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Abstract Leakage-resilient cryptography aims to extend
the rigorous guarantees achieved through the provable secu-
rity paradigm to physical implementations. The construc-
tions designed on basis of this new approach inevitably suffer
from an Achilles heel: a bounded leakage assumption is
needed. Currently, a huge gap exists between the theory
of such designs and their implementation to confirm the
leakage resilience in practice. The present work tries to nar-
row this gap for the leakage-resilient bilinear ElGamal key
encapsulation mechanism (BEG-KEM) proposed by Kiltz
and Pietrzak in 2010. Our first contribution is a variant of
the bounded leakage and the only-computation-leaks model
that is closer to practice. We weaken the restriction on the
image size of the leakage functions in these models and only
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insist that the inputs to the leakage functions have sufficient
min-entropy left, in spite of the leakage, with no limitation
on the quantity of this leakage. We provide a novel secu-
rity reduction for BEG-KEM in this relaxed leakage model
using the generic bilinear group axiom. Secondly, we show
that a naive implementation of the exponentiation in BEG-
KEMmakes it impossible tomeet the leakage bound. Instead
of trying to find an exponentiation algorithm that meets the
leakage axiom (which is a non-trivial problem in practice),
we propose an advanced scheme, BEG-KEM+, that avoids
exponentiation by a secret value, but rather uses an encoding
into the base group due to Fouque and Tibouchi. Thirdly, we
present a software implementation of BEG-KEM+ based on
the Miracl library and provide detailed experimental results.
We also assess its (theoretical) resistance against power
analysis attacks from a practical perspective, taking into
account the state-of-the-art in side-channel cryptanalysis.

Keywords Secure implementation · Side-channel crypt-
analysis · Leakage-resilient cryptography · Security proof ·
Public-key encryption · Pairings

1 Introduction

Howto secure cryptographic algorithms embedded indevices
that can eventually “fall in the hands” of an adversary?
Answering this question is probably the holy grail in cryptog-
raphy nowadays. Two paths are taken to explore the possible
solutions, a destructive one and a constructive one. In the
first path, we find the rich contributions of the practice and
theory of side-channel attacks. In the second path, we find
the no less precious body of countermeasures against the
attacks unveiled in the first path. Lately, a novel approach
called leakage-resilient cryptography is being studied, which
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aims at extending the guarantees delivered by the provable
security paradigm to the physical world. Despite the clever
discoveries and constructions provided by this new approach,
it persistently presents an Achilles heel: a bounded leak-
age assumption is needed. Ensuring this is unfortunately a
challenging endeavor on its own and, admittedly, the leakage-
resilient cryptography body of work has not significantly
helped to argue why this could be a reasonable assumption.

In thiswork,we consider the only computation leaks infor-
mation (OCL) leakage model by Micali and Reyzin [22]. In
this model only actual computations are supposed to leak
sensitive information. This captures the usual situation in
side-channel attacks, where leakage data only depend on the
current state of the target device and some independent ran-
domness [32]. The internal data of the device are divided
into two parts, an active and a passive part, the active part
being the input data used in the current computation. There-
fore, at a given time frame, only the active data is leaking. The
main non-invasive attacks against embedded devices, like the
attacks based on power consumption [21], electromagnetic
radiations [15] or running-time [20] measurements, belong
to this category.

It is currently agreed upon that not only the OCL model
but also the bounded retrieval/memory leakage models [1,2]
or the auxiliary input model [8], rely on a strange combi-
nation of both strong and weak assumptions. On the one
side, the information leakage is supposed to be bounded in
a somewhat artificial manner; on the other side, the leakage
considered is overly general, for instance it might come from
any polynomial time function. However, these assumptions
are actually far from the reality that practitioners experience
in their daily work in a side-channel analysis lab.

Several contemporary works [4,27,32] have put forward
ways to redefine the above models and bring them closer
to practice, for symmetric cryptography primitives. This
comes at the cost of algorithmic-level specialization, provid-
ing models that are indeed more realistic, but which apply
to a more restrained class of primitives (i.e., pseudorandom
generators, block ciphers).

We aim at contributing to the challenge of bringing
leakage-resilient cryptography closer to the practice. In this
work, we do so by analyzing, modifying, implementing
and evaluating a previous leakage-resilient key encapsula-
tion mechanism proposed by Kiltz and Pietrzak [18]. This
is one of the very few schemes admitting continual leak-
age (maybe the only one?) that one could dare to implement
in an embedded processor, for instance in a smartphone. It
is a pairing-based stateful variant of the ElGamal encryp-
tion scheme (called BEG-KEM), where the secret key is an
element of the pairing base group (essentially a point in the
group of points of an elliptic curve). The secret key is divided
into two shares, which are re-shared at each new decryption
call using multiplicative blinding. To decrypt, one takes the

first half of the secret key, refreshes it, and uses it as the
input to a pairing calculation. In the second step, the second
half of the secret key is updated with the blinding used for
refreshing; it is then used as the input to a new pairing cal-
culation; and finally the two pairing values are multiplied to
obtain a decapsulated symmetric key (for the details see Sect.
2).

