
IMPROVING WEBIDE THROUGH DELIGHTFUL DESIGN AND

GAMIFICATION

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Michael Hilton

March 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19158812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2013

Michael Hilton

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Improving WebIDE through Delightful De-
sign and Gamification

AUTHOR: Michael Hilton

DATE SUBMITTED: March 2013

COMMITTEE CHAIR: David Janzen, Ph.D. Computer Science
Department, Cal Poly, San Luis Obispo

COMMITTEE MEMBER: John Clements, Ph.D. Computer Science
Department, Cal Poly, San Luis Obispo

COMMITTEE MEMBER: Franz Kurfess, Ph.D. Computer Science
Department, Cal Poly, San Luis Obispo

iii

Abstract

Improving WebIDE through Delightful Design and Gamification

Michael Hilton

WebIDE is a web-based online learning environment. WebIDE has been used

successfully to teach CS0 and CS1 students Java and C concepts and software

engineering best practices, specifically Test Driven Development. Previous Web-

IDE development has concentrated on developing functionality. The main goal

of this effort is to improve two non-functional aspects of WebIDE. The first is to

design a more delightful user interface. The second is to add a scoring mecha-

nism that encourages students to develop best practices. The scoring mechanism

rewards students who answer the question correctly on the first attempt, dis-

couraging them from spamming the answer button. Our objective is to motivate

the students to think before answering. The innovations are evaluated through

a semi-controlled experiment that was conducted during the Fall quarter of 2012

at Cal Poly.

iv

Acknowledgements

I would like to thank my committee members, Dr. John Clements and Dr.

Franz Kurfess, for their support and input on the process. They both provided

critical feedback that I feel helped me significantly improve on the weakest parts

of my thesis.

Many thanks to Olga Dekhtyar (Cal Poly Department of Statistics) for her

help with the assessment of the results of the experiment. Her help was invaluable

in making sense of the data from the experiments.

I would like to thank Vanessa Forney and Lucas David for their help over the

summer while I was developing the new interface for WebIDE. They provided a lot

of great ideas as far as the initial layout, and provided a great team atmosphere.

The help that my neighbor, John Kelly, provided in proofreading was invalu-

able, and helped me tighten up the prose, and significantly improve the readability

of this thesis.

I don’t how to thank Dr. David Janzen for all the help he has given me

throughout this process. Thanks for taking me on as a student even though it

was your sabbatical. Thanks for allowing me to perform an experiment in the

Fall 2012 csc123 class. You have truly been a inspiration to me!

My family deserves the most credit of all. Thanks to my lovely wife, Ann, and

all her support, even when it looked like I was just surfing the internet. To my

children, Elena and David, you both have been the best kids a dad could hope

for. Thanks so much for providing our family with endless entertainment, as well

as motivation for me to wrap things up in time to make it home for dinner.

v

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Related Work 4
2.0.1 Human Computer Interface 4
2.0.2 E-learning interface evaluation 5
2.0.3 Delight . 6
2.0.4 Web-based Programming Learning Environments 9
2.0.5 Gamification . 11

3 Design Approach 12
3.1 Design Approach for UI Improvements 12

3.1.1 Header Bar . 12
3.1.2 Lab Progress . 13
3.1.3 Step Content Area . 16

3.2 Design Approach for Gamification Element 25
3.2.1 Design Approach for experiment UI 26
3.2.2 Design Approach for Scoring Algorithm 28

4 Evaluation 31
4.1 Evaluation Background . 31
4.2 Evaluating delightfulness of user interface 33
4.3 Game Scores . 35
4.4 Comprehensive Lab Score . 36
4.5 Threats to validity . 37

4.5.1 Persistence Issues . 37
4.5.2 Cheating . 38
4.5.3 Instructor . 38
4.5.4 Time of Day . 38

5 Challenges and Future Work 40
5.0.5 Challenges . 40
5.0.6 Future Work . 42

6 Conclusion 44

vi

Bibliography 46

vii

List of Tables

3.1 Lab Scoring . 30

4.1 Class Topics . 32
4.2 Survey Questions . 34
4.3 Student Opinions in Average Likert Scale 35
4.4 WebIDE Scores . 36
4.5 Comprehensive Quiz Scores . 37

viii

List of Figures

3.1 Previous Header Bar . 12
3.2 New Header Bar Before Login . 13
3.3 New Header Bar After Login . 13
3.4 Previous Navigation . 14
3.5 New Navigation . 14
3.6 Previous User Input . 16
3.7 New User Input . 17
3.8 Previous User Input Incorrect . 18
3.9 New User input Incorrect . 19
3.10 Previous User Input Correct Answer 20
3.11 New User Input Correct Answer 21
3.12 Previous User Multiple Input . 22
3.13 New User Multiple Input . 23
3.14 Previous User Multiple Input Incorrect 24
3.15 New User Multiple Input Incorrect 25
3.16 Previous User Multiple Input Correct 26
3.17 New User Multiple Input Correct 27
3.18 Control User Interface . 28
3.19 Experimental User Interface . 28

4.1 Java Prequiz Scores . 33
4.2 WebIDE lab Scores . 35

ix

Chapter 1

Introduction

WebIDE was initially conceived as a tool to help students learn program-

ming by presenting lessons in the easy to use, familiar environment of a web

browser. There are many challenges facing first-year students and they often

struggle with the tools that they need to use in order to learn basic program-

ming concepts. WebIDE was developed to help students focus on the concepts

that they are trying to learn, instead of struggling to learn how to use the tools.

WebIDE accomplishes this goal is by letting students write code in the browser

and then click the “run” button which sends the code to the server, where it is

compiled and executed. The result is then returned and displayed in the browser.

In addition to providing students an easy way to develop code, WebIDE was

developed to be a pedagogical tool to help students learn how to program in a

Test Driven Learning (TDL) manner. While TDL has been shown to be ben-

eficial to beginning students, it has proven to be difficult to convince them to

adopt TDL behaviors.[16] WebIDE was designed to allow instructors to present

lessons broken down into small steps, which can be locked so that they must be

performed in a specific order. This functionality enables instructors to ensure

1

that the tests are being written before the code, if that is a constraint they wish

to enforce.

The initial development of WebIDE was focused on functionality, and it demon-

strated positive results.[8] However, like many software development projects,

most of the initial development was focused on functional requirements, resulting

in a user interface that was less then polished. The UI improvements described in

this work are intended to increase the delightfulness of WebIDE for the students

using it, and to encourage more professors to adopt WebIDE as a part of their

courses.

