

and 

ã�F/h� = Y���0� , �49a� 

b̃�F/h� = Y���0�/2, �49b� 

c̃�F/h� = Y���0�/6. �49c� 

The boundary of stability of the IS phase, �u�F�, is ob­
tained like before by solving the implicit equation r�� , F� 
= f�u=�r ,F� with f�u ,F� given by Eq. (47), with the result 

−11
�F� = 2 . �50��u �� ��h� �

hã�F/h� 

If the distribution ��h� vanishes below a finite minimum pin­
ning force h0 � 0, then �u remains finite and there is a range 
of � and F where the IS phase is stable. Conversely, if h0 
�0, the integral in Eq. (50) may diverge, yielding �u =0.  
Below we will treat in detail the case of a piecewise linear 
pinning force, with Y�x�=−ax. In this case Eq. (50) reduces 
to 

��h� −1 

�u = 2a�� dh � . �51� 
h 

For concreteness, we consider a distribution of the form 

−�h−h0���h� = �h − h0��e , h � h0, 
�52� 

��h� = 0,  h � h0, 

with h0 �0 and ��0. This form encompasses the three 
classes of distribution functions introduced at the beginning 
of the section. We can then obtain the boundary of the IS 
phase for a piecewise linear pinning force by evaluating the 
integral on the right-hand side of Eq. (51). For distributions 
of the first class, corresponding here to h0 �0 and �=0,  we 
find that �u is finite at finite F and it is given by �u 
=2aeh0E1�h0�, where E1�x� is the exponential integral. For 
this type of distribution it can be shown that the nonequilib-

PHYSICAL REVIEW B 70, 024205 (2004) 

FIG. 20. Phase diagram in the �–F plane for a piecewise linear 
pinning force, with a=1/� and c=0, and ��h�=e−h. The depinning 
curve has been obtained numerically for a system with N=1024 and 
a ramp rate of dF /dt=10−6. 

rium phase diagram remains qualitatively similar to the one 
obtained for the sharply pinned distribution, ��h�=��h−1�, 
even for all types of pinning forces studied in Sec. V. When 
h0 �0 the perturbation theory breaks down and the existence 
of a finite value of �u, even at F=0, depends on the form of 
��h� for h�0. For distributions of the second class, with 
h0=0, but ��0�=0, it can be shown that �u is finite at F=0,  
but vanishes at all finite F. In this case there is an IS–CS 
transition at F=0, which is a remnant of the transition seen at 
finite F for the case of an infinitely sharp pinning strength 
distribution. For instance, for ��h�=he−h��=1�, there is an 
IS–CS transition at F=0 and �u �0.27. Finally, for distribu­
tions in the third class, with ��0��0, it can be shown that �u 

vanishes as 1 / ln�1/h0� when h0 �0. For such distributions, 
there is no IS phase even at F=0. The phase diagrams for 
this class of distributions of pinning strength are qualitatively 
different from those presented in Sec. V for all pinning 
forces. An example is shown in Fig. 20 for the piecewise 
linear pinning force and ��h�= e−h. This phase diagram has 
been obtained numerically. In the limit of large system sizes 
and adiabatically slow ramp rates dF /dt, no IS phase is ob­
served even at F=0. The small region of hysteresis in the 
transition between the CS and CM phases is also washed out 
by the disorder averaging. The depinning curve F� 

c displays a 
broad maximum at a finite � and vanishes as ���. 

In general, the numerical simulations show that a broad 
distribution of pinning strengths with vanishing h0 always 
washes out the IS phase and any hysteresis of the depinning 
transition. Whether this behavior persists in finite dimensions 
remains an open question. 

VII. DISCUSSION 

In this paper we have used a combination of analytical 
and numerical techniques to study the nonequilibrium mean 
field phase diagram of a model of an extended systems with 
phase slips driven through disorder. For uniform pinning, we 
generically find two stable static phases and a single moving 
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FIG. 21. Phase diagram, redrawn in the disorder-drive plane, for 
a discontinuous soft cubic pinning force of the type shown in Fig. 
1(b) and ��h�=��h −1�. The disorder h and drive F are normalized 
by the strength of the phase-slip interaction, �. The parameter val­
ues and the symbols are the same as in Fig. 2. 

phase. Both incoherent (IS) and coherent static (CS) phases 
are possible, as well as regions where the two phases coexist. 
The moving phase, in contrast, is always coherent (CM) in 
mean field theory. (An incoherent moving phase can be pre­
pared by using special initial conditions, but does not appear 
to be stable.) Coexistence of two, or even three, of these 
phases can occur depending on the system preparation; this 
coexistence results in hysteretic transitions. Such a variety of 
phases was not found for the case of a sinusoidal pinning 
force analyzed earlier,25 where only the IS and CM phases 
were found. While a discontinuity in the pinning force is not 
required for the existence of the new CS phase at large val­
ues of the coupling constant �, a jump discontinuity in the 
pinning force does increase the range of F and � over which 
the CS phase is observed. This is because discontinuity in the 
pinning force makes it more difficult for the system to depin, 
so that the static pinned phases can exist up to large coupling 
strengths, where the system is forced to acquire long range 
coherence. Once the system has become coherent, and there­
fore more rigid, the depinning threshold decreases with in­
creasing �, but remains finite for all finite values of the cou­
pling strength and only vanishes for ���. For a continuous 
pinning forces, on the other hand, the depinning threshold 
vanishes above a finite value of �. 

In order to make some contact with particle simulations 
and with experiments, it is useful to discuss the mean field 
phase diagram in terms of the disorder strength h and the 
driving force F, rather than in the �� ,F� plane as done so far. 
In most particle simulations it is the strength of the disorder 
that is most easily varied rather than the strength of the cou­
pling. Disorder is also a crucial control parameter in many 
experimental systems. For instance, varying the applied mag­
netic field in current-driven vortex lattices has the effect of 
varying the strength of the disorder. At high fields the vortex 
lattice becomes softer and can better adjust to disorder. In­
creasing the magnetic field therefore corresponds to an effec­
tive increase of the disorder strength. Figure 21 shows the 
mean field phase diagram in the �h ,F� plane for the discon­

PHYSICAL REVIEW B 70, 024205 (2004) 

tinuous soft cubic pinning force shown in Fig. 1(b). The 
corresponding phase diagram in the �� ,F� plane was shown 
in Fig. 2. 