The result proven in [18], which holds under a vari-
ant of the generic group model tailored to pairing groups
uses a bounded leakage assumption. Roughly speaking, it is
required that the data leaked against side-channel attacks that
satisfy the OCL axiom, shall be significantly smaller than κ

for a single measurement, where κ is the security parameter
(e.g., κ = 128). These leakages are modeled as an oracle
that answers values f (·) for adaptively chosen arbitrary (but
efficiently computable) functions f on input the secret data
being used in the calculation. This kind of requirement that
may look reasonable for a theoretician used to study cryp-
tographic primitives in the so-called black-box model might
seem completely unrealistic to the practitioner. As an exam-
ple, let us recall the figure gathered in [32], where it is pointed
out that the leaking of a block cipher recently reported in [24],
consisted of 200,000 traces leading to more than 1.5 Gb of
data storage.

We start our investigation by proposing and testing a relax-
ation on the requirement of ‘bounded leakage size’ in the
OCL model. We weaken the restriction on the image size
of the leakage functions in these models to asking that the
random variables used to refresh the secret key shall have
enough min-entropy left given the leakage, with no limita-
tion on the ‘size’ of this leakage. This is an altogether more
reasonable leakage bound assumption, which could eventu-
ally be met by clever implementations (in fact we provide an
implementation candidate).We give a new security reduction
using the generic bilinear group axiom for BEG-KEM in this
relaxed leakage model, which turns out to be tighter than the
original reduction in [18] in the OCL model. Due to space
limitations, we only include here a short description of the
proof. The complete proof can be found in the full version
[11].

Secondly, we observe that the blinding mechanism origi-
nally proposed is susceptible to invalidate the leakage bound
assumption. This is because to perform blinding, one com-
putes an exponentiation Gri for a random integer ri , which if
implemented in a naive way, can almost completely leak ri ,
even with a simple power analysis attack (i.e., with a single
power trace), as we discuss in Sect. 5. The authors in [18]
did not discuss how exponentiation shall be implemented to
meet the leakage bound, nor we can currently find a exponen-
tiation algorithm with these guarantees. Thus, their positive
result risks to be void.

This is why we propose an advanced BEG-KEM+, where
we avoid blinding by an exponentiation Gri for a random
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integer ri . Our modification is based on the observation that
knowledge of the exponent ri is not needed to perform a suc-
cessful decryption, but it suffices to build a random element
in a suitable pairing base group. We propose instead to use a
random encoding into asymmetric pairing groups by Fouque
and Tibouchi [10]. It turns out that this encoding produces
a random element in the base group, and can naturally be
implemented in such a way that the leakage expected against
a single measurement is arguably minimal (see Sect. 5).

Fourthly, we stress that the idea of leakage-resilient cry-
ptography—like any other theoretical concept—can only be
brought into practice by actual implementation. For this
reason, we implemented BEG-KEM+ in ANSI C on an
ARM-based microcontroller. BEG-KEM+ is, to our knowl-
edge, the first implementation and evaluation of a public-key
scheme from the leakage-resilient literature.

2 Stateful bilinear ElGamal KEM

In this section we present the stateful bilinear ElGamal key
encapsulation mechanism (BEG-KEM) from [18]. First, we
recall the basics of the notion of min-entropy. Then we
introduce the concept of stateful KEM and security under
non-adaptive chosen-ciphertext attacks in the presence of
continual min-entropy leakage (CCmLA1). We note again
that the class of leakage functions allowed in our model
(based on loweringmin-entropy) is broader than the bounded
length model (CCLA1) used in [18].1

2.1 Min-entropy

Let X be afinite randomvariablewith probability distribution
Pr. The min-entropy of X , denoted H∞(X), is defined as

H∞(X) := − log2
(
max
x

Pr[X = x]
)
.

Min-entropy is a standard measure of the worst-case pre-
dictability of a random variable. Let Z be a random variable.
The average conditional min-entropy of X given Z , denoted
H̃∞(X | Z), is defined as

H̃∞(X | Z) := − log2
(

E
z←Z

[
max
x

Pr[X = x | Z = z]
])

.

Average conditional min-entropy is a measure of the worst-
case predictability of a random variable given a correlated
random variable.

1 We point out the authors of [18] mention that their results also carry
over to a relaxed leakage model, close in spirit to ours. However, this
model is not fully detailed, and additionally no justification of this fact
is given in [18] nor in [19].

Lemma 1 [9] Let f : X → {0, 1}λ′
be a function on X.

Then H̃∞(X | f (X)) ≥ H∞(X) − λ′.
The following result is a variant of the Schwartz–Zippel

Lemma [13,28,38].

Lemma 2 (Schwartz–Zippel; min-entropy version) Let F ∈
Zq [X1, . . . ,Xn] be a non-zero polynomial of (total) degree
at most d. Let Pi (i = 1, . . . , n) be probability distributions
on Zq such that H∞(Pi ) ≥ log q − λ′, where 0 ≤ λ′ ≤
log q. If xi

Pi← Zq (i = 1, . . . , n) are independent, then

Pr[F(x1, . . . , xn) = 0] ≤ 2λ′ d

q
.

Corollary 1 If λ′ < log q − ω (log log q) in Lemma 2, then
Pr[F(x1, . . . , xn) = 0] is negligible (in log q).