In addition to increasing the delightfulness of the user interface, I added game

mechanics to WebIDE, in an effort to encourage good practices among the stu-

dents. The game mechanics consisted of a scoring mechanism that encouraged

students to answer the question correctly on the first attempt. The reason for us-

ing this scoring mechanic is to help students not only write tests, but to put some

thought into their answers before they submit them. The goal of this approach

is to help students get into the mindset of Test Driven Development, where the

first step is to stop and think about where you are going, as opposed to starting

to write code without a clear goal in mind.

An experiment was conducted during the Fall 2012 quarter with two sections

of Introduction to Computing - Mobile. Both sections were taught by Dr. David

Janzen. The experimental section was chosen at random at the beginning of the

experiment.

2

Much of the design and construction of the experimental versions of WebIDE

used in this thesis was completed during the summer preceding the experiment.

During that time I was able to participate in a mentoring program with two un-

dergraduate students at Cal Poly. They were a large help in implementing many

of the features described in this thesis, especially in the user interface design.

3

Chapter 2

Related Work

The related work for this effort spans a wide variety of topics. The various lines

of research which intersect with the effort of WebIDE include Human Computer

Interface, E-learning interface evaluation, Delight, and Gamification.

2.0.1 Human Computer Interface

In 1986, The Psychology of Human-Computer Interaction[2] was published

which was the landmark book dealing with Human-Computer Interaction (HCI).

The authors’ purpose was to develop a scientific psychology that would help ar-

range interfaces that are easy, efficient, error-free and even enjoyable.

Another important work was a book written by Donald Norman titled The De-

sign of Everyday Things.[23] His intended audience was not specifically software

designers, but designers in general. His focus is on designing with the user in

mind, so that the designer is thinking about how the user will interact with the

object. Norman states that well-designed objects are easy to interpret and un-

derstand, while poorly designed ones can be difficult and even frustrating to use.

4

In order to help designers, Norman proposes seven principles for transforming

difficult tasks into simple ones.

1. Use both knowledge in the world and knowledge in the head.

2. Simplify the structure of tasks.

3. Make things visible: bridge the gulfs of Execution and Evaluation.

4. Get the mappings right.

5. Exploit the power of constraints, both natural and artificial.

6. Design for error.

7. When all else fails, standardize.

These design principles are called User Centered Design (UCD). Having read

Norman’s book before beginning this project, I was able to incorporate UCD

principles into the design of the new WebIDE interface. The concepts of UCD

have been applied to many different areas, including games,[24] websites,[3] real-

time battlefield visualization virtual environments,[14] mobile application devel-

opment, [18] intelligent service robots,[11] digital libraries,[29] and e-learning.[1]

2.0.2 E-learning interface evaluation

With the rise of e-learning there has also been an increase in the study of e-

learning interfaces. Zaharias [30] describes evaluating the usability of e-learning

applications as a nontrivial task. However, he also points out that the usability

of e-learning designs is directly related to their pedagogical value. It is the goal

5

of this project to increase the pedagogical value of WebIDE by increasing its us-

ability.

Costabile et al. [4] argued that in addition to User-Centered Design (UCD)

methods, Learner-Centered Design (LCD) methods are needed in order to de-

velop new learning domains that are accessible and educationally effective. They

propose that we do not need interfaces that support “doing tasks,” but inter-

faces that support “learning while doing tasks.” They argue that the usability

of an e-learning application can significantly affect learning; therefore usability

should be one of the main challenges of e-learning application developers. While

WebIDE had a good functional core, little effort had been made to develop the

usability of the system. Our goal was to increase the usability of WebIDE, in

order to improve the ability of students to learn.

2.0.3 Delight

Software Design Manifesto

In 1991, Mitchell Kapor published a Software Design Manifesto.[19] He com-

pared software design to the manner in which architects and construction engi-

neers work together in the construction of a building, even though the architect

has the overall responsibility for the building.[19] He posits that in a similar

manner, software engineers and software designers should work together as well.

He also discussed the notion of well-designed buildings that was formulated by

the Roman architecture critic Vitruvius, which consists of firmness, commodity

and delight. Kapor claimed that these same criteria also apply to well designed

software.

6

Customer Satisfaction

The following year, Peter Denning wrote an article titled “What is Software

Quality”[6] in which he proposes that the eponymous question should be reframed

as “How do we satisfy the customers of our software?” He offers three levels at

which a customer can declare satisfaction.

1. All basic promises were fulfilled.

2. No negative consequences were produced.

3. The customer is delighted.

Denning states that very few software systems have actually produced genuine

delight. A few examples he gives are the Apple MacIntosh, Lotus 1-2-3, and

the Quicken accounting system. He specifically describes that he chose these

examples of delight because the users found they could complete more work in a

faster manner with these systems than without them. He specifically mentions

these software applications as exceeding the expectations of customers. As this

article is targeted at businesses, Denning claims that one of the significant benefits

of delighting the customer is the cultivation of fiercely loyal customers.

Usability Engineering and Agile Software Development

Sohabib et al.[28] wrote about the integration of usability engineering and ag-

ile software development. The authors claim that Extreme Programming delivers

high quality software efficiently, but warns that the resulting software might fail

to delight the customer, as usability engineering methods are not integrated into

agile methods when developing UI intensive systems. In order to better delight

users, they suggest several ways to augment Extreme Programming methods to

build software that is more delightful.[22, 21, 25]

7

Other Terms for Delight

Karen Holtzblatt published an article “What Makes Things Cool? Intentional

Design for Innovation”[15] which does not use the term delight, but covers similar

concepts. The main concept that the author explores is what she titles the joy

wheel and the joy triangle. It describes how creators can create joy in their end

users. The joy wheel consists of core life motivators, which are Accomplish, Con-

nection, Identity and Sensation. These are the motivations in the user that the

designer should try to satisfy. How this plays out when the product is actually

in use is described by the joy triangle. The joy triangle defines how the user will

find joy while using the product. The joy triangle is compromised of the Hassle

Factor, Direct into Action, and the Delta. Direct into Action is how quickly the

user can use the product to accomplish their needs. The goal for Direct into Ac-

tion is to let the user start using the system and accomplish their goal as quickly

and directly as possible. The Hassle Factor defines the opposite parameter, the

amount of hassle the user must deal with in order to use the product. One of

my main design goals in reworking the interface for WebIDE was to minimize the

Hassle Factor for the end user.