When the disorder is weak relative to the strength of the 
coupling � the static phase is coherent. At strong disorder the 
static phase is incoherent. The transition between the coher­
ent and incoherent static phases at fixed � is hysteretic with 
a region of coexistence of the two phases. At weak disorder 
there is a continuous “elastic-like” depinning transition from 
the CS to the CM phase. At large disorder the static phase is 
incoherent and degrees of freedom depin independently at 
the single particle depinning threshold, F� 

i . The moving sys­
tem immediately acquires long-range correlations, becoming 
much stiffer and harder to pin. As a result, when the force is 
ramped down the CM state repins at the lower force F→. The 
qualitative features of this phase diagram are remarkably 
similar to those obtained by Olson and collaborators69 in a 
numerical simulation of a model of a current-driven layered 
superconductors, with magnetically interacting pancake vor­
tices. At weak disorder these authors find that the layers are 
coupled and the system forms a coherent three-dimensional 
static phase, with long-range correlations along the direction 
normal to the layers, which depins continuously. At strong 
disorder the static state consists of decoupled two-
dimensional layers. When the driving force is ramped up 
from this incoherent static state, the layers depin indepen­
dently at the single-layer depinning threshold and the transi­
tion is hysteretic. One difference between our mean field 
model and the numerical model studied by Olson et al. is the 
absence, in our model, of an incoherent moving phase. In the 
layered superconductor at strong disorder the layers remain 
decoupled upon depinning up to a second, higher threshold 
force where a dynamical recoupling transition occurs. Fi­
nally, these authors also observe a sharp increase in the de-
pinning threshold at the crossover or transition from continu­
ous to hysteretic depinning, not unlike that shown in Fig. 21. 
A strong crossover from elastic to plastic with increasing 
disorder strength, with an associated sharp rise of the depin­
ning threshold, has also been seen in a variety of two-
dimensional simulations, such as those by Faleski et al.49 

Macroscopic hysteresis has not, however, been observed in 
these two-dimensional models. Our work suggests that mean 
field models with strong disorder tend to overestimate hys­
teresis. In mean field there is no range of correlation lengths 
and hysteresis will always occur when the system is driven 
from a strongly pinned incoherent phase, where all degrees 
of freedom depin independently at the single particle depin­
ning threshold. Upon depinning, the system acquires long-
range order and becomes therefore much stiffer, so that when 
the force is ramped down it can remain in the sliding state 
down to much lower values of the driving force. 

Early transport experiments on current-driven vortices in 
NbSe3 showed S-shaped IV characteristics at high magnetic 
fields with a peak in the differential resistance as a function 
of driving current.54 Other puzzling effects were observed in 
the region of the peak, including unusual frequency depen­
dence of the ac response and fingerprint phenomena. These 
experimental findings were originally interpreted in terms of 
plastic depinning of the vortex system and macroscopic co­
existence of disordered and ordered bulk vortex phases. This 
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interpretation was corroborated by a number of simulations 
in two dimensions, where the crossover from elastic to plas­
tic depinning is clearly seen as a function of disorder 
strength. For strong disorder the system exists in a disorder 
static phase that depins plastically and then undergoes a dy­
namical ordering transition to a moving ordered phase. The 
peak in the differential resistance corresponds to such a dy­
namical ordering transition and in simulations is clearly as­
sociated with a sharp drop in the number of topological de­
fects in the driven lattice. More recent experiments have 
suggested, however, that the disordered phase is a metastable 
phase that is injected at the sample’s edges and then anneals 
into the stable elastic phase as it gets driven into the 
sample.57–59 This interpretation has been confirmed by com­
paring transport experiments in the conventional strip geom­
etry, where the edge effect is always present, to experiments 
in a Corbino disk geometry, where the vortices are driven to 
move in concentric circular orbits in a disk-shaped sample, 
eliminating boundary effects. Although there is mounting ex­
perimental evidence that these edge contamination effects 
may indeed control much of the vortex dynamics observed in 
experiments, the comparison with simulations, where coex­
istence of bulk ordered and disordered phases is routinely 
observed, remains puzzling. Of course one important differ­
ence is that most of the simulations are carried out at zero or 
very low temperature, where the disordered phase may be 
artificially stabilized. 

Substantial phase slip effects have also been observed in 
CDW systems, especially at the contacts,41 and have been 
associated with the “switching” observed in certain materi­
als. The reported correlation between broadband noise and 
macroscopic velocity inhomogeneities also supports the idea 
that in these systems the dynamics may be dominated by 
large scale plasticity.42 While the switching itself has also 
been explained as arising from the presence of normal 
carriers,26 phase slips seem crucial to account for the corre­
lation between broadband noise and macroscopic velocity 
inhomogeneities. 

Finally, similar behavior has also been observed in col­
loids driven over a disordered substrate. Pertsinidis and 
Ling70 have studied experimentally single layers of two-
dimensional colloid crystal driven by an electric field over a 
disordered substrate. They observe plasticlike or filamentary 
flow of the colloids, with a velocity-force curve that is al­
ways convex upward and shows no hysteresis. Langevin 
simulations by Reichhardt and Olson71 find a sharp crossover 
from elastic to plastic depinning as the strength of substrate 
is increased. Though the direct applicability of our mean 
field model and results to experimental systems remains to 
be demonstrated, this work lays out a detailed foundation for 
understanding the role of phase slips and topological defects 
on the dynamics of driven disordered systems. Preliminary 
numerical studies of the phase slip model in three dimen­
sions, with a sinusoidal pinning potential, suggest that the 
depinning transition may not be hysteretic in the thermody­
namic limit. This is similar to that suggested by studying the 
mean field with a broad distribution of pinning strengths, as 
shown in Fig. 20, where the distribution of pinning forces the 
incoherent static (IS) phase. Clearly more work is needed to 
establish if such a finding is generic in finite dimensions. 