2.2 Stateful key encapsulation mechanism

Formally, a split-state key encapsulationmechanismKEM =
(KG,Enc,Dec1,Dec2) consists of four polynomial time
algorithms. Let κ denote the security parameter and λ

denote the leakage parameter. The key generation procedure
KG (κ, λ) takes as input κ and λ, and outputs the public key
pk, a pair of initial (stateful) secret states

(
σ0, σ

′
0

)
, and the

public parametersPP. The encapsulation procedureEnc(pk)
takes as input pk, and outputs a secret symmetric key K and
the corresponding ciphertext C . The stateful decapsulation
procedure takes C as an input and outputs K ∈ K. This pro-
cedure is split into two consecutive steps Dec1 and Dec2,
where each step accesses distinct parts of the two secret
states. The procedures Dec1 and Dec2 may also update the
secret key using locally generated fresh randomness:

(σi , wi )
ri← Dec1(σi−1,C) ; (σ ′

i , K )
r ′
i← Dec2(σ ′

i−1, wi ).

The scheme KEM is required to satisfy the following cor-
rectness property:

Pr
[
Dec2

(
Dec1 (Enc (pk) , σi−1) \σi , σ ′

i−1

) = K :(
pk,

(
σi−1, σ

′
i−1

) ) ← (KG,Dec1,Dec2) ,

K ← Enc (pk)
] = 1.

The security of the schemeKEM is defined by the experiment
in Table 1.

In this experiment, fi (σi−1, ri ) and hi (σ ′
i−1, r

′
i , wi ) are (e-

fficiently computable) leakage functions that the adversary
can choose adaptively between the rounds. The functions
fi (·) and hi (·) are such that the min-entropy of the individual
inputs of the leakage functions is decreased by at most λ

bits, given the corresponding leakages. More precisely, the
requirement on the leakage functions is that

H̃∞ (t | fi (σi−1, ri )) ≥ H∞ (t) − λ ∀t ∈ σi−1 ∪ ri ,
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Table 1 CCmLA1 security experiment for KEM

KEM-CCmLA1KEM(A, κ, λ) KEM-Leak-Oracle
OCCmLA1(C, fi , hi )

(pk, (σ0, σ ′
0)) ← KG (κ, λ)

i := 1, w ← AOCCmLA1(·) (pk) (σi , wi )
ri← Dec1(σi−1,C)

b
$← {0, 1} (σ ′

i , K )
r ′
i← Dec2(σ ′

i−1, wi )

(C, K0) ← Enc (pk) �i := fi (σi−1, ri )

K1
$← K �′

i := hi (σ ′
i−1, r

′
i , wi )

b′ ← A (w,CKb) i := i + 1

Return (K ,�i ,�
′
i )

and

H̃∞
(
t | hi (σ ′

i−1, r
′
i , wi )

)≥H∞ (t)−λ ∀t ∈ σ ′
i−1∪r ′

i ∪wi .

Essentially, the above equations restrict the class of allowed
leakage functions to those that do not decrease the min-
entropy of each atomic parameter of the secret state by more
than λ bits. For instance, if wi = {

wi,1, wi,2
}
, then we

require that individuallywi,1 andwi,2 have their min-entropy
reduced by at most λ bits given the leakages.

Definition 1 (CCmLA1 security for KEM) A key encap-
sulation mechanism KEM is secure under non-adaptive
chosen-ciphertext attacks in the presence of continual split-
state leakage (CCmLA1), with min-entropy leakage bound
λ, if Pr [b′ = b] is at most negligibly greater than 1

2 in the
Experiment KEM-CCmLA1KEM(A, κ, λ) for any efficient
adversary A.

Note that if in the above definition we would force the
leakage functions to have output length of at most λ bits,
thenwewould obtain theCCLA1 security forKEMasdefined
in [18]. From Lemma 1, we have that the conditional min-
entropy of a random variable, given the leakage output of at
most λ bits, cannot decrease by more than λ bits. Hence, if a
KEM is CCLA1 secure, then it is also CCmLA1 secure.

2.2.1 Bilinear groups

Let BGen′(κ, λ) be a probabilistic bilinear group generator
that outputs (G,GT , q, e′, g) such that:

1. G = 〈g〉 and GT are (multiplicatively written) cyclic
groups of prime order q with binary operations · and �,

respectively. The size of q is κ bits.
2. e′ : G × G → GT is a map that is:

(a) bilinear: ∀u, v ∈ G and ∀a, b ∈ Z, e′(ua, vb) = e′(u,

v)ab.
(b) non-degenerate: e′(g, g) = 1.

Such a group G is said to be a bilinear group if the above
properties hold and the group operations in G and GT , and
the map e′ are efficiently computable. The group G is called
as base group and GT as target group.

2.2.2 Generic bilinear group model

The generic bilinear group (GBG) model [6] is an exten-
sion of the generic group model [31]. The encodings of the
elements of G and GT are given by random bijective maps
ξ : Zq → Ξ and ξT : Zq → ΞT , respectively, where Ξ

andΞT are sets of bit-strings. The group operations inG and
GT , and evaluation of the bilinear map e are performed by
three public oracles O, OT and Oe, respectively, defined as
follows. For all a, b ∈ Zq

– O(ξ(a), ξ(b)) := ξ(a + bmod q)

– OT (ξT (a), ξT (b)) := ξT (a + bmod q)

– Oe(ξ(a), ξ(b)) := ξT (abmod q)

We assume that the (fixed) generator g of G satisfies g =
ξ(1), and also the (fixed) generator gT of GT satisfies gT =
e(g, g) = ξT (1). The encoding of g is provided to all users
of the group oracles. The users can thus efficiently sample
random elements in both G and GT .