Hartmann, Sutcliffe, De Angeli [12] studied the link between aesthetics and us-

ability. They concluded that positively perceived aesthetics creates a halo effect

that causes users to experience higher satisfaction and system acceptance. How-

ever, they also found that in some cases increased aesthetics could lead to a

decrease in usability, measured by both objective and subjective metrics. It is a

challenge to balance good aesthetics with good usability, and it is important to

not overemphasize one to the detriment of another.

8

2.0.4 Web-based Programming Learning Environments

There are a variety of Web-based learning environments to help students

learn how to program. While none of them have a focus on Test Driven Learning

similar to WebIDE, there are some areas in which they are aligned very nicely

with WebIDE.

Codecademy.com

Codecademy1 is an online programming learning tool. Codecademy offers

users the option to learn JavaScript, HTML/CSS, Python, and Ruby. Unlike

WebIDE, it does not offer students the option to program in Java, nor does it

focus on TDL. However, Codecademy has a very clean and modern interface,

which is very delightful. The redesign of the WebIDE user interface incorporates

some of the aesthetic values of Codeacademy.

JavaWIDE

Jenkins et al.[17] discuss using Java Wiki Integrated Development Environ-

ment (JavaWIDE) in high schools, and in two and four-year colleges. JavaWIDE

is used to facilitate collaborative learning of Java among students. Whereas Web-

IDE focus on individualized learning, this approach focuses on the collaborative

aspects of learning. In this approach, the professor and students collaborate

on development of Java code together via the collaboration features of JavaW-

IDE. The students’ responses to this were positive. However, in comparison to

WebIDE, this is a very time intensive method for the instructor, and would not

provide flexibility as all students and professors had to be online at the same

time.

1http://www.codecademy.com

9

Web-based IDE Research Agenda

Kats et al.[20] map out what they see as a research agenda for Web-based

IDEs, based on the results of several pilot studies. The relevant part of their

work to WebIDE was in the development of a Web-based e-learning tool called

WebLab. They developed it based off of the ACE editor2 and the Cloud9 IDE3.

They used WebLab to teach functional programming to first year computer sci-

ence students. The system they describe is very similar to WebIDE. They de-

scribe how students are presented with instruction and a window to enter code

on the same page. The programs that the students write are then executed on

the server, where student-defined tests and instructor-defined tests can be run

against the code. They even mention safety features that will kill programs that

have infinite loops, much like WebIDE.

When they lay out their research agenda, they describe three areas of improve-

ment that would also apply to WebIDE. The first area is that of improving student

coding style. They suggest evaluating the student code to check for style as well

as correctness. Second, they suggest researching ways to detect fraud. While the

familiarity of the web-browser is beneficial, it can also be used by the students

as a tool for getting solutions from a search engine. Kats et al. suggest the de-

velopment of monitoring tools for fraud detection that could uncover undesirable

behavior and notify both students and instructors. Lastly, they state that by

observing beginning students and analyzing using the resulting data, it would be

possible to tailor courses to help students with the concepts that they struggle

with the most.

2http://ace.ajax.org/
3https://c9.io/

10

2.0.5 Gamification

Gamification is a new term that still does not have a settled definition. De-

terding et al. [7] proposed the definition as “the use of game design elements in

non-game contexts.” They also note that the commercial development of ‘gami-

fied’ software promises new and interesting lines of inquiry and data sources for

HCI studies.

Game Mechanics in e-Learning

In an article entitled “Gamification: Using Game Mechanics to Enhance

eLearning,” [26] Rick Raymer states that the purpose of adding game mechanics

to e-learning is to increase user engagement. One important element according

to Raymer is measuring progress. He states that providing feedback to users in

games or e-Learning allows them to know how much progress they have made.

The author claims that the most effective way to do this is graphically. He also

says that progress should be measured on several levels. One of the enhancements

made to WebIDE is a progress bar described later in this paper.

Gamification for College Students

An orientation application for college students was a subject of a gamification

study. Fitz-Walter et al. [9] added gaming elements to a mobile application that

would assist new students to become familiar with the university. It was interest-

ing to note that game elements were positive if they did not remove functionality.

The conclusion of the authors was that game elements should be utilized only if

they enhanced the existing functionality, and did not restrict the functionality

of the application. The following sections will describe the various user interface

improvement including the header bar, lab progress, and various text fields.

11

Chapter 3

Design Approach

3.1 Design Approach for UI Improvements

The overall goal of the user interface improvements was to create a modern,

delightful user interface for WebIDE. Since most of the previous work that had

gone into WebIDE had been concerned with functionality, the user interface was

in dire need of work. It has been shown that the user interface will affect how

people perceive a site. [5] It was my hope that improving the user interface would

improve user perception of WebIDE.

3.1.1 Header Bar

Figure 3.1: Previous Header Bar

The previous version of WebIDE had a header bar with the logo of WebIDE.

The only way to login to WebIDE was via a login link in the header bar, but this

option was available on only one page of the WebIDE site. This made it difficult

12

and unintuitive to the user as to how they should go about logging in. I felt that

if the first task that a user needed to accomplish was unintuitive and confusing,

this would create a poor impression of the site. As the old saying goes, “You only

get one chance to make a first impression.” Making the login process easier and

more intuitive was therefore one of my first steps.

Figure 3.2: New Header Bar Before Login

The new header has been improved in several ways. The aesthetic differences

can be seen by comparing Figure 3.1 and Figure 3.2. By making the top header

darker, it helps to visually anchor the page. Additionally the login link was added

to every page so the user doesn’t have to search for the specific page that has the

login link.

Figure 3.3: New Header Bar After Login

After the user logs in, they see the header bar in Figure 3.3. Once the user

is logged in, their username as well as a Log out prompt are displayed on every

page. This gives the user the information they need about the possible actions

that they can take. If they click on their username, the link will take them to

their user account page. If they click on the Log out option, it will log them out

of the current session of WebIDE.

3.1.2 Lab Progress

One of the most significant changes to the UI was to change how the user

navigates through the lab steps. Figure 3.4 shows the previous user interface.

13

Figure 3.4: Previous Navigation

Figure 3.5: New Navigation

Each Lab is broken down into multiple steps. In Figure 3.4 the current lab is

“Facebook: Iteration” and the current step is “Plant Some Seeds”. The previous

user interface used the default GWT Tabs element where each step in the lab had

its own tab. Each step has three states: enabled, disabled and completed. The

lab author has the ability to specify if a specific step should be locked until the

previous step or steps have been completed. For a step to be completed, all the

evaluators on that step must be successfully completed. In Figure 3.4, the first

two steps are completed, the third is active, and the rest of the steps are locked.