PHYSICAL REVIEW B 70, 024205 (2004) 

Other numerical studies of the phase slip model in finite-
dimensions have found scaling behavior in the limit of strong 
pinning, suggesting some sort of dynamical critical phenom­
ena associated with plastic depinning.72 An important open 
question is whether the transition from elastic to plastic de-
pinning (with or without macroscopic hysteresis) is a cross­
over or is associated with some type of tricritical point, as 
suggested by the present and other mean field models. 
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APPENDIX A: COHERENCE AT F =0 

In this appendix we describe the calculation of the coher­
ence r��� of static states at F=0. First we derive an expres­
sion for the function f�u� defined in Eq. (9) for an arbitrary 
pinning force, Y���. Once f�u� is known, the coherence is 
then obtained by solving the self-consistency condition, r 
= f��r�. The calculation is complicated by multivalued solu­
tions to the self-consistency equations, which leads to mul­
tiple metastable states. A consistent selection principle is ap­
plied, namely, choosing the coherence u to be maximal, 
given �. The range of available metastable states is also used 
to determine �T, the value of coupling above which the de-
pinning field is zero. 

1. Change of variables 

As discussed in Sec. III C, it is convenient to perform a 
change of variables in Eq. (9) and integrate over � rather 
than over the random phase �. The function f�u� is then 
given by 

1 � �� 
f�u� = d� cos�� + ���,u�� , �A1� 

2� ��−� 

where u��r. Since Y��� is 2� periodic, the integration in 
Eq. (A1) can be carried out over any 2� interval. Here we 
choose the interval �−� ,��. The change of variable allows us 
to evaluate f�u� analytically as the force balance equation, 
Eq. (8), while transcendental in ��� ,u�, is simply a linear 
equation in the phase ��� ,u�. We can therefore immediately 
write the solution ��� , u� of Eq. (8), substitute it in Eq. (A1), 
and evaluate the integral to obtain f�u�. As we will see be­
low, the only difficulty in carrying out this program is that 
the phase ��� ,u� is generally a multivalued function of �. 
Therefore care must be taken in selecting the portion of the 
curve that must be included in the integral. The choice is 
dictated by the requirement that the imaginary part of the 
self-consistency condition, which now reads 

1 � �� 
0 =  d� sin�� + ���,u�� , �A2� 

2� ��−� 

be satisfied, and that the phase ���� span a full 2� interval in 
�. 
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For static solutions and F=0 the balance equation (8) can 
be written as 

Y��� 
sin�� + �� = . �A3� 

u 

Since �sin�� + ����1, the right-hand side of Eq. (A3) must 
also be bounded in magnitude by one. This means that all 
solutions to Eq. (A3) must satisfy 

− �max�u� � � � �max�u� , �A4� 

where �max�u� is defined by 

�Y��max�� = u , �A5� 

or �max�u���Y−1�u��, with Y−1 denoting the inverse function. 
Note that if Y��� is nonmonotonic in the interval �−� ,��, as  
it is for instance the case for the soft cubic potential shown in 
Fig. 1(b), then for u� �Y���� there are two possible values of 
�Y−1�u�� in the range �0,��. In this case �max is defined as the 
smallest of these two values. At the end of this Appendix we 
will discuss the relevance of the second solution and demon­
strate that it corresponds an unstable state. 

2. Metastable states 

For every fixed value of u, there is in general an infinite 
set of solutions for the phase � in the range �−�max,�max�. 
The corresponding solutions for the phase � as a function of 
� can be enumerated by indexing them with an integer, n. 
They are given by 

�n��,u� = −  � + n� + �− 1�n sin−1�Y���/u� , �A6� 

where we only consider values of the function sin−1�x� in the 
range �−� /2 ,� /2�. Since the calculation of �n�� ,u� and 
��� ,u� is carried out at fixed u, from here on we will simply 
omit the u dependence in the argument of these functions. 
The typical behavior of the phase � as a function of �n, for 
−2 �n�2, is shown in Fig. 5. 

The integral in Eq. (A1) must span a full period (in �) of 
the ���� curve. As evident from Fig. 5, this always corre­
sponds to a pair of consecutive even–odd sections. Here we 
choose to work with the n=0 section, and the upper and 
lower halves of the n=−1 and the n =1 sections, respectively. 
This choice is equivalent, for instance, to that of the n =0 and 
the full n=−1 sections (or n =0 and n=1), but it has the 
advantage of being symmetric about the origin. The chosen 
portion of the ���� curve is displayed in Fig. 22 for three 
different values of u. The figure shows how the phase be­
comes multivalued as u is increased. 

For u�a, with a the linear slope of the pinning force Y��� 
at �=0, the phase � is single valued, as in curve (a) of Fig. 
22. In this case integrating over a full period in � is equiva­
lent to integrating over the entire curve, consisting of the full 
n=0 central section (solid) and the two n=±1 half sections 
(dashed). Making use of the symmetry of the integrand about 
�=0, we obtain 

PHYSICAL REVIEW B 70, 024205 (2004) 

FIG. 22. The figure shows the behavior of the phase ���� for 
three values of u. The n=±1 half-sections are dashed, while the n 
=0 section is solid. Curve (a) corresponds to u�a and is single 
valued. Curves (b) and (c) are both multivalued and correspond to 
(b) a�u� Y�� /2� and (c) u� Y�� /2�. The section �0 ends at the 
points ±�max, where the half sections �=�1 begin. For curve (b) 
these points lie within the portion of the curve that must be included 
in the integral to determine f�u�. For curve (c) they lie outside. �* 

denotes the nonzero value of the phase at �=−�. 

�max1 d�−1f�u� = d� cos�� + �−1��,u�� 
� 
� � 

d� 
� 

0 

1 0 d�0+ d�� �cos�� + �0��,u�� . �A7� 
� 
� 

d��max 

Upon substituting the expressions for �−1��� and �0��� from 
Eq. (A6) in Eq. (A7), we obtain 

�max2 
f�u� = d��1 −  �Y���/u�2, u � a . �A8� 

0 

When ���� is single valued, the integral in Eq. (10) over the 
entire period gives zero, so that the imaginary part of the 
self-consistency condition is satisfied. 