We further assume thatΞ∩ΞT = φ, |Ξ | = |ΞT | = q, and
that the elements of Ξ and ΞT are efficiently recognizable.
For instance, the encodings in Ξ can comprise of the binary
representation of the set {0, 1, . . . , q−1}, where every string
begins with ‘0’ and all are of uniform length. The encodings
in ΞT are similarly defined but instead begin with ‘1’. Since
the encodings are efficiently recognizable, the queries to a
group oracle with an invalid encoding can be detected and an
error can be raised. For simplicity, we assume that the users’
queries to the oracles are all valid.

2.3 Bilinear ElGamal KEM

The scheme BEG = (
KGBEG, EncBEG, Dec1BEG,

Dec2BEG
)
is as follows:

1. KGBEG(κ): Compute PP= (
G,GT , e′, q, g

) ← BGen′

(κ, λ) and randomly choose x, t0
$← Fq . Set X = gx ,

σ0 = gt0 , σ ′
0 = gx−t0 , and XT = e′ (g, g)x . Return

(pk, sk0), where

(a) the public key is pk= (PP, XT ).
(b) the secret state is sk0 = (

σ0, σ
′
0

) ∈ G × G.

2. EncBEG(pk): Choose a random r
$← Fq . Compute the

ciphertext C = gr , and the derived key K = Xr
T . Return

(C, K ).
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3. Dec1BEG(σi−1,C): Choose a random ti
$← Fq , set σi =

σi−1 · gti , Yi = e′ (σi ,C). Return (ti ,Yi ).
4. Dec2BEG(σ ′

i−1, (ti ,Yi ) ,C): Set σ ′
i = σ ′

i−1 · g−ti , and
Y ′
i = e′ (σ ′

i ,C
)
. Compute the derived key K = Yi · Y ′

i ∈
GT . Return K .

The correctness of the scheme follows from the fact that
σi · σ ′

i = X ∀i ≥ 0 and using the bilinearity of e′ ().

Theorem 1 [18, Theorem 1] The scheme BEG (also called
BEG-KEM) is CCLA1 secure in the generic bilinear group
model. The advantage of an s-query adversary who gets at
most λ bits of leakage per each invocation of Dec1BEG or

Dec2BEG is at most s3
q 2

2λ+1.

3 A CCmLA1 security reduction in the generic
bilinear group Model

We show that BEG-KEM is also leakage resilient in the mi-
n-entropy leakage model introduced above, where leakage
functions are not necessarily size bounded. The only restric-
tion is that the inputs to the leakage functions shall have
enough min-entropy left, as a function of a leakage parame-
ter λ, given the corresponding outputs. Interestingly, using a
different proof technique than [19], we obtain a tighter bound
on the adversarial CCLmA1 advantage than the bound clai-
med in [18] for the adversarial CCLA1 advantage, w.r.t. the
number of oracle queries s. In other words, with respect to
the previous work, we provide here a new security reduction
under a more realistic leakage model, and surprisingly we
achieve better tightness.

Theorem 2 The scheme BEG-KEM is CCmLA1 secure in
the GBGmodel. The advantage of an s-query adversary with

min-entropy leakage bound λ is
(
9s2+3s

q

)
22λ.

At a high level, the proof of this theorem proceeds in two
steps as in [12,13]. First we show in Theorem 3 that the
scheme is secure if there is no leakage, i.e., CCA1 secu-
rity. Note that the adversary is transparent to the internal
details of secret state updates. Then, we complete the proof
of CCmLA1 security by analyzing the effect of leakage on
the CCA1 security.

Themain idea to prove theCCA1 security is that the adver-
sary will not be able to compute the derived symmetric key
K0 even after seeing the challenge ciphertext. To show this
we just need to prove that K0 cannot be written as a “linear
combination” of the elements of GT that it has got as input
or can compute itself using the pairing oracle along with the
input elements ofG. Hence, in the GBG model it will not be
able to distinguish the actual derived key or a randomly cho-
sen key inGT . The challenger simulates the security game G

to the adversary in the naive way. In addition, the challenger
simulates the generic bilinear group oracles in the usual way
by maintaining lists of pairs of encodings and polynomials
that represent the relation amongst group elements.

We then argue that the proof for the non-leakage setting
(i.e. proof of Theorem 3) and that for the leakage setting
would be the same conditioned on the fact that the adversary
is unable to derive useful relation amongst the elements it
has seen or guessed, and that it will not be able to compute
and hence leak the full secret key X through the leakage
functions, if λ is sufficiently small. Finally, we show that the
probability of this event is increased by a factor of at most
22λ compared to the non-leakage setting. The formal proof
of the next theorem can be found in [11].

Theorem 3 The schemeBEG is CCA1 secure in the generic
bilinear group model, i.e., it is secure against non-adaptive
chosen-ciphertext attacks if there is no leakage of the secret
states. The advantage of an s-query adversary is at most
1
2 + 9s2

q .