14

Figure 3.5 shows the new user interface. There were several goals for the re-

design of the navigation portion of the UI. The first goal was to help the user

quickly and easily identify where they were in the lab and how to go to any other

step that is available to them given their current progress. In addition to help-

ing the user navigate through each step, another goal was also to enable better

awareness on one’s progress. One of the problems with the tab interface is that if

there were more than a certain number of tabs, the tabs were off the screen and

the user had to scroll left and right via the small buttons at the right of the tab

bar. This made it difficult for users to know where they were in the lab and how

many steps were left until the lab was complete.

Additionally it was desirable to give users a strong sense of completion and ac-

complishment in order to encourage them as they proceed through the lab. In

order to achieve these goals, the concept of file tabs was re-evaluated and replaced

with the concept of a list. Figure 3.5 shows the new navigation area in list form.

The three states remain the same: enabled, disabled and completed. The objec-

tive of numbering the list of steps is to evoke the concept of a to-do list, with

each step being marked off as it is completed. The current step is highlighted

in blue to make it very obvious to the user which is the current step. By listing

all of the steps, it makes it easy for the user to navigate from any step to any

other step that is currently available to the user. The completed steps have been

marked with a check box to make it obvious which steps are completed, and also

to give the user a strong sense of accomplishment as each step is completed. In

addition, a progress bar is located above the navigation area, providing a graphic

representation of how far the user has progressed towards completing the entire

lab.

15

3.1.3 Step Content Area

The most significant modification to the individual step content area is the

changes to the user inputs. One of the main design goals for the user inputs was

to improve user feedback. This included making it clear where input is required

and giving positive reinforcement when the user gives a correct answer, as well

as providing helpful feedback when the answer is incorrect in order to better help

users correct their errors.

Text Fields

Figure 3.6: Previous User input

There were several design changes made to the text input area. Figure 3.6

and Figure 3.7 show the old and new text input areas. One design concern was

16

Figure 3.7: New User input

to increase the amount of communication with the user about their input. I

wanted to more tightly couple feedback to the user with the immediate input

received from the user. In addition, I wanted to provide information to the user

about the number of attempts that they made in order to solve that specific

problem. I wanted the design to communicate the purpose of the different design

elements. The feedback flag was added just above the user input in order to

clearly communicate the three possible states to the user: unattempted, incorrect,

and correct. Due to the variance in the WebIDE specifications, sometimes the run

button is included with the user input element, and sometimes it is specified to

be in a different location by the lab author. If the user has specified a location for

the run button, then the user’s request is honored. If the user has not specified a

location for the run button, then a thin border is placed around the user input, the

17

run button, and the feedback area. This border is used to convey the connection

between the run button and the user input. Figure 3.7 shows an example of both

scenarios. The first text area does not have an accompanying button, while the

second text input area does have an accompanying button included in the outer

container’s border.

Incorrect Text Entry

Figure 3.8: Previous User Input Incorrect

There were two main design concerns with the feedback to the user about in-

correct answers. One concern was to ensure that the user not be confused about

whether they answered the question correctly or not. If they answered the ques-

tion incorrectly, it was important for that information to be immediately obvious.

18

Figure 3.9: New User input Incorrect

It was also important to present a strong visual difference between correct and

incorrect answers. The red flag was chosen to provide a strong visual confirma-

tion that the answer is incorrect. Figure 3.8 shows the previous interface while

Figure 3.9 shows the new interface after an incorrect answer has been given by

the student.

Another design change was to move the run button in order to align it with

the feedback text area. The feedback text was left aligned, while the run button

was right aligned, and moved to the same horizontal line as feedback text area.

This alignment creates a visual cue to let the user know that the feedback text is

related to that specific run button. In this example the plant(i) is missing the ’;’.

The top box contains a unit test while the bottom box contains the code. The

19

run button will run the evaluator, and since the code is failing, it will set the flag

to red, increment the number of attempts, and display a message to the user in

the feedback area.

Correct Text Entry

Figure 3.10: Previous User Input Correct Answer

Figure 3.11 shows the new interface when the user has correctly entered the

code. For reference Figure 3.10 shows the previous version of the same interface.

The primary design concern here was to give the user strong visual feedback that

they answered that question correctly. By marking all the text boxes with a

green flag there is a strong visual cue to the user that their answer is correct.

The colors green and red were chosen as they are widely used to indicate success

20

Figure 3.11: New User Input Correct Answer

and failure. This color use is also consistent with the JUnit framework, which

the students will encounter later on.

Text Inputs

One option that the lab author had was that instead of specifying the larger,

multi-line HTML text box, they could instead use the smaller, single-line HTML

form element, text input field. Figure 3.12 shows an example of the text input.

This text input would often be used to save space when multiple inputs needed to

be evaluated at the same time. By putting a flag on each of the inputs, WebIDE is

now able to tell the user which of the text boxes is correct and which is incorrect.

Since these inputs are designed to be placed wherever the lab author indicates,

it was important that these inputs be more compact than the much larger text

21

inputs. In order to accommodate this more compact design, a smaller, more

compact flag was designed. This flag operates in a similar manner to the larger

flags on the text inputs, but with a significantly reduced footprint. Figure 3.13

shows the new design for text inputs.

Figure 3.12: Previous User Multiple Input

Multiple Inputs Incorrect

Figure 3.14 shows the previous interface when a user has answered a question

incorrectly. I felt that there were several problems with this interface and at-

tempted to correct them. First there was a disconnect between the error message

and the incorrect input that caused the error, especially when the run button

is not in a location that logically aligns it with the user input. In order to give

the user a stronger association between their answer and the returning informa-

22

Figure 3.13: New User Multiple Input

tion from WebIDE, the response flags were added. Figure 3.15 shows the new

interface with improvements. By adding the flag, it is now very obvious to the

user which user inputs were evaluated on that run, as well as which user inputs

were correct and which were incorrect. Also, by moving the response text to be

inline with the check button, it is more apparent that that response text is from

that evaluator button. I felt that this improved communication would result in

a better overall experience for the end user.

Multiple Inputs Correct

Figure 3.16 shows the previous interface after the student has given all cor-

rect answers. I felt that one of the main issues was that when a user answered

questions correctly, the feedback was very anti-climactic. I wanted the user to

23

Figure 3.14: Previous User Multiple Input Incorrect

experience positive reinforcement when they answered a question correctly. To

achieve this, I established two main criteria. The first was that it should be ob-

vious to users that their input has been received and evaluated, and the second

was that what they did was in fact correct. In Figure 3.17 the new interface is

shown with positive user feedback. By setting the flags adjacent to the user input

fields to green, it becomes clear that there has been a change in state, and that

it is a positive state that the user is in. Also, by putting the flag immediately

to the right of the user input field, the relationship between the user’s input and

notification of a correct result is coupled as tightly as possible.