When u�a, the phase � is multivalued, as exemplified in 
cases (b) and (c) in Fig. 22. In this case one can no longer 
simply integrate over the full curve in the range � 
� �−� ,��. Rather, one must select a portion, of measure 2� 
in �, that satisfies the imaginary part of the self-consistency 
condition, Eq. (A2). As discussed in Sec. III C we choose the 
portion of the curve corresponding to the metastable states 
that would be accessed by adiabatically increasing u from 
zero. For �=0, this choice corresponds to the connected part 
of the ���� curve lying between �=−� and �. This choice is 
odd about the origin and therefore automatically satisfies Eq. 
(A2). The phase � now has two values at �=�, �=0, and 
�=�*, which is defined implicitly as the nonzero root of the 
equation 
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− Y��*� = u sin��*� . �A9� 

The value �* is the desired upper limit in the integration over 
� in Eq. (A1). When a� u�Y�� /2�, corresponding to curve 
(b) in Fig. 22, the root �* is smaller than �max and the portion 
of the curve to be included in the integrand spans the entire 
�0��� section (solid line) and those parts of the �±1��� half 
sections (dashed) that lie within � = �−� ,��. For this range 
of u values we find 

�max2 Y��*� 
f�u� = � d��1 −  �Y���/u�2 − 

� u�0 

�*1 
− � d��1 −  �Y���/u�2, a � u � �Y��/2�� . 

0 

�A10� 

At u = �Y�� /2��, �*=�max. For u� �Y�� /2��, corresponding 
to the situation illustrated in curve (c), �max exceeds �* and 
the portion of the curve to be included in the integrand only 
spans that part of the �0��� section (solid) that lies in �� � 
−� , ��, as seen from Fig. 22. In this case we obtain 

1 �* Y��*� 
f�u� = � d��1 −  �Y���/u�2 − ,

� u�0 

u � �Y��/2�� . �A11� 

The three equations, Eqs. (A8), (A10), and (A11), give the 
function f�u� at all u for an arbitrary pinning force, Y���. It  
can be shown that when Eq. (A8) is expanded for small u, 
the perturbative result, Eq. (19), is recovered. 

For a piecewise linear pinning force, with Y���=−a� for 
−�����, the integrals in Eqs. (A8), (A10), and (A11) can 
be evaluated analytically, with the result 

, u � a ,
2a 

u �* 2a u 
f�u� = + � − − cos �*� , a � u � a�/2, 

2a 2� u a� 
u 

�* 2a u 
+ + cos �* , u � a�/2, 

2� u a 

�A12� 

where �*= �u /a�sin��*�. The coherence r is then determined 
by the solution of r= f��r�. For u �a the equation for the 
coherence is r=�r /�u, where �u =1/ �2a�. If  ���u, the 
only solution is r=0. For �= �u the equation is satisfied by 
any nonzero value of r consistent with u�a, or equivalently 
r� 1 /2. Thus, at �=�u the coherence jumps discontinusouly 
from zero to the value r0=1/2.  By expanding f�u� for u 
�a+ we find that for ���u, 

�2/5r − r0 � �� − �u . �A13� 

The full solution r as a function of � is shown in Fig. 6. 
We now return to the question of the existence of solu­

tions ���� outside the range �−�max,�max�. This is relevant 
for pinning forces Y��� that are nonmonotonic in the interval 

FIG. 23. The figure shows the phase � versus �n at u=0.8, for 
n=0, ±1 , ±2, for the continuous pinning force of Fig. 1(c), with 
a=3�3/ �2�� and c=−3�3/ �2�3�. The upper and lower branches, 
lying outside the range �−�max,�max� are unstable, while the central 
branch is stable. 

�−� ,��. For such pinning forces the Eq. (A9) has two non­
vanishing solutions. The smallest of these two solutions, �* 
defines the range of phases that have been used in the calcu­
lation of the coherence described above. Denoting the largest 
of the two solutions by �u, we note that for u� �Y���� there 
will also be solutions for the phase � lying in the ranges 
��u ,�� and �−� ,−�u�. Examples of such solutions are shown 
in Fig. 23 for the soft cubic pinning force. The solutions 
outside the range −�max ����max are the top and bottom 
branches in the figure. It can be shown that such solutions 
are always unstable, while the center branch is stable. This is 
easily seen by plotting the total force Ftot=−u sin��+�� 
+Y��� acting on a domain versus the phase �, for a fixed 
value �. The stable solutions of the force balance equation 
are the zeros of Ftot��� with a negative slope, so that they 
correspond to minima of the total potential. The zeros with a 
positive slope are maxima of the potential and therefore rep­
resent unstable solutions. Of the two zeros shown for in­
stance in Fig. 24 for �=� /2, only the left-hand solution, 
which lies in the range �−�max,�max� is stable, while the 
right-hand solution is outside this range and is unstable. 
Changing the value of � would simply shift the curve of Ftot 
along the � axis, with the stable root always remaining inside 
the interval �−�max,�max�. 

3. Derivation of �T 

The number of metastable static states available to the 
system plays an important role in determining the depinning 
threshold. In general the system can exist in a large number 
of static metastable states and the function ���� becomes 
more multivalued as u increases, as shown in Fig. 22. The 
number of metastable states is not, however, a monotonic 
function of u as only values of � lying in the interval 
�−� ,�� are acceptable solutions. The number of available 

024205-21 



 

 

 

 
 

 

 

 
 

 
 

 
 

 

  

  

 

 
  

   

  
 

  

  

  
 

 
    

 

  

 

  

 

 
  

  

 
   

  

 

 
 

 
 

-It It 0

� � � 

� � � 

SAUNDERS et al. PHYSICAL REVIEW B 70, 024205 (2004) 

FIG. 24. Plot of Ftot versus � for �= � /2,  u=0.8 for the con­
tinuous pinning force of Fig. 1(c), with a=3�3/ �2�� and c= 
−3�3/ �2�3�. The equation Ftot =0 has two solutions. The left-hand 
solution, with negative slope is stable, while the right-hand solution, 
with positive slope, is unstable. 

metastable states increases with increasing u until �max�u� 
= �, corresponding to u = �Y����. As  u is increased beyond 
�Y���� the number of metastable states decreases. When an 
infinitesimal force is applied, all the phases are pushed for­
ward and an infinitesimal number of static metastable states 
becomes unstable as they can no longer satisfy the self-
consistency condition. The system remains, however, pinned, 
provided there exist other static states that are still meta­
stable. When �*�u�=�, the situation changes as there is only 
one metastable static solution that becomes unstable as soon 
as an infinitesimal driving force is applied to the system. The 
system depins as soon as F� 0, i.e., the threshold force for 
depinning is zero. 