3.1 Leakage setting: completing proof of Theorem 2

Let us first briefly sketch themain ideas of the proof.Working
on the lines of the proof of the previous theorem, the advan-
tage ofA is bounded by its success probabilities conditioned
on the event whether or not a collision has occurred in the
lists consisting of elements of G and GT . It is important to
note that the proof for the non-leakage setting (i.e., proof of
Theorem 3) and the leakage setting would be the same con-
ditioned on the fact that a collision has not occurred, and that
the leakage functionswill not be able to compute the “polyno-
mialX” corresponding to the secret key nor guess the correct
representations of the group elements for which it only par-
tially obtains information through the leakage functions. The
reason is that in the event of no collision, the adversary gets
to see only distinct group elements and hence it will not have
enough information on the relation amongst the group ele-
ments it can compute. The fact that the leakage functions
cannot compute the full secret key shows that the adversary
will never be able to continually leak the whole of the secret
key. Hence, leakage on the secret state will not be useful in
this case. Hence, the success probability of A is the same in
the event of no collision (that includes the event of guessing
the representations of group elements using partial informa-
tion about them).

However, the probability that a collision occurs in the leak-
age setting is increased by a factor of at most 22λ. This is
because when A has access to leakage output f i (σi−1, ti )
and hi (σ ′

i−1, (ti ,Yi )) during i th decryption query, then in
adversary’s view the parameters ti (i ≥ 1) are no longer
uniformly distributed even though they are still independent.
Hence,A can now cause collisions among polynomials with
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increased probability. Since ti appears in both f i () and hi (),
its (average conditional) min-entropy will be reduced by at
most 2λ bits.

The only useful information that the leakage functions can
provide to A is about the secret key X . This is because the
values ti are independent of the derived shared secret key.
However, A can use the leakages of ti to eventually leak
X . If A is able to compute X , then it can trivially compute
the symmetric key corresponding to the challenge cipher-
text. The event of no collision, and the fact that X is not a
“linear combination” of the inputs to the leakage functions,
guarantees thatA is unable to compute X . Note that because
the representations of group elements in the GBG model are
randomized, the probability of guessing the complete repre-
sentations of each of σi−1, σ ′

i−1 and Yi , given the leakages,
is increased by a factor of at most 22λ. For a formal proof see
[11].

4 BEG-KEM+: a leakage-resilient KEM closer
to practice

Our choice of BEG-KEM for this investigation is entirely
motivated by the fact that a similar leakage resilience result
as that proven in [18] cannot be expected for a pairing-less
group, as shown in [14]. This motivates using pairing groups
to implement ElGamal.

On the other hand, while Theorem ensures a protection
against side-channel attacks that combine traces of different
computations (e.g., differential power analysis attacks), we
still need protection against single trace attacks, i.e. Simple
Power Analysis (SPA). The use of pairing groups can help
on this respect, as pointed out by Scott in [29]:

“[...] it is of interest to consider the resistance of
pairing-based protocols to so-called SPA attacks [...]
one might with reasonable confidence expect that the
power consumption profile of (and execution time for)
such protocols will be constant and independent of any
secret values.”

We continue by proposing a tweak to BEG-KEM with
the aim to make the most, from a minimizing leakage per-
spective, out of our choice of using pairing groups to realize
leakage-resilient public-key cryptographic primitives.

4.1 An advanced BEG-KEM+ more resistant
to side-channel attacks

Let us first make the observation that Dec1∗
BEG is picking

a random point in the pairing-based group G by computing
an exponentiation gr for a random r . As is well known, a
naïve implementation of exponentiation can leak the entire

exponent r , which would, of course, invalidate the required
bound of maximum leakage in our new (as well as in the old)
model. This leads us to the question whether it is possible,
given the large body of side-channel-resistant exponentiation
techniques, to find an algorithm that would likely meet the
leakage bound for single measurements. In other words, we
have to answer the question of whether the exponentiation
can be made resistant against SPA attacks.

Exponentiation in a multiplicative group (or scalar multi-
plication in an elliptic curve group) of large order involves
hundreds or even thousands of low-level arithmetic opera-
tions such asmodular multiplication. Unfortunately, all these
low-level operations are (either directly or indirectly) con-
trolled by the secret exponent, which means that each of
them can potentially leak sensitive information (see e.g., [33,
35,36] for further details). Consequently, we need both an
SPA-resistant exponentiation algorithm and an SPA-resistant
implementation of the underlying multiple-precision opera-
tions. The latter is difficult to achieve in software due to
side-channel leakage induced by certain micro-architectural
features such as the early-termination mechanism of inte-
ger multipliers in ARM processors [16]. For example, it was
shown in [16] that highly regular exponentiation (resp. scal-
ar multiplication) techniques, which are (in theory) perfectly
SPA-resistant, succumb to an SPA attackwhen exploiting the
early-terminationmechanism. Therefore, we avoid exponen-
tiation with a secret exponent in our modified scheme.2

A careful analysis of BEG-KEM reveals that Dec1∗
BEG

only needs to sample uniformly at random an element u of
G, and that knowledge of logg u is not necessary. It suffices
then to use a method that computes a random point in the
base group.