24

Figure 3.15: New User Multiple Input Incorrect

3.2 Design Approach for Gamification Element

Another goal for WebIDE was to encourage the students to think about their

answers, and to encourage them to get the correct answer in as few tries as

possible. One of the main advantages of Test Driven Development is that it

encourages the developer to think about what they are going to do before they

do it. The scoring mechanism was designed to encourage the behavior that we

desired, which in this case was the student finding the correct answer in as few

attempts as possible. In this section, I will present the design approach for the

scoring element and the resulting scoring algorithm.

25

Figure 3.16: Previous User Multiple Input Correct

3.2.1 Design Approach for experiment UI

Two versions of the user interface were developed in order to conduct the

experiment: the experimental user interface and the control user interface. Fig-

ure 3.18 shows the control user interface while Figure 3.19 shows the experimental

interface. In order to study the effect of the scoring element on the students, both

user interfaces were designed to be as similar as possible, with the one difference

being the scoring element that we were attempting to study. The design decisions

about the experimental user interface centered around communicating two pieces

of information to the user. The first piece of information was that there was a

score associated with their participation in the lab, and what that score currently

was. The second piece of information was that WebIDE was tracking the number

26

Figure 3.17: New User Multiple Input Correct

of attempts they made to answer each question. I also wanted them to be aware

of the number of attempts they had made on the current question.

In order to be able to evaluate this experiment, the control group was pre-

sented with an almost identical user interface, except that the score elements

where hidden from the user. There was nothing about the interface for the

control group that indicated there was a score involved in their completing the

lab, and there was no visual indication that the number of attempts were being

tracked, nor were they informed of their current number of attempts.

27

Figure 3.18: Control User Interface

Figure 3.19: Experimental User Interface

3.2.2 Design Approach for Scoring Algorithm

As the goal of the scoring algorithm was to motivate students, the objective

was for the score outcomes to be in a range that the students would find numer-

ically familiar. For that reason, the desired score range was 60-100, in order to

28

closely resemble the traditional grading scale. The student would start with a

score of 100, and as they progressed, they would lose points if they were not able

to answer a question on the first attempt.

The score S is given by the formula

S = 100 − k

n∑
i=1

min((ai − 1), 4)

where n is the number of problems attempted, ai is the number of attempts made

on question i, and k is a scaling factor chosen to ensure that student grades remain

in a reasonable range. In order to avoid excessively handicapping a student who is

unable to figure out one question but did well on the others, the scoring algorithm

only considers up to four attempts for each question. We set k as 10/p, where p

represents the total number of problems. This choice guarantees a lower bound

on the student’s score of

100 − (10/p)(4p) = 100 − 40 = 60

thus providing an intuitive connection to typical grading schemes. Due to the

effect of k, the amount that the score decreases for each incorrect answer depends

on the total number of problems in each lab.

Scoring example

Assume there is a lab that contains ten total evaluators. Table 3.1 describes

what happens as the student progresses through the lab. The first evaluator is

answered correctly on the first attempt, so their score is maintained at 100. The

second evaluator is the one that the student finds the most difficult, and it takes

a total of eight attempts for the student to answer the question correctly. It

is important to note that the score will drop only for the first four attempts,

so attempts number five, six, seven and eight will have no further effect on the

29

current Answer # of # of incorrect # of incorrect total # of Score

evaluator attempts attempts attempts counted attempts counted

1 Correct 1 0 0 1 100

2 Incorrect 1 0 0 2 100

2 Incorrect 2 1 1 3 99

2 Incorrect 3 2 2 4 98

2 Incorrect 4 3 3 5 97

2 Incorrect 5 4 3 5 97

2 Incorrect 6 5 3 5 97

2 Incorrect 7 6 3 5 97

2 Correct 8 7 3 5 97

3 Incorrect 1 0 0 6 97

3 Correct 2 1 1 7 96

4 Correct 1 0 0 8 96

5 Correct 1 0 0 9 96

6 Correct 1 0 0 10 96

7 Incorrect 1 0 0 11 96

7 Incorrect 2 1 1 12 95

7 Correct 3 2 2 13 94

8 Correct 1 0 0 14 94

9 Correct 1 0 0 15 94

10 Incorrect 1 0 0 16 94

10 Incorrect 2 1 1 17 93

10 Correct 3 2 2 18 92

Table 3.1: Lab Scoring

student’s score. When the student completes evaluators 4, 5 and 6 correctly on

the first attempt, the score is maintained.

One quirk of the scoring algorithm is that since one answer is allowed for each

question, the first incorrect answer does not cause the score to go down, but the

second attempt, even if correct, will reduce the score. This is demonstrated in

Table 3.1 by evaluator 3. The student’s score is not reduced on the first incorrect

answer, but with the second correct answer. In the future, the scoring algorithm

could be improved by only tracking incorrect attempts.

30

Chapter 4

Evaluation

4.1 Evaluation Background

WebIDE was evaluated at California Polytechnic State University in San Luis

Obispo in two different sections of the CSC 123 class. This class was titled “In-

troduction to Computing: Mobile.” The two sections had 34 and 37 students

respectively. This class was designed as an introduction to Computer Science.

It is the first class students in the major are required to take. The class started

with one day of instruction in Scratch,1 a visual coding language.[27] Scratch is a

programming language which allows for objects to be manipulated with drag and

drop visual blocks. The blocks can perform an action such as moving a sprite, or

control execution flow, such as repeat an action a certain number of times. The

next instructional topic was App Inventor.2 This was the topic for the next three

and a half weeks. App Inventor is a freely available programming environment

that was initially created at Google, but has transitioned to the MIT Center for

Mobile Learning. App Inventor can be used to create Android apps using a visual

1http://scratch.mit.edu/
2http://appinventor.mit.edu/

31

drag-drop interface. It follows the same programming paradigm used by Scratch,

with drag and drop programming blocks.[10] After App Inventor the rest of the

course is spent teaching students to learn to program Android apps in Java. Ta-

ble 4.1 summarizes the course topics by week.