It can be seen from Eq. (A9) defining �* that for pinning 
forces with �Y�����0, �* �� for any finite u. In this case �* 

approaches � only in the limit u��. Since r is always fi­
nite, it is only in the limit of infinite � that the system ap­
proaches a perfectly ordered floating state and the depinning 
threshold force goes to zero. For continuous pinning forces 
with Y���=0,  �*=� at a finite value of u=uT �Y����. For 
u�uT, the system has only a single, albeit partially disor­
dered, state available. This state becomes unstable upon ap­
plication of an infinitesimal driving force, and the system 
begins to slide. In other words, the threshold for depinning 
vanishes for all u�uT or, equivalently, all ���T 
= uT / f�uT�. Using Eq. (A11) we find the value of �T dis­
played in Eq. (23). 

cAPPENDIX B: DEPINNING FORCE F „�… _ 

In this appendix we calculate the depinning force F� 
c��� 

for hard and soft cubic pinning forces, of the type sketched 
in Fig. 1. These forces are given by Eq. (34) with c�0 for 
the hard cubic force and c� 0 for the soft cubic force. Due to 
the periodicity of the problem, we can restrict ourselves to 
any interval of � of range 2�. For simplicity we choose 
again � to lie in the �−� ,�� interval. In this interval the force 
balance equation, with �=0 is  

0 =  F − u sin�� + �� + Y��� , �B1� 

and only solutions to Eq. (B1) which satisfy −� 
���� ,u ,F��� should be considered. 

FIG. 25. The phase ���� as a function of �n for −2� n� 2 for 
two sets of values of �u ,F�, corresponding to single-valued [for 
�u =0.1, F=0.2�] and multivalued [for �u=0.35, F=0.2�] solutions. 
Even n branches are drawn as solid lines and odd n branches are 
dashed. 

As for the case F=0, the transcendental nature of the 
force balance equation, Eq. (B1), can be circumvented by 
integrating over � rather than over the phase � in the self-
consistency conditions. Solving for ��� ,u ,F� gives an infi­
nite set of of solutions, labeled by an integer n, 

Y��� − F 
�n��� = −  � + n� + �− 1�n sin−1� � , �B2� 

u 

where � is restricted to lie in the range 

�min�u,F� � � � �max�u,F� , �B3� 

with 

�min�u,F� �  − Y−1�F − u� , 

�max�u,F� �  − Y−1�F + u� . �B4� 

The solution must satisfy the real and imaginary parts of the 
self-consistency condition, given by 

r = f�u,F� , �B5� 

1 �� 
0 =  d� sin�� + ���,u,F�� , �B6� 

2� ��2� 

with 

1 �� 
f�u,F� = d� cos�� + ���,u,F�� . �B7� 

2� ��2� 

Throughout the analysis we will be considering ��� ,u ,F� for 
fixed values of u and F. We will therefore write �=����, 
with the dependence on u and F implied. 

As in the case F=0, the phase � is generally a multivalued 
function of � (see Fig. 25). We consider only the metastable 
state corresponding to a connected portion of the curve ���� 
in the range �� ��L ,�R�, and it is this portion that is inte­
grated over in the self-consistency conditions. We focus in 
this particular state because it is the one that controls depin­
ning. The points �L and �R bounding this portion are func­
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tions of u and F and may in general differ from �min and 
�max. They are determined by the requirement that the imagi­
nary part of the self-consistency condition, Eq. (B6), be sat­
isfied and by the condition that the portion of the function 
���� bounded by these points span a full 2� interval in �, 
i.e., 

���L� + 2� = ���R� . �B8� 

The details on how the limits of integration are determined 
and the corresponding portion of the solution for ���� is 
chosen in each case are given below. 

After evaluating the coherence, we can then proceed to 
compute the force F� 

c��� where the static coherent state be­
comes unstable and the system begins to slide. As F is in­
creased at fixed u, the whole ���� curve shifts upward and 
both �max and �L increase. The number of static metastable 
states in the range � � �−� ,�� decreases, until at the critical 
force F� 

c only one static metastable state remains. This occurs 
where the largest value of � on the connected portion, de­
noted by �u, reaches �, i.e., 

�u�u,F� 
c� = � . �B9� 

Upon further increasing F the system depins. Equation (B9) 
defines the boundary of stability of the coherent static state, 
i.e., the depinning threshold, and can be solved to obtain 
F� 

c�u�. It will be shown below that, depending on the value of 
u, the connected portion satisfying the self-consistency con­
dition may or may not include �max. For small values of u it 
will and �u =�max. At larger values of u, the connected piece 
does not include �max and �u =�L. Finally, the depinning 
threshold F� 

c��� as a function of � is obtained by eliminating 
u between the equation for the coherence at threshold, r 
= f�u , F� 

c� and the expression for Fc
��u� obtained from Eq. 

(B9). 

FIG. 26. The phase � as a function of � for 
various values of u and F�F� 

c�u�. Also shown in 
each frame are the values of �min and �max de­
fined in Eq. (B4) and the boundary points �R and 
�L of the connected portion of the function ���� 
that is used to evaluate the integrals determining 
the coherence in each case. The four curves cor­
responds to the four cases discussed in the text: 
(a) u�usv�F�, where ���� is single valued. In this 
case we can choose �L =�max, which requires �R 

=�max. As  F is increased, �max grows until �max 
c=�L =� at F= F�. (b) usv�F�� u� u1�F�; (c) 

u1�F��u�u2�F�; and (d) u�u2�F�. 