One possibility is to use a variant of the so-called try-and-
increment approach [7,34], where a random coordinate x for
an elliptic curve point is chosen; next if a point in the curve
exists with that x-coordinate, its y-coordinate is computed
and the procedure is stopped. Otherwise, the procedure is
iterated until a point in the curve is found. We have chosen
not to follow this approach, in particular because its run-
ning time depends on the consecutive seeds x1, x2, . . . used,
which could eventually lead to timing leakages or attacks. It
should be noted that the original try-and-increment approach
has been found to be vulnerable to timing attacks in some
contexts (when used to build a Password Authenticated Key-
Exchange protocol, see [34, Section 3.2] for details). We
prefer to use instead a method that will run in (almost) con-

2 As mentioned previously, the secret exponent controls a large num-
ber of multiple-precision arithmetic operations, which execute an even
larger number of mul instructions. Each of these mul instructions can
potentially trigger the early-termination mechanism and, hence, leak
information about the secret exponent. In our modified scheme, the
secret value is only used as input of a multiple-precision operation and
does not control any other operations.
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stant time, which is a common approach when thwarting
timing attacks.

For this reason, we decided to build a random element
in the pairing base group using a so-called encoding to the
base group [10,17,30]. Roughly speaking, an encoding is a
deterministic function mapping an arbitrary string to a point
in an elliptic curve. Recently, Fouque and Tibouchi [10] pro-
posed a modification of the Shallue and van de Woestijne
encoding into arbitrary elliptic curves [30] that maps arbi-
trary strings to Barreto-Naehrig asymmetric pairing groups
[3]. Let f : F∗

p → E(Fp) be the Fouque-Tibouchi encoding.
Then, (t1, t2) �→ u = u1 ·E u2 builds a point u ∈ E(Fp) dis-

tributed uniformly at random if t1, t2
$← F

∗
p, where ·E is the

addition operation in E(Fp). Additionally, [10] points out
that f can be naturally implemented so that its computation
is completely independent of the inputs, which clearly helps
us towards meeting our desired min-entropy leakage bound.

4.2 BEG-KEM+

Let ABGen be an asymmetric bilinear group generator that
outputs (G1,G2,GT , e, q, g1, g2) with |G1| = |G2| =
|GT | = q, where q is a prime, κ be the security parame-
ter, and λ be the leakage parameter. We will again use the
multiplicative notation for group operations in G1, G2, and
GT . Let e : G1 × G2 → GT be a type 3 pairing map, i.e., e
is a non-degenerate bilinear map with no known efficiently
computable isomorphism ψ : G2 → G1. These groups are
instantiated using the BN curves, denoted E(Fp), of the form
y2 = x3 + b, where b ∈ Fp [3]. In addition, let G1 and G2

be generators of G1 and G2, respectively, and f : F∗
p → G1

be the Fouque–Tibouchi encoding of the elements of G1.
The advanced BEG − KEM+ = (

KG+
BEG, Enc

+
BEG,

Dec1+
BEG, Dec2

+
BEG

)
is defined as follows:

1. KG+
BEG(κ): Compute PP = (G1,G2,GT , e, q,G1,G2)

← ABGen(κ) and randomly choose x, t0
$← Fq . Set

X = Gx
1 , σ0 = Gt0

1 , σ ′
0 = G(x−t0)

1 , and XT =
e (G1,G2)

x . Return (pk, sk0), where

(a) the public key is pk = (PP, XT ).
(b) the secret state is sk0 = (

σ0, σ
′
0

)
.

2. Enc+
BEG(pk): Choose a random r

$← Fp. Compute the
ciphertextC = Gr

2, and the derived key K = Xr
T . Return

(C, K ).

3. Dec1+
BEG(σi−1,C): Choose random ti , zi

$← F
∗
p, set

ui = f (ti ) · f (zi ), and compute σi = σi−1 · ui ,
Yi = e (σi ,C). Return (ui ,Yi ).

4. Dec2+
BEG(σ ′

i−1, (ui ,Yi ) ,C): Set σ ′
i = σ ′

i−1 ·(ui )−1, and
Y ′
i = e

(
σ ′
i ,C

)
. Compute the derived key K = Yi · Y ′

i ∈
GT . Return K .

Algorithm 1 Shallue-van de Woestijne encoding to BN
curves y2 = x3 + b [10]
Input: A random number t ∈ F

�
p .

Output: Point P ∈ E(Fp)

1: w ← √−3 · t/(1 + b + t2)
2: x1 ← (−1 + √−3)/2 − tw
3: x2 ← −1 − x1
4: x3 ← 1 + 1/w2

5: r1, r2, r3
$← F

�
p

6: α ← χq (r21 · (x31 + b))
7: β ← χq (r22 · (x32 + b))
8: i ← [(α − 1) · β mod 3] + 1

9: return P[xi , χq (r23 · t) ·
√

(x3i + b)]

Algorithm 1 describes the constant-time hashing func-
tion to BN curves from [10]. As described in the original
paper, implementing this algorithmagainst timing and simple
power analysis (SPA) attacks is not difficult to be achieved.
In step 6 and 7, instead of computing the values χq(x31 + b)
and χq(x32 + b) in a straightforward way, which can leak
secret data, the authors suggested to use blinding. Namely,
to get α and β, we actually evaluate χq(r21 · (x31 + b)) and
χq(r22 · (x32 + b)), where r1 and r2 are random field elements
generated in Step 5. On the other hand, to prevent the leakage
while computing the index i , they employ a specific algebraic
function φ(α, β) = [(α − 1) · β mod 3] + 1, which runs in
constant time.