Week Topic

1 Programming Topics, Scratch
2 Functions, Lists, Iteration, App Inventor
3 Presentations, More App Inventor
4 Testing Project 1 (App Inventor), Presentations
5 Java Basics
6 More Java, Java Loops and Arrays
7 Eclipse, Android overview
8 Project 2 (Android) Presentations, More Java, More Android
9 Java/Android practice
10 Project 2 (Android) Workshop
11 Project 2 (Android) Presentations

Table 4.1: Class Topics

The course was being offered for the third time. The goal for this class was

to improve first year success and retention.[13] This year the material was the

same as previous years, but it was being presented in a new format. For the Java

portion of the class, the instructor recorded a series of video lectures, which the

students were assigned to watch before coming to class. The class time was then

used to do the WebIDE labs and quizzes. Over the course of the class the stu-

dents completed a total of nine labs, as well as two large projects. The Labs and

Quizzes combined for 25% of the students’ grade, and the Projects were worth a

total of 40% of the final grade.

At the beginning of the quarter, a pre-quiz was administered to determine

how much Java experience the students had. Since Java knowledge was not a

32

prerequisite for this class, it was not unexpected that a large group of students

scored zero on the pre-quiz. While the differences between the two groups were

not statistically significant, one can see in Figure 4.1 that the control group had

better scores than the experimental group. The control group was selected by a

coin flip before the results of the quiz were known.

Figure 4.1: Java Prequiz Scores

4.2 Evaluating delightfulness of user interface

In order to evaluate whether the changes resulted in a user interface that

was more delightful to the users than the original user interface, the students

33

were surveyed about WebIDE to record their impressions. In the previous year,

the same survey was given to the students of one section of CSC123 who used

the previous version of WebIDE. The survey was administered online through

surveymonkey,3 and was completed by the students after each WebIDE lab. For

the delightfulness experiment, the survey results from 2011 were treated as the

control group, and the results from both sections of the 2012 class were the

experimental group. The students were told that their answers would not affect

their grade, and their responses were recorded with a standard Likert scale. There

were some questions that were not relevant to this discussion that dealt with the

difficulty of the lab materials, but there were two questions whose response was

tracked for this experiment. Table 4.2 shows the relevant questions.

Statement Possible Answers

This lab was fun. 1 - Strongly Agree 2 3 4 5 - Strongly Disagree
I liked this lab. 1 - Strongly Agree 2 3 4 5 - Strongly Disagree

Table 4.2: Survey Questions

Table 4.3 shows the average responses of the students to the two relevant

questions on the survey. In the Likert scale, the smaller values are more positive

impressions. One can see that the results from the experimental group are slightly

better across the board than the results from the Control group. The results

were evaluated with a two sample T-Test. For the first question p = 0.648 while

p = 0.443 for the second question. As these values were > .05 the difference is

not statistically significant. We cannot therefore assert that the new interface is

statistically preferred by the students. However, it does seem to lean this way, so

further experiments may result in more conclusive results. One possible reason

for the difference is that the students who used the new interface were not shown

the old interface. If they had been shown both interfaces and asked which one

3http://www.surveymonkey.com/

34

they liked more, there might be a more significant difference in how they felt

about each interface.

Lab was Fun Liked Lab
Lab Topic Exp Control Exp Control

Java Basics 2.01 2.27 1.83 2.14
Selection 2.01 2.27 1.83 2.14
Methods 2.014 2.27 1.83 2.14
Classes 2.51 2.52 2.51 2.48
Loops 2.25 2.22 2.46 2.19
Arrays 2.25 2.59 2.46 3.06

Intro to Android 2.93 3.38 2.78 3.14

Table 4.3: Student Opinions in Average Likert Scale

4.3 Game Scores

Figure 4.2: WebIDE lab Scores

In addition to tracking the user impressions of the user interface, another

experiment was conducted that compared user behavior. This experiment was

conducted using only the two sections from Fall 2012. One section was chosen

35

Lab Mean Mean p
Name Control Score Exp. Score value

Java Basics 98.03 99. 29 0.012
Java Int Operations 96.54 98.18 0.005
Facebook: Iteration 82.19 88.87 0.000
Facebook:Selection 96.27 98.22 0.012

Introduction to Arrays 87.85 92.12 0.003
Android: Hello, World! 87.68 92.79 0.000

Android: Rock-Paper-Scissors 85.33 91.43 0.002

Table 4.4: WebIDE Scores

at random to be the control group, while the other section was the experimental

group. In this instance, the control group was not given any scoring information,

while the experimental group was provided information on how they were being

scored based on the number of attempts it took them to solve each problem as

described in Section 3.2.1. Table 4.4 shows how each section scored on each lab.

The scores were evaluated with a Two-Sample T-Test and the p values are also

included in Table 4.4. The test used for significance was that of p < 0.05. Using

this criterion, every lab score was determined to be significantly higher for the

experimental group vs. the control group. Figure 4.2 shows the same information

in chart form. From this data we can determine that the game mechanism had a

significant effect on the behavior of the students, and that the scoring mechanism

was effective in changing behavior as users interacted with WebIDE.

4.4 Comprehensive Lab Score

At the end of the WebIDE portion of the course, a comprehensive lab quiz

was given to the students that covered all the topics covered by the WebIDE labs.

The results of that quiz are shown in Table 4.5. While the experimental group

did score better on the comprehensive quiz on average, unfortunately there was

36

a very high standard deviation in the results. When the Two-Sample T-Test was

performed, the p value = 0.822. We cannot therefore assert that the students who

were in the experimental group performed better on the quiz than the control

group. While it does look like they might have performed slightly better, more

studies are needed to determine conclusively if this scoring mechanism will pro-

duce better results. Since the results were in a region of statistical uncertainty,

we can at least say that the gaming elements were not proven to be detrimental

to the students.

Section Mean Std Dev

Control 69.3 18.4
Experimental 70.3 16.7

Table 4.5: Comprehensive Quiz Scores

4.5 Threats to validity

4.5.1 Persistence Issues

In the initial experimental version, there was an issue of some students’ input

being saved while the input of other students was not. On further inspection, it

turned out that a field in the database was a varchar(256). If a student attempted

to save an input string longer then 256 characters, it would cause an error that

would result in the data not being persisted. This was an issue only for the

first two labs, after which the problem was resolved by changing the field from a

varchar(256) to a mediumtext.

37

4.5.2 Cheating

Another threat to validity is a student that was observed cheating. The

instructor observed that the student had figured out that the same labs were

available at the www.web-ide.org site, even though the students were instructed

to use another url configured specifically for this experiment. By completing

steps of the lab and finding the correct answer out on the www site, and then

inputting that into the experiment site, he was able to score a 100 on the lab.

While cheating is in no way condoned, at least we can observe that the scoring

mechanism motivated the student enough to find a way to improve his score.