Fc
„�… for monotonic Y„�… _ 

The monotonic class consists of all hard cubic pinning 
forces and those soft cubic pinning forces which have �c � 
�a /�2/3. Since the function Y��� is monotonic, its inverse, 
Y−1�x�, is single valued in the entire range of interest, −1 
�x�1. 

A full period of ���� corresponds to a pair of consecutive 
even–odd sections in n. In Fig. 25 we show plots (with even 
sections shown as solid lines and odd sections shown 
dashed) of � versus �n��� for two pair of values �u ,F�, cho­
sen so that in one case the solution is single valued and in the 
other it is multivalued. In both cases the curves lack the 
symmetry of those for F=0. In general, the value of u at 
which ���� becomes multivalued depends on F. At this 
value, denoted by usv�F�, each odd �n��� develops an inflex­
ion point at �=�e. In particular, for n=1, this requires 

��1��,usv,F� 
= 0,  �B10a� 

�=�e 

�2�1��,usv,F� 
= 0.  �B10b� 

��2 
�=�e 

Using Eq. (B2) for �1�� , u ,F� we obtain the following pair 
of equations: 

�usv�2 = �Y���e��2 + �Y���e��2, �B11a� 

F = −  Y��e� − Y���e� , �B11b� 

which can be solved to determine usv�F�. 
For u�usv�F� the function ���� is single valued, as 

shown in Fig. 26(a). Integrating over a 2� interval of � is 
equivalent to integrating over a full odd and even section. We 
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choose �L = �max, which requires �R =�max and automatically 
satisfies the imaginary part of the self-consistency condition. 
The function f�u ,F� is then given by 

�min ��0f�u,F� = � d�� �cos�� + �0���� 
�max 

�max ��1+ � d�� �cos�� + �1���� . �B12� 
�min 

Equation (B12) can be simplified as 

�max 21 Y��� − F 
f�u,F� = 

� 
� d��1 −  � 

u 
� , 

�min 

u � usv�F� . �B13� 

For u�usv�F�, the function ���� is multivalued. In this 
case there are multiple possible metastable states ����. We  
can use any one of these to calculate r�u , F� as long as the 
chosen state satisfies the imaginary part of the self-
consistency condition, and lies in the range �−� ,��, but as 
explained above we choose to focus on the one correspond­
ing to a connected portion of ����. As  u is increased at fixed 
F, �L�u ,F� increases and �R�u ,F� decreases. For hard pin­
ning forces �R reaches �min before �L reaches �max. It is then 
convenient to distinguish three regions. 

(1) usv�F��u�u1�F�, where u1�F� is the value of u 
where �R =�min. In this region the connected portion includes 
all of the �0��� piece and some of both the �−1��� and �1��� 
pieces as shown in Fig. 26(b). The imaginary part of the 
self-consistency condition is then given by 

�max �mind�−1 d�00 =  � d�� �sin�� + �−1���� + � d�� �sin�� 
d� d��L �max 

�R d�1+ �0���� + � d�� �
sin�� + �1���� , �B14� 
d��min 

with the additional requirement 

�−1��L� + 2� = �1��R� . �B15� 

Once the values of �L�u , F� and �R�u , F� have been obtained 
by solving Eqs. �B14� and �B15�, the function f�u ,F�, is  
computed using Eq. �B5�, which now has the explicit form 

�max d�−1f�u,F� = � d�� 
d� 

�cos�� + �−1���� 
�L 

�min d�0+ � d�� �cos�� + �0���� 
d��max 

�R d�1+ � d�� �cos�� + �1���� . �B16� 
d��min 

(2) u1�F��u� u2�F�, where u2�F� is the value of u 
where �L =�max. In this region the connected portion includes 
only parts of the �0��� and �−1��� pieces. In this region 
�L ��max, but �R ��min, as shown in Fig. 26(c). The imagi­
nary part of the self-consistency condition is then given by 

PHYSICAL REVIEW B 70, 024205 (2004) 

�max d�−10 =  � d�� 
d� 

�sin�� + �−1���� 
�L 

�R d�0+ � d�� �sin�� + �0���� , �B17� 
d��max 

where 

�−1��L� + 2� = �0��R� . �B18� 

This pair of equations yields �L and �R, which can then be 
used to calculate f�u ,F� as 

�max d�−1f�u,F� = � d�� �cos�� + �−1���� 
d��L 

�R d�0+ � d�� �cos�� + �0���� . �B19� 
d��max 

(3) u�u2�F�. In this region the simply connected portion 
of the ���� curve only contains part of the n=0 branch, and 
none of the n=±1 branches as shown in Fig. 26(d). The 
imaginary part of the self-consistency condition reads 

�R d�00 =  � d�� �sin�� + �0���� , �B20� 
d��L 

with 

�0��L� + 2� = �0��R� , �B21� 

and the function f�u ,F� is given by 
�R d�0f�u,F� = � d�� �cos�� + �0���� . �B22� 

d��L 

As discussed earlier, the depinning force is defined by Eq. 
(B9), i.e., it is given by the value of F where �u =�. For all 
values of u�u2, we can obtain a simple analytical expres­

csion for F since in this region �u�u ,Fc�= �u ,Fc�=�.� � �max � 
Substituting in Eq. (B4), we obtain 

c�max�u,F� 
c� = −  Y−1�F� + u� = � , �B23� 

which is easily solved to give 

Fc�u� = 1 −  u, u � u2�Fc� . �B24� 

For u� u2, �max is outside the connected portion of the curve 
included in the integration and �u =�L. So threshold is 
reached when �L =�. In this case it is convenient to directly 
solve for the depinning threshold by setting �L =� and F 

c=F in the self-consistency condition, which is given by 
c� d�0��,u,Fc� 

0 =  ��R�u,F
d��
 �
sin�� + �0��,u,Fc�� ,

d� � 
�L =� 

�25� 

with 

�0��L = �� + 2� = �0��R�u,Fc�� . �26� 

Together these two equations yield Fc�u�. In Fig. 27 we plot 
Fc�u� vs u for the hard pinning potential, Y�x�=−�x 
+x3� / ��+�3�. 
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FIG. 27. The force F� 
c�u�, as a function of u for the hard pinning 

*force, Y�x�=−�x+x3� / ��+�3�. The arrows indicate the values u ,sv
* u1, and u2

* separating the four different regions discussed in the text. 
*These values are defined by the relations usv�Fc

��u * 
sv��=usv, 

* * u1�Fc�u*
1��= u1, and u2�Fc�u*

2��=u2. The plot becomes nonlinear be­
*yond u2 where the threshold goes from being determined by �max 

=� to being determined by �L =�. 