5 Secure implementation and performance analysis

In this section, we first describe a software implementa-
tion of BEG-KEM+ (along with the instantiation of the
underlying pairing groups) and present the execution times
we measured on an ARM Cortex M-3 processor. The sec-
ond part of this section is devoted to a “practical” security
evaluation of BEG-KEM+ by analyzing potential sources
of information leakage in the underlying arithmetic oper-
ations that could be exploited to mount a side-channel
attack.

5.1 Implementation details and performance analysis

We implemented both BEG-KEM and BEG-KEM+ in Mag-
ma and ANSI C, whereby the former implementation served
as a reference for the latter. The C implementation is based
on the MIRACL library to ensure an efficient execution of
the pairing evaluation and all other arithmetic operations in
the diverse groups and fields. We instantiated both BEG-
KEM and our improved scheme using the Ate pairing over a
254-bit Barreto–Naehrig (BN) curve. More specifically, our
implementations adopts the curve BN254 from [26], which
provides a security level roughly comparable to that of 128-
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Table 2 Running times for field exponentiation, square root, inversion,
group exponentiation and pairing operations (in 106 clock cycles)

Operation Running time

Square root Fq 0.7

Inversion Fq 0.087

Encoding to G2 3.7

Exponentiation G1 4.5

Exponentiation G2 10.0

Exponentiation GT 27.1

Pairing 65.0

Table 3 Comparison of running times for key generation, encapsula-
tion and decapsulation for BEG-KEM and BEG-KEM+ (in 106 clock
cycles)

Operation BEG-KEM BEG-KEM+

KeyGen 108 108

Encryption 34 34

Decryption 131 140

bit AES. BN curves are defined by a Weierstrass equation of
the form y2 = x3+b over a prime fieldFq , whereby q can be
written as polynomial p(u) = 36u4+36u3+24u2+6u+1 for
some parameter u [3]. In our case, u = −(262 + 255 + 1) =
−0x4080000000000001 and, hence, q has a length of 254
bits. The curve BN254 is given by the equation y2 = x3 + 2
(i.e. b = 2) and has prime order with embedding degree
k = 12.

The execution times for various arithmetic operations
in the different fields and groups are summarized in Table
2, whereby all timings are specified in millions of clock
cycles. Our prototype platform for performance evalua-
tion is an Arduino Due microcontroller board equipped
with an ARM Cortex-M3 CPU. Even though the three
groups G1, G2, and GT have the same order, the underly-
ing multiple-precision arithmetic operations are performed
with operands of different size. G1 and G2 are elliptic
curve groups over Fq and Fq2 , the elements of which have,
in our case, a bitlength of 254 and 508 bits, respectively.
The group GT is a subgroup of the multiplicative group
of the extension field Fq12 , i.e. the modular multiplica-
tions for exponentiation in GT are carried out on 3048-bit
operands.

The execution times for key generation, encapsulation as
well as decapsulation for both BEG-KEM and BEG-KEM+
are given in Table 3. Our results show that an encapsulation
can be carried out in 34million clock cycles, while the decap-
sulation takes about 140 million cycles. We observe that our
modified decapsulation algorithm is roughly 6% slower than
the original one.

5.2 Side-channel resistance from a practical point
of view

One of the fundamental principles of leakage-resilient cryp-
tography is to use a critical secret only once (or a few times),
which ensures that an attacker is not able to retrieve the secret
key if the per-invocation leakage is in some way “limited”
or “bounded.” In every invocation of the scheme or function,
the secret is either “refreshed” or a completely new secret is
generated randomly. The original BEG-KEM scheme from
[18], and also our variant BEG-KEM+, follow this princi-
ple. As a consequence, all forms of side-channel attack that
require several executions of a cryptographic function with
one and the same secret key, e.g., differential power analysis
(DPA), are obviously not applicable to BEG-KEM+ (and in
fact the latter is guaranteed by Theorem 2). However, attacks
that aim to recover the secret key from information leaked
from a single invocation of a cryptographic function (i.e. SPA
attacks) may succeed under certain conditions. The group
exponentiation computed in the BEG-KEM scheme to derive
a random group element σ0 = gt0 serves as a good example.
If this exponentiation is implemented in completely straight-
forward way (e.g., using the square-and-multiply method) an
attacker can obtain t0 if he is able to distinguish group squar-
ings from group products in the power consumption profile.
Such SPA attacks on unprotected or insufficiently protected
ECC implementations are fairly easy and have been reported
extensively in the literature, see, e.g., [5, Chapter IV] and
the references therein. Therefore, we advocated to replace
the aforementioned group exponentiation by a deterministic
encoding into an elliptic curve group [10].