Because the labs were completed in-class while the instructor was observing stu-

dents and answering questions, we believe this behavior was rare and perhaps

even limited to this one individual.

4.5.3 Instructor

The instructor was aware of this experiment as it was being run. He also

has a vested interest in the success of WebIDE, as he is the project lead. While

he attempted to remain as unbiased as possible, it is possible that his bias may

have affected the outcome of the study. One step that was taken to counter any

possible bias is that all the quizzes were graded as a group, both the control

and experimental sections, without taking notice to which section that student

belonged.

4.5.4 Time of Day

Some of the difference between the sections could be attributed to the different

time of day of the classes. One of the classes was in the morning, while the other

class was held after lunch. In addition to the possibility of class time affecting

38

the body rhythms of the students, the instructor noticed that the students in the

morning section didn’t seem to rush through the material in order to leave early,

whereas that behavior was observed in the afternoon section.

39

Chapter 5

Challenges and Future Work

5.0.5 Challenges

ACE editor

One challenge consisted of attempting to incorporate the ACE editor into

WebIDE. ACE editor is an embeddable code editor written in JavaScript.1 The

ACE editor offers much of the same functionality provided by a dedicated code

editor, but in a browser interface. Some of the features I would like to have

been able to include in WebIDE are line numbers, automatic code coloring, and

automatic indenting. This added functionality would not only be helpful to

the students as they wrote the code, but it would prepare them for how things

would look once they moved on to using application Integrated Development

Environments (IDEs), such as Eclipse. However, it was a significant challenge

getting the ACE editor to work correctly with GWT, which is the framework

which was used to develop WebIDE. ACE is a javascript component, and in

order to pre-populate it with text, the editor must first be initialized with a

javascript call. However, for the javascript call to happen, the ACE object must

1http://ace.ajax.org/

40

be added to the DOM. Before the page in WebIDE is added to the DOM, all

the elements on the page, including the ACE editor must be initialized. This

obviously creates a circular dependency which I was unable to break. There is

currently a second version of WebIDE under development, and I hope that with

the new architecture changes, we will be able to incorporate the ACE editor.

Answer Flags

One significant challenge was that of setting a flag on every text box that

was evaluated in order to let the user know if the last attempt was correct or

incorrect. The largest challenge was identifying which text box was associated

with which evaluation. In the current WebIDE architecture, any evaluator may

have zero to many user inputs associated with it. Also, a user input may have

zero or more evaluators, although it usually has at least one. The goal was to give

feedback to users as tightly coupled to the input as possible. Also, since there

could be more than one input associated with an evaluator button, if one of the

inputs was correct, and another of the inputs was incorrect, it was important to

only flag the incorrect answer as being wrong, while flagging the correct answer

as being correct. Additionally, since there can be more than one evaluator run

at a time, it would be possible to have return values of correct, incorrect, and

correct as the result of three evaluators run on a single text box. In order to

correctly flag the user inputs, a data structure was developed that would keep

track of all the attempts against all the user inputs for that specific step. For

each evaluator run, all the user’s inputs are stored in the data structure with the

results from that evaluator run. If the evaluator returns false, it is stored in the

data structure. If the evaluator returns true, before it is stored, there is a check

to make sure that a true is not overwriting a false. This way all the evaluation

41

information is stored and every user input on the page can be flagged with the

correct status.

Tracking Number of Attempts

Another challenging aspect of the work was tracking the number of times each

student attempted a specific question. This was a challenge because not only did

the data need to be persisted into the database, it also needed to be restored if

a user reloaded a lab in progress. Additionally, the score needed to be computed

for each lab. In the end the number of attempts was persisted in the database,

and then the score was recalculated whenever it was needed.

5.0.6 Future Work

Based on the experience gathered during this effort, I would like to propose

a few directions in which future work on WebIDE can proceed.

Diverse Scoring Algorithms

Since WebIDE is designed to be a pedagogical tool, it would be very nice

to allow lab authors to specify how they would like the lab to be scored. If

lab authors were able to define a scoring algorithm, then any lab author could

conduct experiments by varying the scoring algorithm. Up to now, WebIDE has

been focused primarily on Test Driven Learning. However, with author-specified

scoring, WebIDE could be adapted to run almost any scoring based experiment.

This would allow greater flexibility when it came to evaluating different learning

paradigms.

42

Cooperative Competition

One future improvement to WebIDE would be to enhance the learning ex-

perience by combining cooperation and competition. This could be achieved by

grouping students into teams that would compete against each other. One po-

tential way to do this would be to have different sections of a class compete

against each other. This would foster a sense of cooperation within each section

as students worked together to increase their overall score, but also there would

be the competitive aspect of trying to beat the other section. In order for this

to be possible, a leader board mechanism would need to be developed to display

the scores from each team, so the students could be aware of how the competi-

tion is going. In addition, a team mechanism would need to be developed so an

instructor could group students into teams to compete against each other.

Creative Engagement

Additional development could include continuing to develop the gamification

aspects of WebIDE. In addition to the competitive aspects of a gaming mecha-

nism, there could be ways to allow users to engage WebIDE in a more creative

manner. One possible way this could be developed is by creating a code gallery

that would allow students to publish their solutions to certain problems. Once a

student had finished a lab, they would be able to view the code gallery and view

other students’ solutions to the same problem. This would most be most effective

for the larger more complex problems. Which elements of any given lab would

be eligible for uploading to the code gallery would be up to the author of the

lab. This would allow students to attempt to solve problems in a creative way,

as well as helping them to learn how to read other authors’ code, which would

be a beneficial skill to have.

43

Chapter 6

Conclusion

WebIDE has been shown to be beneficial to beginning students learning how

to program, specifically by introducing them to Test Driven principles early in

their learning trajectory. However, the existing interface design was less than

user friendly, and various aspects of WebIDE were improved as a result of this

project. These improvements resulted in differing levels of success, as measured

by various evaluation methods

The user interface improvements resulted in an interface that was more cohe-

sive and better designed than the original. The students seemed to like it better,

but we were not able to definitively prove this finding. It is my hope that this

redesigned interface will encourage other educators to use WebIDE and increase

its adoption rate.

I was able to show that by adding the gamification elements to WebIDE

we were able to significantly impact how the students approached working on,

and answering, the labs. While we were not able to show that this significantly

improved test scores, it did not prove to be a negative for the students either. One

44

of the benefits of a tool like WebIDE is the ability to collect metrics on student

learning in a way that would have been impossible using traditional pedagogical

methods. It is my hope that WebIDE will continue to be a tool that instructors

use and that this will result in improvements in the science of computer science

instruction.