The method for obtaining Fc��� for monotonic soft pin­
ning forces is analogous to that for the hard pinning force, 
except for one difference. In the case of a monotonic soft 
pinning force, the value of �L reaches �max before �R reached 
�min (the reverse takes place for monotonic hard pinning 
forces). This means that u2 �u1 so that region ( ) 1 is now 
defined by usv �u�u2, region ( ) 2 by u2 �u�u1, and region 
(3) by u�u1. Of course the single valued region remains 
u�usv. It is not difficult to see that only the expressions for 
region ( ) will differ. In this region the imaginary part of the 2 
self-consistency condition becomes 

�min d�00 =  � d�� �sin�� + �0���� 
d��L 

�R d�1+ � d�� �sin�� + �1���� , �B27� 
d��min 

which along with 

�0��L� + 2� = �1��R� �28� 

determines �L and �R. The expression for f�u ,F� in region 
(2) is now 

�min d�0f�u,F� = � d�� �cos�� + �0���� 
d��L 

�R d�1+ � d�� �cos�� + �1���� . �B29� 
d��min 

c2. F for nonmonotonic Y„�… _ 

The method for obtaining Fc��� for nonmonotonic Y��� is 
analogous to that outlined for monotonic Fc�u�. Matters are 
complicated, however, by the existence of additional un­

stable solutions of the kind discussed for F=0 in Appendix 
A. In principle there is no difference in obtaining Fc���; one 
must simply be careful to ensure that only stable solutions 
are being considered. The differences in the calculation are 
quite technical and we spare the reader the details. 

APPENDIX C: NUMERICS 

To explore the phase diagrams of the mean-field model, 
we numerically integrated the equations of motion to deter­
mine v and r as a function of F and �. As seen in the main 
text and earlier appendices, the macroscopic behavior can 
depend on the preparation of the initial state. For N degrees 
of freedom i=1,2 ,  . . .  ,N, the �i for most studies were set 
uniformly, �i = �2� /N�i. We studied several different initial 
conditions. One of the most frequently used was to set all 
�i =�i at F=0, which prepares the system in the incoherent 
static (IS) state, whenever it is stable. In order to prepare the 
system in a static coherent state, all phases would be set 
equal to zero. Coherent moving or static states were also 
prepared by starting from a high field F with, say, random 
initial positions �i. [Incoherent moving states were prepared 
in some portion of the phase diagram. When preparing inco­
herent sliding states, we used M2 =N degrees of freedom, 
with M distinct values for �; the values of �i for each � 
value were equally spaced in time based on the periodic 
single particle �r=0� solution to the equations of motion for 
the given �.] Given the initial conditions, we typically com­
puted v�F� and r�F� at fixed �. This was done by integrating 
the equations of motion Eq. (3) using the fourth-order 
Runge–Kutta scheme. The force was raised in small discrete 
steps: after some amount of time teq at fixed force, v and r 
are measured and then F is increased (decreased) some small 
amount �F. With this algorithm, the time average of the 
ramp rate dF /dt is given by �F / teq. In some cases, we fixed 
F and ramped � up and down in a similar fashion. 

While the ramp rate and system size does affect the de-
pinning force, the force at which v goes from zero to non­
zero, we find generically that for ramp rates smaller than 
10−5 and sizes N greater than 256, we obtain results for both 
the incoherent and coherent depinning line that are relatively 
independent of actual ramp rate or system size and agree 
with analytical calculations. There is agreement even though 
the coherent depinning curve is analytically obtained using 
the assumption that u is adiabatically increased. For the 
simulations, on the other hand, F or � is increased (de­
creased) slowly. Adiabatically ramping � is not necessarily 
equivalent to adiabatically ramping u since the former does 
not insure that r changes slowly, but we do find the correct 
coherent depinning line by sitting at a fixed F and ramping 
up �. 

The analytical analysis in Secs. V and VI provides us with 
the depinning line as approached from the pinned phase, but 
it does not give us insight into the nature of the depinning 
transition. For example, there could be hysteresis in v�F� or 
r�F� for cyclical histories in the force, for sufficiently large 
system sizes and arbitrarily small ramp rates. Hysteresis in 
the order parameters implies that the depinning transition is 
discontinuous. If there is hysteresis in v�F�, then the depin­
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ning line as approached from the moving phase must be 
different from the depinning line computed in Secs. VI and 
V. To numerically search for hysteresis, we prepare the sys­
tem in a coherent moving state and lower the force until the 
system stops. If this repinning line is different from the ana­
lytical depinning result, hysteresis between the static (IS or 
CS) and moving phases is present and there is a region where 
the two phases coexist. 

For every potential investigated, we find that there is a 
range of 0����e where there is a coexistence of the mov­
ing and stationary solutions. In general, there is hysteresis 
between coherent moving (CM) and incoherent static (IS) 
phases. For the piecewise linear pinning force, the hysteresis 
extends into the coherent pinned CS region. In other words, 
the coherence r jumps from one finite value to another at the 
depinning transition and there is hysteresis in both r and v 
�F→ �F� 

c�. The numerical evidence for this is shown in Fig. 
28, which shows the area of the hysteresis loop, 

� dF �v→�F�−v��F��, where v→�F� and v��F� are the histo­�0 
ries of v�F� for ramping the field down or up, respectively. 
The amount of hysteresis, as measured by this quantity, is 
independent of system size and dF / dt, which suggests that 
the simulations are close the adiabatic and infinite-volume 
limit. There is a jump down in the area of the hysteresis loop 
when � exceeds �u, but the area is still nonzero for ���u. 