5.2.1 SPA resistance of pairing evaluation

Section 4.1 quotes a statement of Scott [29, Section 3.1]
saying that one can expect the power consumption profile of
a pairing-based protocol to be independent of any secret val-
ues. An intuitive explanation why pairings are fairly “robust”
against SPA leakage is also given in [29]: the target of the
attack is a secret point, which is generally much harder to
reveal than, e.g., a secret scalar or a secret exponent. As
mentioned before, our implementation uses the Ate pair-
ing instantiated on a BN curve over a 254-bit prime field
Fp. Consequently, the secret is the x and y coordinate of an
elliptic curve point, which are in our case simply elements
of Fp. The only way in which an attacker can hope to gain
information about x and y is by inspecting the power con-
sumption and execution time of the Fp-arithmetic operations
(e.g., addition, multiplication) performed on them. However,
the operand-related SPA leakage from field-arithmetic oper-
ations is generally very small. To explain this in detail, let us
use the addition in Fp as example, which is nothing else than
a modular addition r = a + b mod p. We assume that a is a
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secret value and that b is known to the attacker. A modular
addition consists of an ordinary addition s = a + b, fol-
lowed by a subtraction if the sum s is equal to or bigger than
p. Conventional wisdom from the side-channel community
says that such a conditional subtraction causes differences
in the power consumption profile (and also execution time),
which is observable by an attacker. However, the informa-
tion content is very small; in fact, when the subtraction is
executed the attacker just knows that a + b ≥ p, i.e. he has
learned that a ≥ p − b.

The situation is similar for multiplication in Fp, which is
nothing else than a modular multiplication r = a · b mod p.
Again, we assume that a is the secret value and that b is
known to the attacker. A modular multiplication involves
a conventional multiplication t = a · b, followed by a
modular reduction r = t mod p, which is in pairing-based
cryptography typically implemented using Montgomery’s
algorithm [23]. Both the multiplication and Montgomery
reduction are highly regular (i.e. do not have to execute
any conditional statements), except for the so-called “final
subtraction.” Montgomery’s reduction technique does not
directly compute t mod p but produces the following output

x = (
t + (t · p′ mod 2n) · p)/2n (1)

where p′ = −p−1 mod 2n and n is the bitlength of p.
Note that x may be not fully reduced, which means a final
subtraction of p is necessary to get the least non-negative
residue as result. An attacker able to observe whether or
not this final subtraction is executed learns only whether
x ≥ p or not, which does not reveal much information
about a. The same also holds for subtraction and squaring
in Fp. However, a noteworthy exception is the inversion
operation, which we will further discuss below. In summary,
a straightforward implementation of the arithmetic opera-
tions (bar inversion) in Fp leaks only very little information
about the operands, which confirms that pairing evaluation
is, in general, not susceptible to SPA attacks. To our knowl-
edge, the recent literature contains only two papers in which
SPA attacks on pairings are discussed [25,37], but both of
them are only relevant for pairings over binary fields where
the multiplication is implemented in a highly irregular way.
The attack from [35] is only applicable to scalar multipli-
cation with a secret scalar, but not to pairings with a secret
point.

5.2.2 SPA resistance of encoding function

The encoding function shown in Algorithm 1 consists of a
number of basic arithmetic operations (e.g., addition, mul-
tiplication) in the field Fp. Furthermore, two inversions are
executed, one in step 1 and the other in step 4. The straight-
forward approach to invert an element of a finite field is the

Extended Euclidean Algorithm (EEA). Conventional wis-
dom from the side-channel community says that the EEA
is a highly irregular algorithm, executing many conditional
operations, which is likely to leak SPA-relevant information
about the operand to be inverted. To prevent an SPA attack
on the inversion operation, we apply a simple multiplica-
tive masking; that is, instead of inverting a field element v

directly, we first multiply it by a random number r , which
yields the product t = v · r . Then, we invert this product
using the EEA to obtain 1/t = 1/(v · r), which we finally
multiply again by r to get 1/v as result.

The function χ in step 6 and 7 of Algorithm 1 is essen-
tially an evaluation of the Legendre Symbol, which, in turn,
consists of an exponentiation using a constant public expo-
nent (i.e., (p+1)/4). The input to the χ function is “blinded”
by the random value r21 and r22 , which means the underlying
exponentiation cannot leak anySPA-relevant information.As
mentioned in Sect. 4.1, a constant-time algebraic function is
adopted for the calculation of the index i in step 8, which
also cannot leak.

6 Conclusion

In this paper, we aimed to bring the concept of leakage-
resilient cryptography closer to practice.Most of the leakage-
resilient public-key cryptography schemes proposed until
now are too inefficient for real-world applications. Even tho-
ugh they provide provable security against a large class of
side-channel attacks, they do so under certain leakage mod-
els and leakage bound requirements that are far fromwhat we
can ensure in practice. On the other hand, the side-channel
countermeasures are often ad hoc and do not provide enough
security guarantees. We addressed this problem by bringing
best practices frombothworlds together. First, we argued that
a naive implementation of the pairing group exponentiation
in the leakage-resilient ElGamal key encapsulation mecha-
nism proposed by Kiltz and Pietrzak makes it impossible to
reach the required leakage bound. To overcome this prob-
lem, we have made two additional contributions. On the one
hand, we have proposed a relaxed leakagemodel, that we call
min-entropy leakage, that lifts the restriction on the image
size of leakage functions, and proposes instead to require
that the inputs to the leakage functions have sufficient min-
entropy left, in spite of the leakage. On the other hand, we
adopted a different mechanism for finding a random point in
an elliptic curve group, namely the encoding of Fouque and
Tibouchi. We assessed the security of our implementation
from both a theoretical and a practical perspective and argued
that it is indeed secure in both the worlds. BEG-KEM+ is, to
our knowledge, the first leakage-resilient public-key scheme
that has been successfully implemented and evaluated on an
embedded 32-bit processor.
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