45

Bibliography

[1] T. Berns. Usability and user-centred design, a necessity for efficient e-

learning. International Journal of The Computer, the Internet and Man-

agement, 12(2):20–25, 2004.

[2] S. Card, T. Moran, and A. Newell. The psychology of human-computer

interaction. CRC, 1986.

[3] M. Corry, T. Frick, and L. Hansen. User-centered design and usability testing

of a web site: An illustrative case study. Educational Technology Research

and Development, 45(4):65–76, 1997.

[4] M. Costabile, M. De Marsico, R. Lanzilotti, V. Plantamura, and T. Roselli.

On the usability evaluation of e-learning applications. In System Sciences,

2005. HICSS’05. Proceedings of the 38th Annual Hawaii International Con-

ference on, pages 6b–6b. IEEE, 2005.

[5] A. De Angeli, A. Sutcliffe, and J. Hartmann. Interaction, usability and

aesthetics: what influences users’ preferences? In Proceedings of the 6th

conference on Designing Interactive systems, DIS ’06, pages 271–280, New

York, NY, USA, 2006. ACM.

[6] P. Denning. What is software quality. Communications of the ACM,

35(1):13–15, 1992.

46

[7] S. Deterding, D. Dixon, R. Khaled, and L. Nacke. From game design ele-

ments to gamefulness: defining ”gamification”. In Proceedings of the 15th

International Academic MindTrek Conference: Envisioning Future Media

Environments, MindTrek ’11, pages 9–15, New York, NY, USA, 2011. ACM.

[8] T. Dvornik, D. Janzen, J. Clements, and O. Dekhtyar. Supporting introduc-

tory test-driven labs with webide. In Software Engineering Education and

Training (CSEE T), 2011 24th IEEE-CS Conference on, pages 51 –60, may

2011.

[9] Z. Fitz-Walter, D. Tjondronegoro, and P. Wyeth. Orientation passport:

using gamification to engage university students. In Proceedings of the 23rd

Australian Computer-Human Interaction Conference, OzCHI ’11, pages 122–

125, New York, NY, USA, 2011. ACM.

[10] J. Gray, H. Abelson, D. Wolber, and M. Friend. Teaching CS principles

with app inventor. In Proceedings of the 50th Annual Southeast Regional

Conference, ACM-SE ’12, pages 405–406, New York, NY, USA, 2012. ACM.

[11] A. Green, H. Huttenrauch, M. Norman, L. Oestreicher, and K. Eklundh.

User centered design for intelligent service robots. In Robot and Human

Interactive Communication, 2000. RO-MAN 2000. Proceedings. 9th IEEE

International Workshop on, pages 161–166. IEEE, 2000.

[12] J. Hartmann, A. Sutcliffe, and A. De Angeli. Towards a theory of user

judgment of aesthetics and user interface quality. ACM Transactions on

Computer-Human Interaction (TOCHI), 15(4):1–30, 2008.

[13] M. Haungs, C. Clark, J. Clements, and D. Janzen. Improving first-year suc-

cess and retention through interest-based CS0 courses. In Proceedings of the

47

43rd ACM technical symposium on Computer Science Education, SIGCSE

’12, pages 589–594, New York, NY, USA, 2012. ACM.

[14] D. Hix, J. Swan, J. Gabbard, M. McGee, J. Durbin, T. King, et al. User-

centered design and evaluation of a real-time battlefield visualization virtual

environment. In Virtual Reality, 1999. Proceedings., IEEE, pages 96–103.

IEEE, 1999.

[15] K. Holtzblatt. What makes things cool?: intentional design for innovation.

interactions, 18(6):40–47, 2011.

[16] D. Janzen and H. Saiedian. Test-driven learning in early programming

courses. ACM SIGCSE Bulletin, 40(1):532–536, 2008.

[17] J. Jenkins, E. Brannock, T. Cooper, S. Dekhane, M. Hall, and M. Nguyen.

Perspectives on active learning and collaboration: Javawide in the classroom.

In Proceedings of the 43rd ACM technical symposium on Computer Science

Education, SIGCSE ’12, pages 185–190, New York, NY, USA, 2012. ACM.

[18] E. Kangas and T. Kinnunen. Applying user-centered design to mobile ap-

plication development. Commun. ACM, 48(7):55–59, July 2005.

[19] M. Kapor. Bringing design to software. chapter A software design manifesto,

pages 1–6. ACM, New York, NY, USA, 1996.

[20] L. C. Kats, R. G. Vogelij, K. T. Kalleberg, and E. Visser. Software devel-

opment environments on the web: a research agenda. In Proceedings of the

ACM international symposium on New ideas, new paradigms, and reflections

on programming and software, Onward! ’12, pages 99–116, New York, NY,

USA, 2012. ACM.

48

[21] J. Kollmann, H. Sharp, and A. Blandford. The importance of identity and

vision to user experience designers on agile projects. In Agile Conference,

2009. AGILE’09., pages 11–18. IEEE, 2009.

[22] J. Lee and D. McCrickard. Towards extreme(ly) usable software: Exploring

tensions between usability and agile software development. In Agile Confer-

ence (AGILE), 2007, pages 59 –71, aug. 2007.

[23] D. Norman. The design of everyday things. Basic books, 2002.

[24] R. Pagulayan, K. Keeker, D. Wixon, R. Romero, and T. Fuller. User-centered

design in games. The human-computer interaction handbook: fundamentals,

evolving technologies and emerging applications, pages 883–906, 2003.

[25] J. Patton. Hitting the target: adding interaction design to agile software

development. In OOPSLA 2002 Practitioners Reports, pages 1–ff. ACM,

2002.

[26] R. Raymer. Gamification: Using game mechanics to enhance elearning.

eLearn, 2011(9), Sept. 2011.

[27] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,

K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.

Scratch: programming for all. Commun. ACM, 52(11):60–67, Nov. 2009.

[28] O. Sohaib and K. Khan. Integrating usability engineering and agile software

development: A literature review. In Computer Design and Applications

(ICCDA), 2010 International Conference on, volume 2, pages V2–32 –V2–

38, june 2010.

[29] N. Van House, M. Butler, V. Ogle, and L. Schiff. User-centered iterative

design for digital libraries: The cypress experience. D-lib Magazine, 1996.

49

[30] P. Zaharias. A usability evaluation method for e-learning: focus on motiva-

tion to learn. In CHI ’06 Extended Abstracts on Human Factors in Com-

puting Systems, CHI EA ’06, pages 1571–1576, New York, NY, USA, 2006.

ACM.

50