For the hard potential, with the history described above, r 
jumps to zero when the system becomes pinned. When the 
drive is increased back up again, the system depins at a dif­

iferent F� when ���e. However, we do not observe hyster­
esis between the CM and CS phases. In fact, the hysteresis 
when ramping F vanishes suddenly at �=�e. See Fig. 29. 
This is because the slope of the coherent depinning line starts 
to increase rapidly at ��e , Fe� and eventually becomes infi­
nite before curling over to possible hysteresis. Above the 
point at which the slope becomes infinite, the analytic calcu­
lations suggest that coherent depinning can be observed by 
increasing � at fixed F. This was verified numerically. For 
the soft-potential cases tested we did not observe hysteresis 

FIG. 28. (a) Area of the hysteresis loop in 
v�F� as F is cycled from large values to zero and 
then back up again near �e �0.75 for the scal­
loped potential. Different system sizes and ramp 
rates dF / dt are shown. Plot (b) is just a blowup 
of (a) very near �e. 

between the CS and CM phases. Hysteresis is only observed 
between the IS and CM phases. 

APPENDIX D: STABILITY OF THE IM PHASE 

In this section we investigate the existence of a stable 
incoherent sliding (IM) phase. We note that the velocity of a 
single degree of freedom is always a periodic function of 
time. To obtain a constant steady state velocity for a collec­
tion of incoherent degrees of freedom, we assume that at 
some initial time ti the ith degree of freedom is at the mini­
mum of its own potential well, which in turn is randomly 
shifted by �, and perform an average over the random start­
ing times ti. These are chosen to be random variables uni­
formly distributed on the interval �0,  P�, with P being the 
period, that is the time over which the phases advance by 2�. 
This procedure guarantees that we sample uniformly all pos-

FIG. 29. Area of the hysteresis loop in v�F� near �e for the hard 
icase, where �e is the intersection of F� and Fc. Different system 

sizes and ramp rates are shown. 
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sible incoherent moving states such that the system reaches a 
steady state. 

Proceeding as in the study of the incoherent static state, 
we assume that the IM phase exists and study its stability. 
The self-consistency condition that must be satisfied by the 
mean field solution is given by 

dti d�i��t� i��t−ti,��r�t�e e , �D1�= � � 
P 2�P −� 

where the phase ��t − ti ,�� is the phase at a time t� ti ob­
tained by solving the equation of motion. In Eq. (D1), both 
the coherence r and the mean phase � are functions of time. 
As in the static stability analysis, we let ��t− ti ,��=��t 
− ti ,��−�. We then perturb the IM state at the time t=0, with 
a perturbation of the form 

�p�− ti,�� = �0�− ti� − � sin�� + �0�− ti�� , �D2� 

with ��1. After inserting this in Eq. (D1), we evaluate the 
right-hand side at t=0 to  O���, obtaining r�t =0�= � /2 and 
��t =0�=0. We then use this to compute ṙ�0� to linear order, 
with the result 

� � dti ṙ�0� = � + � Y���0�− ti��� . �D3� 
2 2 PP 

If r�t� is monotonic in time, then its stability is entirely de­
termined by the sign of ṙ�0�. We would then conclude that 
there is a critical value �c�F� of the coupling strength below 
which the IM phase is stable, with 

2 dti
�c�F� = −  Y���0�− ti�� . �D4� 

P 
� 

PP 

With a change of variable from ti to �0 (using the equation of 
motion), one finds that �c =0 for all F� Fsp for any continu­
ous pinning force [since Y���=0]. For discontinuous pinning 
forces, however, we can evaluate the integral in Eq. (D4) by 
splitting the integral in a contribution from the smoothly 

PHYSICAL REVIEW B 70, 024205 (2004) 

varying part of Y���0� on the interval �−� ,�� and a jump at 
�0=�. This gives 

2 F + �Y���� Y��� 
�c�F� = −  �ln� � − 2  � , �D5� 

P F − �Y���� F + �Y�− ��� 

where P is a function of F. For the piecewise linear force, 
one can evaluate P and find �c�F��0 for some F�Fsp. The 
critical value of �c�F� is given by 

�c�F� = �u 1 −  . �D6� 
F + a� 

ln �F + a��� � 
2 

� �
F − a� 

In the limit of large F, �c approaches zero. As F approaches 
Fsp, on the other hand, �c = �u. In other words, the IM sta­
bility curve abruptly ends at ��u ,Fsp� as there can be no IM 
phase for any F less than Fsp. A transition from an incoherent 
to a coherent moving phase was indeed obtained theoreti­
cally by Vinokur and Nattermann28 in a model of for layered 
charge density waves and also observed by Olson et al.69 in 
numerical simulations of layered superconductors. For strong 
disorder, these authors found a transition as the drive is in­
creased from a 2D state of decoupled moving layers to a 3D 
state where the moving layers become coupled. Our short 
time results suggest that a similar transition may occur in the 
isotropic system studied here. However, our numerical stud­
ies indicate that this transition may be an artifact of the short 
time analysis. When testing the stability of a system prepared 
in the IM phase numerically, we find that r�t� is generally not 
a monotonic function of time. Furthermore, a perturbation of 
strength � always destabilizes the IM phase in the limit of 
large system size, unless the strength of the perturbation is 
made to decrease with system size. Finally, we verified that 
the IM phase remains unstable if the somewhat artificial av­
erage over the starting times ti is replaced by an average over 
a narrow distribution of pinning strengths. Given these nu­
merical findings, we conclude that the IM phase is typically 
unstable in the isotropic mean field model studied here, al­
though of course we cannot rule out that the system could be 
prepared in such a state by some special initial condition. 

*Present address: School of Physics, Dublin Institute of Technol­
ogy, Kevin Street, Dublin 8, Ireland. 

†Present address: Department of Chemistry and Biochemistry, Uni­
versity of California, Los Angeles, CA 90095-1569. 
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